JPS62147664A - Reaction gas supply method in fuel cell - Google Patents

Reaction gas supply method in fuel cell

Info

Publication number
JPS62147664A
JPS62147664A JP60290159A JP29015985A JPS62147664A JP S62147664 A JPS62147664 A JP S62147664A JP 60290159 A JP60290159 A JP 60290159A JP 29015985 A JP29015985 A JP 29015985A JP S62147664 A JPS62147664 A JP S62147664A
Authority
JP
Japan
Prior art keywords
gas
current density
flows
flow
fuel cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60290159A
Other languages
Japanese (ja)
Other versions
JPH0577153B2 (en
Inventor
Hideo Okada
秀夫 岡田
Toshiki Kahara
俊樹 加原
Koichi Mitsugi
三次 浩一
Yoshio Iwase
岩瀬 嘉男
Masahito Takeuchi
将人 竹内
Koki Tamura
弘毅 田村
Shigeyoshi Kobayashi
成嘉 小林
Hidekazu Fujimura
秀和 藤村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP60290159A priority Critical patent/JPS62147664A/en
Publication of JPS62147664A publication Critical patent/JPS62147664A/en
Publication of JPH0577153B2 publication Critical patent/JPH0577153B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/2465Details of groupings of fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Abstract

PURPOSE:To level current density distribution and to increase power generation efficiency by passing reaction gasses so that they form plural flows having mutually opposite directions, and separating the adjacent opposite flows each other with a separating wall. CONSTITUTION:A plurality of unit cells comprising a pair of electrode plates faced with an electrolyte plate interposed are stacked via a separator, and reaction gas is passed between the electrode plate and the separator to form a fuel cell. A gas separating wall 3 is arranged on a cathode 11 side, and a gas separating wall 13 on an anode 12 side. Fuel gas 14 is divided into two flows with the separating wall 3 and its flow is made opposite each other, and oxidizing gas 15 is also divided into two opposite flows. Plural parts having high current density are formed to level current density distribution. Therefore, cell performance is stabilized and power generating efficiency is increased.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は、燃料電池の反応ガス供給方法に係り、特に大
型燃料電池の発電時に発生する電流密度分布の不均一、
ならびに電極温度分布の不均一に伴う電池性能低下を防
止し、長期間にわたって安定した電池性能を得るために
改良された反応ガスの供給方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a method for supplying a reactant gas to a fuel cell, and particularly to non-uniform current density distribution that occurs during power generation in a large fuel cell.
The present invention also relates to an improved method for supplying a reactant gas in order to prevent deterioration in battery performance due to non-uniform electrode temperature distribution and to obtain stable battery performance over a long period of time.

〔発明の背景〕[Background of the invention]

燃料電池は、第2図に示すように、電解質板1を挾持し
て相対向配置するアノード3およびカソード2からなる
単位電池を、セパレータ4を介して積層することによっ
て形成される。
As shown in FIG. 2, the fuel cell is formed by stacking unit cells, each consisting of an anode 3 and a cathode 2 facing each other with an electrolyte plate 1 sandwiched therebetween, with a separator 4 in between.

このセパレータ4には、反応ガスが供給されるための流
路溝5,6が形成されている。
This separator 4 has flow grooves 5 and 6 formed therein for supplying a reaction gas.

反応ガスは、燃料ガスと酸化剤ガスからなり、セパレー
タ4のアノード3側流路溝6には燃料ガスが供給され、
一方力ソード2側のセパレータ4の流路溝5には酸化剤
ガスが供給される。このような反応ガスの供給の結果、
電気化学反応の進行に伴い電子が発生し、この電子を外
部回路に取り出すことにより電気エネルギを発生する。
The reaction gas consists of a fuel gas and an oxidant gas, and the fuel gas is supplied to the anode 3 side channel groove 6 of the separator 4.
On the other hand, oxidizing gas is supplied to the flow path groove 5 of the separator 4 on the power sword 2 side. As a result of such a supply of reactant gas,
Electrons are generated as the electrochemical reaction progresses, and electrical energy is generated by extracting these electrons to an external circuit.

このような燃料電池では、一般に反応ガスの供給は燃料
ガスおよび酸化剤ガスの場合とも、第2図に示すように
、ガスの流れがセパレータ4内を一方向に流れる方式が
利用されてきた。このような一方向にのみ流れる反応ガ
スの供給方法の場合、〔「溶融炭酸塩型燃料電池の解析
モデル」電気化学協会発行(Molten Carbo
nate Fuel CellPerformance
 Model、J、Electrochem、5oc)
V o 1 。
In such fuel cells, a method has generally been used for supplying reactive gas, both fuel gas and oxidant gas, in which the gas flows in one direction within the separator 4, as shown in FIG. In the case of such a method of supplying a reactant gas that flows only in one direction, it is necessary to
nate Fuel Cell Performance
Model, J, Electrochem, 5oc)
V o 1.

130、Ncil  48P〜55P)においても示さ
れるように、電極に発生する電流密度分布および温度分
布に偏りが生ずる。
130, Ncil 48P-55P), the current density distribution and temperature distribution generated in the electrodes are biased.

この電流密度分布および温度分布の偏りについて詳説す
る。
This bias in current density distribution and temperature distribution will be explained in detail.

第3図は、前記文献に記載されている電流密度分布およ
び温度分布の状態を示した図で、セルサイズIMにおい
て、燃料ガス利用率75%、酸化剤ガス利用率25%、
入口反応ガス温度527℃で反応ガスを供給した場合の
電極表面上での電流密度分布(上側の図)および温度分
布(下側の図)の計算値の結果を示す状態図である。
FIG. 3 is a diagram showing the state of the current density distribution and temperature distribution described in the above-mentioned literature. In the cell size IM, the fuel gas utilization rate is 75%, the oxidant gas utilization rate is 25%,
It is a phase diagram showing the results of calculated values of the current density distribution (upper diagram) and temperature distribution (lower diagram) on the electrode surface when a reactive gas is supplied at an inlet reactive gas temperature of 527°C.

電流密度分布および温度分布を示す(1)〜(3)の図
は、平均負荷電流密度(jay)を変えた場合の電極表
面上での電流密度分布および温度分布を示す。なお、T
avは平均電極温度を示す。
Figures (1) to (3) showing the current density distribution and temperature distribution show the current density distribution and temperature distribution on the electrode surface when the average load current density (jay) is changed. In addition, T
av indicates average electrode temperature.

電気化学反応(電気出力)は温度依存性があり、高温側
はど反応が進行しやすく、また分極も小さくなるので高
い電流密度が得られることになる。
Electrochemical reactions (electrical output) are temperature dependent, and the reaction progresses more easily on the higher temperature side, and polarization is also smaller, resulting in a higher current density.

また、電気化学反応はガス分率(濃度)に対して依存性
があり、燃料ガスである水素ガス濃度が高く、酸化剤ガ
スである酸素または二酸化炭素濃度が高い方が電気化学
反応が進行しやすくなる。
Furthermore, the electrochemical reaction is dependent on the gas fraction (concentration), and the electrochemical reaction progresses better when the concentration of hydrogen gas, which is the fuel gas, is high, and the concentration of oxygen or carbon dioxide, which is the oxidant gas, is high. It becomes easier.

燃料ガスの入口側で高電流密度が得られるのは、ガス分
率の依存性により、酸化剤ガスの出口側で高電流密度が
得られるのは、熱が電極の下流側に運ばれるため高温部
ができることによるものである。このように、酸化剤ガ
スの下流側で高温部ができるのは、電気化学反応が発熱
反応のため負荷電流が高いほど温度が上がることによる
。したがって、第3図(1)のように、平均負荷電流密
度が高い方が、温度分布が顕著となる。
A high current density can be obtained at the inlet side of the fuel gas due to the dependence on the gas fraction, and a high current density can be obtained at the outlet side of the oxidant gas due to the high temperature as heat is carried downstream of the electrode. This is due to the fact that the department is able to do so. The reason why a high temperature region is formed on the downstream side of the oxidizing gas is that the electrochemical reaction is an exothermic reaction, and the higher the load current, the higher the temperature. Therefore, as shown in FIG. 3(1), the higher the average load current density, the more pronounced the temperature distribution.

このように第3図で示したごとく、電流密度分布の低い
部分で発電効率が十分でないばかりでなく、電流密度の
高い部分の安定性を損い、電池の長期安定性を害すると
いう問題が生ずる。
As shown in Figure 3, the problem arises that not only is the power generation efficiency insufficient in areas where the current density distribution is low, but also the stability in areas where the current density is high is impaired, impairing the long-term stability of the battery. .

〔発明の目的〕[Purpose of the invention]

本発明の目的は、発電効率を向上し、かつ電池の長期間
安定性を図る燃料電池の反応ガス供給方法を提供するこ
とにある。
An object of the present invention is to provide a method for supplying a reactant gas to a fuel cell, which improves power generation efficiency and ensures long-term stability of the cell.

〔発明の概要〕[Summary of the invention]

反応ガスは、入口側から出口側に向って遂次組成が変化
し、そのうち燃料ガスではH2が、酸化剤ガスでは02
とCOzが消費され、出口側はど濃度が減少する。一方
、ガスの流れによって電池内部に温度分布が発生し、そ
れが電池性能に影響を与えている。このような電流密度
分布および温度分布が発生する結果、それが電池性能に
影響を及ぼしている。
The composition of the reaction gas changes sequentially from the inlet side to the outlet side, with H2 in the fuel gas and 02 in the oxidant gas.
and COz are consumed, and the concentration on the outlet side decreases. On the other hand, the flow of gas creates a temperature distribution inside the battery, which affects battery performance. As a result of the occurrence of such current density distribution and temperature distribution, it affects the battery performance.

そこで、本発明者らは、電極面における電流密度分布お
よび温度分布を平均化することについて鋭意検討の結果
、本発明を完成するに至った。
Therefore, the present inventors have completed the present invention as a result of intensive studies on averaging the current density distribution and temperature distribution on the electrode surface.

すなわち、本発明は1反応ガスである燃料ガスまたは酸
化剤ガスを第2図に示すように一方向からのみ流すので
はなく、交互に対向するような方向をもつ複数の流れを
形成するよにし、かつ隣接する反対方向の流れをもつガ
ス流は、相互に分離独立していることを特徴とする燃料
電池の反応ガス供給方法である。
That is, the present invention allows the fuel gas or oxidizing gas, which is one reactive gas, to flow not only from one direction as shown in FIG. 2, but to form a plurality of flows having alternately opposing directions. , and adjacent gas flows flowing in opposite directions are mutually separated and independent.

このような交互に対向するような方向をもつ複数の反応
ガスの流れを形成するのは、ガスの流路に平行してガス
隔壁を設け、このガス隔壁を介してガスを分割し、ガス
を対向して供給するようにすればよい。このようなガス
隔壁は、セパレータに配設することのほか、l!極板に
配設することも可能である。またガス隔壁を多く設ける
ことによって、ガス流を多く設けることが可能となる。
The process of forming a plurality of flows of reactant gases in alternately opposing directions is to provide gas partitions parallel to the gas flow path, divide the gas through these gas partitions, and separate the gases. They may be supplied facing each other. In addition to providing such a gas partition in the separator, l! It is also possible to arrange it on the electrode plate. Further, by providing a large number of gas partition walls, it is possible to provide a large amount of gas flow.

〔発明の実施例〕[Embodiments of the invention]

次に、本発明に係る燃料電池の反応ガス供給方法の一実
施例を添付図面に従って詳説する。
Next, an embodiment of the method for supplying reactant gas to a fuel cell according to the present invention will be described in detail with reference to the accompanying drawings.

第1図は、カソードおよびアノードそれぞれに一つの隔
壁を設け、酸化剤ガスと燃料ガスが直交に流れる場合の
実施例を示した構成図である。
FIG. 1 is a configuration diagram showing an embodiment in which one partition wall is provided for each of the cathode and the anode, and the oxidizing gas and the fuel gas flow orthogonally.

図において、アノード12側およびカソード11側には
それぞれガス隔壁13が一つ設けられている。燃料ガス
14はガス隔壁3によって二つの流れが形成され、これ
らの流れは相互に逆方向に流れ、互いに対向する方向を
もつ二つの流れを形成する。また、同様に、酸化剤ガス
15もガス隔壁によって二つの逆方向に流れる対向流を
形成する。
In the figure, one gas partition wall 13 is provided on each of the anode 12 side and the cathode 11 side. Two flows of the fuel gas 14 are formed by the gas partition wall 3, and these flows flow in mutually opposite directions to form two flows having directions opposite to each other. Similarly, the oxidizing gas 15 also forms two opposing flows flowing in opposite directions due to the gas partition wall.

酸化剤ガス15および燃料ガス14は、それぞれ直交す
るような流れとなっている。
The oxidant gas 15 and the fuel gas 14 flow at right angles to each other.

このようなガス流路構成をとると、第4図に示すように
、電流密度の分布が平均化する。すなわち、電流密度は
、A点、B点、0点、D点において高くなり、電流密度
の関係は A≧B>C夕り のようになる。このように電流密度分布が平均化する結
果、第3図(1)に示した反応ガスの流れが一つである
場合に比べて、発電効率が向上することになる。
With such a gas flow path configuration, the current density distribution is averaged, as shown in FIG. 4. That is, the current density becomes high at point A, point B, point 0, and point D, and the relationship between the current densities is as follows: A≧B>C. As a result of the current density distribution being averaged in this way, power generation efficiency is improved compared to the case where there is only one flow of reactant gas as shown in FIG. 3(1).

第4図のように電流密度が平均化するのは。The current density averages out as shown in Figure 4.

次のような理由による。すなわち、第3図(1)に示し
たように、電流密度分布が高いのは、燃料ガスの濃度が
高くかつ酸化剤ガスの濃度が薄い部分(温度分布が高い
部分)である。したがって、反応ガスの流れを細分割し
、隣接する流路ごとに逆方向となるような対向流を形成
すれば5かかる電流密度が高くなる状態が多くなり、そ
の結果、電流密度分布が均一となる。よって、反応ガス
の流れるのを分割数が多ければ多いほど、電流密度が高
い部分がそれだけ多く生じ、結果、電流密度は一層平均
化することにより、発電効率も増゛加する。
This is due to the following reasons. That is, as shown in FIG. 3(1), the current density distribution is high in a portion where the fuel gas concentration is high and the oxidant gas concentration is low (portion where the temperature distribution is high). Therefore, if the flow of the reactant gas is subdivided and opposing flows are formed in opposite directions in each adjacent flow path, the current density will increase in many cases, and as a result, the current density distribution will become uniform. Become. Therefore, the greater the number of divisions into which the reactant gas flows, the more parts with high current density will occur, and as a result, the current density will be further averaged, and the power generation efficiency will also increase.

燃料ガス14および酸化剤ガス15の流れの関係は第1
図で示すような直交の関係になる場合のほか、第5図に
示すように対向の関係にすることもできる。すなわち、
隔壁13によって分割された燃料ガス14の分割流は、
アノードと電解質板を介して対向配置するカソード側に
流れる酸化剤ガス15と対向するように流れる場合であ
る。この場合、電流密度は電極板の中間部付近で高くな
る。また、第1図で示した管台と同様に、反応ガスが隔
壁13によって分割されているため、電流密度が高い部
分は複数存在し、その結果、電流密度分布は平均化する
The relationship between the flows of the fuel gas 14 and the oxidant gas 15 is as follows:
In addition to the orthogonal relationship shown in the figure, it is also possible to have an opposing relationship as shown in FIG. That is,
The divided flows of the fuel gas 14 divided by the partition wall 13 are as follows:
This is a case in which the oxidizing gas 15 flows opposite to the oxidizing gas 15 flowing toward the cathode, which is disposed opposite to the anode via the electrolyte plate. In this case, the current density is high near the middle of the electrode plate. Further, as in the nozzle shown in FIG. 1, since the reaction gas is divided by the partition wall 13, there are a plurality of portions where the current density is high, and as a result, the current density distribution is averaged.

また、第6図で示すように、燃料ガス14および酸化剤
ガス15が、隔壁13によって流れを細分割され、燃料
ガス14および酸化剤ガス15が、それぞれ平行となる
ように平行流を形成することもできる。
Further, as shown in FIG. 6, the flow of the fuel gas 14 and the oxidizing gas 15 is subdivided by the partition wall 13, so that the fuel gas 14 and the oxidizing gas 15 form parallel flows so that they are parallel to each other. You can also do that.

このように燃料ガス14と酸化剤ガス15が平行流を形
成するように流れる場合は、中間部において電流密度が
高くなる。また第5図において説明した場合と同様に、
電流密度の高い部分が複数個存在するために、電流密度
分布が平均化する。
When the fuel gas 14 and the oxidant gas 15 flow to form parallel flows in this way, the current density becomes high in the intermediate portion. Also, similar to the case explained in Fig. 5,
Since there are multiple portions with high current density, the current density distribution is averaged.

第7図にアノード12側及びカソード11側にそれぞれ
ガス隔壁13を2つ設け、ガスの流れを三分割にして交
互にし、燃料ガス14流れと酸化剤ガス流れ15を直交
となるようにした場合を示す。
In FIG. 7, two gas partition walls 13 are provided on the anode 12 side and the cathode 11 side, and the gas flow is divided into three and alternated, so that the fuel gas 14 flow and the oxidizing gas flow 15 are orthogonal to each other. shows.

このように、ガス隔壁を多く設け、反応ガス流れを多く
分割すれば、電流密度の高い部分が2分割の場合に比べ
多く存在するようになる。よって、−Mi!流密度分布
が平均化する。
In this way, if a large number of gas partitions are provided and the reaction gas flow is divided into many parts, there will be more parts with high current density than in the case where the flow is divided into two parts. Therefore, -Mi! The flow density distribution becomes average.

第8図にカソード側にガス隔壁13を2つ設け、酸化剤
ガス5の流れを三分割の対向流とし、酸化剤ガス15と
直交する燃料ガス14の流れを隔壁を設けず一方向にの
みした場合を示す。
In FIG. 8, two gas partition walls 13 are provided on the cathode side, the flow of the oxidant gas 5 is divided into three parts and counterflows, and the flow of the fuel gas 14 perpendicular to the oxidant gas 15 is made only in one direction without providing any partition walls. Indicates the case where

〔実験例〕[Experiment example]

アノードにはニッケル電極、カソードには酸化ニッケル
銀電極を用い、電極有効面積900dの電池を構成し、
燃料ガスには溶積比で80%H2−20%COz酸化剤
ガスニは15%02−30%C0z−55%NSを用い
て、上記各反応ガス流れを持つ燃料電池の発電試験を行
った。試験結果を第1表に示す。
A battery with an effective electrode area of 900 d is constructed using a nickel electrode for the anode and a nickel silver oxide electrode for the cathode.
A power generation test was conducted using a fuel cell having each of the above-mentioned reaction gas flows using a fuel gas having a volume ratio of 80% H2-20% COz and an oxidizing agent gas having a volume ratio of 15% 02-30% COz-55% NS. The test results are shown in Table 1.

第1表において、Aは第1図で示すように反応ガス流れ
を形成した場合、Bは第5図で示すように反応ガス流れ
を形成した場合、Cは第6図で示すように反応ガス流れ
を形成した場合、Dは第7図で示すように反応ガス流れ
を形成した場合、Eは第8図で示すように反応ガス流れ
を形成した場合、Fは本発明の効果の精度を確認するた
めのもので第9図で示すように従来の反応ガス流れを形
成した場合を示す。
In Table 1, A represents the reaction gas flow formed as shown in Figure 1, B represents the reaction gas flow formed as shown in Figure 5, and C represents the reaction gas flow formed as shown in Figure 6. When a flow is formed, D is when a reaction gas flow is formed as shown in Fig. 7, E is when a reaction gas flow is formed as shown in Fig. 8, and F is a confirmation of the accuracy of the effect of the present invention. FIG. 9 shows a case in which a conventional reaction gas flow is formed.

第   1   表 第1表から明らかなように、反応ガス流れを分割された
対向流とすることにより、従来の反応ガス流れ(F)と
比較して、500時間後の電池性能に大きな違いが見ら
れた。
Table 1 As is clear from Table 1, by making the reaction gas flow into divided counterflows, there was a large difference in the battery performance after 500 hours compared to the conventional reaction gas flow (F). It was done.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明に係る燃料電池の反応ガス供
給方法によれば、電流密度が平均化するために発電効率
が向上し、かつ電池出力が長期間にわたって安定する。
As explained above, according to the method for supplying reactant gas to a fuel cell according to the present invention, the current density is averaged, so power generation efficiency is improved, and the cell output is stabilized over a long period of time.

また、電流密度が平均化するために電池の安定性が長期
間にわたって保たれ、電池寿命が長くなる。
Furthermore, since the current density is averaged, the stability of the battery is maintained over a long period of time, resulting in a longer battery life.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に係る反応ガス供給方法を示す図、第2
図は燃料電池の一般構成を示す分割斜視図、第3図は従
来の燃料電池の電流密度分布および温度分布を示す状態
図、第4図は第1図の反応ガス流れの場合の電流密度分
布を示す図、第5図ないし第8図は本発明に係る反応ガ
ス供給方法の他の実施例を示す図、第9図は従来の反応
ガスの供給方法を示す図である。 1・・・電解質板、2,11・・・カソード、3,12
・・・アノード、4・・・セパレータ、5.6・・・反
応ガス流路溝、13・・・ガス隔壁、14・・・燃料ガ
ス1.15・・・酸化剤ガス。
FIG. 1 is a diagram showing the reaction gas supply method according to the present invention, and FIG.
The figure is a divided perspective view showing the general configuration of a fuel cell, Figure 3 is a state diagram showing the current density distribution and temperature distribution of a conventional fuel cell, and Figure 4 is the current density distribution for the reactant gas flow shown in Figure 1. 5 to 8 are views showing other embodiments of the reaction gas supply method according to the present invention, and FIG. 9 is a view showing a conventional reaction gas supply method. 1... Electrolyte plate, 2, 11... Cathode, 3, 12
... Anode, 4... Separator, 5.6... Reactant gas flow path groove, 13... Gas partition wall, 14... Fuel gas 1.15... Oxidizing gas.

Claims (1)

【特許請求の範囲】[Claims] 1、電解質板を挾持して対向配置された一対の電極板か
らなる単位電池を、セパレータを介して複数個を積層し
てなる燃料電池の当該電極板とセパレータとの間に反応
ガスを流通させる燃料電池の反応ガス供給方法において
、前記反応ガスは交互に対向する方向をもつ複数の流れ
を形成するように流通され、かつ隣接する対向流は相互
に分離、独立するようになつていることを特徴とする燃
料電池の反応ガス供給方法。
1. A reactant gas is caused to flow between the electrode plates and the separator of a fuel cell formed by stacking a plurality of unit cells, each consisting of a pair of electrode plates facing each other with an electrolyte plate interposed therebetween, with a separator in between. In the reactant gas supply method for a fuel cell, the reactant gas is distributed to form a plurality of flows having alternately opposing directions, and adjacent counterflows are separated and independent from each other. Features: Reactive gas supply method for fuel cells.
JP60290159A 1985-12-23 1985-12-23 Reaction gas supply method in fuel cell Granted JPS62147664A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60290159A JPS62147664A (en) 1985-12-23 1985-12-23 Reaction gas supply method in fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60290159A JPS62147664A (en) 1985-12-23 1985-12-23 Reaction gas supply method in fuel cell

Publications (2)

Publication Number Publication Date
JPS62147664A true JPS62147664A (en) 1987-07-01
JPH0577153B2 JPH0577153B2 (en) 1993-10-26

Family

ID=17752525

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60290159A Granted JPS62147664A (en) 1985-12-23 1985-12-23 Reaction gas supply method in fuel cell

Country Status (1)

Country Link
JP (1) JPS62147664A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6463276A (en) * 1987-09-02 1989-03-09 Hitachi Ltd Fuel cell
JPS6463271A (en) * 1987-09-02 1989-03-09 Hitachi Ltd Fuel cell
WO1998016961A1 (en) * 1996-10-16 1998-04-23 Bg Plc An electric power generation system using fuel cells
WO1999052166A3 (en) * 1998-04-07 2000-01-20 Univ Delft Tech Method of converting a carbon-comprising material, method of operating a fuel cell stack, and a fuel cell
EP1381104A1 (en) * 2002-07-12 2004-01-14 Stefan Höller Fuel cell stack with counterflow cooling and a plurality of coolant evacuation channels parallel to the stack axis

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57138783A (en) * 1981-02-20 1982-08-27 Hitachi Ltd Fuel cell
JPS57199182A (en) * 1981-06-03 1982-12-07 Hitachi Ltd Fuel cell

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57138783A (en) * 1981-02-20 1982-08-27 Hitachi Ltd Fuel cell
JPS57199182A (en) * 1981-06-03 1982-12-07 Hitachi Ltd Fuel cell

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6463276A (en) * 1987-09-02 1989-03-09 Hitachi Ltd Fuel cell
JPS6463271A (en) * 1987-09-02 1989-03-09 Hitachi Ltd Fuel cell
WO1998016961A1 (en) * 1996-10-16 1998-04-23 Bg Plc An electric power generation system using fuel cells
WO1999052166A3 (en) * 1998-04-07 2000-01-20 Univ Delft Tech Method of converting a carbon-comprising material, method of operating a fuel cell stack, and a fuel cell
US6607853B1 (en) 1998-04-07 2003-08-19 Technische Universitiet Delft Method of converting a carbon-comprising material, method of operating a fuel cell stack, and a fuel cell
EP1381104A1 (en) * 2002-07-12 2004-01-14 Stefan Höller Fuel cell stack with counterflow cooling and a plurality of coolant evacuation channels parallel to the stack axis
WO2004015807A1 (en) * 2002-07-12 2004-02-19 H-Tec Wasserstoff-Energie-Systeme Gmbh Fuel cell stack comprising a counterflowing cooling system and a plurality of coolant-collecting ducts located parallel to the axis of the stack

Also Published As

Publication number Publication date
JPH0577153B2 (en) 1993-10-26

Similar Documents

Publication Publication Date Title
JP3769958B2 (en) Fuel cell
EP0369059B1 (en) Method of ameliorating temperature distribution of a fuel cell
US7867666B2 (en) Fuel cell with triangular buffers for reactant gas and coolant
US20070298311A1 (en) Fuel cell separator
JPH04292865A (en) Solid electrolytic fuel cell
JPS6290871A (en) Fuel cell
JPH0630253B2 (en) Fuel cell
JPH10134833A (en) Fuel cell
JP3509180B2 (en) Fuel cell
JPS62147664A (en) Reaction gas supply method in fuel cell
JPS63119166A (en) Fuel battery
US20040038103A1 (en) Solid polymer electrolyte fuel cell assembly
JPH08185873A (en) Fuel cell
US6893768B2 (en) Fuel distribution system for a fuel cell stack
JPS6223434B2 (en)
US5897972A (en) Molten carbonate fuel cell
JP2610255B2 (en) Molten carbonate fuel cell
JPH1021944A (en) Solid polymer electrolyte fuel cell
JPS61148766A (en) Fused carbonate type fuel cell
JPH0650639B2 (en) Fuel cell
US7700217B2 (en) Electrolyte migration control for large area MCFC stacks
JPS63158754A (en) Internal-reforming type fuel cell
JPS6160547B2 (en)
JP2001202974A (en) Solid polymer fuel cell stack
JPH0355763A (en) Gas fuel battery and electrode for use in the same

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees