JPH10134833A - Fuel cell - Google Patents

Fuel cell

Info

Publication number
JPH10134833A
JPH10134833A JP8291551A JP29155196A JPH10134833A JP H10134833 A JPH10134833 A JP H10134833A JP 8291551 A JP8291551 A JP 8291551A JP 29155196 A JP29155196 A JP 29155196A JP H10134833 A JPH10134833 A JP H10134833A
Authority
JP
Japan
Prior art keywords
flow path
groove
fuel
gas flow
fuel gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8291551A
Other languages
Japanese (ja)
Inventor
Hideo Nakai
秀朗 中居
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Priority to JP8291551A priority Critical patent/JPH10134833A/en
Publication of JPH10134833A publication Critical patent/JPH10134833A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a fuel cell in which the temperarure difference on the surface of the generating cell is little. SOLUTION: This solid electrolyte cell has a rectangular form, and has a stack structure laminating a generating cell 4 and a separator 5. The generating cell 4 is composed of a solid electrolyte film 1; a cathode 2 formed on the upper face of the soild electrolyte film 1; and an anode 3 formed on the lower face of the solid electrolyte film 1. Plural grooves 6 for fuel gas are provided at a specific interval on the upper face of the separator 5, while plural grooves 7 for oxidant gas orthogonal to the direction of the grooves 6 for fuel gas are provided to the lower face at a specific interval. The grooves 7 for oxidant gas are set to make the cross section of the groove 7 provided at the flow-in port 6a side of the grooves 6, larger than the cross section of the groove 7 provided at the flow-out port side.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、燃料電池、特に、
リン酸塩型、溶融炭酸塩型、固体電解質型等の燃料電池
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a fuel cell,
The present invention relates to a fuel cell such as a phosphate type, a molten carbonate type, and a solid electrolyte type.

【0002】[0002]

【従来の技術】一般に、リン酸塩型、溶融炭酸塩型、固
体電解質型等の燃料電池では、アノード及びカソードを
それぞれ表裏面に設けた電解質膜からなる発電セルとセ
パレータとを積み重ねた構造のものが知られている。そ
して、セパレータの一方の面には複数本の燃料ガス用溝
が設けられ、他方の面には燃料ガス用溝の方向に対して
直交する複数本の酸化剤ガス用溝が設けられている。こ
の燃料ガス用溝及び酸化剤ガス用溝にそれぞれ燃料ガ
ス、酸化剤ガスを流して、アノード、カソードに各ガス
をゆきわたらせる。ところで、従来より、このセパレー
タに設けられる複数本の酸化剤ガス用溝は、いずれの溝
もその断面積が相互に等しいものが採用されていた。
2. Description of the Related Art In general, a fuel cell of a phosphate type, a molten carbonate type, a solid electrolyte type or the like has a structure in which a power generation cell composed of an electrolyte membrane having an anode and a cathode provided on the front and back surfaces, respectively, and a separator are stacked. Things are known. A plurality of fuel gas grooves are provided on one surface of the separator, and a plurality of oxidant gas grooves orthogonal to the direction of the fuel gas groove are provided on the other surface. The fuel gas and the oxidizing gas flow through the fuel gas groove and the oxidizing gas groove, respectively, so that the anode and the cathode spread the respective gases. By the way, heretofore, a plurality of grooves for the oxidizing gas provided in the separator have the same sectional area as each other.

【0003】[0003]

【発明が解決しようとする課題】通常、燃料電池では、
燃料ガスが酸化する際の安定化エネルギーのうち一部し
か電気エネルギーとして取り出せず、残りのエネルギー
は熱として消費される。また、発電セルで発生した電流
が流れる際に電池の内部抵抗のため、ジュール熱が発生
する。これらの発熱は各場所の電流密度に比例して発生
するため、電流密度の面内の不均衡はそのまま、温度の
面内不均衡を生み出す。たとえば、燃料電池において発
電セルがセラミックスの場合、熱伝導が小さく、発電セ
ルの面内の温度差を緩和しにくい。そしてさらに、セラ
ミックス製セパレータを用いると、構成部品が全てセラ
ミックスで構成されることになり、より面内温度差が大
きくなる。従って、発電により発熱した発電セルを冷却
するのは、燃料ガスや酸化剤ガスとなる。その中でも、
流量の大きい酸化剤ガスが冷却の中心となる。また、燃
料電池の特性上、温度が高い場所では内部抵抗が減少す
るため、もともと電流密度の大きな燃料ガス流入口側が
より高い電流密度となってしまう。従って、さらに発電
セルの面内温度差が大きくなる。
Generally, in a fuel cell,
Only a part of the stabilizing energy when the fuel gas is oxidized can be extracted as electric energy, and the remaining energy is consumed as heat. When a current generated in the power generation cell flows, Joule heat is generated due to the internal resistance of the battery. Since these heats are generated in proportion to the current density at each location, the in-plane imbalance of the current density remains as it is, thereby producing an in-plane imbalance of the temperature. For example, in a fuel cell, when a power generation cell is made of ceramics, heat conduction is small, and it is difficult to reduce a temperature difference in a plane of the power generation cell. Further, when a ceramic separator is used, all the components are made of ceramics, and the in-plane temperature difference is further increased. Therefore, it is the fuel gas and the oxidant gas that cool the power generation cells that generate heat by power generation. Among them,
The oxidant gas having a large flow rate becomes the center of cooling. In addition, due to the characteristics of the fuel cell, the internal resistance decreases in a place where the temperature is high, so that the fuel gas inlet having a large current density originally has a higher current density. Therefore, the in-plane temperature difference of the power generation cell further increases.

【0004】従来の燃料ガス用溝の方向と酸化剤ガス用
溝の方向が直交する構造の燃料電池は、マニホールドを
容易に設けることができるという利点があるが、燃料ガ
ス用溝の方向と酸化剤ガス用溝の方向を平行にした構造
の燃料電池と比較して、発電セルの面内温度差が大きく
なるという問題点があった。すなわち、図4に示すよう
に、従来の燃料ガス用溝の方向と酸化剤ガス用溝の方向
が直交する構造の燃料電池の発電セル40の面内温度分
布は、燃料ガス流入口側で温度が高く、酸化剤ガス流入
口側で温度が低かった。この発電セル40の面内温度差
のため、電池特性の低下や発電セル40の破損が起こる
心配があった。
A conventional fuel cell having a structure in which the direction of the fuel gas groove is orthogonal to the direction of the oxidizing gas groove has an advantage that the manifold can be easily provided. There is a problem that the in-plane temperature difference of the power generation cell is larger than that of a fuel cell having a structure in which the directions of the agent gas grooves are parallel. That is, as shown in FIG. 4, the in-plane temperature distribution of the power generation cell 40 of the conventional fuel cell having a structure in which the direction of the groove for the fuel gas and the direction of the groove for the oxidizing gas are perpendicular to each other, And the temperature was low on the oxidant gas inlet side. Due to the in-plane temperature difference of the power generation cell 40, there is a concern that the battery characteristics may be deteriorated or the power generation cell 40 may be damaged.

【0005】そこで、本発明の目的は、発電セルの面内
温度差が小さい燃料電池を提供することにある。
Accordingly, an object of the present invention is to provide a fuel cell having a small in-plane temperature difference of a power generation cell.

【0006】[0006]

【課題を解決するための手段】以上の目的を達成するた
め、本発明に係る燃料電池は、(a)電解質膜とこの電
解質膜の表裏面にそれぞれ設けられたアノード及びカソ
ードとからなる発電セルと、燃料ガスと酸化剤ガスを分
離するためのセパレータとを積み重ねた構造を有し、
(b)前記セパレータの一面に、燃料ガス流路の方向に
対して直交する複数の酸化剤ガス流路を設け、前記燃料
ガス流路の流入口側に設けられた前記酸化剤ガス流路の
流路断面積が、前記燃料ガス流路の流出口側に設けられ
た前記酸化剤ガス流路の流路断面積より大きいこと、を
特徴とする。
In order to achieve the above object, a fuel cell according to the present invention comprises: (a) a power generation cell comprising an electrolyte membrane and an anode and a cathode provided respectively on the front and back surfaces of the electrolyte membrane; Having a structure in which a fuel gas and a separator for separating the oxidizing gas are stacked,
(B) a plurality of oxidizing gas channels orthogonal to the direction of the fuel gas channel are provided on one surface of the separator, and the oxidizing gas channels provided on the inlet side of the fuel gas channel are provided; The flow path cross-sectional area is larger than the flow path cross-sectional area of the oxidizing gas flow path provided on the outlet side of the fuel gas flow path.

【0007】ここに、酸化剤ガス流路としては、溝が好
ましい。そして、燃料ガス流路の流入口側に設けられた
酸化剤ガス流路の溝の深さや幅が、燃料ガス流路の流出
口側に設けられた酸化剤ガス流路の溝の深さや幅より大
きく設定されることが望ましい。また、セパレータの、
酸化剤ガス流路が設けられた一面に対向する他面には、
燃料ガス流路の溝等が設けられていてもよいし、あるい
は何も設けない平面であってもよい。
Here, a groove is preferable as the oxidizing gas passage. The depth and width of the groove of the oxidizing gas flow path provided on the inlet side of the fuel gas flow path are the same as the depth and width of the groove of the oxidizing gas flow path provided on the outlet side of the fuel gas flow path. It is desirable to set it larger. In addition, of the separator,
On the other surface opposite to the one surface provided with the oxidant gas flow path,
The fuel gas channel may be provided with a groove or the like, or may be a flat surface provided with nothing.

【0008】[0008]

【作用】以上の構成により、発熱量が大きい燃料ガス流
路の流入口側では、冷却ガスとしても役割をもつ酸化剤
ガスの流量が大きくなり、発電セルの燃料ガス流路の流
入口側の温度上昇が抑えられる。一方、発熱量が小さい
燃料ガス流路の流出口側では、酸化剤ガスの流量が小さ
く、発電セルの燃料ガス流路の流出口側の温度が必要以
上に下がらない。従って、発電セルの面内温度分布が均
一化される。
According to the above configuration, the flow rate of the oxidizing gas, which also functions as a cooling gas, is increased on the inlet side of the fuel gas flow path which generates a large amount of heat. Temperature rise is suppressed. On the other hand, the flow rate of the oxidizing gas is small on the outlet side of the fuel gas flow path having a small calorific value, and the temperature on the outlet side of the fuel gas flow path of the power generation cell does not drop more than necessary. Therefore, the in-plane temperature distribution of the power generation cell is made uniform.

【0009】[0009]

【発明の実施の形態】以下、本発明に係る燃料電池の実
施形態について添付図面を参照して説明する。各実施形
態において同一部品及び同一部分には同じ符号を付し
た。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of the fuel cell according to the present invention will be described below with reference to the accompanying drawings. In each embodiment, the same components and the same portions are denoted by the same reference numerals.

【0010】[第1実施形態、図1及び図2]図1は電
池内部でガス改質を行わない外部改質方式の固体電解質
型燃料電池の構成を示すものである。なお、外部改質方
式とは、燃料ガス(水素及び一酸化炭素等)の改質をス
タック構造体(後述)の外部で行なう方式である。逆
に、原料の天然ガスを改質せずに直接スタック構造体に
供給し、スタック構造体内に充填した触媒によりスタッ
ク構造体内部で水素及び一酸化炭素に改質する方式を内
部改質方式という。
[First Embodiment, FIGS. 1 and 2] FIG. 1 shows a configuration of an external reforming type solid oxide fuel cell in which gas reforming is not performed inside the cell. Note that the external reforming method is a method in which fuel gas (hydrogen, carbon monoxide, etc.) is reformed outside a stack structure (described later). Conversely, a system in which the raw material natural gas is directly supplied to the stack structure without reforming and reformed into hydrogen and carbon monoxide inside the stack structure by the catalyst filled in the stack structure is called an internal reforming method. .

【0011】固体電解質型燃料電池は矩形体であり、発
電セル4とセパレータ5を積み重ねたスタック構造体を
有している。発電セル4は、固体電解質膜1と、固体電
解質膜1の上面に形成されたカソード2と、固体電解質
膜1の下面に形成されたアノード3とで構成されてい
る。固体電解質膜1の材料としては、Y23を数mol
%添加されて安定したZrO2セラミックス等が用いら
れる。カソード2は(La,Sr)MnO3等のペロブ
スカイト型酸化物導電材料からなり、アノード3はNi
・ZrO2サーメット等からなる。固体電解質膜1とカ
ソード2とアノード3は、グリーンシート状にされたそ
れぞれの原料を積み重ねて圧着した後、共焼結(同時に
焼成すること)して発電セル4とされる。
The solid oxide fuel cell has a rectangular shape and has a stack structure in which a power generation cell 4 and a separator 5 are stacked. The power generation cell 4 includes a solid electrolyte membrane 1, a cathode 2 formed on an upper surface of the solid electrolyte membrane 1, and an anode 3 formed on a lower surface of the solid electrolyte membrane 1. As a material of the solid electrolyte membrane 1, several moles of Y 2 O 3 are used.
% Stable ZrO 2 ceramic or the like is used. The cathode 2 is made of a perovskite oxide conductive material such as (La, Sr) MnO 3 and the anode 3 is made of Ni.
- consisting of ZrO 2 cermet or the like. The solid electrolyte membrane 1, the cathode 2, and the anode 3 are stacked and pressed together with the respective green sheet materials, and then co-sintered (simultaneously fired) to form a power generation cell 4.

【0012】セパレータ5は、燃料ガスと酸化剤ガスを
分離するためのものであり、また、燃料ガスや酸化剤ガ
スを外気から遮断するためのものでもある。セパレータ
5の上面には、複数の燃料ガス用溝6が所定の間隔で設
けられており、この燃料ガス用溝6によって、燃料ガス
がアノード3にゆきわたる。セパレータ5の下面には、
燃料ガス用溝6の方向に対して直交する複数の酸化剤ガ
ス用溝7が所定の間隔で設けられており、この酸化剤ガ
ス用溝7によって、酸化剤ガスがカソード2にゆきわた
る。特に、酸化剤ガス用溝7は、図2に示すように、溝
の幅を一定にし、燃料ガス用溝6の流入口6a側に設け
られた溝7の深さが、流出口6bに設けられた溝7の深
さより深くなるように設定されている。第1実施形態で
は、流入口6a側に設けられた酸化剤ガス用溝7の深さ
を2mmとし、流入口6a側から離れるにつれて徐々に
浅くして流出口6b側に設けられた酸化剤ガス用溝7の
深さが1mmになるように設定した。セパレータ5の材
料としては、ニッケルクロム合金等の耐熱性及び耐酸性
の合金や導電性金属酸化物粉末を含有したセラミック等
が用いられる。
The separator 5 is for separating the fuel gas and the oxidizing gas, and for isolating the fuel gas and the oxidizing gas from the outside air. A plurality of fuel gas grooves 6 are provided at predetermined intervals on the upper surface of the separator 5, and the fuel gas is spread to the anode 3 by the fuel gas grooves 6. On the lower surface of the separator 5,
A plurality of oxidizing gas grooves 7 orthogonal to the direction of the fuel gas groove 6 are provided at predetermined intervals. The oxidizing gas groove 7 allows the oxidizing gas to flow to the cathode 2. In particular, as shown in FIG. 2, the oxidizing gas groove 7 has a constant width, and the depth of the groove 7 provided on the inlet 6a side of the fuel gas groove 6 is provided at the outlet 6b. The groove 7 is set to be deeper than the depth of the groove 7. In the first embodiment, the depth of the oxidizing gas groove 7 provided on the inflow port 6a side is set to 2 mm, and gradually becomes shallower as the distance from the inflow port 6a side increases. The depth of the groove 7 was set to 1 mm. As a material of the separator 5, a heat-resistant and acid-resistant alloy such as a nickel-chromium alloy, a ceramic containing a conductive metal oxide powder, or the like is used.

【0013】なお、図示していないが、発電セル4とセ
パレータ5の積層体の上端部には、下面に酸化剤ガス用
溝を設けかつ上面は略平面(すなわち、上面には燃料ガ
ス用溝が設けられていない)のセパレータが配置されて
いる。一方、発電セル4とセパレータ5の積層体の下端
部には、上面に燃料ガス用溝を設けかつ下面は略平面
(すなわち、下面には酸化剤ガス用溝が設けられていな
い)のセパレータが配置されている。
Although not shown, an oxidizing gas groove is provided on the lower surface at the upper end of the laminated body of the power generation cell 4 and the separator 5 and the upper surface is substantially flat (ie, the fuel gas groove is provided on the upper surface). Is not provided). On the other hand, a separator having a fuel gas groove on the upper surface and a substantially flat surface on the lower surface (that is, no oxidant gas groove on the lower surface) is provided at the lower end of the stacked body of the power generation cell 4 and the separator 5. Are located.

【0014】次に、この構成の燃料電池の作用効果につ
いて図1及び図2を参照して説明する。水素ガス等の燃
料ガスは、セパレータ5の燃料ガス用溝6の流入口6a
側から供給され、アノード3に導かれる。同様に、空気
や酸素ガス等の酸化剤ガスはセパレータ5の酸化剤ガス
用溝7の流入口側(図示せず)から供給され、カソード
2に導かれる。燃料電池の内部は高温(約800〜10
00℃)に保持されており、カソード2に供給された酸
化剤ガスとアノード3に供給された燃料ガスとが固体電
解質膜1を介して電極反応を起こし、発電セル4の厚み
方向に電流が流れる。
Next, the operation and effect of the fuel cell having this configuration will be described with reference to FIGS. Fuel gas such as hydrogen gas flows into the inlet 6 a of the fuel gas groove 6 of the separator 5.
And supplied to the anode 3. Similarly, an oxidizing gas such as air or oxygen gas is supplied from an inlet (not shown) of the oxidizing gas groove 7 of the separator 5 and guided to the cathode 2. The inside of the fuel cell is hot (about 800 to 10
00 ° C.), the oxidant gas supplied to the cathode 2 and the fuel gas supplied to the anode 3 cause an electrode reaction via the solid electrolyte membrane 1, and a current flows in the thickness direction of the power generation cell 4. Flows.

【0015】このとき、発電セル4の面内発熱量分布
は、燃料ガス用溝6の流入口6a側で発熱量が大きく、
酸化剤ガス用溝7の流入口側で発熱量が小さい。ところ
が、流入口6a側に設けられた酸化剤ガス用溝7の深さ
が、流出口6b側に設けられた酸化剤ガス用溝7の深さ
より深いので、流入口6a側では酸化剤ガスの流量が大
きくなり、酸化剤ガスの冷却能力がアップされる。従っ
て、流入口6a側の発熱量が大きくても、この冷却能力
のアップされた酸化剤ガスによって充分に流入口6a側
が冷やされ、流入口6a側の温度上昇が抑えられる。一
方、流出口6b側では酸化剤ガスの流量が小さく、酸化
剤ガスの冷却能力も低いので、流出口6b側の温度が必
要以上に下がらない。この結果、発電セル4の面内温度
分布が均一化され、燃料電池の信頼性を向上させ、か
つ、電池特性の低下を防止することができる。
At this time, the in-plane calorific value distribution of the power generation cell 4 is such that the calorific value is large on the inlet 6a side of the fuel gas groove 6,
The calorific value is small at the inlet side of the oxidant gas groove 7. However, the depth of the oxidizing gas groove 7 provided on the inflow port 6a side is deeper than the depth of the oxidizing gas groove 7 provided on the outflow port 6b side. The flow rate is increased, and the cooling capacity of the oxidizing gas is increased. Therefore, even if the calorific value on the inflow port 6a side is large, the inflow port 6a side is sufficiently cooled by the oxidizing gas having the increased cooling capacity, and the temperature rise on the inflow port 6a side is suppressed. On the other hand, since the flow rate of the oxidizing gas is small and the cooling capacity of the oxidizing gas is low on the outlet 6b side, the temperature on the outlet 6b side does not decrease more than necessary. As a result, the in-plane temperature distribution of the power generation cell 4 is made uniform, so that the reliability of the fuel cell can be improved and the deterioration of the cell characteristics can be prevented.

【0016】反応後の燃料ガスは、燃料ガス用溝6の流
出口6bから排出される。同様に、反応後の酸化剤ガス
は、酸化剤ガス用溝7の流出口7bから排出される。
The fuel gas after the reaction is discharged from the outlet 6b of the fuel gas groove 6. Similarly, the oxidant gas after the reaction is discharged from the outlet 7b of the oxidant gas groove 7.

【0017】[第2実施形態、図3]第2実施形態の燃
料電池は、セパレータに設けた酸化剤ガス用溝の横断面
形状を残して前記第1実施形態の固体電解質型燃料電池
と同様の構造を有したものである。
[Second Embodiment, FIG. 3] The fuel cell of the second embodiment is the same as the solid oxide fuel cell of the first embodiment except for the cross-sectional shape of the oxidant gas groove provided in the separator. Having the following structure.

【0018】図3に示すように、酸化剤ガス用溝17
は、溝の深さを一定にし、燃料ガス用溝6の流入口6a
側に設けられた溝17の幅が、流出口6b側に設けられ
た溝17の幅より広くなるように設定されている。従っ
て、流入口6a側では酸化剤ガスの流量が大きくなり、
酸化剤ガスの冷却能力がアップされるので、流入口6a
側の発熱量が大きくなっても、この冷却能力のアップさ
れた酸化剤ガスによって充分に流入口6a側が冷やさ
れ、流入口6a側の温度上昇が抑えられる。一方、流出
口6b側では酸化剤ガスの流量が小さく、酸化剤ガスの
冷却能力も低いので、流出口6b側の温度が必要以上に
下がらない。この結果、発電セル4の面内温度分布が均
一化され、燃料電池の信頼性を向上させ、かつ、電池特
性の低下を防止することができる。
As shown in FIG. 3, the oxidizing gas groove 17 is formed.
Makes the depth of the groove constant, and the inlet 6a of the fuel gas groove 6
The width of the groove 17 provided on the side is set to be wider than the width of the groove 17 provided on the outlet 6b side. Therefore, the flow rate of the oxidizing gas at the inflow port 6a becomes large,
Since the cooling capacity of the oxidizing gas is improved, the inlet 6a
Even if the calorific value on the side becomes large, the oxidant gas having the increased cooling capacity sufficiently cools the inflow port 6a side and suppresses the temperature rise on the inflow port 6a side. On the other hand, since the flow rate of the oxidizing gas is small and the cooling capacity of the oxidizing gas is low on the outlet 6b side, the temperature on the outlet 6b side does not decrease more than necessary. As a result, the in-plane temperature distribution of the power generation cell 4 is made uniform, so that the reliability of the fuel cell can be improved and the deterioration of the cell characteristics can be prevented.

【0019】[他の実施形態]なお、本発明に係る燃料
電池は前記実施形態に限定するものではなく、その要旨
の範囲内で種々に変更することができる。前記実施形態
では固体電解質型燃料電池について説明したが、リン酸
塩型や溶融炭酸塩型の燃料電池であってもよい。また、
酸化剤ガス用溝の深さや幅は、必ずしも燃料ガス用溝の
流入口側から流出口側に向かうにつれて徐々に小さくな
るように設定する必要はなく、例えば、数本の酸化剤ガ
ス用溝毎に深さや幅が変化するように設定してもよい。
また、酸化剤ガス用溝の深さと幅の両者を燃料ガス用溝
の流入口側から流出口側に向かうにつれて徐々に小さく
なるように設定してもよい。つまり、最終的に酸化剤ガ
ス流量が燃料ガス用溝の流出口側より流入口側の方が大
きくなるようにすればよく、従って酸化剤ガス流路の形
状、数等は任意である。
[Other Embodiments] The fuel cell according to the present invention is not limited to the above embodiment, but can be variously modified within the scope of the gist. Although the solid oxide fuel cell has been described in the above embodiment, the fuel cell may be a phosphate fuel cell or a molten carbonate fuel cell. Also,
The depth and width of the oxidizing gas groove need not necessarily be set so as to gradually decrease from the inlet side to the outlet side of the fuel gas groove. May be set so that the depth or width changes.
Further, both the depth and the width of the oxidizing gas groove may be set so as to gradually decrease from the inlet side to the outlet side of the fuel gas groove. In other words, the flow rate of the oxidizing gas may be finally greater on the inflow side than on the outflow side of the fuel gas groove. Therefore, the shape, number, etc. of the oxidizing gas flow paths are arbitrary.

【0020】[0020]

【発明の効果】以上の説明で明らかなように、本発明に
よれば、燃料ガス流路の流入口側に設けられた酸化剤ガ
ス流路の流路断面積を、燃料ガス流路の流出口側に設け
られた酸化剤ガス流路の流路断面積より大きくしたの
で、発熱量が大きい燃料ガス流路の流入口側では、冷却
ガスとしても役割をもつ酸化剤ガスの流量を大きくする
ことができ、発電セルの燃料ガス流路流入口側の温度上
昇を抑えることができる。一方、発熱量が小さい燃料ガ
ス流路の流出口側では、酸化剤ガスの流量が小さく、発
電セルの燃料ガス流路流出口側の温度を必要以上に下げ
ない。この結果、発電セルの面内温度分布を均一化する
ことができ、燃料電池の信頼性を向上させ、かつ、電池
特性の低下を防止することができる。
As is apparent from the above description, according to the present invention, the cross-sectional area of the oxidizing gas passage provided on the inlet side of the fuel gas passage is reduced by the flow passage of the fuel gas passage. The flow rate of the oxidizing gas, which also functions as a cooling gas, is increased on the inlet side of the fuel gas flow path, which generates a large amount of heat, because the flow rate is larger than the cross-sectional area of the oxidizing gas flow path provided on the outlet side. The temperature rise on the fuel gas flow channel inlet side of the power generation cell can be suppressed. On the other hand, the flow rate of the oxidizing gas is small on the outlet side of the fuel gas flow channel having a small calorific value, and the temperature on the fuel gas flow channel outlet side of the power generation cell is not unnecessarily lowered. As a result, the in-plane temperature distribution of the power generation cell can be made uniform, the reliability of the fuel cell can be improved, and the deterioration of the battery characteristics can be prevented.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る燃料電池の第1実施形態を示す分
解斜視図。
FIG. 1 is an exploded perspective view showing a first embodiment of a fuel cell according to the present invention.

【図2】第1実施形態の燃料電池の正面図。FIG. 2 is a front view of the fuel cell according to the first embodiment.

【図3】本発明に係る燃料電池の第2実施形態を示す正
面図。
FIG. 3 is a front view showing a second embodiment of the fuel cell according to the present invention.

【図4】従来の燃料電池の発電セルの面内温度分布図。FIG. 4 is an in-plane temperature distribution diagram of a power generation cell of a conventional fuel cell.

【符号の説明】[Explanation of symbols]

1…電解質膜 2…カソード 3…アノード 4…発電セル 5…セパレータ 6…燃料ガス用溝 6a…流入口 6b…流出口 7,17…酸化剤ガス用溝 DESCRIPTION OF SYMBOLS 1 ... Electrolyte membrane 2 ... Cathode 3 ... Anode 4 ... Power generation cell 5 ... Separator 6 ... Fuel gas groove 6a ... Inlet 6b ... Outlet 7, 17 ... Oxidant gas groove

─────────────────────────────────────────────────────
────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成8年11月6日[Submission date] November 6, 1996

【手続補正1】[Procedure amendment 1]

【補正対象書類名】図面[Document name to be amended] Drawing

【補正対象項目名】図4[Correction target item name] Fig. 4

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【図4】 FIG. 4

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 電解質膜とこの電解質膜の表裏面にそれ
ぞれ設けられたアノード及びカソードとからなる発電セ
ルと、燃料ガスと酸化剤ガスを分離するためのセパレー
タとを積み重ねた構造を有し、 前記セパレータの一面に、燃料ガス流路の方向に対して
直交する複数の酸化剤ガス流路を設け、前記燃料ガス流
路の流入口側に設けられた前記酸化剤ガス流路の流路断
面積が、前記燃料ガス流路の流出口側に設けられた前記
酸化剤ガス流路の流路断面積より大きいこと、 を特徴とする燃料電池。
1. A structure in which a power generation cell including an electrolyte membrane, an anode and a cathode provided on each of the front and back surfaces of the electrolyte membrane, and a separator for separating a fuel gas and an oxidant gas are stacked. On one surface of the separator, a plurality of oxidizing gas flow paths orthogonal to the direction of the fuel gas flow path are provided, and the flow path of the oxidizing gas flow path provided on the inlet side of the fuel gas flow path is cut off. A fuel cell having an area larger than a cross-sectional area of the oxidizing gas channel provided on an outlet side of the fuel gas channel.
【請求項2】 前記酸化剤ガス流路が溝であり、前記燃
料ガス流路の流入口側に設けられた前記酸化剤ガス流路
の溝の深さが、前記燃料ガス流路の流出口側に設けられ
た前記酸化剤ガス流路の溝の深さより深いことを特徴と
する請求項1記載の燃料電池。
2. The oxidizing gas flow path is a groove, and the depth of the oxidizing gas flow path provided on the inlet side of the fuel gas flow path is equal to the outlet of the fuel gas flow path. 2. The fuel cell according to claim 1, wherein the depth is greater than a depth of a groove of the oxidizing gas flow path provided on a side of the fuel cell.
【請求項3】 前記酸化剤ガス流路が溝であり、前記燃
料ガス流路の流入口側に設けられた前記酸化剤ガス流路
の溝の幅が、前記燃料ガス流路の流出口側に設けられた
前記酸化剤ガス流路の溝の幅より広いことを特徴とする
請求項1記載の燃料電池。
3. The oxidant gas flow path is a groove, and the width of the oxidant gas flow path provided on the inlet side of the fuel gas flow path is set to the outlet side of the fuel gas flow path. 2. The fuel cell according to claim 1, wherein the width of the groove of the oxidizing gas passage provided in the fuel cell is wider than that of the groove.
JP8291551A 1996-11-01 1996-11-01 Fuel cell Pending JPH10134833A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8291551A JPH10134833A (en) 1996-11-01 1996-11-01 Fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8291551A JPH10134833A (en) 1996-11-01 1996-11-01 Fuel cell

Publications (1)

Publication Number Publication Date
JPH10134833A true JPH10134833A (en) 1998-05-22

Family

ID=17770388

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8291551A Pending JPH10134833A (en) 1996-11-01 1996-11-01 Fuel cell

Country Status (1)

Country Link
JP (1) JPH10134833A (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002208417A (en) * 2001-01-10 2002-07-26 Tokyo Gas Co Ltd Supply method of air and fuel for flat plate type solid electrolyte fuel cell
JP2005158409A (en) * 2003-11-25 2005-06-16 Toyobo Co Ltd Electrode material with groove, and electrode for liquid flow type electrolytic cell
JP2005203288A (en) * 2004-01-19 2005-07-28 Toyota Motor Corp Fuel cell
JP2006302914A (en) * 2006-07-31 2006-11-02 Kyocera Corp Wiring board
WO2005057697A3 (en) * 2003-12-09 2007-07-05 Nissan Motor Fuel cell stack
JP2011113785A (en) * 2009-11-26 2011-06-09 Honda Motor Co Ltd Fuel cell
WO2011089801A1 (en) * 2010-01-19 2011-07-28 トヨタ車体 株式会社 Fuel battery
KR101253905B1 (en) 2010-12-28 2013-04-16 주식회사 포스코 Fuel cell stack
US8778554B2 (en) 2011-06-16 2014-07-15 Honda Motor Co., Ltd. Fuel cell
WO2016157879A1 (en) * 2015-03-31 2016-10-06 日本特殊陶業株式会社 Flat plate type fuel cell
WO2016157880A1 (en) * 2015-03-31 2016-10-06 日本特殊陶業株式会社 Flat plate type fuel cell
JP2019053925A (en) * 2017-09-15 2019-04-04 日本特殊陶業株式会社 Fuel cell stack
WO2020235237A1 (en) * 2019-05-22 2020-11-26 住友電気工業株式会社 Metal porous sheet, fuel cell, and water electrolysis device

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4485075B2 (en) * 2001-01-10 2010-06-16 東京瓦斯株式会社 Air and fuel supply method in flat plate type SOFC
JP2002208417A (en) * 2001-01-10 2002-07-26 Tokyo Gas Co Ltd Supply method of air and fuel for flat plate type solid electrolyte fuel cell
JP2005158409A (en) * 2003-11-25 2005-06-16 Toyobo Co Ltd Electrode material with groove, and electrode for liquid flow type electrolytic cell
WO2005057697A3 (en) * 2003-12-09 2007-07-05 Nissan Motor Fuel cell stack
JP2005203288A (en) * 2004-01-19 2005-07-28 Toyota Motor Corp Fuel cell
JP4531019B2 (en) * 2006-07-31 2010-08-25 京セラ株式会社 Fuel cell
JP2006302914A (en) * 2006-07-31 2006-11-02 Kyocera Corp Wiring board
JP2011113785A (en) * 2009-11-26 2011-06-09 Honda Motor Co Ltd Fuel cell
DE112010005161B4 (en) * 2010-01-19 2017-07-27 Toyota Shatai Kabushiki Kaisha fuel cell
WO2011089801A1 (en) * 2010-01-19 2011-07-28 トヨタ車体 株式会社 Fuel battery
JP2011150801A (en) * 2010-01-19 2011-08-04 Toyota Auto Body Co Ltd Fuel battery
US9065090B2 (en) 2010-01-19 2015-06-23 Toyota Shatai Kabushiki Kaisha Fuel battery
KR101253905B1 (en) 2010-12-28 2013-04-16 주식회사 포스코 Fuel cell stack
US8778554B2 (en) 2011-06-16 2014-07-15 Honda Motor Co., Ltd. Fuel cell
DE102012210162B4 (en) 2011-06-16 2024-04-18 Honda Motor Co., Ltd. Fuel cell with membrane electrode arrangement
WO2016157880A1 (en) * 2015-03-31 2016-10-06 日本特殊陶業株式会社 Flat plate type fuel cell
JP2016194994A (en) * 2015-03-31 2016-11-17 日本特殊陶業株式会社 Flat plate type fuel battery
JP2016194995A (en) * 2015-03-31 2016-11-17 日本特殊陶業株式会社 Flat plate type fuel battery
KR20170105603A (en) * 2015-03-31 2017-09-19 니뽄 도쿠슈 도교 가부시키가이샤 Flat plate type fuel cell
CN107251300A (en) * 2015-03-31 2017-10-13 日本特殊陶业株式会社 Flat fuel cell
KR20170118930A (en) * 2015-03-31 2017-10-25 니뽄 도쿠슈 도교 가부시키가이샤 Flat plate type fuel cell
CN107251300B (en) * 2015-03-31 2020-07-14 森村索福克科技股份有限公司 Flat-plate type fuel cell
WO2016157879A1 (en) * 2015-03-31 2016-10-06 日本特殊陶業株式会社 Flat plate type fuel cell
JP2019053925A (en) * 2017-09-15 2019-04-04 日本特殊陶業株式会社 Fuel cell stack
WO2020235237A1 (en) * 2019-05-22 2020-11-26 住友電気工業株式会社 Metal porous sheet, fuel cell, and water electrolysis device
JPWO2020235237A1 (en) * 2019-05-22 2020-11-26
CN112313367A (en) * 2019-05-22 2021-02-02 住友电气工业株式会社 Metal porous plate, fuel cell and water electrolysis device
CN112313367B (en) * 2019-05-22 2024-04-12 住友电气工业株式会社 Metal porous plate, fuel cell and water electrolysis apparatus

Similar Documents

Publication Publication Date Title
US4761349A (en) Solid oxide fuel cell with monolithic core
US9461314B2 (en) Fuel cell interconnect
JP5198797B2 (en) Solid electrolyte fuel cell
JP6502726B2 (en) Flat plate fuel cell
CN112166515A (en) Cross-flow interconnect and fuel cell system including the same
JPH10134833A (en) Fuel cell
JPH0696782A (en) Internal reforming type fuel cell device and its operating method
JP4682511B2 (en) Solid oxide fuel cell
JP3999934B2 (en) Solid oxide fuel cell
JP4300947B2 (en) Solid oxide fuel cell
US20230155143A1 (en) Fuel cell interconnect optimized for operation in hydrogen fuel
JP2007026925A (en) Stack structure of flat solid oxide fuel cell
JP3244308B2 (en) Solid oxide fuel cell system
JP2005085521A (en) Solid oxide fuel cell
JPH06349512A (en) Fuel cell
JP2006147506A (en) Fuel cell stack
JPH1145727A (en) Solid electrolytic fuel cell
JP5584278B2 (en) Solid electrolyte fuel cell
JP2002280009A (en) Structure for supplying gas to fuel cell
JP2005332762A (en) Fuel cell
JP4418013B2 (en) Stack structure of planar solid oxide fuel cell
JPH02284362A (en) Solid electrolyte type fuel cell
JP3342243B2 (en) Solid oxide fuel cell
JP2005235550A (en) Fuel cell
JP4706191B2 (en) Solid oxide fuel cell