JP2008218279A - Solid oxide fuel cell, and supplying method of fuel gas - Google Patents

Solid oxide fuel cell, and supplying method of fuel gas Download PDF

Info

Publication number
JP2008218279A
JP2008218279A JP2007055851A JP2007055851A JP2008218279A JP 2008218279 A JP2008218279 A JP 2008218279A JP 2007055851 A JP2007055851 A JP 2007055851A JP 2007055851 A JP2007055851 A JP 2007055851A JP 2008218279 A JP2008218279 A JP 2008218279A
Authority
JP
Japan
Prior art keywords
power generation
fuel
flow path
fuel gas
cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007055851A
Other languages
Japanese (ja)
Inventor
Jun Akikusa
順 秋草
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kansai Electric Power Co Inc
Mitsubishi Materials Corp
Original Assignee
Kansai Electric Power Co Inc
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kansai Electric Power Co Inc, Mitsubishi Materials Corp filed Critical Kansai Electric Power Co Inc
Priority to JP2007055851A priority Critical patent/JP2008218279A/en
Publication of JP2008218279A publication Critical patent/JP2008218279A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To realize improvement in power generation efficiency and durability by uniformalizing cell voltage of respective power generating cells in a fuel cell stack. <P>SOLUTION: In a supplying method of a fuel gas of a solid oxide fuel cell in which the fuel cell stack 1 is constituted by collecting a plurality of the power generating cells 5 wherein a fuel electrode layer and an air electrode layer are arranged at both faces of a solid electrolyte layer and in which power generating reaction is made to be formed by supplying the fuel gas and an oxidizer gas to the respective power generating cells 5, the fuel gas supply amount to the power generating cells 5 positioned at the end part of the fuel cell stack 1 is increased compared with other power generating cells 5. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、固体電解質層の両面に燃料極層と空気極層を配した発電セルを複数集合してスタック化した固体酸化物形燃料電池に関し、特に、各発電セルの電圧を均一化することにより、発電効率の向上と耐久性の向上を図った固体酸化物形燃料電池に関するものである。   The present invention relates to a solid oxide fuel cell in which a plurality of power generation cells each having a fuel electrode layer and an air electrode layer disposed on both sides of a solid electrolyte layer are stacked, and in particular, to uniformize the voltage of each power generation cell. Thus, the present invention relates to a solid oxide fuel cell that improves power generation efficiency and durability.

近年、燃料の有する化学エネルギーを直接電気エネルギーに変換する固体酸化物形燃料電池が高効率でクリーンな発電装置として注目されている。この固体酸化物形燃料電池は、円筒型、モノリス型、および平板積層型が提案されており、何れも酸化物イオン導電体から成る固体電解質層を両側から空気極層と燃料極層で挟み込んだ積層構造を有する。   In recent years, solid oxide fuel cells that directly convert chemical energy of fuel into electrical energy have attracted attention as high-efficiency and clean power generators. This solid oxide fuel cell has been proposed as a cylindrical type, a monolith type, and a flat plate type, and each has a solid electrolyte layer made of an oxide ion conductor sandwiched between the air electrode layer and the fuel electrode layer from both sides. It has a laminated structure.

発電時、反応用ガスとして空気極層側に酸化剤ガス(酸素) が、また燃料極層側に燃料ガス (H2、CO、CH4等) が供給される。空気極層と燃料極層は、反応用ガスが固体電解質層との界面に到達することができるよう、何れも多孔質の層とされている。 During power generation, an oxidant gas (oxygen) is supplied to the air electrode layer side and a fuel gas (H 2 , CO, CH 4, etc.) is supplied to the fuel electrode layer side as a reaction gas. The air electrode layer and the fuel electrode layer are both porous layers so that the reaction gas can reach the interface with the solid electrolyte layer.

空気極層側に供給された酸素は、空気極層内の気孔を通って固体電解質層との界面近傍に到達し、この部分で空気極層から電子を受け取って酸化物イオン(O2-)にイオン化される。この酸化物イオンは、燃料極層に向かって固体電解質層内を拡散移動し、燃料極層との界面近傍に到達した酸化物イオンはこの部分で燃料ガスと反応して反応生成物(H2O、CO2等)を生じ、燃料極層に電子を放出する。電極反応(発電反応)で生じた電子は、別ルートの外部負荷にて起電力として取り出すことができる。 Oxygen supplied to the air electrode layer passes through the pores in the air electrode layer and reaches the vicinity of the interface with the solid electrolyte layer, and receives electrons from the air electrode layer at this portion to receive oxide ions (O 2− ). Is ionized. The oxide ions diffuse and move in the solid electrolyte layer toward the fuel electrode layer, and the oxide ions that reach the vicinity of the interface with the fuel electrode layer react with the fuel gas at this portion to react with the reaction product (H 2 O, CO 2, etc.) and electrons are emitted to the fuel electrode layer. Electrons generated in the electrode reaction (power generation reaction) can be taken out as an electromotive force at an external load on another route.

ところで、平板積層型の燃料電池スタックは、発電セルとセパレータを交互に多数積層することにより構成されるが、その積層方向の温度分布をみると、図5(a)の実線(イ)に示すように、燃料電池スタック両端付近の温度が中段部分の温度に比べて極端に低下するという傾向が見られる。   By the way, a flat plate type fuel cell stack is configured by stacking a large number of power generation cells and separators alternately. The temperature distribution in the stacking direction is shown by a solid line (A) in FIG. Thus, there is a tendency that the temperature in the vicinity of both ends of the fuel cell stack is extremely lowered as compared with the temperature in the middle portion.

これは、燃料電池スタックの両端を除く部分は各発電セルが別の発電セルによって上下で挟まれる構造であるため、発電セルのジュール熱が外に発散し難く、他方、燃料電池スタック両端部の発電セルはモジュール内雰囲気に直接接触しているため、ジュール熱が発散し易いことに起因している。
固体酸化物形燃料電池の場合は、発電セルの温度が低下すると、主に固体電解質層の電気的抵抗が増加し、熱損失が大きくなるため、図5(a)の破線(ロ)に示すように、高温部分の発電セルに比べてセル電圧は低下する。
This is because the fuel cell stack has a structure in which each power generation cell is sandwiched between upper and lower power generation cells, so that the Joule heat of the power generation cell is difficult to dissipate outside. This is because the power generation cell is in direct contact with the atmosphere in the module, and thus Joule heat is easily dissipated.
In the case of a solid oxide fuel cell, when the temperature of the power generation cell decreases, the electrical resistance of the solid electrolyte layer mainly increases and the heat loss increases, so that the broken line (b) in FIG. Thus, the cell voltage is lower than that of the power generation cell in the high temperature portion.

このように、複数の発電セルにセル電圧の不均一が生じていると燃料電池の総合的な発電性能が低温部の発電セルの発電性能(セル電圧)で制限されることになり、効率的な発電が行えないという問題が有った。加えて、セル電圧が所定以下に低下すると、内部抵抗が高くなるため、発電セルの発熱量が増えてセル面内において温度差が生じ、発電セルが破損するという問題も生じる。
尚、このような問題は、上述した円筒型の発電セルを多数集合したバンドル構造の燃料電池スタックについても起こり得るものである。
As described above, when the cell voltages are non-uniform in a plurality of power generation cells, the total power generation performance of the fuel cell is limited by the power generation performance (cell voltage) of the power generation cell in the low temperature part, which is efficient. There was a problem that it was impossible to generate electricity. In addition, when the cell voltage drops below a predetermined value, the internal resistance increases, so that the amount of heat generated by the power generation cell increases, causing a temperature difference in the cell plane and causing the problem of damage to the power generation cell.
Such a problem can also occur in a fuel cell stack having a bundle structure in which a large number of cylindrical power generation cells are collected.

尚、燃料電池スタックの積層方向の温度分布を均一化する技術として、特許文献1が開示されている。特許文献1は、積層方向の各セパレータに放熱部を設けて、その放熱作用によりスタック温度を制御するもので、セパレータの配置される位置に応じて放熱部の断面積を変えるようにしているため、放熱部の構造は極めて複雑である。
また、別の方法として、スタック温度の低下部分に断熱材を設置することも考えられるが、断熱材により発電セルの放熱を完全に抑えることは困難である。
特開2004−273140号公報
Note that Patent Document 1 is disclosed as a technique for uniformizing the temperature distribution in the stacking direction of the fuel cell stack. In Patent Document 1, a heat radiating portion is provided in each separator in the stacking direction, and the stack temperature is controlled by the heat radiating action, and the cross-sectional area of the heat radiating portion is changed according to the position where the separator is arranged. The structure of the heat dissipating part is extremely complicated.
As another method, it is conceivable to install a heat insulating material in a portion where the stack temperature is lowered, but it is difficult to completely suppress the heat radiation of the power generation cell by the heat insulating material.
JP 2004-273140 A

本発明は、上記問題に鑑み成されたもので、燃料電池スタックの温度低下によるセル電圧の低下を防止し、各セル電圧を均一化すことにより、発電効率の向上と耐久性の向上を図った固体酸化物形燃料電池と、そのための好ましい燃料ガスの供給方法を提供することを目的としている。   The present invention has been made in view of the above-described problems, and prevents a decrease in cell voltage due to a decrease in the temperature of the fuel cell stack and makes each cell voltage uniform to improve power generation efficiency and durability. It is an object of the present invention to provide a solid oxide fuel cell and a preferable fuel gas supply method therefor.

すなわち、請求項1に記載の燃料ガスの供給方法は、固体電解質層の両面に燃料極層と空気極層を配した発電セルを複数集合して燃料電池スタックを構成すると共に、各発電セルに燃料ガスおよび酸化剤ガスを供給して発電反応を生じさせる固体酸化物形燃料電池の燃料ガスの供給方法であって、前記燃料電池スタックの端部に位置する前記発電セルへの燃料ガス供給量を他の発電セルに比べて多くすることを特徴としている。   That is, the fuel gas supply method according to claim 1 comprises a plurality of power generation cells each having a fuel electrode layer and an air electrode layer arranged on both sides of a solid electrolyte layer to constitute a fuel cell stack, and A fuel gas supply method for a solid oxide fuel cell that generates a power generation reaction by supplying a fuel gas and an oxidant gas, the fuel gas supply amount to the power generation cell located at an end of the fuel cell stack It is characterized in that it is increased compared to other power generation cells.

また、請求項2に記載の固体酸化物形燃料電池は、固体電解質層の両面に燃料極層と空気極層を配した発電セルを複数集合して燃料電池スタックを構成すると共に、それぞれ燃料マニホールドに連通される燃料ガス流路、および酸化剤ガスマニホールドに連通される酸化剤ガス流路を介して各発電セルに燃料ガスおよび酸化剤ガスを供給して発電反応を生じさせる固体酸化物形燃料電池において、前記燃料電池スタックの端部に位置する前記発電セルの燃料ガス流路に、当該燃料ガス流路の流路抵抗を減少する流路抵抗緩和手段が設けられ、当該流路抵抗緩和手段によって前記発電セルに供給する燃料ガス量を他の発電セルに比べて多くしたことを特徴としている。   According to a second aspect of the present invention, there is provided a solid oxide fuel cell comprising a plurality of power generation cells each having a fuel electrode layer and an air electrode layer disposed on both sides of a solid electrolyte layer to constitute a fuel cell stack, A solid oxide fuel that generates a power generation reaction by supplying a fuel gas and an oxidant gas to each power generation cell via a fuel gas flow path that communicates with the oxidant gas manifold and an oxidant gas flow path that communicates with the oxidant gas manifold In the battery, a flow resistance reduction means for reducing a flow resistance of the fuel gas flow path is provided in the fuel gas flow path of the power generation cell located at the end of the fuel cell stack, and the flow resistance resistance means Thus, the amount of fuel gas supplied to the power generation cell is increased compared to other power generation cells.

また、請求項3に記載の発明は、請求項2に記載の固体酸化物形燃料電池において、前記燃料電池スタックの内部に放熱手段が設けられ、且つ、当該放熱手段の近傍に位置する各発電セルの燃料ガス流路に前記流路抵抗緩和手段が設けられていることを特徴としている。   According to a third aspect of the present invention, in the solid oxide fuel cell according to the second aspect of the present invention, each power generation unit is provided with a heat dissipating means inside the fuel cell stack and is located in the vicinity of the heat dissipating means. The flow resistance reduction means is provided in the fuel gas flow path of the cell.

また、請求項4に記載の発明は、請求項2または請求項3の何れかに記載の固体酸化物形燃料電池において、前記燃料ガス流路の燃料供給口の絞り機構にて流路抵抗を減少する流路抵抗緩和手段を有することを特徴としている。   According to a fourth aspect of the present invention, there is provided the solid oxide fuel cell according to the second or third aspect, wherein the flow resistance is reduced by a throttle mechanism of a fuel supply port of the fuel gas flow path. It is characterized by having a channel resistance relaxation means that decreases.

また、請求項5に記載の発明は、請求項2または請求項3の何れかに記載の固体酸化物形燃料電池において、前記燃料ガス流路の断面積にて流路抵抗を減少する流路抵抗緩和手段を有することを特徴としている。   Further, the invention according to claim 5 is the solid oxide fuel cell according to claim 2 or 3, wherein the flow path resistance is reduced by the cross-sectional area of the fuel gas flow path. It has a resistance relaxation means.

また、請求項6に記載の発明は、請求項2または請求項3の何れらかに記載の固体酸化物形燃料電池において、前記燃料ガス流路の流路長にて流路抵抗を減少する流路抵抗緩和手段を有することを特徴としている。   In the solid oxide fuel cell according to any one of claims 2 and 3, the flow resistance of the fuel gas flow path is reduced by the length of the fuel gas flow path. It has a flow path resistance relaxation means.

また、請求項7に記載の発明は、請求項2から請求項6までの何れかに記載の固体酸化物形燃料電池において、未使用の燃料ガスを発電セルの外周より放出するシールレス構造を有することを特徴としている。   The invention according to claim 7 is the solid oxide fuel cell according to any one of claims 2 to 6, wherein the sealless structure for discharging unused fuel gas from the outer periphery of the power generation cell is provided. It is characterized by having.

請求項1〜7に記載の発明によれば、燃料電池スタックの端部や放熱手段の近傍等、スタック温度が相対的に低下する部分に位置する発電セルへの燃料ガス供給量を他の発電セルに比べて多くするようにしたので、温度の低い発電セルにおいては、燃料極層の過電圧が低下してセル電圧が上昇するため、各発電セルの電圧を均一化することができ、効率的な発電が可能となる。
また、セル電圧の上昇によって発電セルの内部抵抗が低下し、ジュール発熱が減少するため、同一セル面内での温度差が減少して、発電セルの破損が防止され、燃料電池の耐久性が向上する。
According to the first to seventh aspects of the present invention, the amount of fuel gas supplied to the power generation cell located at a portion where the stack temperature is relatively lowered, such as the end of the fuel cell stack or the vicinity of the heat dissipation means, is supplied to another power generation. Since the number of cells is higher than that of cells, in the power generation cells with low temperature, the overvoltage of the fuel electrode layer decreases and the cell voltage increases, so the voltage of each power generation cell can be made uniform and efficient. Power generation is possible.
In addition, since the internal resistance of the power generation cell decreases and the Joule heat generation decreases due to an increase in the cell voltage, the temperature difference within the same cell surface decreases, preventing damage to the power generation cell and improving the durability of the fuel cell. improves.

特に、請求項7に記載の発明のように、シールレス構造の燃料電池であれば、スタック端部に位置する発電セルの外周部には、未使用の燃料ガスが他の発電セルに比べて多量に放出され、セル近傍で燃焼されるため、この燃焼熱によってスタック端部の発電セルを昇温させることができる。これにより、昇温された発電セルの内部抵抗は減少し、セル電圧が上昇するため、より効率的な発電が行えるようになる。   In particular, as in the invention according to claim 7, in the case of a fuel cell having a sealless structure, unused fuel gas is present in the outer peripheral portion of the power generation cell located at the end of the stack as compared with other power generation cells. Since a large amount is released and burned in the vicinity of the cell, the temperature of the power generation cell at the stack end can be raised by this combustion heat. As a result, the internal resistance of the heated power generation cell decreases and the cell voltage increases, so that more efficient power generation can be performed.

以下、図1〜図6に基づいて本発明の実施形態を説明する。   Hereinafter, embodiments of the present invention will be described with reference to FIGS.

図1は本発明が適用された平板積層型の固体酸化物形燃料電池を示し、図2は本発明に係る単セルの構成を示し、図3はセパレータの一例を示し、図4はセパレータのガス導入部分の構造を示し、図5、図6は燃料電池スタックにおける各発電セルへの燃料ガスの供給方法を示している。   FIG. 1 shows a flat plate type solid oxide fuel cell to which the present invention is applied, FIG. 2 shows the structure of a single cell according to the present invention, FIG. 3 shows an example of a separator, and FIG. FIG. 5 and FIG. 6 show a method of supplying fuel gas to each power generation cell in the fuel cell stack.

図2に示すように、単セル10は、固体電解質層2の両面に燃料極層3と空気極層4を配した発電セル5と、燃料極層3の外側に配した燃料極集電体6と、空気極層4の外側に配した空気極集電体7と、各集電体6、7の外側に配したセパレータ8とで構成されている。   As shown in FIG. 2, the unit cell 10 includes a power generation cell 5 in which a fuel electrode layer 3 and an air electrode layer 4 are disposed on both surfaces of a solid electrolyte layer 2, and a fuel electrode current collector disposed outside the fuel electrode layer 3. 6, an air electrode current collector 7 disposed outside the air electrode layer 4, and a separator 8 disposed outside each current collector 6, 7.

これらの構成要素の内、固体電解質層2はイットリアを添加した安定化ジルコニア(YSZ)等で構成され、燃料極層3はNi等の金属、あるいはNi−YSZ等のサーメットで構成され、空気極層4はLaMnO3 、LaCoO3等で構成され、燃料極集電体6はNi等のスポンジ状の多孔質焼結金属板で構成され、空気極集電体7はAg等のスポンジ状の多孔質焼結金属板で構成されている。 Among these components, the solid electrolyte layer 2 is composed of stabilized zirconia (YSZ) or the like to which yttria is added, and the fuel electrode layer 3 is composed of a metal such as Ni or a cermet such as Ni—YSZ, and the air electrode. The layer 4 is made of LaMnO 3 , LaCoO 3 or the like, the fuel electrode current collector 6 is made of a sponge-like porous sintered metal plate such as Ni, and the air electrode current collector 7 is made of a sponge-like porous material such as Ag. It consists of a sintered metal plate.

セパレータ8は、厚さ数mmの角形ステンレス板等で構成され、発電セル5間を電気的に接続すると共に、発電セル5に対して反応用ガスを供給する機能を有し、図3に示すように、内部に燃料ガスをセパレータ8の縁部から導入してセパレータ8の燃料極集電体6に対向する面のほぼ中央のガス吐出孔11aから吐出する燃料ガス流路11と、酸化剤ガスをセパレータ8の縁部から導入してセパレータ8の空気極集電体7に対向する面のほぼ中央のガス吐出孔12aから吐出する酸化剤ガス流路12とを有し、それぞれのガス流路が渦巻状に形成されている。   The separator 8 is formed of a square stainless steel plate having a thickness of several millimeters and has a function of electrically connecting the power generation cells 5 and supplying a reaction gas to the power generation cells 5 as shown in FIG. As described above, the fuel gas flow path 11 for introducing the fuel gas into the inside from the edge of the separator 8 and discharging it from the gas discharge hole 11a at the substantially center of the surface facing the fuel electrode current collector 6 of the separator 8, and the oxidant And an oxidant gas passage 12 that introduces gas from the edge of the separator 8 and discharges it from the gas discharge hole 12a at the substantially center of the surface of the separator 8 that faces the air electrode current collector 7. The path is formed in a spiral shape.

また、図2、図3に示すように、セパレータ8の左右縁部には、板厚方向に貫通する一対のガス孔13、14が設けられ、一方のガス孔13は燃料ガス流路11に、他方のガス孔14は酸化剤ガス流路12に連通し、各々のガス孔13、14からこれらのガス流路11、12を通して各発電セル5の各電極面に燃料ガスおよび酸化剤ガスが供給されるようなっている。   As shown in FIGS. 2 and 3, a pair of gas holes 13, 14 penetrating in the plate thickness direction are provided in the left and right edges of the separator 8, and one gas hole 13 is formed in the fuel gas channel 11. The other gas hole 14 communicates with the oxidant gas flow path 12, and fuel gas and oxidant gas are passed from the gas holes 13, 14 to the electrode surfaces of the power generation cells 5 through the gas flow paths 11, 12. To be supplied.

本実施形態の固体酸化物形燃料電池(燃料電池スタック1)は、図1に示すように、上記構成の単セル10を、間にリング状の絶縁性ガスケット15、16を介在して多数積層すると共に、その上下両端に端板20、20を配して周縁部をボルト21にて締め付けて各構成要素を一体的に密着させた構造と成されており、これにより、各々のガスケット15、16は、セパレータ8の各ガス孔13、14と機械的に密着・固定された状態で多数積層方向に連結されて、スタック内部を縦方向に延びる燃料ガス導入用の燃料ガスマニホールド17と酸化剤ガス導入用の酸化剤ガスマニホールド18が形成される。   As shown in FIG. 1, the solid oxide fuel cell (fuel cell stack 1) according to the present embodiment is formed by laminating a large number of unit cells 10 having the above-described configuration with ring-shaped insulating gaskets 15 and 16 interposed therebetween. In addition, end plates 20 and 20 are arranged at both upper and lower ends, and a peripheral portion is fastened with a bolt 21 so that the respective components are brought into close contact with each other. Reference numeral 16 denotes a fuel gas manifold 17 for introducing a fuel gas and an oxidant which are connected in the stacking direction in a state in which the gas holes 13 and 14 of the separator 8 are mechanically closely contacted and fixed in the stacking direction. An oxidant gas manifold 18 for introducing gas is formed.

そして、上記構成では、運転時、燃料ガスマニホールド17に、外部より燃料ガスが導入され、この燃料ガスは各セパレータ8のガス孔13より各燃料ガス流路11を通して燃料極集電体6側に噴出し、噴出ガスは燃料極集電体6の内部を透過・拡散して各発電セル5の燃料極層3に誘導されると共に、酸化剤ガスマニホールド18に外部より酸化剤ガス(空気)が導入され、この空気は各セパレータ8のガス孔14より各酸化剤ガス流路12を通して空気極集電体7側に噴出し、噴出ガスは空気極集電体7の内部を透過・拡散して各発電セル5の空気極層4に誘導され、電極反応(発電反応)が生じる。
この発電反応の際に発電セル5の内部抵抗等によるジュール熱が発生し、その熱エネルギーが主としてセパレータの側面より外部に放出される。
In the above configuration, during operation, the fuel gas is introduced into the fuel gas manifold 17 from the outside, and this fuel gas passes from the gas holes 13 of the separators 8 to the fuel electrode current collector 6 side through the fuel gas passages 11. The ejected gas and the ejected gas permeate and diffuse inside the fuel electrode current collector 6 and are guided to the fuel electrode layer 3 of each power generation cell 5. The air is introduced from the gas holes 14 of the separators 8 through the oxidant gas passages 12 to the side of the air electrode current collector 7, and the ejected gas permeates and diffuses inside the air electrode current collector 7. It is induced by the air electrode layer 4 of each power generation cell 5 to cause an electrode reaction (power generation reaction).
During this power generation reaction, Joule heat is generated by the internal resistance of the power generation cell 5 and the thermal energy is released to the outside mainly from the side surface of the separator.

また、この燃料電池スタック1は、発電セル5の外周部にガス漏れ防止シールを設けないシールレス構造とされており、発電反応で使用されなかった残余の燃料ガスが発電セル5の周部から外に自由に放出されるようになっている。   The fuel cell stack 1 has a sealless structure in which a gas leakage prevention seal is not provided on the outer periphery of the power generation cell 5, and the remaining fuel gas that has not been used in the power generation reaction flows from the periphery of the power generation cell 5. It is designed to be released freely outside.

ところで、平板積層型の燃料電池スタック1では、積層方向における放熱量のアンバランスからスタック積層方向に温度差が生じ、低温部分のセル電圧が極端に低下することにより、効率的な発電がなされなくなるという問題があることは既述した通りである。   By the way, in the flat stack type fuel cell stack 1, a temperature difference is generated in the stack stacking direction due to the unbalance of the heat radiation amount in the stacking direction, and the cell voltage in the low temperature portion is extremely lowered, so that efficient power generation is not performed. As described above, there is a problem.

そこで、従来、各発電セルに供給される燃料ガスの量は均一としていたが、本発明では、温度低下の著しいスタック両端部に位置する単セル10(すなわち、発電セル5)について、そのセパレータ8の燃料ガス流路11に流路抵抗を小さくするための流路抵抗緩和手段を講じることにより、図5(b)の破線に示すように、発電セル5に供給される燃料ガスの量を他の発電セル5に比べて多くするようにした。   Therefore, conventionally, the amount of fuel gas supplied to each power generation cell has been made uniform. However, in the present invention, the single cell 10 (that is, the power generation cell 5) located at both ends of the stack where the temperature is significantly reduced is the separator 8. As shown by the broken line in FIG. 5B, the amount of fuel gas supplied to the power generation cell 5 can be changed by providing a flow resistance reducing means for reducing the flow resistance in the fuel gas flow path 11. It was made to increase compared with the power generation cell 5 of.

本実施形態では、スタック低温部分の発電セル5へ供給する燃料ガスの量は他の高温部分の発電セル5の約1.1〜2倍を目安としているが、燃料ガスの増量は発電セル5の温度低下に応じて設定するようにする。尚、この部分の発電セル5に燃料ガスが多く供給されるため酸化剤ガス不足が危惧されるが、シールレス構造の場合、モジュール中に冷却のため必要十分な空気、すなわち、酸素が存在するため、爆発などの危険性はない。逆に、シール構造の場合、燃料ガスは循環されるため全く問題は生じない。
また、本実施形態では、燃料ガスを増量する発電セル5は、燃料電池スタックの両端部よりセル2〜3段分としているが、必ずしもスタック両端部の発電セル5について燃料ガスの増量を行う必要はなく、スタック温度の低下状態(セル電圧の状態)によっては何れか一方の端部の発電セル5についてのみでも良い。
尚、積層型の燃料電池スタック1では、スタック上端部に比べてスタック下端部の温度低下が著しいことから、燃料ガスの増量は、少なくともスタック下端部の発電セル5について行うのが好ましい。
In the present embodiment, the amount of fuel gas supplied to the power generation cell 5 in the low temperature portion of the stack is about 1.1 to 2 times that of the power generation cell 5 in the other high temperature portion, but the increase in fuel gas is 5 Set according to the temperature drop. In addition, since a large amount of fuel gas is supplied to the power generation cell 5 in this portion, there is a risk of a shortage of oxidant gas. There is no danger of explosion. On the other hand, in the case of the seal structure, since the fuel gas is circulated, no problem occurs.
In this embodiment, the power generation cells 5 that increase the fuel gas are two to three stages from both ends of the fuel cell stack. However, it is not necessary to increase the amount of fuel gas in the power generation cells 5 at both ends of the stack. However, depending on the lowering state of the stack temperature (cell voltage state), only the power generation cell 5 at one end may be used.
In the stacked fuel cell stack 1, since the temperature drop at the lower end of the stack is significant compared to the upper end of the stack, it is preferable to increase the fuel gas at least for the power generation cell 5 at the lower end of the stack.

ここで、本実施形態では、上記流路抵抗緩和手段として、図4に示すように、(1)燃料ガスマニホールド17とセパレータ8の燃料ガス流路11の連通部分(燃料供給口19)をオリフィス絞りとし、このオリフィス径dを大きくして燃料ガス流路11に流通する燃料ガスの量を多くする流路構造、(2)燃料ガス流路11の流路長L(燃料供給口19からガス吐出孔11aまでの長さ)を一定として、その流路断面積(すなわち、流路径D)を大きくして燃料ガスの供給量を増大する流路構造、(3)流路断面積を一定として、燃料ガス流路11の流路長Lを長くして燃料供給量を増大する流路構造を採用することができる。   Here, in the present embodiment, as shown in FIG. 4, (1) the communication portion (fuel supply port 19) between the fuel gas manifold 17 and the fuel gas flow channel 11 of the separator 8 is used as the flow resistance reducing means. A flow path structure in which the orifice diameter d is increased to increase the amount of fuel gas flowing through the fuel gas flow path 11, and (2) the flow path length L of the fuel gas flow path 11 (from the fuel supply port 19 to the gas) The length of the discharge hole 11a) is constant, and the flow path cross-sectional area (that is, the flow path diameter D) is increased to increase the supply amount of fuel gas. (3) The flow path cross-sectional area is constant. Further, it is possible to adopt a flow path structure in which the flow length L of the fuel gas flow path 11 is increased to increase the fuel supply amount.

このように、流路抵抗緩和手段によって発電セル5への燃料ガス量が増加されると、燃料極層3での化学反応が活発となって燃料極層3の過電圧が低下し、セル電圧が上昇するため、図5(a)の破線(ハ)に示すように、スタック両端部分のセル電圧が破線(ロ)に較べて上昇して、積層方向における各発電セル5のセル電圧が均一化される。これにより、効率的な発電が可能となると共に、セル電圧の上昇によって発電セル5の内部抵抗が低下し、ジュール発熱が減少するため、同一セル面内での温度差が減少し、発電セル5の破損が防止され、耐久性が向上する。   As described above, when the amount of the fuel gas to the power generation cell 5 is increased by the flow path resistance relaxation means, the chemical reaction in the fuel electrode layer 3 becomes active, the overvoltage of the fuel electrode layer 3 is reduced, and the cell voltage is reduced. As shown in the broken line (c) in FIG. 5 (a), the cell voltage at both ends of the stack rises compared to the broken line (b), and the cell voltage of each power generation cell 5 in the stacking direction becomes uniform. Is done. As a result, efficient power generation becomes possible, and the internal resistance of the power generation cell 5 decreases due to the increase in cell voltage, and Joule heat generation decreases. Therefore, the temperature difference in the same cell plane decreases, and the power generation cell 5 Is prevented and durability is improved.

また、上述したように、本実施形態の燃料電池スタック1は、シールレス構造が採用されているため、スタック端部近傍に位置する発電セル5の外周部に他の発電セル5よりも多い未使用の燃料ガスが放出されることになり、この放出ガスがセル近傍で燃焼されるため、この燃焼熱によってスタック端部近傍の発電セル5を昇温させることができる。これにより、昇温された発電セル5の内部抵抗は減少し、セル電圧が上昇するため、より効率的な発電が行えるようになる。   Further, as described above, the fuel cell stack 1 of the present embodiment employs a sealless structure, and therefore, the outer peripheral portion of the power generation cell 5 located in the vicinity of the stack end is larger than the other power generation cells 5. Since the used fuel gas is released and the released gas is burned in the vicinity of the cell, the power generation cell 5 in the vicinity of the stack end can be heated by the combustion heat. As a result, the internal resistance of the heated power generation cell 5 decreases and the cell voltage increases, so that more efficient power generation can be performed.

また、上記実施形態では、燃料電池スタック1の端部近傍に位置する発電セル5の燃料ガス供給量を多くするようにしたが、例えば、図6に示すように、スタックの最高温度を低下してスタック温度を均一化する目的で、燃料電池スタック1の中段部分に放熱板30が配設されている場合は、図6(a)の実線で示すように、放熱板30の近傍で逆に温度が低下し過ぎてしまうことがあり、このことが図6(a)の破線(ロ)に示すようなセル電圧の低下に繋がることから、この放熱板30の上下部分におけるセル電圧の低下を抑制するために、図6(b)の破線に示すように、この温度低下部分にも本発明を適用し、発電セル5への燃料ガス供給量を多くすることも勿論可能であり、これにより、図6(a)の破線(ハ)に示すように、放熱板30による影響を無くしてセル電圧の均一化を図ることができる。   In the above embodiment, the fuel gas supply amount of the power generation cells 5 located in the vicinity of the end portion of the fuel cell stack 1 is increased. For example, as shown in FIG. For the purpose of equalizing the stack temperature, when the heat sink 30 is disposed in the middle part of the fuel cell stack 1, as shown by the solid line in FIG. The temperature may decrease too much, which leads to a decrease in cell voltage as shown by the broken line (b) in FIG. 6A. In order to suppress this, as shown by the broken line in FIG. 6 (b), it is of course possible to apply the present invention to this temperature drop portion and increase the amount of fuel gas supplied to the power generation cell 5, thereby As shown by the broken line (c) in FIG. It can be made uniform in the cell voltage by eliminating the influence of the plate 30.

以上、本実施形態では、平板積層型の燃料電池について説明したが、円筒型の発電セルを多数集合させたバンドル構造の燃料電池スタックについても、本発明が適用可能であることは勿論である。   As described above, in the present embodiment, the flat plate type fuel cell has been described. However, it is needless to say that the present invention can be applied to a fuel cell stack having a bundle structure in which a large number of cylindrical power generation cells are assembled.

図7はバンドル構造の燃料電池スタック50を示し、図7中の符号41は燃料マニホールド、符号42は燃料ガス流路、符号40は発電セル、符号は43は燃料極層、符号44は固体電解質層、符号45は空気極層、符号46は酸化剤ガス流路である。   7 shows a fuel cell stack 50 having a bundle structure. In FIG. 7, reference numeral 41 denotes a fuel manifold, reference numeral 42 denotes a fuel gas flow path, reference numeral 40 denotes a power generation cell, reference numeral 43 denotes a fuel electrode layer, and reference numeral 44 denotes a solid electrolyte. Reference numeral 45 denotes an air electrode layer, and reference numeral 46 denotes an oxidant gas flow path.

上記構成の燃料電池スタック50では、バンドル外周部の発電セル40は、中央部の発電セル40に比べてジュール熱を放熱し易いため、バンドル外周部のセル温度が中央部に比べて低くなる。そこで、バンドルの外周部に配置されている発電セル40については、本発明を適用して他の部分の発電セル40に比べて燃料ガスを多く供給することにより、この部分のセル電圧の低下を抑制し、セル電圧の均一化を図ることができる。
また、バンドル外周部の隅角部に位置する発電セル40については、特に放熱量が多く、セル電圧の低下も大きいため、この部分の発電セル40には更に多くの燃料ガスを供給することで極端な電圧低下を抑制し、更なるセル電圧の均一化を図ることが可能となる。
In the fuel cell stack 50 having the above-described configuration, the power generation cells 40 at the outer periphery of the bundle easily radiate Joule heat as compared with the power generation cells 40 at the center, so that the cell temperature at the outer periphery of the bundle is lower than that at the center. Therefore, for the power generation cells 40 arranged on the outer periphery of the bundle, the present invention is applied to supply more fuel gas than the power generation cells 40 in other portions, thereby reducing the cell voltage in this portion. It is possible to suppress the cell voltage and make the cell voltage uniform.
In addition, the power generation cells 40 located at the corners of the outer periphery of the bundle have a particularly large amount of heat radiation and a large decrease in cell voltage. Therefore, by supplying more fuel gas to the power generation cells 40 in this portion, It is possible to suppress an extreme voltage drop and further uniform the cell voltage.

本発明が適用された平板積層型の固体酸化物形燃料電池の外観を示す図。The figure which shows the external appearance of the flat plate type solid oxide fuel cell to which this invention is applied. 本発明に係る単セルの構成を示す図。The figure which shows the structure of the single cell which concerns on this invention. セパレータの一例を示す平面図。The top view which shows an example of a separator. セパレータのガス導入部分を示す図。The figure which shows the gas introduction part of a separator. 燃料電池スタックにおける各セルへの燃料ガスの供給方法を示す説明図。Explanatory drawing which shows the supply method of the fuel gas to each cell in a fuel cell stack. 燃料電池スタックにおける各セルへの燃料ガスの図5とは別の供給方法を示す説明図。Explanatory drawing which shows the supply method different from FIG. 5 of the fuel gas to each cell in a fuel cell stack. 本発明が適用された円筒型の固体酸化物形燃料電池を示し、(a)は側断面図、(b)は平面図。1 shows a cylindrical solid oxide fuel cell to which the present invention is applied, in which (a) is a side sectional view and (b) is a plan view.

符号の説明Explanation of symbols

1 固体酸化物形燃料電池(燃料電池スタック)
2 固体電解質層
3 燃料極層
4 空気極層
5 発電セル
11 燃料ガス流路
12 酸化剤ガス流路
13 燃料ガスマニホールド
14 酸化剤ガスマニホールド
1 Solid oxide fuel cell (fuel cell stack)
2 solid electrolyte layer 3 fuel electrode layer 4 air electrode layer 5 power generation cell 11 fuel gas channel 12 oxidant gas channel 13 fuel gas manifold 14 oxidant gas manifold

Claims (7)

固体電解質層の両面に燃料極層と空気極層を配した発電セルを複数集合して燃料電池スタックを構成すると共に、各発電セルに燃料ガスおよび酸化剤ガスを供給して発電反応を生じさせる固体酸化物形燃料電池の燃料ガスの供給方法であって、
前記燃料電池スタックの端部に位置する前記発電セルへの燃料ガス供給量を他の発電セルに比べて多くすることを特徴とする燃料ガスの供給方法。
A plurality of power generation cells each having a fuel electrode layer and an air electrode layer disposed on both sides of the solid electrolyte layer constitute a fuel cell stack, and a fuel gas and an oxidant gas are supplied to each power generation cell to generate a power generation reaction. A method of supplying fuel gas for a solid oxide fuel cell, comprising:
A fuel gas supply method, wherein a fuel gas supply amount to the power generation cells located at an end of the fuel cell stack is increased as compared with other power generation cells.
固体電解質層の両面に燃料極層と空気極層を配した発電セルを複数集合して燃料電池スタックを構成すると共に、それぞれ燃料マニホールドに連通される燃料ガス流路、および酸化剤ガスマニホールドに連通される酸化剤ガス流路を介して各発電セルに燃料ガスおよび酸化剤ガスを供給して発電反応を生じさせる固体酸化物形燃料電池において、
前記燃料電池スタックの端部に位置する前記発電セルの燃料ガス流路に、当該燃料ガス流路の流路抵抗を減少する流路抵抗緩和手段が設けられ、当該流路抵抗緩和手段によって前記発電セルに供給する燃料ガス量を他の発電セルに比べて多くしたことを特徴とする固体酸化物形燃料電池。
A plurality of power generation cells each having a fuel electrode layer and an air electrode layer arranged on both sides of the solid electrolyte layer constitute a fuel cell stack, and each communicates with a fuel gas flow path that communicates with the fuel manifold and an oxidant gas manifold. In a solid oxide fuel cell that generates a power generation reaction by supplying a fuel gas and an oxidant gas to each power generation cell through an oxidant gas flow path,
A flow resistance reducing means for reducing the flow resistance of the fuel gas flow path is provided in the fuel gas flow path of the power generation cell located at the end of the fuel cell stack, and the power generation by the flow resistance resistance means A solid oxide fuel cell characterized in that the amount of fuel gas supplied to the cell is larger than that of other power generation cells.
前記燃料電池スタックの内部に放熱手段が設けられ、且つ、当該放熱手段の近傍に位置する各発電セルの燃料ガス流路に前記流路抵抗緩和手段が設けられていることを特徴とする請求項2に記載の固体酸化物形燃料電池。 The heat dissipation means is provided inside the fuel cell stack, and the flow path resistance relaxation means is provided in a fuel gas flow path of each power generation cell located in the vicinity of the heat dissipation means. 3. The solid oxide fuel cell according to 2. 前記燃料ガス流路の燃料供給口の絞り機構にて流路抵抗を減少する流路抵抗緩和手段を有することを特徴とする請求項2または請求項3の何れかに記載の固体酸化物形燃料電池。 4. The solid oxide fuel according to claim 2, further comprising flow path resistance relaxation means for reducing flow path resistance by a throttle mechanism of a fuel supply port of the fuel gas flow path. battery. 前記燃料ガス流路の断面積にて流路抵抗を減少する流路抵抗緩和手段を有することを特徴とする請求項2または請求項3の何れかに記載の固体酸化物形燃料電池。 4. The solid oxide fuel cell according to claim 2, further comprising flow path resistance relaxation means for reducing flow path resistance by a cross-sectional area of the fuel gas flow path. 前記燃料ガス流路の流路長にて流路抵抗を減少する流路抵抗緩和手段を有することを特徴とする請求項2または請求項3の何れらかに記載の固体酸化物形燃料電池。 4. The solid oxide fuel cell according to claim 2, further comprising flow path resistance relaxation means for decreasing a flow path resistance by a flow path length of the fuel gas flow path. 未使用の燃料ガスを発電セルの外周より放出するシールレス構造を有することを特徴とする請求項2から請求項6までの何れかに記載の固体酸化物形燃料電池。 The solid oxide fuel cell according to any one of claims 2 to 6, further comprising a sealless structure that discharges unused fuel gas from the outer periphery of the power generation cell.
JP2007055851A 2007-03-06 2007-03-06 Solid oxide fuel cell, and supplying method of fuel gas Pending JP2008218279A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007055851A JP2008218279A (en) 2007-03-06 2007-03-06 Solid oxide fuel cell, and supplying method of fuel gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007055851A JP2008218279A (en) 2007-03-06 2007-03-06 Solid oxide fuel cell, and supplying method of fuel gas

Publications (1)

Publication Number Publication Date
JP2008218279A true JP2008218279A (en) 2008-09-18

Family

ID=39838069

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007055851A Pending JP2008218279A (en) 2007-03-06 2007-03-06 Solid oxide fuel cell, and supplying method of fuel gas

Country Status (1)

Country Link
JP (1) JP2008218279A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016170939A (en) * 2015-03-12 2016-09-23 日本特殊陶業株式会社 Fuel battery stack
US10020518B2 (en) 2014-12-22 2018-07-10 Honda Motor Co., Ltd. Fuel cell stack

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0992322A (en) * 1995-09-27 1997-04-04 Aqueous Res:Kk Fuel cell stack
JP2003157887A (en) * 2001-11-21 2003-05-30 Fuji Electric Co Ltd Solid high polymer fuel cell
JP2004022343A (en) * 2002-06-17 2004-01-22 Mitsubishi Nuclear Fuel Co Ltd Solid electrolyte fuel cell
JP2005019037A (en) * 2003-06-24 2005-01-20 Mitsubishi Materials Corp Fuel cell
JP2005085531A (en) * 2003-09-05 2005-03-31 Nissan Motor Co Ltd Fuel cell system
JP2005203255A (en) * 2004-01-16 2005-07-28 Mitsubishi Materials Corp Manifold structure of fuel cell
JP2005216642A (en) * 2004-01-29 2005-08-11 Mitsui Eng & Shipbuild Co Ltd Solid electrolyte fuel cell
WO2007148793A1 (en) * 2006-06-23 2007-12-27 Ngk Spark Plug Co., Ltd. Solid state electrolyte fuel cell stack

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0992322A (en) * 1995-09-27 1997-04-04 Aqueous Res:Kk Fuel cell stack
JP2003157887A (en) * 2001-11-21 2003-05-30 Fuji Electric Co Ltd Solid high polymer fuel cell
JP2004022343A (en) * 2002-06-17 2004-01-22 Mitsubishi Nuclear Fuel Co Ltd Solid electrolyte fuel cell
JP2005019037A (en) * 2003-06-24 2005-01-20 Mitsubishi Materials Corp Fuel cell
JP2005085531A (en) * 2003-09-05 2005-03-31 Nissan Motor Co Ltd Fuel cell system
JP2005203255A (en) * 2004-01-16 2005-07-28 Mitsubishi Materials Corp Manifold structure of fuel cell
JP2005216642A (en) * 2004-01-29 2005-08-11 Mitsui Eng & Shipbuild Co Ltd Solid electrolyte fuel cell
WO2007148793A1 (en) * 2006-06-23 2007-12-27 Ngk Spark Plug Co., Ltd. Solid state electrolyte fuel cell stack

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10020518B2 (en) 2014-12-22 2018-07-10 Honda Motor Co., Ltd. Fuel cell stack
JP2016170939A (en) * 2015-03-12 2016-09-23 日本特殊陶業株式会社 Fuel battery stack

Similar Documents

Publication Publication Date Title
JP5180484B2 (en) Fuel cell stack
JP2009009837A (en) Fuel cell
JP5140926B2 (en) Solid oxide fuel cell
JP2017511581A (en) Bipolar plate and fuel cell
JP2004111395A (en) Stream disruption receptacle enhanced fuel cell
JP2008226704A (en) Solid oxide fuel cell, and supplying method of oxidizing gas
JP2006196325A (en) Solid oxide fuel cell
JP6294134B2 (en) Fuel cell stack
JP2005203255A (en) Manifold structure of fuel cell
JP2006269409A (en) Solid oxide fuel cell, sofc
JP2008218279A (en) Solid oxide fuel cell, and supplying method of fuel gas
JP4984374B2 (en) Fuel cell
JP2005085521A (en) Solid oxide fuel cell
JP4899387B2 (en) Solid oxide fuel cell
JP2009245627A (en) Solid oxide fuel cell
US8288051B2 (en) Solid oxide fuel cell and fuel cell stack
JP2008311112A (en) Fuel cell stack
JP2006086018A (en) Solid oxide fuel cell
JP2009054414A (en) Fuel cell stack
JP5840983B2 (en) Solid oxide fuel cell and fuel cell unit
JP2006236597A (en) Separator for fuel cell and solid oxide fuel cell
JP2005044599A (en) Fuel cell
JP5211621B2 (en) Fuel cell stack
JP5387820B2 (en) Solid oxide fuel cell
JP5211706B2 (en) Solid oxide fuel cell

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100303

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121016

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130305