JP2760684B2 - Fuel cell cooling plate - Google Patents
Fuel cell cooling plateInfo
- Publication number
- JP2760684B2 JP2760684B2 JP3315081A JP31508191A JP2760684B2 JP 2760684 B2 JP2760684 B2 JP 2760684B2 JP 3315081 A JP3315081 A JP 3315081A JP 31508191 A JP31508191 A JP 31508191A JP 2760684 B2 JP2760684 B2 JP 2760684B2
- Authority
- JP
- Japan
- Prior art keywords
- cooling air
- cooling
- cooling plate
- battery
- temperature
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/04—Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
- H01M8/04007—Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids related to heat exchange
- H01M8/04067—Heat exchange or temperature measuring elements, thermal insulation, e.g. heat pipes, heat pumps, fins
- H01M8/04074—Heat exchange unit structures specially adapted for fuel cell
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Fuel Cell (AREA)
Description
【0001】[0001]
【産業上の利用分野】本発明は、空冷式燃料電池の冷却
プレートに関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a cooling plate for an air-cooled fuel cell.
【0002】[0002]
【従来の技術】燃料電池は供給されるガスの化学エネル
ギーを、直接電気エネルギーに変換するものであって、
現在では、リン酸型,溶融炭酸塩型,固体電解質型等の
燃料電池の研究が盛んに行われており、高い発電効率が
期待されている。これら燃料電池を用いて電池反応(発
電)を行うと、発電に起因する反応熱等により電池温度
が上昇するので、最適温度で発電を行うために電池を冷
却する必要がある。従来は、数セル毎に冷却空気通路を
有する冷却プレートを配置し、この冷却プレートの冷却
空気供給口から冷却空気を流して熱交換を行うことによ
り電池を冷却していた。しかしながら、この冷却プレー
トの冷却空気供給側には熱交換前の低温の空気が流れる
ため、セルの発電による反応熱が冷却空気供給側から大
量に逃げる。その結果、冷却プレートの冷却空気供給側
の温度が低くなりすぎ、この冷却空気供給側に臨む位置
にある電池内の温度が著しく低下する。一方、冷却プレ
ートの冷却空気排出側には熱交換後の高温の空気が流れ
るため、冷却空気排出側から逃げる反応熱は少量であ
る。その結果、冷却プレートの冷却空気排出側の温度が
高くなりすぎ、この冷却空気排出側に臨む位置にある電
池内の温度が著しく上昇する。したがって、電池面内温
度が不均一となり、電池特性が低下するという問題があ
った。2. Description of the Related Art Fuel cells convert chemical energy of supplied gas directly into electric energy.
At present, research on fuel cells of the phosphoric acid type, the molten carbonate type, the solid electrolyte type and the like has been actively conducted, and high power generation efficiency is expected. When a battery reaction (power generation) is performed using these fuel cells, the battery temperature rises due to reaction heat or the like caused by the power generation, and thus it is necessary to cool the battery in order to generate power at an optimum temperature. Conventionally, a battery is cooled by arranging a cooling plate having a cooling air passage for every several cells and flowing cooling air from a cooling air supply port of the cooling plate to perform heat exchange. However, since low-temperature air before heat exchange flows to the cooling air supply side of the cooling plate, a large amount of reaction heat generated by the power generation of the cells escapes from the cooling air supply side. As a result, the temperature on the cooling air supply side of the cooling plate becomes too low, and the temperature in the battery located at a position facing the cooling air supply side is significantly reduced. On the other hand, since high-temperature air after heat exchange flows to the cooling air discharge side of the cooling plate, a small amount of reaction heat escapes from the cooling air discharge side. As a result, the temperature on the cooling air discharge side of the cooling plate becomes too high, and the temperature in the battery located at the position facing the cooling air discharge side rises significantly. Therefore, there has been a problem that the in-plane temperature of the battery becomes non-uniform and the battery characteristics deteriorate.
【0003】そこで、電池面内温度を均一にするため、
図4に示すような冷却プレートが提案されている(特公
昭62−2430号公報参照)。具体的には、冷却空気
供給側の冷却空気通路を1本とし、冷却空気排出側にな
るにつれて冷却空気通路を2本,3本と分岐させてい
る。即ち、冷却空気供給側の通路の幅(即ち、セルと冷
却空気の接する面積)を小さくして冷えにくくする一
方、冷却空気排出側の通路の幅を大きくして冷えやすく
している。Therefore, in order to make the temperature in the battery plane uniform,
A cooling plate as shown in FIG. 4 has been proposed (see Japanese Patent Publication No. 62-2430). Specifically, one cooling air passage is provided on the cooling air supply side, and two or three cooling air passages are branched toward the cooling air discharge side. That is, the width of the passage on the cooling air supply side (that is, the area where the cell is in contact with the cooling air) is reduced to make it difficult to cool, while the width of the passage on the cooling air discharge side is increased to facilitate cooling.
【0004】[0004]
【発明が解決しようとする課題】しかしながら、上記従
来の冷却プレートは冷却空気供給側の通路の幅が小さい
ため圧力損失が大きく、冷却空気排出側の通路まで冷却
空気を十分に供給するには圧力を大きくしなければなら
ない。冷却空気の供給源は燃料電池発電により得られた
電力の一部を使用することによって駆動される。上記構
造とした場合には、燃料電池が冷却空気供給に要する電
力が増加し、その結果システムの発電効率が悪くなると
いう課題を有していた。However, the above-mentioned conventional cooling plate has a large pressure loss because the width of the passage on the cooling air supply side is small, and the pressure is insufficient to sufficiently supply the cooling air to the passage on the cooling air discharge side. Must be increased. The source of cooling air is driven by using a portion of the power obtained by fuel cell power generation. In the case of the above structure, the power required for the fuel cell to supply the cooling air increases, and as a result, there is a problem that the power generation efficiency of the system deteriorates.
【0005】本発明は上記の事情に鑑み、発電効率を低
下させることなく電池面内温度を均一にすることができ
る燃料電池の冷却プレートを提供することを目的とす
る。[0005] In view of the above circumstances, an object of the present invention is to provide a cooling plate of a fuel cell which can make the temperature in the cell surface uniform without lowering the power generation efficiency.
【0006】[0006]
【課題を解決するための手段】本発明は上記の課題を解
決するために、電池のアノードに供給される燃料ガス
と、カソードに供給される反応空気との反応によって生
じる反応熱を、電池の冷却媒体である冷却空気に放熱
し、当該放熱を電池外へ排除する空冷式燃料電池の冷却
プレートにおいて、熱伝導率が異なる複数の材料で構成
されると共に、冷却空気供給側は冷却空気排出側よりも
熱伝導率が小さい材料で構成されることを特徴とする。SUMMARY OF THE INVENTION In order to solve the above-mentioned problems, the present invention solves the above problem by converting the reaction heat generated by the reaction between the fuel gas supplied to the anode of the battery and the reaction air supplied to the cathode of the battery. A cooling plate of an air-cooled fuel cell that radiates heat to cooling air as a cooling medium and eliminates the heat radiation outside the cell is made of a plurality of materials having different thermal conductivity, and a cooling air supply side is a cooling air discharge side It is characterized by being made of a material having a lower thermal conductivity than that of the material.
【0007】[0007]
【作用】上記構成の如く、冷却プレートの冷却空気供給
側が熱伝導率が小さい材料で構成されていれば、冷却空
気供給側における電池の反応熱が逃げにくくなる。その
結果、温度が低くなりすぎる冷却プレートの冷却空気供
給側では温度が低下しにくくなるので、この冷却空気供
給側に臨む位置にある電池内の温度が著しく低下するの
を抑制することができる。一方、冷却プレートの冷却空
気排出側が熱伝導率が大きい材料で構成されていれば、
冷却空気排出側における電池の反応熱が逃げやすくな
る。その結果、温度が高くなりすぎる冷却プレートの冷
却空気排出側では温度が低下しやすくなので、この冷却
空気排出側に臨む位置にある電池内の温度が著しく上昇
するのを抑制することができる。したがって、電池面内
温度が均一になるので電池特性が向上する。As described above, when the cooling air supply side of the cooling plate is made of a material having a low thermal conductivity, the reaction heat of the battery on the cooling air supply side does not easily escape. As a result, the temperature does not easily decrease on the cooling air supply side of the cooling plate where the temperature becomes too low, so that the temperature inside the battery located at the position facing the cooling air supply side can be suppressed from significantly decreasing. On the other hand, if the cooling air discharge side of the cooling plate is made of a material with high thermal conductivity,
The reaction heat of the battery on the cooling air discharge side is easily released. As a result, the temperature tends to decrease on the cooling air discharge side of the cooling plate where the temperature becomes too high, so that the temperature in the battery located at the position facing the cooling air discharge side can be prevented from significantly increasing. Therefore, the temperature in the battery surface becomes uniform, and the battery characteristics are improved.
【0008】加えて、冷却プレートの冷却空気供給側の
通路の幅を広く(或いは通路の数を多く)することがで
きるので、圧力損失が減少する。In addition, since the width of the passage on the cooling air supply side of the cooling plate can be increased (or the number of passages can be increased), the pressure loss can be reduced.
【0009】[0009]
【実施例】本発明の一実施例を図1ないし図3に基づい
て、以下に説明する。図1は本発明の一実施例に係る冷
却プレートを用いた燃料電池の概略斜視図であり、図2
は図1の電池における冷却プレートの概略図ある。この
燃料電池は、図1に示すように、電解質マトリックス1
を介して相対向するアノード2とカソード3とを有する
セル4と、このセル4に燃料ガス,及び反応空気を供給
するバイポーラプレート50・53とを複数個積層さ
せ、且つ、ハーフプレート51・52間に冷却プレート
6が配された構造である。なお、図中、62・7は燃料
ガス,反応空気等の混入を防止するエッジシール部,及
びガスセパレータを示す。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS One embodiment of the present invention will be described below with reference to FIGS. FIG. 1 is a schematic perspective view of a fuel cell using a cooling plate according to one embodiment of the present invention.
2 is a schematic view of a cooling plate in the battery of FIG. This fuel cell has an electrolyte matrix 1 as shown in FIG.
A plurality of cells 4 having anodes 2 and cathodes 3 opposed to each other with a plurality of bipolar plates 50 and 53 for supplying fuel gas and reaction air to the cells 4 are stacked, and half plates 51 and 52 are provided. The structure has a cooling plate 6 disposed therebetween. In the drawing, reference numerals 62.7 denote an edge seal portion for preventing fuel gas, reaction air and the like from being mixed, and a gas separator.
【0010】 上記セル4は、炭化ケイ素から成る電解
質マトリックス1を介して、カーボンペーパに白金触媒
を担持させたアノード2と,カソード3とが配された構
造である。上記バイポーラプレート50・53、ハーフ
プレート51・52は、前記アノード2に燃料ガスを供
給する燃料ガス通路21,及び前記カソード3に反応空
気を供給する反応空気通路31を有している。The cell 4 has a structure in which an anode 2 in which a platinum catalyst is supported on carbon paper and a cathode 3 are arranged via an electrolyte matrix 1 made of silicon carbide. Bipolar plate 50/53, half
The plates 51 and 52 have a fuel gas passage 21 for supplying fuel gas to the anode 2 and a reaction air passage 31 for supplying reaction air to the cathode 3.
【0011】 上記冷却プレート6は、冷却空気を供給
する冷却空気通路61を複数有しており、この冷却空気
通路61を流れる冷却空気は前記反応空気と同じ動力源
から供給される。次に、前記冷却プレート6について、
図2を用いて更に詳しく説明する。この冷却プレート6
は、熱伝導率が異なる3種類のカーボンプレート6a・
6b・6c(熱伝導率λ:6a<6b<6c)から構成
されている。具体的には、冷却空気供給側は1番熱伝導
率が小さいカーボンプレート6a(熱伝導率λ1 :λ1
<10Kcal/m.h.℃)で構成され、中央部は熱伝導
率が中間であるカーボンプレート6b(熱伝導率λ2 :
λ2 =30〜40Kcal/m.h.℃)で構成され、冷却
空気排出側は1番熱伝導率が大きいカーボンプレート6
c(熱伝導率λ3 :λ3 =120Kcal/m.h.℃)で
構成されている。このように、冷却プレート6の冷却空
気供給側を熱伝導率が小さい材料で構成すれば、冷却空
気供給側における電池の反応熱が逃げにくくなる。その
結果、温度が低くなりすぎる冷却プレート6の冷却空気
供給側では温度が低下しにくくなるので、この冷却空気
供給側に臨む位置にある電池内の温度が著しく低下する
のを抑制することができる。一方、冷却プレート6の冷
却空気排出側を熱伝導率が大きい材料で構成すれば、冷
却空気排出側における電池の反応熱が逃げやすくなる。
その結果、温度が高くなりすぎる冷却プレート6の冷却
空気排出側では温度が低下しやすくなるので、この冷却
空気排出側に臨む位置にある電池内の温度が著しく上昇
するのを抑制することができる。したがって、電池面内
温度が均一になるので電池特性が向上する。The cooling plate 6 has a plurality of cooling air passages 61 for supplying cooling air, and the cooling air flowing through the cooling air passages 61 is supplied from the same power source as the reaction air. Next, regarding the cooling plate 6,
This will be described in more detail with reference to FIG. This cooling plate 6
Are three types of carbon plates 6a with different thermal conductivity.
6b and 6c (thermal conductivity λ: 6a <6b <6c). Specifically, on the cooling air supply side, the carbon plate 6a having the lowest thermal conductivity (thermal conductivity λ 1 : λ 1
<10 Kcal / m. h. ° C), and a carbon plate 6b having a middle thermal conductivity (a thermal conductivity λ 2 :
λ 2 = 30 to 40 Kcal / m. h. ° C), and the cooling air discharge side is the carbon plate 6 with the largest thermal conductivity.
c (thermal conductivity λ 3 : λ 3 = 120 Kcal / mh ° C.). As described above, if the cooling air supply side of the cooling plate 6 is made of a material having a low thermal conductivity, it becomes difficult for the reaction heat of the battery on the cooling air supply side to escape. As a result, the temperature is hardly reduced on the cooling air supply side of the cooling plate 6 where the temperature becomes too low, so that the temperature inside the battery located at the position facing the cooling air supply side can be suppressed from being significantly reduced. . On the other hand, by forming the cooling air discharge side of the cooling plate 6 material with large thermal conductivity, heat of reaction of the battery in the cooling air discharge side is elusive.
As a result, the temperature ing temperature is likely to decrease in the cooling air discharge side of the too high cooling plate 6, is possible to prevent the temperature in the battery in a position facing the cooling air discharge side is increased significantly it can. Therefore, the temperature in the battery surface becomes uniform, and the battery characteristics are improved.
【0012】 また、この冷却プレート6は既知の手段
によって製造することができるが、例えば、金型に上記
3種類のカーボンの粉末を入れてプレスする等の方法に
よっても製造することができる。以上の如く構成された
電池を以下、(A)電池と称する。 〔比較例〕 上記冷却プレート6の代わりに1種類の材質のカーボン
プレートのみから成る冷却プレートを用いる他は、上記
実施例と同様の方法で電池を作製した。The cooling plate 6 can be manufactured by known means. For example, the cooling plate 6 can be manufactured by putting a powder of the above three types of carbon into a metal mold and pressing the same. The battery configured as described above is hereinafter referred to as (A) battery. COMPARATIVE EXAMPLE other using one kind of a material cooling plate consisting of a carbon plate only in place of the cooling plate 6, a battery was prepared in the same manner as in the above embodiment.
【0013】以上の如く構成された電池を以下、(X)
電池と称する。 〔実験〕本発明の冷却プレートを用いた(A)電池,及
び比較例の冷却プレートを用いた(X)電池を用いて、
これら電池の冷却プレートにおける冷却空気供給口から
の距離と電池面内温度との関係を調べたので、その結果
を図3に示す。The battery constructed as described above is referred to as (X)
It is called a battery. [Experiment] Using the battery (A) using the cooling plate of the present invention and the battery (X) using the cooling plate of the comparative example,
The relationship between the distance from the cooling air supply port in the cooling plate of these batteries and the temperature in the battery plane was examined, and the results are shown in FIG.
【0014】図3より明らかなように、本発明の冷却プ
レートを用いた(A)電池は、比較例の冷却プレートを
用いた(X)電池に比べ、冷却空気供給側の電池面内温
度がかなり高くなっている一方、冷却空気排出側の電池
面内温度はほんとど差がないことがわかる。したがっ
て、本発明の冷却プレート6のように、冷却空気供給側
を熱伝導率が小さい材料6aで構成すれば、冷却プレー
ト6の冷却空気供給側に対応する部位の電池の反応熱が
逃げにくくなるので、該部位における電池面内温度の著
しい低下が抑制される。As is clear from FIG. 3, the battery (A) using the cooling plate of the present invention has a lower in-cell temperature on the cooling air supply side than the battery (X) using the cooling plate of the comparative example. It can be seen that the temperature in the battery surface on the cooling air discharge side is almost the same while the temperature is considerably high. Therefore, when the cooling air supply side is made of the material 6a having a low thermal conductivity like the cooling plate 6 of the present invention, the reaction heat of the battery at the portion corresponding to the cooling air supply side of the cooling plate 6 is difficult to escape. Therefore, a remarkable decrease in the in-plane temperature of the battery at the site is suppressed.
【0015】 上記実施例によれば冷却プレート6の冷
却空気供給側と冷却空気排出側との温度勾配が小さくな
るので、冷却プレート6に供給する冷却空気量を少なく
することができる。その結果、燃料電池が冷却空気供給
に要する電力が減少するので、システムの発電効率が向
上する。 〔その他の事項〕 上記実施例においては、3種類のカーボンプレート
6a・6b・6cを用いて冷却プレート6を作製した
が、これに限らず、例えば2種類,又は4種類以上の熱
伝導率の異なる材料を用いて作製してもよい。 上記3種類のカーボンプレート6a・6b・6cの
冷却空気通路61方向の長さは6a<6c<6bである
が、これに限らず、例えば、3種類とも同じ長さにする
ことも可能である。 上記実施例においては、ハーフプレート51・52
間に冷却プレート6を配したが、この冷却プレート6は
最も冷却効果を発揮するバイポーラプレート間の任意の
位置に設けることも可能である。According to the above embodiment, the temperature gradient between the cooling air supply side and the cooling air discharge side of the cooling plate 6 is reduced, so that the amount of cooling air supplied to the cooling plate 6 can be reduced. As a result, the power required by the fuel cell to supply cooling air is reduced, and the power generation efficiency of the system is improved. [Other Matters] In the above embodiment, the cooling plate 6 was manufactured using three types of carbon plates 6a, 6b, and 6c. However, the present invention is not limited to this. For example, two or four or more types of thermal conductivity It may be manufactured using different materials. The length of the three types of carbon plates 6a, 6b, 6c in the direction of the cooling air passage 61 is 6a <6c <6b. However, the length is not limited to this, and for example, the three types can be the same length. . In the above embodiment, the half plates 51 and 52
Although the cooling plate 6 is arranged between the bipolar plates, the cooling plate 6 can be provided at any position between the bipolar plates that exhibit the most cooling effect.
【0016】[0016]
【発明の効果】以上の本発明によれば、冷却プレートの
冷却空気供給側と冷却空気排出側との温度勾配を小さく
することができる。したがって、電池面内温度を均一に
することができるので、電池特性が向上する。加えて、
冷却プレートに供給する冷却空気量を少なくすることが
できるので、発電効率が向上する。更に加えて、圧力損
失が減少するので、発電効率が向上するという効果を奏
する。According to the present invention, the temperature gradient between the cooling air supply side and the cooling air discharge side of the cooling plate can be reduced. Therefore, since the temperature in the battery surface can be made uniform, the battery characteristics are improved. in addition,
Since the amount of cooling air supplied to the cooling plate can be reduced, power generation efficiency is improved. In addition, since the pressure loss is reduced, there is an effect that the power generation efficiency is improved.
【図1】本発明の一実施例に係る冷却プレートを用いた
燃料電池の概略斜視図である。FIG. 1 is a schematic perspective view of a fuel cell using a cooling plate according to one embodiment of the present invention.
【図2】本発明の一実施例に係る冷却プレートの概略図
である。FIG. 2 is a schematic view of a cooling plate according to one embodiment of the present invention.
【図3】本発明の冷却プレートを用いた(A)電池,及
び比較例の冷却プレートを用いた(X)電池を用いて、
これら電池の冷却プレートにおける冷却空気供給口から
の距離と電池面内温度との関係を示すグラフである。FIG. 3 shows a battery (A) using the cooling plate of the present invention and a battery (X) using the cooling plate of the comparative example.
4 is a graph showing a relationship between a distance from a cooling air supply port in a cooling plate of these batteries and a temperature in a battery plane.
【図4】従来の冷却プレートの斜視図である。FIG. 4 is a perspective view of a conventional cooling plate.
2 アノード 3 カソード 6 冷却プレート 2 Anode 3 Cathode 6 Cooling plate
───────────────────────────────────────────────────── フロントページの続き (72)発明者 松林 孝昌 守口市京阪本通2丁目18番地 三洋電機 株式会社内 (72)発明者 堤 勝 守口市京阪本通2丁目18番地 三洋電機 株式会社内 (56)参考文献 特開 昭64−77874(JP,A) 特開 昭61−259095(JP,A) 特公 昭60−32119(JP,B2) (58)調査した分野(Int.Cl.6,DB名) H01M 8/00 - 8/02 H01M 8/08 - 8/24 F28F 13/14────────────────────────────────────────────────── ─── Continuing on the front page (72) Takamasa Matsubayashi 2-18-18 Keihanhondori, Moriguchi City Sanyo Electric Co., Ltd. (72) Inventor Masaru Tsutsumi 2-18-18 Keihanhondori Moriguchi City Sanyo Electric Co., Ltd. ( 56) References JP-A-64-77874 (JP, A) JP-A-61-259095 (JP, A) JP-B-60-32119 (JP, B2) (58) Fields investigated (Int. Cl. 6 , (DB name) H01M 8/00-8/02 H01M 8/08-8/24 F28F 13/14
Claims (1)
と、カソードに供給される反応空気との反応によって生
じる反応熱を、電池の冷却媒体である冷却空気に放熱
し、当該放熱を電池外へ排除する空冷式燃料電池の冷却
プレートにおいて、 熱伝導率が異なる複数の材料で構成されると共に、冷却
空気供給側は冷却空気排出側よりも熱伝導率が小さい材
料で構成されることを特徴とする燃料電池の冷却プレー
ト。A reaction heat generated by a reaction between a fuel gas supplied to an anode of a battery and a reaction air supplied to a cathode is radiated to cooling air as a cooling medium of the battery.
In the cooling plate of the air-cooled fuel cell that eliminates the heat radiation outside the cell, the cooling plate is made of a plurality of materials having different heat conductivity, and the cooling air supply side has a lower heat conductivity than the cooling air discharge side. A cooling plate for a fuel cell, comprising:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3315081A JP2760684B2 (en) | 1991-11-29 | 1991-11-29 | Fuel cell cooling plate |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3315081A JP2760684B2 (en) | 1991-11-29 | 1991-11-29 | Fuel cell cooling plate |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH05151980A JPH05151980A (en) | 1993-06-18 |
JP2760684B2 true JP2760684B2 (en) | 1998-06-04 |
Family
ID=18061187
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP3315081A Expired - Lifetime JP2760684B2 (en) | 1991-11-29 | 1991-11-29 | Fuel cell cooling plate |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2760684B2 (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE19953404B4 (en) * | 1999-11-06 | 2004-11-25 | Daimlerchrysler Ag | Electrochemical fuel cell stack |
JP2005108616A (en) * | 2003-09-30 | 2005-04-21 | Nichias Corp | Separator for fuel cell, and its manufacturing method |
DE112004002313B4 (en) * | 2003-11-28 | 2011-09-15 | Toyota Jidosha Kabushiki Kaisha | fuel cell |
US7955742B2 (en) * | 2004-07-28 | 2011-06-07 | American Power Conversion Corporation | Fuel cell housing and fuel cell assemblies |
WO2012118015A1 (en) * | 2011-02-28 | 2012-09-07 | 三洋電機株式会社 | Electrical power supply and vehicle using forced-cooling stacked storage cell |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6032119A (en) * | 1983-08-02 | 1985-02-19 | Canon Inc | Magnetic recording medium |
JPS61259095A (en) * | 1985-05-13 | 1986-11-17 | Shimadzu Corp | Heat exchanger |
JPS6477874A (en) * | 1987-09-18 | 1989-03-23 | Sanyo Electric Co | Cooling plate of air cooling type fuel cell |
-
1991
- 1991-11-29 JP JP3315081A patent/JP2760684B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPH05151980A (en) | 1993-06-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4634790B2 (en) | Fuel cell stack coolant flow field design | |
US5238754A (en) | Solid oxide fuel cell system | |
US9461314B2 (en) | Fuel cell interconnect | |
US6756144B2 (en) | Integrated recuperation loop in fuel cell stack | |
JP2760684B2 (en) | Fuel cell cooling plate | |
JP3443276B2 (en) | Fuel cell system | |
JPH097624A (en) | Solid electrolytic fuel cell | |
JP4726186B2 (en) | Fuel cell stack | |
JPH10284107A (en) | Fuel cell power generating system | |
US20090162713A1 (en) | Stack for fuel cell and bipolar plate and cooling plate adopted in the same | |
JP2010061986A (en) | Fuel battery stack | |
CN110620239A (en) | Single-layer bipolar plate, electric pile and system of fuel cell | |
JP2023537782A (en) | Bipolar plate assembly for fuel cell stack | |
JP4043352B2 (en) | Fuel cell stack | |
US20060263663A1 (en) | Temperature management of an end cell in a fuel cell stack | |
JP2007122964A (en) | Solid-oxide fuel cell power generation system | |
JP3342243B2 (en) | Solid oxide fuel cell | |
JPH0746612B2 (en) | Fuel cell cooling system | |
JP2865025B2 (en) | Molten carbonate fuel cell | |
JP2000149962A (en) | Cooling plate for fuel cell | |
JPS6273568A (en) | Fuel cell | |
JP2947549B2 (en) | Fuel cell | |
JPH01246767A (en) | Fuel cell | |
JP3365453B2 (en) | Fuel cell | |
JPH06124716A (en) | Cooling plate for fuel cell |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090320 Year of fee payment: 11 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090320 Year of fee payment: 11 |
|
S201 | Request for registration of exclusive licence |
Free format text: JAPANESE INTERMEDIATE CODE: R314201 |
|
S201 | Request for registration of exclusive licence |
Free format text: JAPANESE INTERMEDIATE CODE: R314201 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090320 Year of fee payment: 11 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090320 Year of fee payment: 11 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100320 Year of fee payment: 12 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110320 Year of fee payment: 13 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110320 Year of fee payment: 13 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110320 Year of fee payment: 13 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110320 Year of fee payment: 13 |
|
EXPY | Cancellation because of completion of term | ||
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120320 Year of fee payment: 14 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120320 Year of fee payment: 14 |