JPH01197969A - Cell structure of molten carbonate fuel cell - Google Patents

Cell structure of molten carbonate fuel cell

Info

Publication number
JPH01197969A
JPH01197969A JP63023393A JP2339388A JPH01197969A JP H01197969 A JPH01197969 A JP H01197969A JP 63023393 A JP63023393 A JP 63023393A JP 2339388 A JP2339388 A JP 2339388A JP H01197969 A JPH01197969 A JP H01197969A
Authority
JP
Japan
Prior art keywords
cell
fuel
gas
oxidizing agent
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63023393A
Other languages
Japanese (ja)
Inventor
Shinichi Maruyama
晋一 丸山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP63023393A priority Critical patent/JPH01197969A/en
Publication of JPH01197969A publication Critical patent/JPH01197969A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04007Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids related to heat exchange
    • H01M8/04067Heat exchange or temperature measuring elements, thermal insulation, e.g. heat pipes, heat pumps, fins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0267Collectors; Separators, e.g. bipolar separators; Interconnectors having heating or cooling means, e.g. heaters or coolant flow channels
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04089Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/241Grouping of fuel cells, e.g. stacking of fuel cells with solid or matrix-supported electrolytes
    • H01M8/244Grouping of fuel cells, e.g. stacking of fuel cells with solid or matrix-supported electrolytes with matrix-supported molten electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/2457Grouping of fuel cells, e.g. stacking of fuel cells with both reactants being gaseous or vaporised
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/2465Details of groupings of fuel cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/2465Details of groupings of fuel cells
    • H01M8/2483Details of groupings of fuel cells characterised by internal manifolds
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Abstract

PURPOSE:To stabilize cell performance by supplying an oxidizing agent gas from the center of a fuel passage, that is from the central part of a cell or the part inclined to the inlet side of a fuel gas from the central part. CONSTITUTION:A fuel gas flows from the side 4 of a cell 1 toward the side 5 through fuel passages 14 to supply the fuel gas to a fuel electrode 11. An oxidizing agent gas flows from sides 2, 3 to an oxidizing agent passages 15, then branched to the sides 4, 5 through oxidizing agent passages 16 to supply the oxidizing agent gas to an oxidizing agent electrode 12. Thereby, electrochemical reaction occurs to generate electric power. Since the heat generated by electrochemical reaction is radiated from the surroundings of the cell 1, the temperature in the central part of the cell 1 tends to be increased. By supplying the oxidizing agent gas which also serves as a cooling medium to the oxidizing agent passages 15 in the center of the cell 1, the oxidizing agent gas cools at first the central part of the cell 1, and the temperature distribution on the reaction surface of the cell 1 is made uniform. Cell performance is increased.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、炭酸塩を電解質とする溶融炭酸塩形燃料電池
のセル構造に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a cell structure of a molten carbonate fuel cell using carbonate as an electrolyte.

〔従来の技術〕[Conventional technology]

浴融炭酸塩形燃料電池は炭酸塩を含有する電解質板と、
これを挾持する燃料電極および酸化剤電極と、これらの
′FjL極の両側に配される燃料電極に反応ガスである
燃料ガスを供給する凹状の燃料流路を、一方酸化剤電極
に酸化剤ガスを供給する凹状の酸化剤流路を有するガス
不透過性σ〕セパレータ板とからなるセルから構成され
、炭酸塩が浴融する高温状態でセルに燃料ガスと酸化剤
ガスとを前記セパレート板の燃料1M化制剤流路経てそ
れぞれ燃料電極と酸化剤′電極とに供給して電気化学反
応を起こさせて発電する。
A bath-fused carbonate fuel cell includes an electrolyte plate containing carbonate,
A fuel electrode and an oxidizer electrode sandwich this, and a concave fuel flow path that supplies fuel gas, which is a reactive gas, to the fuel electrodes arranged on both sides of these 'FjL electrodes. The fuel gas and the oxidant gas are introduced into the cell in a high temperature state where the carbonate is bath melted, and the fuel gas and the oxidant gas are passed through the separator plate. The fuel is supplied to the fuel electrode and the oxidizer electrode through the 1M fuel flow path to cause an electrochemical reaction and generate electricity.

ところで、反応ガスである燃料ガスと酸化剤ガスとを電
極に供給する流れの方向は、燃料ガスと酸化剤ガスとの
交差の形から直交流、並流、向流の三m類がある。反応
ガスの直交流は第1図に示すように、方形状のセル1の
セパレート仮に設けられた酸化剤流路を経て酸化剤電捧
面に酸化剤ガスを対向する一方の仰1面2から他方の側
面、に流し、一方セバレート板に設けられた燃料流路を
経て酸化剤電極の裏側にある燃料電極面に燃料ガスを異
なる対向する側面の一方の側面4から他方の側面5に流
す方法である。また並流は第5図に示すようにセル1に
酸化剤ガスと燃料ガスとを側面4から側面5へと同じ方
向に酸化剤電極面と燃料電極面とに流す方法であり、向
流は第6図に示すようにセル1に酸化剤ガスを酸化剤電
極面に側面5から側面4に、また燃料ガスを燃料電極面
に側面4かも仰1面5に燃料ガスの流れ方向と逆方向に
流す方法である。
By the way, there are three types of flow directions for supplying the reactant gases, fuel gas and oxidant gas, to the electrodes: cross flow, parallel flow, and counterflow, depending on the shape of the intersection between the fuel gas and oxidant gas. As shown in Fig. 1, the cross flow of the reactant gas is carried out from one surface 2 of the rectangular cell 1 facing the oxidant electrode through the oxidant flow path provided temporarily in a separate section. A method of flowing fuel gas from one side 4 to the other side 5 of different opposing sides through a fuel flow path provided in a separator plate and onto a fuel electrode surface on the back side of an oxidizer electrode. It is. Furthermore, cocurrent flow is a method in which the oxidant gas and fuel gas are flowed into the cell 1 from the side surface 4 to the side surface 5 in the same direction to the oxidizer electrode surface and the fuel electrode surface, as shown in FIG. As shown in Fig. 6, the oxidant gas is supplied to the cell 1 from side 5 to side 4 to the oxidizer electrode surface, and the fuel gas is supplied to the fuel electrode surface from side 4 to side 4 or vertically 1 to 5 in the opposite direction to the flow direction of the fuel gas. This is a method that allows the flow to flow.

このような3 fj4類の流し方において、セルが電気
化学反応をする時のセル反応面内温度の温度分布は反応
ガスの直交流による方法では温度をパラメータとしてセ
ル反応面6の温度分布を示した第j図、並流では横軸に
反応ガスの流れ方向にとりたセル反応面の長さをとり、
縦軸に温度をとって示した第1図、向流では横軸に反応
ガスの流れ方向にとったセル反応面の長さをとり、縦軸
に温度? とって示した第「図のようになる。
In such a 3 fj 4 type flow method, when the cell performs an electrochemical reaction, the temperature distribution on the cell reaction surface 6 is expressed as the temperature distribution on the cell reaction surface 6 using temperature as a parameter in the method using cross flow of reaction gas. In Figure J, in parallel flow, the horizontal axis is the length of the cell reaction surface taken in the flow direction of the reaction gas,
Figure 1 shows temperature on the vertical axis, and in countercurrent flow, the horizontal axis shows the length of the cell reaction surface taken in the flow direction of the reaction gas, and the vertical axis shows temperature? The result will be as shown in the figure below.

このように反応ガスの直交流、並流、向流によるセル反
応面の温度分布に特徴が生ずるのは下記の理由による。
The reason why the temperature distribution of the cell reaction surface has such characteristics due to the cross flow, parallel flow, and counter flow of the reaction gas is as follows.

(1)酸化剤ガスはセル冷却のためガスを大量に流すこ
と、 (2)燃料ガスは燃料電池σ)効率を上げるため流量が
少ないこと、 (3)酸化剤電極はあまりガス濃度依存性が太き(なく
、セル入口組成中の炭酸ガスと酸系が反応により消費し
ても、あまり特性に太き(影響しないこと、 (4)燃料7程極の濃度依存性は高く、反応による燃料
消費及び、水蒸気及び炭酸カスの発生によりガス出入り
口の特性は大きく異なり、その特性の差により内部抵抗
が変わること、 (5)各電イ・ニセに於いては、電極内で均一な電位分
布になる方向で反応が進み、一定の電流密度に於いて分
極の少ない部分が高電流密度となり、他の部分とバラン
スをとる。負荷電匠による発熱は電流(電流密度)の二
乗に比例するため発熱が他よりも制くすること、 上記の理由により燃料電池は、運転時セル反応面に反応
ガスの流し方による異なる温度分布を有して発電してい
る。
(1) The oxidant gas must be flowed in large quantities to cool the cell. (2) The flow rate of the fuel gas must be small to increase the efficiency of the fuel cell σ). (3) The oxidant electrode is not highly dependent on gas concentration. (4) Fuel 7 has a high dependence on the concentration of the electrode, and even if the carbon dioxide gas and acid system in the cell inlet composition are consumed by the reaction, it will not affect the characteristics much. The characteristics of the gas inlet and outlet vary greatly due to consumption and the generation of water vapor and carbon dioxide scum, and the internal resistance changes due to the difference in characteristics. The reaction progresses in the direction of the current density, and at a constant current density, the part with less polarization becomes a high current density, which balances out the other parts.The heat generated by the load electrical current is proportional to the square of the current (current density), so the heat is generated. Due to the above-mentioned reasons, fuel cells generate electricity with different temperature distributions depending on how the reaction gas flows on the reaction surface of the cell during operation.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

溶融炭酸塩型燃料電池に限らず燃料電池では、セル反応
面の温度分布の最高と最低の温度差は小さい方が望まし
い。これは温度が低いとセル特性が悪<、温度が高いと
寿命が短いという欠点を持へ つれめ、出来るだけセル内温度差は小さい方が、所望の
運転条件を確保出来、運転もしやすく、セル特性が良(
、長寿命も期待出来るからである。
In fuel cells as well as molten carbonate fuel cells, it is desirable that the temperature difference between the highest and lowest temperature distributions on the cell reaction surface be as small as possible. This has the disadvantage that cell characteristics are poor if the temperature is low, and the life is short if the temperature is high, so the smaller the temperature difference within the cell as possible, the more the desired operating conditions can be secured and the operation will be easier. Good cell characteristics (
This is because a long life can be expected.

しかしながら、上記のような反応ガスの流し方において
、最もセル反応面の温度差の大きいのが第9図に示す向
流によるもので約250°Cであり、最も小さいのが、
第8図に示す並流によるもので約150°Cであり、そ
の中間が第7図に示す直交流によるもので約200°C
であるが、まだ温度分布の温度差は大きいという問題が
ある。
However, in the method of flowing the reaction gas as described above, the largest temperature difference on the cell reaction surface is due to the countercurrent flow shown in Figure 9, which is about 250°C, and the smallest is:
The temperature is approximately 150°C due to the parallel flow shown in Figure 8, and the temperature in between is approximately 200°C due to the cross flow shown in Figure 7.
However, there is still a problem that the difference in temperature distribution is large.

不発明の目的は、セル反応面の温度分布の温度差を小さ
くすることによりセル特性の安定と寿命の長期化が得ら
れる溶融炭酸塩形燃料電池のセル構造を提供することで
ある。
An object of the present invention is to provide a cell structure for a molten carbonate fuel cell that can stabilize cell characteristics and prolong its life by reducing the temperature difference in the temperature distribution of the cell reaction surface.

〔課題を解決するための手段〕[Means to solve the problem]

上記課題を解決するために、本発明によれは炭酸塩を含
有する電解質板と、これを挾持する燃料[極および酸化
剤電極と、これらの電極の両側に配され、燃料電極に燃
料ガスを供給する燃料流路を、一方酸化剤電極に酸化剤
ガスを供給する酸化剤流路をそれぞれ備えるセパレート
孜とからなるセルにおいて、前記燃料流路を燃料ガスが
セルの対向する一方の側面から他方の側面に向って流れ
るように設け、一方前記酸化剤流路を酸化剤ガスが前記
対向する側面間の中央の部位、またはこの部位から燃料
ガスの入口側の側面に偏る部位から前記一方の側面と他
方の側面とに向って流れるように設けるものとする。
In order to solve the above problems, the present invention includes an electrolyte plate containing carbonate, a fuel electrode and an oxidizer electrode sandwiching the electrolyte plate, and a fuel electrode and an oxidizer electrode disposed on both sides of these electrodes to supply fuel gas to the fuel electrode. In the cell, the fuel flow path is connected to the oxidant electrode, and the fuel gas is supplied from one side of the cell to the other side. The oxidant gas is provided so as to flow toward the side surface of the fuel gas, and the oxidant gas flows from a central portion between the opposing side surfaces, or from a portion where the oxidant gas is biased from this portion to the side surface on the inlet side of the fuel gas to the one side surface. and the other side.

〔作 用〕[For production]

反応ガスの供給による電気化学反応の際発生する熱によ
りセルは加熱されるが、セルの同曲がらの放熱によりセ
ル反応面の中央部は温度が高くなる。また、燃料ガスの
入口側の方が燃料ガスの燃料濃度が高いため、電流密度
が高くなり、このため燃料ガス入口側の方が温度が高く
なる。したがって冷却媒体としても使用される酸化剤ガ
スをセパレート板に設けられた酸化剤流路を舒て燃料ガ
スの流れ方向の側面間、すなわちセルの中央の部位、ま
たはこの部位から燃料ガスの入口側の側面に偏る部位か
ら燃料ガスの入口側と出口側の両側面に向って流すこと
により、セル反応面の温度分布は均一化される。
The cell is heated by the heat generated during the electrochemical reaction due to the supply of reaction gas, but the temperature at the center of the cell reaction surface becomes high due to heat dissipation from the same curve of the cell. Further, since the fuel concentration of the fuel gas is higher on the fuel gas inlet side, the current density is higher, and therefore the temperature is higher on the fuel gas inlet side. Therefore, the oxidant gas, which is also used as a cooling medium, is passed between the sides in the flow direction of the fuel gas, that is, between the sides in the flow direction of the fuel gas, or from this part to the inlet side of the fuel gas. The temperature distribution on the cell reaction surface is made uniform by allowing the fuel gas to flow from a portion that is biased toward the side surface toward both the side surfaces on the inlet side and the outlet side.

〔実施例〕〔Example〕

以下図面に基づいて本発明の実施例について説明する。 Embodiments of the present invention will be described below based on the drawings.

第1図は本発明の実施例による溶融炭酸塩形燃料電池の
セル構造を示す分解斜視図である。
FIG. 1 is an exploded perspective view showing the cell structure of a molten carbonate fuel cell according to an embodiment of the present invention.

なお第1図および後述する第2図、第3図において第4
図ないし第9図の従来例と同一部品には同じ符号を付し
、その説明を省略する。第1図において溶融炭酸塩形燃
料11!池のセル1は炭酸塩を金員する電解質板10と
、これを挾持する燃料電極11および酸化剤電極12と
、この両側に配されるガス不透過性のセパレート板13
とから構成されている。ここでセパレート板13は本発
明に係る反応ガスを燃料電極と酸化剤!極とに供給する
流路を有する構造にしている。すなわちセパレート板1
3の燃料電極11に接する面には燃料ガスがセル1の一
方の111面4かも対向する側面5に向って流れるよう
にする凹状の複数の燃料流路14を、一方酸化剤電極面
に接する面には燃料流路14の中央であるセルの中央を
横断して酸化剤ガスが側面2と3とから流入して流れる
酸化剤流路15と、酸化剤流路15かも分岐して燃料ガ
スの入口側の111面4と出口側]の側面5に向って流
れるようにする凹状の複数の酸化剤流路16とを設けて
いる。
Note that in Figure 1 and Figures 2 and 3, which will be described later,
Components that are the same as those in the conventional example shown in the figures through FIG. In Figure 1, molten carbonate fuel 11! A pond cell 1 includes an electrolyte plate 10 containing carbonate, a fuel electrode 11 and an oxidizer electrode 12 that sandwich the electrolyte plate, and gas-impermeable separate plates 13 disposed on both sides of the electrolyte plate 10.
It is composed of. Here, the separate plate 13 separates the reaction gas according to the present invention from the fuel electrode and the oxidizer! The structure has a flow path for supplying to the poles. That is, separate plate 1
A plurality of concave fuel passages 14 are provided on the surface of the cell 1 in contact with the fuel electrode 11 so that the fuel gas flows from one surface 4 of the cell 1 to the opposite side surface 5. On the surface, there is an oxidant flow path 15 in which the oxidant gas flows in from the side surfaces 2 and 3 across the center of the cell, which is the center of the fuel flow path 14, and the oxidant flow path 15 also branches to flow the fuel gas. A plurality of concave oxidant channels 16 are provided to allow the oxidant to flow toward the 111 surface 4 on the inlet side and the side surface 5 on the outlet side.

なお、セパレート板13には一方の面に燃料流路を、他
方の面に酸化剤流路を設けることにより、セルを積層す
る時、セパレート板13は相隣るセルの共有セパレート
板トft 7:r。
Note that the separate plate 13 is provided with a fuel flow path on one side and an oxidizer flow path on the other side, so that when cells are stacked, the separate plate 13 is used as a common separate plate for adjacent cells. :r.

このようなセルの構造により、燃料電池運転時、第2図
に示すように燃料ガスはセル1の側面4から側面5に向
って燃料流路14(第1図参照)を経て流れ、燃料電極
11に燃料ガスを供給し、−方酸化剤ガスは側面2と3
とから流入して酸化剤流路15(第1図参照)に流入し
、さらに酸化剤流路16(第1図参照)を経て側面4と
5とに向って分れて流れ、酸化剤電極に酸化剤ガスを供
給することにより電気化学反応を起こして発電する。
Due to this structure of the cell, during fuel cell operation, the fuel gas flows from the side surface 4 of the cell 1 toward the side surface 5 through the fuel flow path 14 (see FIG. 1), as shown in FIG. Fuel gas is supplied to side 11, - oxidant gas is supplied to sides 2 and 3.
The oxidizer flows into the oxidant flow path 15 (see Figure 1), and further flows through the oxidizer flow path 16 (see Figure 1), splitting toward the side surfaces 4 and 5, and flowing toward the oxidizer electrode. By supplying oxidant gas to the oxidant gas, an electrochemical reaction occurs and electricity is generated.

ところで、電気化学反応により発生する熱はセルの周囲
からの放散のためセルの中央部が高温に ・なる傾向が
ある。したがって冷却媒体でもある酸化剤ガスを、まず
セル中央の酸化剤流路15に流すことにより、酸化剤ガ
スは最初にセルの中央部を冷却し、セル反応面の温度分
布が均一化される。
By the way, the heat generated by the electrochemical reaction is dissipated from the periphery of the cell, so the center of the cell tends to reach a high temperature. Therefore, by first flowing the oxidant gas, which is also a cooling medium, into the oxidant flow path 15 in the center of the cell, the oxidant gas first cools the center of the cell, and the temperature distribution on the reaction surface of the cell is made uniform.

なお、燃料ガスの入口側は前述のように温度が高くなる
傾向にあるので、第1図の酸化剤流路15を中央から燃
料ガスの入口側の側面4の方に偏らせ、第3図に示すよ
うな酸化剤ガスの流れにすることKよりセル反応面の温
度分布は均一化される。
Since the temperature on the fuel gas inlet side tends to be high as described above, the oxidant flow path 15 in FIG. 1 is biased from the center toward the side surface 4 on the fuel gas inlet side, and By making the oxidant gas flow as shown in the figure, the temperature distribution on the cell reaction surface is made uniform.

〔発明の効果〕〔Effect of the invention〕

以上の説明から明らかなように、本発明によれは酸化剤
ガスを、燃料ガスが流れる燃料流路の中央、すなわちセ
ルの中央の部位、またはこの部位から燃料ガスの入口側
に偏る部位から供給するようにしたことにより、冷却媒
体として作用する酸化剤ガスは最初にセルの高温となる
べき部位を冷却するので、セル反応面の温度分布は均一
化し、このためセル特性が安定し、これに伴って寿命が
長くなるという効果がある。
As is clear from the above description, according to the present invention, the oxidizing gas is supplied from the center of the fuel flow path through which the fuel gas flows, that is, from the central part of the cell, or from a part biased from this part toward the fuel gas inlet side. By doing so, the oxidant gas acting as a cooling medium first cools down the high temperature areas of the cell, which equalizes the temperature distribution on the cell reaction surface, which stabilizes the cell characteristics. This has the effect of lengthening the lifespan.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例による浴融炭酸塩形燃料電池の
セルの構造を示す分解斜視図、第2図は第1図のセルへ
の反応ガスの流れ方向を示す流れ図、第3図は第1図の
セルにおいて酸化剤ガスの流入部を燃料ガスの入口側に
偏らせた時の反応ガスの流れ方向を示す流れ図、第4図
はセルへ直交流により反応ガスを流す流れ方向を示す流
れ図、第5図はセルへ並流により反応ガスを流す流れ方
向を示す流れ図、第6図はセルへ向流により反応ガスを
流す流れ方向を示す流れ図、第7図は第4図の直交流に
よるセル反応面の温度分布を示す図、第8図は第5図の
並流によるセル反応面の温度分布を示す図、第9図は第
6図の向流によるセル反12・・・酸化剤1罷極、13
:セパレート板、14:上℃ル 第1図 第2図 第3図 第4図2 ―父イし7Fj ↓ ÷ 第7図
FIG. 1 is an exploded perspective view showing the structure of a cell of a bath molten carbonate fuel cell according to an embodiment of the present invention, FIG. 2 is a flow chart showing the direction of flow of reactant gas into the cell of FIG. 1, and FIG. is a flowchart showing the flow direction of the reactant gas when the oxidant gas inlet is biased towards the fuel gas inlet side in the cell of Fig. 1, and Fig. 4 shows the flow direction of the reactant gas flowing into the cell by cross flow. 5 is a flowchart showing the direction of flow in which the reaction gas flows into the cell in parallel flow, FIG. Figure 8 is a diagram showing the temperature distribution of the cell reaction surface due to alternating current, Figure 8 is a diagram showing the temperature distribution of the cell reaction surface due to parallel flow as shown in Figure 5, and Figure 9 is a diagram showing the temperature distribution of the cell reaction surface due to countercurrent flow as shown in Figure 6. Oxidizing agent 1, 13
: Separate plate, 14: Upper C Le Figure 1 Figure 2 Figure 3 Figure 4 Figure 2 - Father 7Fj ↓ ÷ Figure 7

Claims (1)

【特許請求の範囲】[Claims]  炭酸塩を含有する電解質板と、これを挾持する燃料電
極および酸化剤電極と、これらの電極の両側に配され、
燃料電極に燃料ガスを供給する燃料流路を、また酸化剤
電極に配化剤ガスを供給する酸化剤流路をそれぞれ備え
るセパレート板とからなるセルにおいて、前記燃料流路
を燃料ガスがセルの対向する一方の側面から他方の側面
に向って流れるように設け、一方前記酸化剤流路を酸化
剤ガスが前記対向する側面間の中央の部位、またはこの
部位から燃料ガスの入口側の側面に偏る部位から前記一
方の側面と他方の側面とに向って流れるように設けたこ
とを特徴とする溶融炭酸塩形燃料電池のセル構造。
An electrolyte plate containing carbonate, a fuel electrode and an oxidizer electrode that sandwich this, and arranged on both sides of these electrodes,
In a cell comprising separate plates each having a fuel flow path for supplying fuel gas to a fuel electrode and an oxidizer flow path for supplying a arranging agent gas to an oxidizer electrode, the fuel gas flows through the fuel flow path into the cell. The oxidizing agent flow path is provided so that the oxidizing agent gas flows from one opposing side surface to the other side surface, and the oxidizing agent flow path is provided so that the oxidizing agent gas flows to a central portion between the opposing side surfaces, or from this portion to the side surface on the inlet side of the fuel gas. A cell structure of a molten carbonate fuel cell, characterized in that the cell structure is provided so that the flow flows from the biased portion toward the one side surface and the other side surface.
JP63023393A 1988-02-03 1988-02-03 Cell structure of molten carbonate fuel cell Pending JPH01197969A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63023393A JPH01197969A (en) 1988-02-03 1988-02-03 Cell structure of molten carbonate fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63023393A JPH01197969A (en) 1988-02-03 1988-02-03 Cell structure of molten carbonate fuel cell

Publications (1)

Publication Number Publication Date
JPH01197969A true JPH01197969A (en) 1989-08-09

Family

ID=12109266

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63023393A Pending JPH01197969A (en) 1988-02-03 1988-02-03 Cell structure of molten carbonate fuel cell

Country Status (1)

Country Link
JP (1) JPH01197969A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0978891A3 (en) * 1998-08-03 2001-11-28 Toyota Jidosha Kabushiki Kaisha Multiple uneven plate, multiple uneven plate bending mold, multiple uneven plate manufacturing method and separator using multiple uneven plate

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0978891A3 (en) * 1998-08-03 2001-11-28 Toyota Jidosha Kabushiki Kaisha Multiple uneven plate, multiple uneven plate bending mold, multiple uneven plate manufacturing method and separator using multiple uneven plate
US6490778B1 (en) 1998-08-03 2002-12-10 Toyota Jidosha Kabushiki Kaisha Multiple uneven plate, multiple uneven plate bending mold, multiple uneven plate manufacturing method and separator using multiple uneven plate
US6833214B2 (en) 1998-08-03 2004-12-21 Toyota Jidosha Kabushiki Kaisha Multiple uneven plate and separator using multiple uneven plate

Similar Documents

Publication Publication Date Title
US4169917A (en) Electrochemical cell and separator plate thereof
JPH03210774A (en) Internally improved quality system molten carbonate type fuel cell
JP2000195529A (en) Fuel cell
JP2000231929A (en) Fuel cell
JP3553245B2 (en) Direct methanol fuel cell
JPH0238377Y2 (en)
US6926985B2 (en) Fuel cell stack
JP2001307753A (en) Solid polymer type fuel cell
JPS6290871A (en) Fuel cell
JPH05251097A (en) Solid high polymer electrolyte type fuel cell
JP2570771B2 (en) Fuel cell cooling method
JP3537911B2 (en) Solid polymer electrolyte membrane fuel cell and control method thereof
JPS63119166A (en) Fuel battery
JPS58112263A (en) Fuel cell
JPS63248073A (en) Stacked fuel cell
JPH01197969A (en) Cell structure of molten carbonate fuel cell
JPH09161819A (en) Solid polymer electrolytic fuel cell
JPS63236265A (en) Fuel cell
JPH09320619A (en) Molten carbonate fuel cell
JP2803288B2 (en) Cooling method of phosphoric acid type fuel cell
KR101181821B1 (en) Fuel cell system and stack of the same
JPH03245463A (en) Fuel cell
JPH02155170A (en) Fuel cell performing internal reformation
JPS62147664A (en) Reaction gas supply method in fuel cell
JPS63285873A (en) Fuel cell