JPS58155664A - Molten-salt type fuel cell - Google Patents

Molten-salt type fuel cell

Info

Publication number
JPS58155664A
JPS58155664A JP57037964A JP3796482A JPS58155664A JP S58155664 A JPS58155664 A JP S58155664A JP 57037964 A JP57037964 A JP 57037964A JP 3796482 A JP3796482 A JP 3796482A JP S58155664 A JPS58155664 A JP S58155664A
Authority
JP
Japan
Prior art keywords
chamber
heating
refrigerant
fuel
medium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57037964A
Other languages
Japanese (ja)
Inventor
Shigeru Okabe
岡部 重
Masahito Takeuchi
将人 竹内
Hideo Okada
秀夫 岡田
Hiroshi Hida
飛田 紘
Munehiko Tonami
戸波 宗彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP57037964A priority Critical patent/JPS58155664A/en
Publication of JPS58155664A publication Critical patent/JPS58155664A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0258Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the configuration of channels, e.g. by the flow field of the reactant or coolant
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0267Collectors; Separators, e.g. bipolar separators; Interconnectors having heating or cooling means, e.g. heaters or coolant flow channels
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04007Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids related to heat exchange
    • H01M8/04014Heat exchange using gaseous fluids; Heat exchange by combustion of reactants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0048Molten electrolytes used at high temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0048Molten electrolytes used at high temperature
    • H01M2300/0051Carbonates
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Fuel Cell (AREA)

Abstract

PURPOSE:To equalize the temperature distribution during the operation of a molten-salt fuel cell, and enable the operational temperature of the fuel cell to be regulated by providing a battery frame with flow paths, which are used for supplying and exhausting both a heating medium and a refrigerant and which can perform cooling of either external heating or self-heating. CONSTITUTION:The central part of a battery frame 1 has a hollow space which is formed by a fuel chamber 2, current-collecting projections 3, and refrigerant-and-heating-medium paths 4 which also serve as current-collecting projections. In the hollow center of the battery frame 1, refrigerant-and-heating-medium flow paths 7 each extending from a refrigerant-and-heating- medium inlet 5 to a refrigerant-and-heating-medium outlet 6 are provided. The peripheral part 8 of the battery frame 1 is provided with fuel-inlet-side paths 9 and fuel-outlet-side paths 10 which are connected to the fuel chamber 2, as well as oxidant-inlet-side paths 11 and oxidant- outlet-side paths 12 which are connected to an oxidant chamber 13 provided on the back surface of the battery frame 1. In the central part of the battery frame 1, there are the oxidant chamber 13, oxidant-chamber-side current-collecting projections 14 and oxidant-chamber-side refrigerant-and-heating-medium paths 15, and refrigerant-and-heating-medium flow paths 7 each extending from an oxidant-chamber-side refrigerant-and-heating-medium inlet 16 to an oxidant- chamber-side refrigerant-and-heating-medium outlet 17 are provided. Here, these members cross perpendicularly to the current-collecting projections 3, the refrigerant-and-heating-medium paths 4 and the like which are provided on the fuel chamber side.

Description

【発明の詳細な説明】 本発明は溶融塩型燃料電池に係り、特に電池本体の均熱
化と、運転温度の制御を図るため、電池枠に冷媒、温媒
の供給排出の流路を配設した積層構造に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a molten salt fuel cell, and in particular, in order to equalize the temperature of the cell body and control the operating temperature, flow paths for supplying and discharging coolant and hot medium are arranged in the cell frame. Regarding the laminated structure.

本発明の目的は積層電池の電池枠に冷媒、または温媒の
供給及び排出の流路を配設し、燃料電池本体に対して、
運転時の温度分布を均熱化し、運転温度の制御を可能に
したことを特徴とする溶融塩型燃料電池を提供するもの
である。
The object of the present invention is to provide a flow path for supplying and discharging a coolant or a hot medium in the battery frame of a stacked battery, and to
The present invention provides a molten salt fuel cell characterized by equalizing the temperature distribution during operation and making it possible to control the operating temperature.

溶融塩型燃料電池の運転温度は650〜700Cである
。この運転温度を維持するには、燃料電池の規模によっ
て、 ■ 外部電源によって加熱する場合 ■ 反応に供する燃料、酸化剤を導入することによって
電気化学反応を起こし、この時に生じる自己発熱による
場合 とがある。通常、積層規模の大なる燃料電池では後者の
自己発熱によって温度が維持され、むしろ電池本体を冷
却する必要がある。どちらの場合も積層電池の規模によ
っては温度分布を生じることが多い。従って、燃料電池
を安全に、かつ効率的に運転するためには、燃料電池本
体の適正な運転温度の制御と、均熱化を図る必要がある
The operating temperature of the molten salt fuel cell is 650-700C. To maintain this operating temperature, depending on the scale of the fuel cell, there are two methods: ■ Heating is done by an external power source; ■ It is possible to generate electrochemical reactions by introducing the fuel and oxidizing agent for the reaction, and the self-heating generated at this time. be. Normally, in a fuel cell with a large stacked structure, the temperature is maintained by self-heating of the latter, and it is rather necessary to cool the cell body. In either case, temperature distribution often occurs depending on the scale of the stacked battery. Therefore, in order to operate the fuel cell safely and efficiently, it is necessary to appropriately control the operating temperature of the fuel cell main body and to equalize the temperature.

本発明は燃料電池を構成する電池枠に、外部加熱、また
は自己発熱に伴う冷却のどちらにも対応できる温媒また
は冷媒の供給、排出用の流路を配設し九ことt%徴とし
ている。
In the present invention, a flow path for supplying and discharging a hot medium or a coolant that can handle either external heating or cooling due to self-heating is arranged in the cell frame constituting the fuel cell, and the nine characteristics are t%. .

以下、本発明の実施例を図を用いて詳細に説明する。Embodiments of the present invention will be described in detail below with reference to the drawings.

実施例1 第1図は本発明による電池枠1で、中央部は燃料室2、
集電突起部3及び集電突起Sを兼ねた冷温媒通路4で中
空になっぞおり、冷温媒入口5がら冷温媒出口6に通ピ
る冷温媒流路7が形成されている。電池枠周縁部81C
は燃料室2に通じる燃料入口側通路9、燃料出口側通路
1oが設けられており、電池枠1の裏面に設けられた酸
化剤室に通じる酸化剤入口側通路11、酸化剤出口側通
路12が設けられている。
Embodiment 1 FIG. 1 shows a battery frame 1 according to the present invention, with a fuel chamber 2 in the center,
The current collecting protrusion 3 and the current collecting protrusion S form a coolant/hot medium passage 4 which is hollow and extends from the coolant/hot medium inlet 5 to the coolant/hot medium outlet 6 to form a cold/hot medium flow path 7 . Battery frame periphery 81C
is provided with a fuel inlet side passage 9 communicating with the fuel chamber 2 and a fuel outlet side passage 1o, and an oxidizing agent inlet side passage 11 and an oxidizing agent outlet side passage 12 communicating with the oxidizing agent chamber provided on the back side of the battery frame 1. is provided.

第2図は第1図を裏返した状態を示す。第1図と同様に
、中央部には酸化剤室13、酸化剤室側集電突起部14
、酸化剤室側冷温媒通路15があり、酸化剤室側冷温媒
入口16から、酸化剤室側冷温媒出口17に通じる冷温
媒流路7が形成されている。これらは燃料室側に設けら
れた集電突起部3、冷温媒通路4等と直交する形で配設
されている。
FIG. 2 shows a state in which FIG. 1 is turned over. As in FIG.
, there is an oxidizer chamber-side refrigerant/hot medium passage 15, and a refrigerant/hot medium flow path 7 is formed which communicates from an oxidizer chamber-side refrigerant/hot medium inlet 16 to an oxidizer chamber-side refrigerant/hot medium outlet 17. These are disposed perpendicularly to the current collector protrusion 3, coolant passage 4, etc. provided on the fuel chamber side.

第3図は第2図の中心部断面を示したもので、上側が酸
化剤室13、下側が燃料室2でおる。
FIG. 3 shows a cross section of the central part of FIG. 2, with the oxidizer chamber 13 on the upper side and the fuel chamber 2 on the lower side.

酸化剤室側通路15はガス分離板18と電気伝導性を有
することは勿論であるが、冷温媒流路7から酸化剤室に
通じることがないように気密接合され一体化している。
The oxidizer chamber side passage 15 and the gas separation plate 18 are of course electrically conductive, but are hermetically sealed and integrated so that the coolant/hot medium channel 7 does not communicate with the oxidizer chamber.

燃料室側も同様の方法で成っている。The fuel chamber side is constructed in a similar manner.

第4図は、第3図が角形で冷温媒流路を形成しであるの
に対し、丸形の電気伝導性を有する材料たとえばステン
レスパイプを用いた例であり、第1〜3図の例よりも加
工性が容易である。
Figure 4 shows an example in which a circular electrically conductive material such as a stainless steel pipe is used, whereas Figure 3 has a rectangular shape to form a coolant/hot medium flow path. It is easier to process than.

本実施例においては、燃料室2または酸化剤室13に冷
温媒流路を各々3個所ずつ配設した例を示したが、必要
に応じて更に増やすことも可能であるし、配置を換える
ことも可能である。また、バイブの内側に熱交換を容易
にするために、ひだまたは凹凸を有した(例えばサーモ
エクセル)材料でもよい。
In this embodiment, an example is shown in which the fuel chamber 2 or the oxidizer chamber 13 is provided with three coolant and hot medium flow paths, but it is possible to further increase the number of coolant flow paths or change the arrangement if necessary. is also possible. The inside of the vibrator may also be a material with corrugations or irregularities (for example, ThermoExcel) to facilitate heat exchange.

実施例2 実施例1の電池枠1において、2個の電池枠を利用し、
そのうち1個は燃料室側を、もう1個は酸化剤室を第5
図に示したように冷温媒流路付電池枠19を設け、第6
図のように重ねて電気伝導性を有するように接合し、実
施例1の電池枠1を積層する過程において、数個間隔、
数10個間隔等、任意に用いて冷温媒通孔20t−形成
する。
Example 2 In the battery frame 1 of Example 1, two battery frames were used,
One of them is on the fuel chamber side, and the other is on the oxidizer chamber side.
As shown in the figure, a battery frame 19 with a cold/hot medium flow path is provided, and the sixth
As shown in the figure, in the process of stacking the battery frames 1 of Example 1 by stacking them and bonding them to have electrical conductivity,
20t of cold and hot medium passage holes are formed arbitrarily, such as at intervals of several tens.

以上の如く、本発明の積層構造によれば、運転開始時に
外部から加熱するだけでなく、電池本体内部にも温媒を
供給できるため、電池本体の均熱イζが図れ、電池構成
部材に与える熱歪が著しく減少する。また、運転時、電
気化学反応によって生ずる発熱で電池温度が過熱しない
よう冷媒を通して温度制御ができる九め、電池を安全に
運転することが可能になる。更に冷温媒によって温度制
御ができれば、運転開始時の起動時間の短縮、かつ異常
時には温度降下の処置も短時間にできるなど電池の大型
化が進むにつれて、その効果は大きくなる。
As described above, according to the laminated structure of the present invention, it is possible not only to heat the battery from the outside at the start of operation, but also to supply a heating medium to the inside of the battery body. The thermal strain caused is significantly reduced. Furthermore, during operation, the temperature can be controlled by passing a coolant so that the battery does not overheat due to the heat generated by the electrochemical reaction, making it possible to operate the battery safely. Furthermore, if temperature control can be performed using a refrigerant/heating medium, the start-up time at the start of operation can be shortened, and in the event of an abnormality, the temperature can be lowered in a short period of time, which will become more effective as batteries become larger.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図及び第2図は本発明の一実施例による電池枠の平
面図、第3図は第2図の中心部近傍の側面断面図、第4
図は本発明の他の実施例による電池枠の側面断面図、第
5図は本発明の他の実施例による電池枠の斜視図、第6
図は本発明の他の実施例による電池枠の断面図である。 1・・・電池枠、2・・・燃料室、4・・・冷温媒通路
、1322図 /A /7 MJ図
1 and 2 are plan views of a battery frame according to an embodiment of the present invention, FIG. 3 is a side sectional view near the center of FIG. 2, and FIG.
5 is a side sectional view of a battery frame according to another embodiment of the present invention, FIG. 5 is a perspective view of a battery frame according to another embodiment of the present invention, and FIG.
The figure is a sectional view of a battery frame according to another embodiment of the present invention. 1...Battery frame, 2...Fuel chamber, 4...Cooling/heating medium passage, 1322 diagram/A/7 MJ diagram

Claims (1)

【特許請求の範囲】 1、燃料室および酸化剤室がガス分離板を介して両面に
設けられ、周縁部に燃料および酸化剤の供給、排出用の
通路が設けられており、前記燃料室および前記酸化剤室
に配設されるそれぞれ負の電極、正の電極から直接集電
可能にし丸亀池枠構造の燃料電池において、該電池枠の
集電突起部の少なくとも一部が中空であり、該中空部に
冷媒または温媒の流路を形成し士なることt−%徴とす
る溶融塩型燃料電池。 2、特許請求の範囲第1項記載において、単電池を複数
個積層するごとに冷媒または温媒の流路を保持してなる
電池枠を配設してなることを特徴とする溶融塩型燃料電
池。 3、特許請求の範囲第1項において、燃料室tたは酸化
剤室のうちの一方が、ガス分離板を介して片面に配設さ
れ、もう一方の片面に冷媒または温媒の流路用の切欠き
部を配設し九基本構成単位において、該基本構成単位の
切欠き部どうしを向い合せて、該冷媒または温媒の流路
を形成した電池枠を間欠的に積層してなる溶融塩型燃料
電池。
[Claims] 1. A fuel chamber and an oxidizing agent chamber are provided on both sides with a gas separation plate interposed therebetween, and a passage for supplying and discharging fuel and oxidizing agent is provided at the periphery, and the fuel chamber and In a fuel cell having a Marugameike frame structure that enables direct current collection from the negative and positive electrodes disposed in the oxidizer chamber, at least a part of the current collecting protrusion of the cell frame is hollow; A molten salt fuel cell in which a flow path for a coolant or a hot medium is formed in a hollow portion to provide a t-% characteristic. 2. A molten salt fuel according to claim 1, characterized in that a battery frame is provided for each stack of a plurality of unit cells to hold a flow path for a coolant or a hot medium. battery. 3. In claim 1, either the fuel chamber t or the oxidizer chamber is disposed on one side with a gas separation plate interposed therebetween, and the other side is provided with a flow path for a refrigerant or a hot medium. A molten battery made by intermittently stacking battery frames in which nine basic structural units are provided with notched portions, and the notched portions of the basic structural units face each other to form flow paths for the coolant or hot medium. Salt fuel cell.
JP57037964A 1982-03-12 1982-03-12 Molten-salt type fuel cell Pending JPS58155664A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57037964A JPS58155664A (en) 1982-03-12 1982-03-12 Molten-salt type fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57037964A JPS58155664A (en) 1982-03-12 1982-03-12 Molten-salt type fuel cell

Publications (1)

Publication Number Publication Date
JPS58155664A true JPS58155664A (en) 1983-09-16

Family

ID=12512242

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57037964A Pending JPS58155664A (en) 1982-03-12 1982-03-12 Molten-salt type fuel cell

Country Status (1)

Country Link
JP (1) JPS58155664A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62163264A (en) * 1986-01-14 1987-07-20 Ishikawajima Harima Heavy Ind Co Ltd Separator for fuel cell
JPH02155170A (en) * 1988-12-08 1990-06-14 Hitachi Ltd Fuel cell performing internal reformation
JPH05144449A (en) * 1991-11-18 1993-06-11 Hitachi Ltd Fuel cell
FR2833762A1 (en) * 2001-12-18 2003-06-20 Sorapec PEM fuel cell bipolar collector plate structure has several partitioned areas having inlet and outlet for reaction gases
WO2003050905A3 (en) * 2001-12-11 2003-12-24 Nissan Motor Fuel cell with polymer electrolyte

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62163264A (en) * 1986-01-14 1987-07-20 Ishikawajima Harima Heavy Ind Co Ltd Separator for fuel cell
JPH02155170A (en) * 1988-12-08 1990-06-14 Hitachi Ltd Fuel cell performing internal reformation
JPH05144449A (en) * 1991-11-18 1993-06-11 Hitachi Ltd Fuel cell
WO2003050905A3 (en) * 2001-12-11 2003-12-24 Nissan Motor Fuel cell with polymer electrolyte
US7348086B2 (en) 2001-12-11 2008-03-25 Nissan Motor Co., Ltd. Fuel cell
FR2833762A1 (en) * 2001-12-18 2003-06-20 Sorapec PEM fuel cell bipolar collector plate structure has several partitioned areas having inlet and outlet for reaction gases
WO2003052847A3 (en) * 2001-12-18 2004-01-22 Sorapec Bipolar collector for proton membrane fuel cell

Similar Documents

Publication Publication Date Title
JP2876126B2 (en) Electrochemical battery power generation device and operation method thereof
JPH05343105A (en) Battery module and structure for adjusting temperature thereof
JPH08273696A (en) Fuel cell stack structure
GB2027978A (en) A battery
JPH0831322B2 (en) Internal reforming fuel cell and power plant using the same
JPH05159790A (en) Solid electrolyte fuel cell
JPS58155664A (en) Molten-salt type fuel cell
JP3244533B2 (en) Temperature control structure for battery module, battery having the same, and electric vehicle
JPH08306380A (en) Lamination type fuel cell
JPS6160548B2 (en)
JPS6386270A (en) Stacked structure type fuel cell
JP2610255B2 (en) Molten carbonate fuel cell
JP2760684B2 (en) Fuel cell cooling plate
JPS6316576A (en) Air cooling type fuel cell
JPS6030068B2 (en) Fuel cell
JPH0821394B2 (en) Method for manufacturing cooling plate for molten carbonate fuel cell
JPH06105625B2 (en) Molten carbonate fuel cell
JP2582175B2 (en) Sodium sulfur battery module
JP2603964B2 (en) Fuel cell
JPH11185793A (en) Manifold structure and stack structure of solid electrolyte fuel cell
GB2219125A (en) Fuel cell with heat exchange channels
JPH0750614B2 (en) Fuel cell
JPS62268062A (en) Cooling device for fuel cell
JPS63285873A (en) Fuel cell
JPS61198571A (en) Fuel cell