JPH08185873A - Fuel cell - Google Patents

Fuel cell

Info

Publication number
JPH08185873A
JPH08185873A JP6340300A JP34030094A JPH08185873A JP H08185873 A JPH08185873 A JP H08185873A JP 6340300 A JP6340300 A JP 6340300A JP 34030094 A JP34030094 A JP 34030094A JP H08185873 A JPH08185873 A JP H08185873A
Authority
JP
Japan
Prior art keywords
fuel cell
ribs
gas
current collector
polymer electrolyte
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6340300A
Other languages
Japanese (ja)
Inventor
Seiji Mizuno
誠司 水野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP6340300A priority Critical patent/JPH08185873A/en
Publication of JPH08185873A publication Critical patent/JPH08185873A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

PURPOSE: To enhance the colliding performance of gases with a projection and improve the diffusiveness thereof by improving the array of a plurality of projections forming the gas flow passage of a current collector. CONSTITUTION: A current collector 15 is provided with a plurality of rectangular solid ribs 33, and a gas flow passage is formed out of the ribs 33 and the surface of a gas diffusion electrode. Regarding the arrangement of the ribs 33, ribs 33a facing the right side with the longitudinal direction thereof inclined 45 degrees along a clockwise direction for a vertical lower level, and ribs 33b facing the left side with the longitudinal direction thereof inclined 45 degrees along a counterclockwise direction for a vertical lower level are arranged like a grating. According to this construction, gases always flow, colliding with the walls of the ribs 33, and become a turbulent flow, thereby improving diffusiveness.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、燃料電池に関し、詳
しくは、電解質膜を2つの電極で挟持する接合体と、こ
の接合体に接触し電極とで供給ガスの流路を形成する流
路形成部材とを備えた燃料電池に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a fuel cell, and more specifically, to a joined body in which an electrolyte membrane is sandwiched between two electrodes, and a flow passage for contacting the joined body to form a supply gas passage. And a forming member.

【0002】[0002]

【従来の技術】従来より、燃料の有しているエネルギを
直接電気的エネルギに変換する装置として燃料電池が知
られている。燃料電池は、通常、電解質膜を挟んで一対
の電極を配置するとともに、一方の電極の表面に水素等
の燃料ガスを接触させ、また他方の電極の表面に酸素を
含有する酸素含有ガスを接触させ、このとき起こる電気
化学反応を利用して、電極間から電気エネルギを取り出
すようにしている。燃料電池は、燃料ガスと酸素含有ガ
スが供給されている限り高い効率で電気エネルギを取り
出すことができる。
2. Description of the Related Art Conventionally, a fuel cell has been known as a device for directly converting the energy of fuel into electrical energy. In a fuel cell, usually, a pair of electrodes are arranged with an electrolyte membrane sandwiched between them, a fuel gas such as hydrogen is brought into contact with the surface of one electrode, and an oxygen-containing gas containing oxygen is brought into contact with the surface of the other electrode. By utilizing the electrochemical reaction that occurs at this time, electric energy is taken out from between the electrodes. The fuel cell can extract electric energy with high efficiency as long as the fuel gas and the oxygen-containing gas are supplied.

【0003】ところで、こうした燃料電池では、電極表
面への燃料ガスや酸素含有ガスの供給を、これらガスの
通路と集電極とを兼ねる集電体と呼ばれる部材で行なっ
ている。この集電体としては、直線状の流路溝を備えた
ものが一般的である。また、複数の凸部により流路を構
成することにより、電極面とのガスの接触面積を大きく
して、燃料電池のエネルギ変換効率を高めたものが提案
されている。
By the way, in such a fuel cell, the fuel gas and the oxygen-containing gas are supplied to the surface of the electrode by a member called a current collector which serves both as a passage for these gases and as a collector electrode. As the current collector, a current collector having a linear flow path groove is generally used. Further, it has been proposed that a flow path is constituted by a plurality of convex portions to increase the contact area of gas with the electrode surface to enhance the energy conversion efficiency of the fuel cell.

【0004】さらに、図7に示すように、複数の凸部2
00をアレイ配置することにより、ガスが凸部200の
壁面に衝突するようにしてガスの拡散性を向上して、燃
料電池のエネルギ変換効率を高めたものも提案されてい
る(特開平2−155171号公報)。
Further, as shown in FIG.
It has also been proposed to arrange the 00s in an array so that the gas collides with the wall surface of the convex portion 200 to improve the diffusivity of the gas and enhance the energy conversion efficiency of the fuel cell (JP-A-2- 155171).

【0005】[0005]

【発明が解決しようとする課題】ところで、前記アレイ
配置した従来の技術では、凸部200が一直線状に並ん
でいることから、ガスが図7中実線矢印に示すように、
凸部200の隙間を一直線状に抜けてしまう。このた
め、この構成では、ガスを必ず凸部200に衝突させる
には不充分であり、充分なガス拡散性を得ることができ
なかった。従って、燃料電池のエネルギ変換効率を低下
させるという問題を生じた。
By the way, in the prior art in which the array is arranged, since the convex portions 200 are arranged in a straight line, the gas is, as shown by the solid line arrow in FIG.
The gaps between the protrusions 200 are straightly removed. Therefore, with this configuration, it is not enough to make the gas collide with the convex portion 200 without fail, and sufficient gas diffusibility cannot be obtained. Therefore, there arises a problem that the energy conversion efficiency of the fuel cell is reduced.

【0006】この発明の燃料電池は、こうした問題に鑑
みてなされたもので、集電体のガス流路を構成する複数
の凸部の配列に改良を加えることにより、ガスの凸部へ
の衝突性を高めて、ガス拡散性の向上を図り、ひいて
は、燃料電池のエネルギ変換効率の向上を図ることを目
的としている。
The fuel cell of the present invention has been made in view of the above problems, and by improving the arrangement of a plurality of convex portions constituting the gas flow path of the current collector, the gas collides with the convex portions. The purpose is to improve the gas diffusion property and the gas diffusivity, and further to improve the energy conversion efficiency of the fuel cell.

【0007】[0007]

【課題を解決するための手段】このような目的を達成す
べく、前記課題を解決するための手段として、以下に示
す構成をとった。
In order to achieve such an object, the following constitution is adopted as a means for solving the above problems.

【0008】即ち、本発明の請求項1記載の燃料電池
は、電解質膜を2つの電極で挟持する接合体と、該接合
体に接触し該電極とで供給ガスの流路を形成する流路形
成部材とを備えた燃料電池において、前記流路形成部材
は、細長の複数の凸部を備えるとともに、前記複数の凸
部は、隣接する凸部に対してその長手方向が互いに交差
するように配列したことを特徴としている。
That is, in the fuel cell according to claim 1 of the present invention, a flow path for forming a flow path of a supply gas by a bonded body in which an electrolyte membrane is sandwiched between two electrodes and the bonded body is in contact with the bonded body. In the fuel cell including a forming member, the flow path forming member includes a plurality of elongated convex portions, and the plurality of convex portions are arranged such that their longitudinal directions intersect with adjacent convex portions. The feature is that they are arranged.

【0009】こうした構成の燃料電池において、前記す
べての凸部が、該凸部の長手方向を鉛直下方に対して傾
斜させて配列された構成としてもよい。
In the fuel cell having such a structure, all the convex portions may be arranged such that the longitudinal direction of the convex portions is inclined with respect to the vertically downward direction.

【0010】[0010]

【作用】以上のように構成された請求項1記載の燃料電
池によれば、流路形成部材の凸部が、隣接する凸部に対
してその長手方向が互いに交差するように配列されたこ
とにより、供給ガスはどの方向に流れても凸部の壁面に
衝突し蛇行する。このため、ガスはその衝突により乱流
化して拡散性を高める。
According to the fuel cell of the present invention configured as described above, the convex portions of the flow path forming member are arranged so that the longitudinal directions of adjacent convex portions intersect each other. Thus, the supply gas collides with the wall surface of the convex portion and meanders in any direction. Therefore, the gas becomes turbulent due to the collision and enhances diffusivity.

【0011】請求項2記載の燃料電池によれば、凸部の
長手方向を鉛直下方に対して傾斜させてすべての凸部が
配列されていることにより、その凸部による流路での生
成水や加湿水の排出が容易となる。
According to the fuel cell of the second aspect, since all the convex portions are arranged such that the longitudinal direction of the convex portions is inclined vertically downward, the water produced by the convex portions in the flow path is formed. And humidifying water can be easily discharged.

【0012】[0012]

【実施例】以上説明した本発明の構成・作用を一層明ら
かにするために、以下本発明の好適な実施例について説
明する。
Preferred embodiments of the present invention will be described below in order to further clarify the structure and operation of the present invention described above.

【0013】図1は、第1実施例としての固体高分子型
燃料電池10の単一セルを示す構造図である。この図に
示すように、固体高分子型燃料電池10は、単一のセル
として、電解質膜11と、この電解質膜11を両側から
挟んでサンドイッチ構造とするガス拡散電極としてのカ
ソード12およびアノード13と、このサンドイッチ構
造(接合体)20を両側から挟みつつカソード12およ
びアノード13とで材料ガスおよび燃料ガスの流路を形
成する流路形成部材としての集電体15とにより構成さ
れている。
FIG. 1 is a structural diagram showing a single cell of a polymer electrolyte fuel cell 10 as a first embodiment. As shown in this figure, the polymer electrolyte fuel cell 10 is composed of an electrolyte membrane 11 as a single cell, and a cathode 12 and an anode 13 as gas diffusion electrodes having a sandwich structure in which the electrolyte membrane 11 is sandwiched from both sides. And a current collector 15 as a flow path forming member that forms a flow path of the material gas and the fuel gas with the cathode 12 and the anode 13 while sandwiching the sandwich structure (joined body) 20 from both sides.

【0014】電解質膜11は、高分子材料、例えばフッ
素系樹脂により形成されたイオン交換膜であり、湿潤状
態で良好な電気電導性を示す。ここでは、米国E.I.デ
ュポン社製の商標名ナフィオン(Nafion)115を使用
する。カソード12およびアノード13は、炭素繊維か
らなる糸で織成したカーボンクロスにより形成されてお
り、このカーボンクロスの表面には、触媒としての白金
または白金と他の金属からなる合金等を担持したカーボ
ン粉が塗布されている。
The electrolyte membrane 11 is an ion exchange membrane made of a polymer material, for example, a fluororesin, and exhibits good electric conductivity in a wet state. Here, Nafion 115 manufactured by EI DuPont, USA is used. The cathode 12 and the anode 13 are formed of carbon cloth woven from threads made of carbon fibers, and carbon powder carrying platinum or an alloy of platinum and another metal as a catalyst on the surface of the carbon cloth. Has been applied.

【0015】白金を担持したカーボン粉は次のような方
法で作成されている。塩化白金酸水溶液とチオ硫酸ナト
リウムを混合して、亜硫酸白金錯体の水溶液を得る。こ
の水溶液を攪拌しながら、過酸化水素水を摘下して、水
溶液中にコロイド状の白金粒子を析出させる。次に担体
となるカーボンブラック(例えばVulcan XC−
72(米国のCABOT社の商標)やデンカブラック
(電気化学工業株式会社の商標)を添加しながら、攪拌
し、カーボンブラックの表面にコロイド状の白金粒子を
付着させる。次に溶液を吸引ろ過または加圧ろ過して白
金粒子が付着したカーボンブラックを分離した後、脱イ
オン水(純水)で繰り返し洗浄した後、室温で完全に乾
燥させる。
The carbon powder supporting platinum is prepared by the following method. An aqueous solution of platinum sulfite complex is obtained by mixing an aqueous solution of chloroplatinic acid and sodium thiosulfate. While stirring this aqueous solution, the hydrogen peroxide solution is removed to deposit colloidal platinum particles in the aqueous solution. Next, carbon black as a carrier (for example, Vulcan XC-
72 (trademark of CABOT Co., USA) and Denka Black (trademark of Denki Kagaku Kogyo Co., Ltd.) are added and stirred to deposit colloidal platinum particles on the surface of carbon black. Next, the solution is suction-filtered or pressure-filtered to separate the carbon black to which the platinum particles are attached, washed repeatedly with deionized water (pure water), and then completely dried at room temperature.

【0016】次に、凝集したカーボンブラックを粉砕器
で粉砕した後、水素還元雰囲気中で、250℃〜350
℃で2時間程度加熱することにより、カーボンブラック
上の白金を還元するとともに、残留していた塩素を完全
に除去して、白金を担持したカーボン粉が完成する。こ
こでは、カーボンブラックの重量に対して白金の重量が
20[%](重量%)になるようにして製作している。
Next, the agglomerated carbon black is pulverized by a pulverizer and then in a hydrogen reducing atmosphere at 250 ° C. to 350 ° C.
The platinum on the carbon black is reduced and the remaining chlorine is completely removed by heating at 0 ° C. for about 2 hours to complete the platinum-supported carbon powder. Here, the weight of platinum is 20 [%] (weight%) with respect to the weight of carbon black.

【0017】集電体15は、ち密質のカーボンプレート
により形成されている。集電体15は、カソード12の
表面とで材料ガスである酸素含有ガスの流路をなすと共
にカソード12で生成する水の集水路をなす酸素含有ガ
ス流路15aを形成し、また、アノード13の表面とで
燃料ガスである水素ガスと水蒸気との混合ガスの流路を
なす水素ガス流路15bを形成する。こうした集電体1
5の詳しい形状については後ほど説明する。
The current collector 15 is formed of a dense carbon plate. The current collector 15 forms a flow path for the oxygen-containing gas, which is a material gas, with the surface of the cathode 12 and also forms an oxygen-containing gas flow path 15 a that serves as a water collection path for the water generated at the cathode 12, and also the anode 13 A hydrogen gas flow path 15b forming a flow path of a mixed gas of hydrogen gas which is a fuel gas and water vapor is formed with the surface of the. Such a current collector 1
The detailed shape of 5 will be described later.

【0018】以上説明した電解質膜11、カソード1
2、アノード13および集電体15が固体高分子型燃料
電池10の単一セルの構成であり、実際には、集電体1
5、カソード12、電解質膜11、アノード13、集電
体15をこの順に複数組、積層して、固体高分子型燃料
電池10は構成されている。
The electrolyte membrane 11 and the cathode 1 described above
2, the anode 13 and the current collector 15 have a single-cell configuration of the polymer electrolyte fuel cell 10, and actually, the current collector 1
The solid polymer fuel cell 10 is configured by stacking a plurality of sets of 5, 5, the cathode 12, the electrolyte membrane 11, the anode 13, and the current collector 15 in this order.

【0019】こうした構成の固体高分子型燃料電池10
の集電体15の形状は次のようなものである。図2に示
すように、集電体15は8角形の板状部材として形成さ
れており、集電体15の8つの辺のうち4つの斜辺の縁
付近には、その辺に沿って細長い孔21,23および孔
25,27が形成されている。この孔21,23および
孔25,27は、積層した際、固体高分子型燃料電池1
0を積層方向に貫通する2つの燃料ガスの給排流路およ
び2つの酸化ガスの給排流路を形成する。集電体15の
積層面の一方(図2の表示面)の孔21と孔23との間
には、図示するように、外縁の平面より一段下がった段
差面31が形成されており、この段差面31には、規則
正しく配列された幅1[mm]、長さ3[mm]、高さ
1[mm]の直方体のリブ(凸部)33が複数形成され
ている。
The polymer electrolyte fuel cell 10 having such a structure
The current collector 15 has the following shape. As shown in FIG. 2, the current collector 15 is formed as an octagonal plate-shaped member, and in the vicinity of four oblique edges of the eight sides of the current collector 15, elongated holes are formed along the edges. 21, 23 and holes 25, 27 are formed. The holes 21 and 23 and the holes 25 and 27, when stacked, are solid polymer fuel cell 1
Two fuel gas supply / exhaust passages and two oxidizing gas supply / exhaust passages that penetrate 0 in the stacking direction are formed. As shown in the drawing, a step surface 31 is formed between the hole 21 and the hole 23 on one of the stacked surfaces of the current collector 15 (display surface in FIG. 2), and the step surface 31 is one step lower than the flat surface of the outer edge. On the step surface 31, a plurality of rectangular parallelepiped ribs (projections) 33 having a width of 1 [mm], a length of 3 [mm], and a height of 1 [mm] are formed.

【0020】この直方体のリブ33の配列は、長手方向
が鉛直下方に対して右回りに45度傾いた右向きリブ3
3aと、長手方向が鉛直下方に対して左回りに45度傾
いた左向きリブ33bとを、格子状に並べたものであ
り、両者のリブ33a,33bの長手方向は互い交差す
る。こうしたリブ33、段差面31およびガス拡散電極
の表面とで酸素含有ガスの流路を形成する。
The arrangement of the rectangular parallelepiped ribs 33 is a rightward rib 3 whose longitudinal direction is inclined 45 degrees clockwise with respect to the vertically downward direction.
3a and a leftward rib 33b whose longitudinal direction is tilted 45 degrees counterclockwise with respect to the vertically downward direction are arranged in a lattice pattern, and the longitudinal directions of both ribs 33a and 33b intersect each other. The rib 33, the step surface 31, and the surface of the gas diffusion electrode form a flow path for the oxygen-containing gas.

【0021】また、集電体15の積層面の他方(図2の
裏面)の孔25と孔27との間にも、孔21と孔23と
の間に形成された段差面31およびリブ33と同一形状
の段差面およびリブ(図示せず)が形成されている。こ
の段差面、リブおよびガス拡散電極の表面とで燃料ガス
の流路を形成する。
Further, between the hole 25 and the hole 27 on the other side (back surface in FIG. 2) of the laminated surface of the current collector 15, the step surface 31 and the rib 33 formed between the hole 21 and the hole 23 are formed. A stepped surface and a rib (not shown) having the same shape as the above are formed. The step surface, the rib, and the surface of the gas diffusion electrode form a flow path for fuel gas.

【0022】こうして構成された固体高分子型燃料電池
10は、次式(1)および(2)に示した電気化学反応
を行ない、化学エネルギを直接電気エネルギに変換す
る。
The polymer electrolyte fuel cell 10 thus constructed performs the electrochemical reaction represented by the following equations (1) and (2) to directly convert chemical energy into electrical energy.

【0023】 カソード反応(酸素極):2H++2e-+(1/2)O2→H2O …(1) アノード反応(燃料極):H2→2H++2e- …(2)Cathode reaction (oxygen electrode): 2H ++ 2e − + (1/2) O 2 → H 2 O (1) Anode reaction (fuel electrode): H 2 → 2H ++ 2e − (2)

【0024】このとき、段差面31とリブ33等により
形成される酸素含有ガスの流路内を流れる酸素含有ガス
は、図3に示すように(図3中実線矢印で示すよう
に)、リブ33の壁面に衝突し蛇行する。このため、ガ
スが乱流化して酸素含有ガスのガス拡散電極への拡散性
が向上する。
At this time, the oxygen-containing gas flowing in the flow path of the oxygen-containing gas formed by the step surface 31 and the ribs 33 and the like is ribbed as shown in FIG. 3 (as shown by the solid line arrow in FIG. 3). It collides with the wall surface of 33 and meanders. Therefore, the gas becomes turbulent and the diffusibility of the oxygen-containing gas to the gas diffusion electrode is improved.

【0025】一方、前記式(1)に示した反応で段差面
31に生じた水は、リブ33を迂回しながら鉛直下方に
流れ、孔23の鉛直下部に集まるが、このリブ33を迂
回する途中で仮に図3に示す停滞水Wのように一部に滞
水したとする。このとき、酸素含有ガスは、図中破線矢
印で示すように停滞水Wを迂回するから、停滞水Wの下
流側でも酸化ガスのガス拡散電極への拡散性は低下しな
い。
On the other hand, the water generated on the step surface 31 by the reaction shown in the equation (1) flows vertically downward while circumventing the rib 33 and collects in the vertically lower part of the hole 23, but bypasses this rib 33. It is assumed that a part of the water stays on the way like the stagnant water W shown in FIG. At this time, since the oxygen-containing gas bypasses the stagnant water W as shown by the broken line arrow in the figure, the diffusibility of the oxidizing gas to the gas diffusion electrode does not deteriorate even on the downstream side of the stagnant water W.

【0026】一方、燃料ガスの流路には、飽和蒸気圧近
くまで加湿された燃料ガスが流されるから、固体高分子
型燃料電池10の運転状況によっては、この加湿水が前
述した停滞水Wと同様に滞水することがある。このと
き、燃料ガスはその停滞水を迂回することから、停滞水
の下流側でも燃料ガスのガス拡散電極への拡散性は低下
しない。
On the other hand, since the fuel gas humidified to near the saturated vapor pressure is passed through the fuel gas passage, the humidified water may be the stagnant water W described above depending on the operating conditions of the polymer electrolyte fuel cell 10. Like the above, there may be water retention. At this time, since the fuel gas bypasses the stagnant water, the diffusibility of the fuel gas to the gas diffusion electrode does not deteriorate even on the downstream side of the stagnant water.

【0027】図4は、第1実施例の固体高分子型燃料電
池10と従来例(図7で示したもの)の燃料電池におけ
る電圧と電流密度との関係を示したグラフである。グラ
フ中、曲線Aは固体高分子型燃料電池10を運転温度8
0℃で運転したときの電圧と電流密度との関係を示し、
曲線Cは図7で示した従来例の燃料電池を運転温度80
℃で運転したときの電圧と電流密度との関係を示す。図
示するように、第1実施例の固体高分子型燃料電池10
は、従来例の燃料電池に比して、測定範囲の総ての電流
密度に亘ってその特性が優れていた。特に、高電流密度
領域(0.5[A/cm2 ]以上)での電圧低下が小さ
く、ガス拡散性の向上が認められた。
FIG. 4 is a graph showing the relationship between voltage and current density in the polymer electrolyte fuel cell 10 of the first embodiment and the fuel cell of the conventional example (shown in FIG. 7). In the graph, curve A shows the polymer electrolyte fuel cell 10 at an operating temperature of 8
Shows the relationship between voltage and current density when operating at 0 ° C,
Curve C shows the conventional fuel cell shown in FIG.
The relationship between the voltage and the current density when operating at ℃ is shown. As shown, the polymer electrolyte fuel cell 10 of the first embodiment
Has excellent characteristics over the entire current density of the measurement range as compared with the conventional fuel cell. In particular, the voltage drop in the high current density region (0.5 [A / cm2] or more) was small, and the improvement of gas diffusivity was confirmed.

【0028】図5は、第1実施例の固体高分子型燃料電
池10と従来例(図7で示したもの)の燃料電池におけ
る電圧と保持時間との関係を示したグラフである。グラ
フ中、線Aは固体高分子型燃料電池10を運転温度80
℃で運転したときの電圧と保持時間との関係を示し、線
Cは図7で示した従来例の燃料電池を運転温度80℃で
運転したときの電圧と保持時間との関係を示す。図示す
るように、第1実施例の固体高分子型燃料電池10は、
従来例の燃料電池に比して、安定して高い電圧を維持す
ることが認められた。
FIG. 5 is a graph showing the relationship between the voltage and the holding time in the polymer electrolyte fuel cell 10 of the first embodiment and the fuel cell of the conventional example (shown in FIG. 7). In the graph, line A indicates the polymer electrolyte fuel cell 10 at an operating temperature of 80.
The relationship between the voltage and the holding time when operating at 0 ° C is shown, and the line C shows the relationship between the voltage and the holding time when the conventional fuel cell shown in Fig. 7 is operated at an operating temperature of 80 ° C. As shown in the figure, the polymer electrolyte fuel cell 10 of the first embodiment is
It was confirmed that the high voltage was maintained stably as compared with the fuel cell of the conventional example.

【0029】以上詳述したように、この第1実施例の固
体高分子型燃料電池10によれば、隣接するリブの長手
方向が互いに交差するようにリブ33を配列して酸素含
有ガスの流路を形成したので、酸素含有ガスが乱流化し
て酸素含有ガスのガス拡散電極への拡散性が向上する。
この結果、固体高分子型燃料電池10は、エネルギ変換
効率の優れた燃料電池とすることができる。
As described in detail above, according to the polymer electrolyte fuel cell 10 of the first embodiment, the ribs 33 are arranged so that the longitudinal directions of the adjacent ribs intersect with each other, and the flow of the oxygen-containing gas flows. Since the path is formed, the oxygen-containing gas becomes turbulent and the diffusibility of the oxygen-containing gas to the gas diffusion electrode is improved.
As a result, the polymer electrolyte fuel cell 10 can be a fuel cell having excellent energy conversion efficiency.

【0030】また、この第1実施例の固体高分子型燃料
電池10における集電体15のリブ33(右向きリブ3
3a,左向きリブ33b)は、長手方向が鉛直下方に水
平方向から45度傾いて配置されていることから、リブ
33を備える段差面31での生成水の排出を容易化する
ことができる。この結果、生成水が停滞して酸素含有ガ
スの拡散を阻害することを防止できる。従って、電圧安
定性が向上し、電池の信頼性を向上するといった効果を
奏する。
The rib 33 (rightward rib 3) of the collector 15 in the polymer electrolyte fuel cell 10 of the first embodiment is also used.
Since the longitudinal direction of the ribs 3a and the leftward ribs 33b) is arranged vertically downward and inclined by 45 degrees from the horizontal direction, it is possible to easily discharge the generated water on the step surface 31 provided with the ribs 33. As a result, it is possible to prevent the generated water from stagnating and hindering the diffusion of the oxygen-containing gas. Therefore, the voltage stability is improved, and the battery reliability is improved.

【0031】さらに、この第1実施例の固体高分子型燃
料電池10によれば、酸素含有ガスの流路ばかりでな
く、水素ガスの流路においても、ガスの拡散電極への拡
散性を向上して、エネルギ変換効率を高めることができ
ると共に、加湿水の排出を容易かして、電圧安定性を向
上することができる。
Further, according to the polymer electrolyte fuel cell 10 of the first embodiment, not only the flow path of the oxygen-containing gas but also the flow path of the hydrogen gas is improved in the diffusion property of the gas to the diffusion electrode. As a result, the energy conversion efficiency can be improved, the humidification water can be easily discharged, and the voltage stability can be improved.

【0032】本発明の第2実施例について、次に説明す
る。この第2実施例は、第1実施例の固体高分子型燃料
電池10とほぼ同じ構成の燃料電池に関するもので、集
電体のリブの配列だけが第1実施例と比べて相違する。
図6は、この第2実施例における集電体のリブの配列を
示す説明図である。図6に示すように、集電体には、第
1実施例と同じ直方体のリブ(幅1[mm]、長さ3
[mm]、高さ1[mm])133が複数形成されてお
り、その配列は、長手方向を鉛直下方に向けた縦向きリ
ブ133aと、その長手方向を水平方向に向けた横向き
リブ133bとを交互に並べたものである。こうした配
列のリブ133とガス拡散電極の表面等で酸素含有ガス
の流路を形成する。
The second embodiment of the present invention will be described below. The second embodiment relates to a fuel cell having substantially the same structure as the polymer electrolyte fuel cell 10 of the first embodiment, and is different from the first embodiment only in the arrangement of the ribs of the current collector.
FIG. 6 is an explanatory view showing the arrangement of ribs of the current collector in the second embodiment. As shown in FIG. 6, the current collector has a rectangular parallelepiped rib (width 1 [mm], length 3) as in the first embodiment.
[Mm], height 1 [mm]) 133 is formed in plural, and the arrangement thereof is a vertical rib 133a whose longitudinal direction is directed vertically downward and a lateral rib 133b whose longitudinal direction is directed horizontally. Are arranged alternately. A flow path for the oxygen-containing gas is formed by the ribs 133 and the surface of the gas diffusion electrode having such an arrangement.

【0033】この酸素含有ガスの流路内を流れる酸素含
有ガスは、隣接するリブ133の長手方向が互いに交差
するようにリブ133が配列されていることから、図6
中実線矢印で示すように、リブ133の壁面に常に衝突
し蛇行する。このため、ガスが乱流化して酸素含有ガス
のガス拡散電極への拡散性が向上する。この結果、この
実施例の固体高分子型燃料電池は、エネルギ変換効率の
優れたものとなる。
In the oxygen-containing gas flowing in the flow path of the oxygen-containing gas, the ribs 133 are arranged so that the longitudinal directions of the adjacent ribs 133 intersect each other.
As indicated by the solid arrow, the rib 133 constantly collides with the wall surface of the rib 133 and meanders. Therefore, the gas becomes turbulent and the diffusibility of the oxygen-containing gas to the gas diffusion electrode is improved. As a result, the polymer electrolyte fuel cell of this example has excellent energy conversion efficiency.

【0034】この第2実施例の固体高分子型燃料電池に
おける電圧と電流密度との関係を、前述した図4に示し
た。この図4中、曲線Bは第2実施例の固体高分子型燃
料電池を運転温度80℃で運転したときの電圧と電流密
度との関係を示す。図示するように、第2実施例の固体
高分子型燃料電池は、従来例の燃料電池(曲線Cで示
す)に比して、高電流密度領域(0.5[A/cm2 ]
以上)での電圧低下が小さく、ガス拡散性の向上が認め
られた。
The relationship between voltage and current density in the polymer electrolyte fuel cell of the second embodiment is shown in FIG. 4 described above. In FIG. 4, a curve B shows the relationship between the voltage and the current density when the polymer electrolyte fuel cell of the second embodiment was operated at an operating temperature of 80 ° C. As shown in the figure, the polymer electrolyte fuel cell of the second embodiment has a higher current density region (0.5 [A / cm2]) than the fuel cell of the conventional example (shown by the curve C).
In the above), the voltage drop was small, and the gas diffusivity was improved.

【0035】この第2実施例の固体高分子型燃料電池に
おける電圧と保持時間との関係を、前述した図5に示し
た。この図5中、線Bは第2実施例の固体高分子型燃料
電池を運転温度80℃で運転したときの電圧と保持時間
との関係を示す。図示するように、第2実施例の固体高
分子型燃料電池は、従来例の燃料電池(線Cで示す)に
比して、電圧の安定性が同じ程度であり、第1実施例の
燃料電池(線Aで示す)と比べると、電圧の安定性が劣
る。これは、第1実施例の燃料電池では、全てのリブ3
3を、その長手方向が鉛直下方に対して傾斜させて配列
していることから、生成水の排出を容易化することがで
きるのに対して、この第2実施例では、水平方向に向い
ている横向きリブ133bがあることから、生成水は図
6に示す停滞水Wのようにその横向きリブ133bの付
近で滞水し、排水性が悪化するためである。
The relationship between voltage and holding time in the polymer electrolyte fuel cell of the second embodiment is shown in FIG. 5 described above. In FIG. 5, line B shows the relationship between the voltage and the holding time when the polymer electrolyte fuel cell of the second embodiment was operated at an operating temperature of 80 ° C. As shown in the figure, the polymer electrolyte fuel cell of the second embodiment has about the same voltage stability as the fuel cell of the conventional example (shown by the line C), and the fuel cell of the first embodiment has the same stability. Compared to the battery (indicated by line A), the voltage stability is poor. In the fuel cell of the first embodiment, this means that all ribs 3
3 are arranged with their longitudinal direction inclined with respect to the vertically downward direction, it is possible to facilitate the discharge of the produced water, whereas in the second embodiment, they are oriented in the horizontal direction. This is because, since there is the horizontal rib 133b present, the generated water is retained near the horizontal rib 133b like the stagnant water W shown in FIG. 6, and the drainage performance is deteriorated.

【0036】即ち、この第2実施例の固体高分子型燃料
電池は、ガス拡散電極へのガスの拡散性が高められ、エ
ネルギ変換効率の優れたものとなるといった効果を奏す
る。一方、ガスの流路における排水性については、第1
実施例のものと比して劣り、そのために、電圧安定性は
若干劣っている。
That is, the polymer electrolyte fuel cell of the second embodiment has an effect that the diffusivity of gas to the gas diffusion electrode is enhanced and the energy conversion efficiency becomes excellent. On the other hand, regarding the drainage property in the gas flow path,
It is inferior to that of the example, and therefore the voltage stability is slightly inferior.

【0037】なお、前記第1および第2実施例では、リ
ブ33,133の形状を直方体としたが、これに換え
て、平面が楕円形状の凸部としてもよく、要は細長の凸
部であればよい。
In the first and second embodiments, the ribs 33 and 133 have a rectangular parallelepiped shape. However, instead of this, a convex portion having an elliptical plane may be used. I wish I had it.

【0038】また、前記第1実施例では、リブ33を、
長手方向が鉛直下方に対して45度傾いて配置していた
が、必ずしも45度である必要はなく、リブ33付近に
きた水が流れ落ちれば、例えば、80度、60度等どの
ような角度であってもよい。
In the first embodiment, the rib 33 is
Although the longitudinal direction is arranged at an angle of 45 degrees with respect to the vertically downward direction, it is not necessarily 45 degrees, and if the water near the ribs 33 flows down, for example, 80 degrees, 60 degrees, etc. May be

【0039】以上本発明の実施例について説明したが、
本発明はこうした実施例に何等限定されるものではな
く、本発明の要旨を逸脱しない範囲内において、種々な
る態様で実施し得ることは勿論である。
The embodiment of the present invention has been described above.
The present invention is not limited to these examples, and it goes without saying that the present invention can be implemented in various modes without departing from the scope of the present invention.

【0040】[0040]

【発明の効果】以上説明したように請求項1記載の燃料
電池では、流路形成部材におけるガスの流れを乱流化し
て、ガス拡散性を高めることができる。このため、エネ
ルギ変換効率の優れた燃料電池とすることができる。
As described above, in the fuel cell according to the first aspect, the gas flow in the flow path forming member can be made turbulent to enhance the gas diffusibility. Therefore, a fuel cell having excellent energy conversion efficiency can be obtained.

【0041】請求項2記載の燃料電池では、流路形成部
材における排水性を高めることができる。このため、電
圧安定性に優れた燃料電池とすることができる。
In the fuel cell according to the second aspect, the drainage property of the flow path forming member can be improved. Therefore, a fuel cell having excellent voltage stability can be obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1実施例としての固体高分子型燃料
電池10の単一セルを示す構造図である。
FIG. 1 is a structural diagram showing a single cell of a polymer electrolyte fuel cell 10 as a first embodiment of the present invention.

【図2】固体高分子型燃料電池10の集電体15の平面
図である。
FIG. 2 is a plan view of a collector 15 of the polymer electrolyte fuel cell 10.

【図3】集電体15のリブの配列を拡大して示す説明図
である。
FIG. 3 is an explanatory diagram showing an enlarged array of ribs of a current collector 15.

【図4】第1および第2実施例の固体高分子型燃料電池
と従来例の固体高分子型燃料電池における電圧と電流密
度との関係を示したグラフである。
FIG. 4 is a graph showing the relationship between voltage and current density in the polymer electrolyte fuel cells of the first and second examples and the polymer electrolyte fuel cell of the conventional example.

【図5】第1および第2実施例の固体高分子型燃料電池
と従来例の固体高分子型燃料電池における電圧と保持時
間との関係を示したグラフである。
FIG. 5 is a graph showing the relationship between voltage and holding time in the polymer electrolyte fuel cells of the first and second examples and the polymer electrolyte fuel cell of the conventional example.

【図6】第2実施例における集電体のリブの配列を拡大
して示す説明図である。
FIG. 6 is an explanatory view showing an enlarged array of ribs of the current collector in the second embodiment.

【図7】従来例における集電体のリブの配列を拡大して
示す説明図である。
FIG. 7 is an explanatory view showing an enlarged array of ribs of a current collector in a conventional example.

【符号の説明】[Explanation of symbols]

10…固体高分子型燃料電池 11…電解質膜 12…カソード 13…アノード 15…集電体 15a…酸素含有ガス流路 15b…水素ガス流路 21,23,25,27…孔 31…段差面 33,133…リブ 33a…右向きリブ 33b…左向きリブ 133a…縦向きリブ 133b…横向きリブ 10 ... Polymer electrolyte fuel cell 11 ... Electrolyte membrane 12 ... Cathode 13 ... Anode 15 ... Current collector 15a ... Oxygen-containing gas flow path 15b ... Hydrogen gas flow path 21, 23, 25, 27 ... Hole 31 ... Step surface 33 , 133 ... ribs 33a ... rightward ribs 33b ... leftward ribs 133a ... vertical ribs 133b ... horizontal ribs

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 電解質膜を2つの電極で挟持する接合体
と、 該接合体に接触し該電極とで供給ガスの流路を形成する
流路形成部材とを備えた燃料電池において、 前記流路形成部材は、 細長の複数の凸部を備えるとともに、 前記複数の凸部は、 隣接する凸部に対してその長手方向が互いに交差するよ
うに配列したことを特徴とする燃料電池。
1. A fuel cell comprising: a joined body that sandwiches an electrolyte membrane between two electrodes; and a flow passage forming member that is in contact with the joined body and forms a flow passage for a supply gas. The fuel cell is characterized in that the passage forming member includes a plurality of elongated protrusions, and the plurality of protrusions are arranged so that their longitudinal directions intersect with adjacent protrusions.
【請求項2】 請求項1記載の燃料電池であって、 前記すべての凸部が、 該凸部の長手方向を鉛直下方に対して傾斜させて配列さ
れた燃料電池。
2. The fuel cell according to claim 1, wherein all the convex portions are arranged such that the longitudinal direction of the convex portions is inclined with respect to the vertically downward direction.
JP6340300A 1994-12-28 1994-12-28 Fuel cell Pending JPH08185873A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6340300A JPH08185873A (en) 1994-12-28 1994-12-28 Fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6340300A JPH08185873A (en) 1994-12-28 1994-12-28 Fuel cell

Publications (1)

Publication Number Publication Date
JPH08185873A true JPH08185873A (en) 1996-07-16

Family

ID=18335630

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6340300A Pending JPH08185873A (en) 1994-12-28 1994-12-28 Fuel cell

Country Status (1)

Country Link
JP (1) JPH08185873A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030035433A (en) * 2001-10-31 2003-05-09 한국전력공사 Current collectors of molten carbonate fuel cell separators
US6663997B2 (en) 2000-12-22 2003-12-16 Ballard Power Systems Inc. Oxidant flow field for solid polymer electrolyte fuel cell
KR100424195B1 (en) * 2001-11-19 2004-03-24 한국과학기술연구원 Fuel cell separator plate comprising bidirectional slot plate
KR100626034B1 (en) * 2004-11-13 2006-09-20 삼성에스디아이 주식회사 Bipolar plate and direct liquid feed fuel cell stack
WO2007018156A1 (en) * 2005-08-05 2007-02-15 Matsushita Electric Industrial Co., Ltd. Separator for fuel cell and fuel cell
KR100723397B1 (en) * 2006-07-05 2007-05-30 삼성에스디아이 주식회사 Fuel cell comprising water recirculation plate
JP2008198393A (en) * 2007-02-08 2008-08-28 Nissan Motor Co Ltd Fuel cell
CN109565059A (en) * 2016-11-14 2019-04-02 株式会社Lg化学 Separating plate for fuel cell and the fuel cell using the separating plate
CN113506889A (en) * 2021-07-08 2021-10-15 上海空间电源研究所 Bipolar plate runner with injection effect, bipolar plate and fuel cell

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6663997B2 (en) 2000-12-22 2003-12-16 Ballard Power Systems Inc. Oxidant flow field for solid polymer electrolyte fuel cell
KR20030035433A (en) * 2001-10-31 2003-05-09 한국전력공사 Current collectors of molten carbonate fuel cell separators
KR100424195B1 (en) * 2001-11-19 2004-03-24 한국과학기술연구원 Fuel cell separator plate comprising bidirectional slot plate
KR100626034B1 (en) * 2004-11-13 2006-09-20 삼성에스디아이 주식회사 Bipolar plate and direct liquid feed fuel cell stack
US8278008B2 (en) 2005-08-05 2012-10-02 Panasonic Corporation Serpentine fuel cell separator with protrusions and fuel cell including the same
WO2007018156A1 (en) * 2005-08-05 2007-02-15 Matsushita Electric Industrial Co., Ltd. Separator for fuel cell and fuel cell
KR100723397B1 (en) * 2006-07-05 2007-05-30 삼성에스디아이 주식회사 Fuel cell comprising water recirculation plate
JP2008198393A (en) * 2007-02-08 2008-08-28 Nissan Motor Co Ltd Fuel cell
CN109565059A (en) * 2016-11-14 2019-04-02 株式会社Lg化学 Separating plate for fuel cell and the fuel cell using the separating plate
EP3474358A4 (en) * 2016-11-14 2019-08-07 LG Chem, Ltd. Separation plate for fuel cell and fuel cell using same
US11121383B2 (en) 2016-11-14 2021-09-14 Lg Chem, Ltd. Separator for fuel cell and fuel cell using the same
CN109565059B (en) * 2016-11-14 2022-07-15 株式会社Lg化学 Separator plate for fuel cell and fuel cell using the same
CN113506889A (en) * 2021-07-08 2021-10-15 上海空间电源研究所 Bipolar plate runner with injection effect, bipolar plate and fuel cell
CN113506889B (en) * 2021-07-08 2022-12-13 上海空间电源研究所 Bipolar plate runner with injection effect, bipolar plate and fuel cell

Similar Documents

Publication Publication Date Title
US8309273B2 (en) Polymer electrolyte fuel cell and fuel cell stack including the same
US20060105223A1 (en) Bipolar plate and direct liquid feed fuel cell stack
JP2006190673A (en) Direct liquid fuel cell and portable electronic equipment equipped with the same
JP4842108B2 (en) Direct oxidation fuel cell
US20100062302A1 (en) Metal support and solid oxide fuel cell including the same
JP4061684B2 (en) Fuel cell
JP5501237B2 (en) POLYMER ELECTROLYTE FUEL CELL AND FUEL CELL STACK HAVING THE SAME
US7638227B2 (en) Fuel cell having stack structure
JPH08185873A (en) Fuel cell
JP5541291B2 (en) Fuel cell and vehicle equipped with fuel cell
JP3707384B2 (en) Fuel cell
EP2341571A1 (en) Fuel cell, fuel cell system, and operating method for a fuel cell
JPH08287934A (en) Fuel cell
JP4499690B2 (en) Direct liquid fuel cell
KR100649204B1 (en) Fuel cell system, stack and separator
JP4197514B2 (en) Fuel cell system and stack
JP4985262B2 (en) Fuel cell
JP2008146897A (en) Fuel cell separator, and fuel cell
JP2009277390A (en) Flow passage plate for fuel cell, and fuel cell using the same
JP4659376B2 (en) Polymer electrolyte fuel cell
JPH06333581A (en) Solid poly electrolyte fuel cell
JP2005142027A (en) Polyelectrolyte fuel cell
JPH08153525A (en) Fuel cell
KR20230100107A (en) Current collector for solid oxide fuel cell having flow path forming protrusion
KR20230100109A (en) Current collector for solid oxide fuel cell to prevent structural deformation