JP2005235550A - Fuel cell - Google Patents

Fuel cell Download PDF

Info

Publication number
JP2005235550A
JP2005235550A JP2004042613A JP2004042613A JP2005235550A JP 2005235550 A JP2005235550 A JP 2005235550A JP 2004042613 A JP2004042613 A JP 2004042613A JP 2004042613 A JP2004042613 A JP 2004042613A JP 2005235550 A JP2005235550 A JP 2005235550A
Authority
JP
Japan
Prior art keywords
fuel cell
power generation
cell stack
fuel
stack
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004042613A
Other languages
Japanese (ja)
Other versions
JP4984374B2 (en
Inventor
Akbay Taner
アクベイ タナー
Koji Hoshino
孝二 星野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kansai Electric Power Co Inc
Mitsubishi Materials Corp
Original Assignee
Kansai Electric Power Co Inc
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kansai Electric Power Co Inc, Mitsubishi Materials Corp filed Critical Kansai Electric Power Co Inc
Priority to JP2004042613A priority Critical patent/JP4984374B2/en
Publication of JP2005235550A publication Critical patent/JP2005235550A/en
Application granted granted Critical
Publication of JP4984374B2 publication Critical patent/JP4984374B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To raise the efficiency of a power generation by averaging the temperature distribution of a fuel cell stack in a laminating direction. <P>SOLUTION: Power generation cells 5 and separators 8 are alternately laminated, and end plates 8A, 8B are disposed at both ends of the laminate, and the fuel cell stack 1 is constituted. A ceramic film with thermal conductivity lower than the separator 8 is formed on the front surface of each of the end plates 8A, 8B. In this configuration, since the heat diffusion in the ends of the stack is suppressed largely as compared with the middle stage of the stack by the heat insulation effect of the ceramic film, and the temperature distribution of the fuel cell stack 1 in the laminating direction is averaged; an efficient power generation can be performed. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、発電セルとセパレータを交互に積層したスタック構造を有する燃料電池に関し、特に、燃料電池スタックの積層方向の温度分布を均一化することにより発電の効率化を図った燃料電池に関する。   The present invention relates to a fuel cell having a stack structure in which power generation cells and separators are alternately stacked, and more particularly to a fuel cell in which the power distribution efficiency is improved by uniformizing the temperature distribution in the stacking direction of the fuel cell stack.

固体酸化物形燃料電池は、第三世代の発電用燃料電池として開発が進んでいる。現在、この固体酸化物形燃料電池は、円筒型、モノリス型、および平板積層型の3種類が提案されており、何れも酸化物イオン伝導体から成る固体電解質を空気極層と燃料極層との間に挟んだ積層構造を有する。この積層体から成る発電セルとセパレータを交互に積層することにより燃料電池スタックを構成できる。   Solid oxide fuel cells are being developed as third-generation fuel cells for power generation. At present, three types of solid oxide fuel cells have been proposed: a cylindrical type, a monolith type, and a flat plate type, all of which include a solid electrolyte composed of an oxide ion conductor as an air electrode layer, a fuel electrode layer, and a fuel electrode layer. It has a laminated structure sandwiched between. A fuel cell stack can be configured by alternately laminating power generation cells and separators made of this laminate.

発電セルには、空気極側に酸化剤ガスとしての酸素(空気)が、燃料極側に燃料ガス(H2 、CO、CH4 等)が供給される。空気極と燃料極は、ガスが固体電解質との界面に到達することができるように、いずれも多孔質とされている。空気極側に供給された酸素は、空気極層内の気孔を通って固体電解質層との界面近傍に到達し、この部分で、空気極から電子を受け取って酸化物イオン(O2-)にイオン化される。この酸化物イオンは、燃料極の方向に向かって固体電解質層内を拡散移動する。燃料極との界面近傍に到達した酸化物イオンは、この部分で、燃料ガスと反応して反応生成物(H2 O、CO2 等)を生じ、燃料極に電子を放出する。この電子を別ルートの外部回路にて電力として取り出す。 The power generation cell is supplied with oxygen (air) as an oxidant gas on the air electrode side and fuel gas (H 2 , CO, CH 4, etc.) on the fuel electrode side. The air electrode and the fuel electrode are both porous so that the gas can reach the interface with the solid electrolyte. Oxygen supplied to the air electrode side passes through the pores in the air electrode layer and reaches the vicinity of the interface with the solid electrolyte layer. At this part, it receives electrons from the air electrode and converts them into oxide ions (O 2− ). Ionized. The oxide ions diffuse and move in the solid electrolyte layer toward the fuel electrode. Oxide ions that have reached the vicinity of the interface with the fuel electrode react with the fuel gas at this portion to generate reaction products (H 2 O, CO 2, etc.), and emit electrons to the fuel electrode. These electrons are taken out as electric power in an external circuit of another route.

燃料に水素を用いた場合の電極反応は次のようになる。
空気極: 1/2 O2 + 2e- → O2-
燃料極: H2 + O2- → H2 O+2e-
全体 : H2 + 1/2 O2 → H2
The electrode reaction when hydrogen is used as the fuel is as follows.
Air electrode: 1/2 O 2 + 2e → O 2−
Fuel electrode: H 2 + O 2− → H 2 O + 2e
Overall: H 2 +1/2 O 2 → H 2 O

ところで、平板積層型の燃料電池スタックでは、図4の実線に示すように、積層方向の温度分布において、燃料電池スタック両端付近の温度が中段部分に比べて極端に低下する傾向がある。これは、燃料電池スタックの端部は中段部分に比べて発電セルのジュール熱が外側に放散され易いためである。温度が低下した発電セルは、高温の発電セルに比べて電極反応が活発に行われないため、発電性能が低下する。   By the way, in the flat stack type fuel cell stack, as shown by the solid line in FIG. 4, in the temperature distribution in the stacking direction, the temperature in the vicinity of both ends of the fuel cell stack tends to be extremely lower than that in the middle portion. This is because the end of the fuel cell stack tends to dissipate the Joule heat of the power generation cell to the outside as compared with the middle part. The power generation cell having a lowered temperature has a lower power generation performance because the electrode reaction is not actively performed as compared with a high-temperature power generation cell.

燃料電池スタックの積層方向における温度分布の均一化を図る技術として特許文献1が開示されている。
特開昭60−254568号公報
Patent Document 1 is disclosed as a technique for achieving a uniform temperature distribution in the stacking direction of the fuel cell stack.
JP 60-254568 A

複数の発電セルを直列に接続して構成される燃料電池スタックでは、燃料電池スタックの積層方向に上記した両肩下がりの温度分布が生じると、燃料電池全体の発電性能が低温部での発電セルの発電性能で制限されるため、効率的な発電が行えなくなるという問題がある。   In a fuel cell stack configured by connecting a plurality of power generation cells in series, if the above-mentioned temperature distribution with both shoulders descends in the stacking direction of the fuel cell stack, the power generation performance of the entire fuel cell will be Therefore, there is a problem that efficient power generation cannot be performed.

そこで、本発明は、燃料電池スタックの積層方向の温度分布を均一化することにより、発電の効率化を図った燃料電池を提供することを目的としている。   Accordingly, an object of the present invention is to provide a fuel cell in which the temperature distribution in the stacking direction of the fuel cell stack is made uniform to improve the efficiency of power generation.

すなわち、請求項1に記載の本発明は、発電セルとセパレータを交互に積層すると共に、当該積層体の両端に端板を配して燃料電池スタックを構成し、当該燃料電池スタック内へ反応用ガスを供給して発電反応を生じさせる燃料電池において、前記端板の表面に、前記セパレータの材料より熱伝導率の低いセラミック被膜を形成したことを特徴としている。   That is, according to the first aspect of the present invention, the power generation cells and the separators are alternately stacked, and end plates are arranged at both ends of the stacked body to form a fuel cell stack, and the reaction cell is put into the fuel cell stack. In a fuel cell in which a gas is supplied to cause a power generation reaction, a ceramic film having a lower thermal conductivity than the separator material is formed on the surface of the end plate.

また、請求項2に記載の本発明は、発電セルとセパレータを交互に積層すると共に、当該積層体の両端に端板を配して燃料電池スタックを構成し、当該燃料電池スタック内へ反応用ガスを供給して発電反応を生じさせる燃料電池において、前記端板を、前記セパレータの材料より熱伝導率の低いセラミックにより構成したことを特徴としている。   Further, according to the present invention, the power generation cells and the separators are alternately stacked, and end plates are arranged at both ends of the stacked body to form a fuel cell stack, and the reaction cell is put into the fuel cell stack. In the fuel cell in which gas is supplied to cause a power generation reaction, the end plate is made of a ceramic having a lower thermal conductivity than the material of the separator.

また、請求項3に記載の本発明は、請求項2に記載の燃料電池において、前記端板の前記発電セル側の面に金属製薄板を配設し、当該金属製薄板に電極端子を接続したことを特徴としている。   According to a third aspect of the present invention, in the fuel cell according to the second aspect, a metal thin plate is disposed on the surface of the end plate on the power generation cell side, and an electrode terminal is connected to the metal thin plate. It is characterized by that.

ここで、請求項1または請求項2に記載の構成では、セラミックの断熱効果によりスタック中段部分に比べてスタック端部での熱放散が抑制されて燃料電池スタックの積層方向の温度分布が均一化されるため、効率的な発電が可能となる。   Here, in the configuration according to claim 1 or claim 2, heat dissipation at the stack end is suppressed compared to the middle stage portion of the stack due to the heat insulating effect of the ceramic, and the temperature distribution in the stacking direction of the fuel cell stack is made uniform Therefore, efficient power generation becomes possible.

以上説明したように、本発明によれば、燃料電池スタックの端部に位置する端板の表面にセパレータ材料より熱伝導率の低いセラミック被膜を形成したので、セラミックの断熱効果によりスタック中段部分に比べてスタック端部においてジュール熱の放散が大幅に抑制され、燃料電池スタックの積層方向の温度分布を均一化できる。これにより、効率的な発電が可能となり、電流出力を増大できる。また、端板をセラミック製とすることにより、熱放散の抑制効果をより一層大きいものにできる。   As described above, according to the present invention, the ceramic coating having a lower thermal conductivity than the separator material is formed on the surface of the end plate located at the end of the fuel cell stack. In comparison, the dissipation of Joule heat is greatly suppressed at the stack edge, and the temperature distribution in the stacking direction of the fuel cell stack can be made uniform. Thereby, efficient power generation becomes possible and current output can be increased. Further, by making the end plate made of ceramic, the effect of suppressing heat dissipation can be further increased.

また、セラミック製の端板を用いる場合は、発電セル側の面に金属製の薄板を配設し、外部接続用の電極端子をこの金属板に簡単に固定することにより、電極端子の取り付け構造を簡略化できる。   When ceramic end plates are used, a metal thin plate is provided on the power generation cell side surface, and the electrode terminals for external connection are simply fixed to the metal plates, so that the electrode terminal mounting structure Can be simplified.

以下、図1〜図3に基づいて本発明の実施形態を説明する。
図1は本発明が適用された固体酸化物形燃料電池の内部構成を示し、図2、図3は本発明に係る端板の構成を示している。
Hereinafter, embodiments of the present invention will be described with reference to FIGS.
FIG. 1 shows the internal configuration of a solid oxide fuel cell to which the present invention is applied, and FIGS. 2 and 3 show the configuration of an end plate according to the present invention.

図1中、符号1は燃料電池スタックを示し、固体電解質層2の両面に燃料極層3と空気極層(酸化剤極層)4を配した発電セル5と、燃料極層3の外側の燃料極集電体6と、空気極層4の外側の空気極集電体(酸化剤極集電体)7と、各集電体6、7の外側のセパレータ8を順番に積層した構造を有する。   In FIG. 1, reference numeral 1 denotes a fuel cell stack, and a power generation cell 5 in which a fuel electrode layer 3 and an air electrode layer (oxidant electrode layer) 4 are arranged on both surfaces of a solid electrolyte layer 2, A structure in which a fuel electrode current collector 6, an air electrode current collector (oxidant electrode current collector) 7 outside the air electrode layer 4, and a separator 8 outside each current collector 6, 7 are sequentially laminated. Have.

ここで、固体電解質層2はイットリアを添加した安定化ジルコニア(YSZ)等で構成され、燃料極層3はNi、Co等の金属あるいはNi−YSZ、Co−YSZ等のサーメットで構成され、空気極層4はLaMnO3 、LaCoO3 等で構成され、燃料極集電体6はNi基合金等のスポンジ状の多孔質焼結金属板で構成され、空気極集電体7はAg基合金等のスポンジ状の多孔質焼結金属板で構成され、セパレータ8はステンレス鋼、ニッケル基合金、クロム基合金等で構成されている。 Here, the solid electrolyte layer 2 is composed of stabilized zirconia (YSZ) or the like to which yttria is added, and the fuel electrode layer 3 is composed of a metal such as Ni or Co or a cermet such as Ni—YSZ or Co—YSZ, and air. The electrode layer 4 is made of LaMnO 3 , LaCoO 3 or the like, the fuel electrode current collector 6 is made of a sponge-like porous sintered metal plate such as a Ni-based alloy, and the air electrode current collector 7 is made of an Ag-based alloy or the like. The separator 8 is made of stainless steel, nickel-base alloy, chromium-base alloy, or the like.

セパレータ8は、発電セル5間を電気的に接続すると共に、発電セル5に反応ガスを導入する機能を有するもので、燃料ガスをセパレータ8の外周面から導入してセパレータ8の燃料極集電体6に対向する面のほぼ中央部から吐出させる燃料通路11と、酸化剤ガス(空気)をセパレータ8の外周面から導入してセパレータ8の空気極集電体7に対向する面から吐出させる酸化剤通路12を有している。   The separator 8 electrically connects the power generation cells 5 and has a function of introducing a reaction gas into the power generation cells 5. The separator 8 has a function of introducing fuel gas from the outer peripheral surface of the separator 8. A fuel passage 11 to be discharged from the substantially central portion of the surface facing the body 6 and an oxidant gas (air) are introduced from the outer peripheral surface of the separator 8 and discharged from the surface of the separator 8 facing the air electrode current collector 7. An oxidant passage 12 is provided.

但し、燃料電池スタック1の両端のセパレータ8(8A、8B)は、燃料通路11または酸化剤通路12の何れか一方のみを有することから、これらを他のセパレータ8と区別して特に端板8A、端板8Bと呼んでいる。
本実施形態では、端板8Aは燃料通路11のみを有し、端板8Bは酸化剤通路12のみを有する。
端板8A、8Bの材料はセパレータ8と同じ金属材料が使用されている。
However, since the separators 8 (8A, 8B) at both ends of the fuel cell stack 1 have only one of the fuel passage 11 and the oxidant passage 12, these are distinguished from the other separators 8 in particular by the end plates 8A, It is called the end plate 8B.
In the present embodiment, the end plate 8 </ b> A has only the fuel passage 11, and the end plate 8 </ b> B has only the oxidant passage 12.
The same metal material as that of the separator 8 is used as the material of the end plates 8A and 8B.

また 図1に示すように、燃料電池スタック1の側方には、各セパレータ8および端板8Aの燃料通路11に燃料接続管13を通して燃料ガスを供給する燃料マニホールド15と、各セパレータ8および端板8Bの酸化剤通路12に酸化剤接続管14を通して酸化剤ガス(空気)を供給する酸化剤マニホールド16とが、発電セル5の積層方向に延在して設けられている。   Further, as shown in FIG. 1, on the side of the fuel cell stack 1, a fuel manifold 15 for supplying fuel gas to the fuel passages 11 of the separators 8 and the end plates 8A through the fuel connection pipes 13 and the separators 8 and the ends are provided. An oxidant manifold 16 for supplying an oxidant gas (air) to the oxidant passage 12 of the plate 8B through the oxidant connection pipe 14 is provided extending in the stacking direction of the power generation cells 5.

これら、燃料電池スタック1や各マニホールド15、16を断熱材等の保温用部材を付装した筒状のハウジング(図示せず)内に収納してモジュール化することによって、固体酸化物形燃料電池が構成される。
尚、燃料電池からの電力の取り出しは、上記した上下一対の端板8A、8Bを介して外部回路(負荷)を接続することにより可能であり、例えば、外部接続用に各端板8A、8Bの中央より図示しない一対の電極端子をハウジングの外に突出させる構造とすることができる。
The fuel cell stack 1 and the manifolds 15 and 16 are housed in a cylindrical housing (not shown) equipped with a heat retaining member such as a heat insulating material and modularized, so that a solid oxide fuel cell is obtained. Is configured.
The power can be taken out from the fuel cell by connecting an external circuit (load) via the pair of upper and lower end plates 8A and 8B. For example, the end plates 8A and 8B are used for external connection. A pair of electrode terminals (not shown) can protrude from the center of the housing.

ところで、上記構成のような平板積層型の燃料電池スタック1では、発電セル5の積層方向において、図4の実線に示すように、燃料電池スタック1の両端付近の温度がスタックの中段部分に比べて極端に低下するという傾向が見られ、この温度不均一が電池性能に大きく影響していることは従来技術の欄で述べた通りである。   By the way, in the flat stack type fuel cell stack 1 as described above, the temperature in the vicinity of both ends of the fuel cell stack 1 in the stacking direction of the power generation cells 5 is higher than that in the middle portion of the stack as shown by the solid line in FIG. As described in the section of the prior art, this temperature non-uniformity greatly affects the battery performance.

そこで、本発明では、燃料電池スタック1の両端に配置される端板8A、8Bの表面にセパレータ8の材料より熱伝導率の低い多孔質セラミックによる被膜20を形成し(セラミックコーティング)し、そのセラミック被膜20による断熱効果で、スタック端部の発電セル5に発生するジュール熱の放散を抑制するようにした。一方、燃料電池スタック1の端部を除く部分のジュール熱は、セラミックより熱伝導率の高い金属製のセパレータ8を介して活発に放散される。
このように、中段部分に比べて温度の低い燃料電池スタック1の端部での熱の放散を抑制することにより、積層方向の温度分布は均一化されて効率的な発電が可能となり、電流出力を増大することができる。
Therefore, in the present invention, the porous ceramic coating 20 having a lower thermal conductivity than the material of the separator 8 is formed on the surfaces of the end plates 8A and 8B disposed at both ends of the fuel cell stack 1 (ceramic coating). Due to the heat insulating effect of the ceramic coating 20, the dissipation of Joule heat generated in the power generation cell 5 at the stack end is suppressed. On the other hand, the Joule heat of the portion excluding the end of the fuel cell stack 1 is actively dissipated through the metallic separator 8 having a higher thermal conductivity than that of the ceramic.
In this way, by suppressing the heat dissipation at the end portion of the fuel cell stack 1 having a lower temperature than that of the middle stage portion, the temperature distribution in the stacking direction is made uniform and efficient power generation becomes possible. Can be increased.

本実施形態では、セパレータ8の材料であるステンレス鋼、ニッケル基合金、クロム基合金等より熱伝導率が低く、且つ、耐熱性に優れるセラミック材料として、例えば、アルミナ系、ジルコニア系セラミックを用いて端板8A、8Bの上面部をコーティングしている。
コーティングは、上記セラミック材料を金属表面に溶融噴射することで行うことができる。
In the present embodiment, for example, alumina-based or zirconia-based ceramic is used as a ceramic material having a lower thermal conductivity and superior heat resistance than stainless steel, nickel-based alloy, chromium-based alloy, or the like, which is the material of the separator 8. The upper surfaces of the end plates 8A and 8B are coated.
Coating can be performed by melt spraying the ceramic material onto a metal surface.

また、コーティングの箇所は図2(a)、(b)に示すような各端板8A、8Bの上面部だけでなく、図示しないが、端板8A、8Bの周側部にも施す方が熱放散の抑制効果は大きくなるので好ましい。
更には、端板8A、8Bを多孔質セラミックで構成しても構わない。これにより、熱放散の抑制効果は、より一層大きいものとなる。
このようにして、燃料電池スタック1における周側部の熱放散性を積層方向に変えることができる。
Further, the coating is applied not only to the upper surface portions of the end plates 8A and 8B as shown in FIGS. 2A and 2B, but also to the peripheral side portions of the end plates 8A and 8B. This is preferable because the effect of suppressing heat dissipation is increased.
Furthermore, the end plates 8A and 8B may be made of a porous ceramic. Thereby, the suppression effect of heat dissipation becomes still larger.
In this way, the heat dissipating property of the peripheral side portion in the fuel cell stack 1 can be changed in the stacking direction.

また、図3に示すように、端板8A、8Bを多孔質セラミック22で構成した場合は、この多孔質セラミック22の発電セル側の面に、セパレータ8と同じ金属材料(ステンレス鋼、ニッケル基合金、クロム基合金等)による薄い金属板21を配設し、上記した外部接続用の電極端子23、24をこの金属板21を利用して簡単に固定することにより、電極端子23、24の取り付け構造を簡略化できるため、都合が良い。   As shown in FIG. 3, when the end plates 8A and 8B are made of a porous ceramic 22, the same metal material (stainless steel, nickel base) as the separator 8 is formed on the surface of the porous ceramic 22 on the power generation cell side. A thin metal plate 21 made of an alloy, a chromium-based alloy, or the like, and the electrode terminals 23 and 24 for external connection described above are simply fixed using the metal plate 21, so that the electrode terminals 23 and 24 This is convenient because the mounting structure can be simplified.

図4は運転時の燃料電池スタック1における積層方向の温度分布を示しており、実線は従来の場合、破線は本発明の構成によるものである。   FIG. 4 shows the temperature distribution in the stacking direction in the fuel cell stack 1 during operation. The solid line is the conventional case, and the broken line is the structure of the present invention.

図4に示すように、従来型では、実線で示すように燃料電池スタック1の積層方向の温度分布が両肩下がりの特性となっているが、本発明のように燃料電池スタックの低温部分(端板)の熱放散を抑制するように構成すると、破線で示すように高温部と低温部の温度差を少なくして積層方向の全域に亘ってほぼ均一な温度分布を得ることができる。   As shown in FIG. 4, in the conventional type, as shown by the solid line, the temperature distribution in the stacking direction of the fuel cell stack 1 has a characteristic of decreasing both sides, but as in the present invention, the low temperature portion ( If the heat dissipation of the end plate is suppressed, the temperature difference between the high temperature portion and the low temperature portion can be reduced as shown by the broken line, and a substantially uniform temperature distribution can be obtained over the entire region in the stacking direction.

以上、本実施形態では、本発明を燃料電池スタック1の両端に配置される端板8A、8Bの両方に適用した場合を説明したが、燃料電池スタック1の温度分布の状態に応じて何れか一方の端板のみに適用しても勿論構わない。   As described above, in the present embodiment, the case where the present invention is applied to both the end plates 8A and 8B arranged at both ends of the fuel cell stack 1 has been described. Of course, it may be applied to only one end plate.

本発明が適用された固体酸化物形燃料電池の内部概略構成を示す断面図。1 is a cross-sectional view showing a schematic internal configuration of a solid oxide fuel cell to which the present invention is applied. 本発明に係る端板の構成を示す断面図。Sectional drawing which shows the structure of the end plate which concerns on this invention. 本発明に係る図2とは別の端板の構成を示す断面図。Sectional drawing which shows the structure of the end plate different from FIG. 2 which concerns on this invention. 燃料電池スタックの積層方向の温度分布を示す図。The figure which shows the temperature distribution of the lamination direction of a fuel cell stack.

符号の説明Explanation of symbols

1 燃料電池スタック
5 発電セル
8 セパレータ
8A、8B 端板
20 セラミック被膜
21 金属製薄板
22 セラミック
23、24 電極端子
DESCRIPTION OF SYMBOLS 1 Fuel cell stack 5 Power generation cell 8 Separator 8A, 8B End plate 20 Ceramic coating 21 Metal thin plate 22 Ceramic 23, 24 Electrode terminal

Claims (3)

発電セルとセパレータを交互に積層すると共に、当該積層体の両端に端板を配して燃料電池スタックを構成し、当該燃料電池スタック内へ反応用ガスを供給して発電反応を生じさせる燃料電池において、
前記端板の表面に、前記セパレータの材料より熱伝導率の低いセラミック被膜を形成したことを特徴とする燃料電池。
A fuel cell in which power generation cells and separators are alternately stacked, end plates are arranged at both ends of the stacked body to form a fuel cell stack, and a reaction gas is supplied into the fuel cell stack to generate a power generation reaction In
A fuel cell, wherein a ceramic coating having a lower thermal conductivity than the material of the separator is formed on the surface of the end plate.
発電セルとセパレータを交互に積層すると共に、当該積層体の両端に端板を配して燃料電池スタックを構成し、当該燃料電池スタック内へ反応用ガスを供給して発電反応を生じさせる燃料電池において、
前記端板を、前記セパレータの材料より熱伝導率の低いセラミックにより構成したことを特徴とする燃料電池。
A fuel cell in which power generation cells and separators are alternately stacked, end plates are arranged at both ends of the stacked body to form a fuel cell stack, and a reaction gas is supplied into the fuel cell stack to generate a power generation reaction In
The fuel cell according to claim 1, wherein the end plate is made of ceramic having a lower thermal conductivity than the material of the separator.
前記端板の前記発電セル側の面に金属製薄板を配設し、当該金属製薄板に電極端子を接続したことを特徴とする請求項2に記載の燃料電池。 The fuel cell according to claim 2, wherein a metal thin plate is disposed on a surface of the end plate on the power generation cell side, and an electrode terminal is connected to the metal thin plate.
JP2004042613A 2004-02-19 2004-02-19 Fuel cell Expired - Fee Related JP4984374B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004042613A JP4984374B2 (en) 2004-02-19 2004-02-19 Fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004042613A JP4984374B2 (en) 2004-02-19 2004-02-19 Fuel cell

Publications (2)

Publication Number Publication Date
JP2005235550A true JP2005235550A (en) 2005-09-02
JP4984374B2 JP4984374B2 (en) 2012-07-25

Family

ID=35018283

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004042613A Expired - Fee Related JP4984374B2 (en) 2004-02-19 2004-02-19 Fuel cell

Country Status (1)

Country Link
JP (1) JP4984374B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007250281A (en) * 2006-03-14 2007-09-27 Kyocera Corp Fuel cell stack device, fuel cell stack connecting device, and fuel cell
DE102006015247A1 (en) * 2006-04-01 2007-10-04 Sartorius Ag Fuel cell, has two end plates, which hold fuel cell stack in sandwich-like manner, and isolating unit arranged on side of end plates facing fuel cell stack, where isolating unit is thermal or electrical isolating units
JP2008004315A (en) * 2006-06-21 2008-01-10 Hitachi Ltd Fuel cell, and fuel cell-mounting information electronic equipment
WO2008041593A1 (en) * 2006-09-27 2008-04-10 Kyocera Corporation Fuel battery cell stack and fuel battery
JP2008108722A (en) * 2006-09-27 2008-05-08 Kyocera Corp Fuel cell stack and fuel cell
WO2009018792A1 (en) * 2007-08-03 2009-02-12 Staxera Gmbh Bracing of a high-temperature fuel cell stack

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01281681A (en) * 1988-04-15 1989-11-13 Hitachi Ltd Stack for fuel cell
JPH05225997A (en) * 1992-02-10 1993-09-03 Ishikawajima Harima Heavy Ind Co Ltd Stack fuel cell
JPH10228918A (en) * 1997-02-13 1998-08-25 Ishikawajima Harima Heavy Ind Co Ltd End cell structure of fuel cell
JP2003503601A (en) * 1999-06-24 2003-01-28 シーメンス アクチエンゲゼルシヤフト Ceramic material and manufacturing method, ceramic material utilization method and layer made of ceramic material

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01281681A (en) * 1988-04-15 1989-11-13 Hitachi Ltd Stack for fuel cell
JPH05225997A (en) * 1992-02-10 1993-09-03 Ishikawajima Harima Heavy Ind Co Ltd Stack fuel cell
JPH10228918A (en) * 1997-02-13 1998-08-25 Ishikawajima Harima Heavy Ind Co Ltd End cell structure of fuel cell
JP2003503601A (en) * 1999-06-24 2003-01-28 シーメンス アクチエンゲゼルシヤフト Ceramic material and manufacturing method, ceramic material utilization method and layer made of ceramic material

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007250281A (en) * 2006-03-14 2007-09-27 Kyocera Corp Fuel cell stack device, fuel cell stack connecting device, and fuel cell
DE102006015247A1 (en) * 2006-04-01 2007-10-04 Sartorius Ag Fuel cell, has two end plates, which hold fuel cell stack in sandwich-like manner, and isolating unit arranged on side of end plates facing fuel cell stack, where isolating unit is thermal or electrical isolating units
JP2008004315A (en) * 2006-06-21 2008-01-10 Hitachi Ltd Fuel cell, and fuel cell-mounting information electronic equipment
WO2008041593A1 (en) * 2006-09-27 2008-04-10 Kyocera Corporation Fuel battery cell stack and fuel battery
JP2008108722A (en) * 2006-09-27 2008-05-08 Kyocera Corp Fuel cell stack and fuel cell
WO2009018792A1 (en) * 2007-08-03 2009-02-12 Staxera Gmbh Bracing of a high-temperature fuel cell stack

Also Published As

Publication number Publication date
JP4984374B2 (en) 2012-07-25

Similar Documents

Publication Publication Date Title
JP5023429B2 (en) Flat plate fuel cell
JP4462050B2 (en) Solid oxide fuel cell
JP5140926B2 (en) Solid oxide fuel cell
EP2006944A2 (en) Solid oxide fuel cell
JP4300947B2 (en) Solid oxide fuel cell
JP2008251236A (en) Flat lamination type fuel cell
JP2004273213A (en) Unit cell for fuel cells, its manufacturing method, and solid oxide fuel cell
JP4984374B2 (en) Fuel cell
JP4529393B2 (en) Solid oxide fuel cell
JP2006196325A (en) Solid oxide fuel cell
JP2005203255A (en) Manifold structure of fuel cell
JP4461949B2 (en) Solid oxide fuel cell
JP2004281353A (en) Separator for fuel cell
EP1852929A1 (en) Solid oxide fuel cell
JP2007165240A (en) Separator for fuel cell and solid oxide fuel cell
JP4949737B2 (en) Solid oxide fuel cell stack and solid oxide fuel cell
JP2006086018A (en) Solid oxide fuel cell
JP5125376B2 (en) Fuel cell
JP2006236597A (en) Separator for fuel cell and solid oxide fuel cell
JP2005044599A (en) Fuel cell
JP2008218279A (en) Solid oxide fuel cell, and supplying method of fuel gas
JP5387820B2 (en) Solid oxide fuel cell
JP5387821B2 (en) Flat type solid oxide fuel cell
JP2009054414A (en) Fuel cell stack
JP4513396B2 (en) Solid oxide fuel cell

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070219

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091022

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100921

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101122

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110607

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110808

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120403

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120416

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150511

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees