WO2012118015A1 - Electrical power supply and vehicle using forced-cooling stacked storage cell - Google Patents

Electrical power supply and vehicle using forced-cooling stacked storage cell Download PDF

Info

Publication number
WO2012118015A1
WO2012118015A1 PCT/JP2012/054789 JP2012054789W WO2012118015A1 WO 2012118015 A1 WO2012118015 A1 WO 2012118015A1 JP 2012054789 W JP2012054789 W JP 2012054789W WO 2012118015 A1 WO2012118015 A1 WO 2012118015A1
Authority
WO
WIPO (PCT)
Prior art keywords
power supply
supply device
cooling
battery
transfer member
Prior art date
Application number
PCT/JP2012/054789
Other languages
French (fr)
Japanese (ja)
Inventor
智一 高品
橋本 裕之
Original Assignee
三洋電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三洋電機株式会社 filed Critical 三洋電機株式会社
Publication of WO2012118015A1 publication Critical patent/WO2012118015A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/62Heating or cooling; Temperature control specially adapted for specific applications
    • H01M10/625Vehicles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/204Racks, modules or packs for multiple batteries or multiple cells
    • H01M50/207Racks, modules or packs for multiple batteries or multiple cells characterised by their shape
    • H01M50/209Racks, modules or packs for multiple batteries or multiple cells characterised by their shape adapted for prismatic or rectangular cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/613Cooling or keeping cold
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/653Means for temperature control structurally associated with the cells characterised by electrically insulating or thermally conductive materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/655Solid structures for heat exchange or heat conduction
    • H01M10/6554Rods or plates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/655Solid structures for heat exchange or heat conduction
    • H01M10/6556Solid parts with flow channel passages or pipes for heat exchange
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/656Means for temperature control structurally associated with the cells characterised by the type of heat-exchange fluid
    • H01M10/6567Liquids
    • H01M10/6568Liquids characterised by flow circuits, e.g. loops, located externally to the cells or cell casings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/289Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by spacing elements or positioning means within frames, racks or packs
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a power supply device including a battery stack in which a plurality of battery cells are stacked.
  • a vehicle power supply device has a large number of battery cells connected in series to increase output voltage and output power. Further, in order to increase the charging capacity with respect to the volume, a power supply device including a battery stack in which a large number of rectangular battery cells are arranged in a stacked state has been developed. Since this power supply device is discharged with a large current to accelerate and drive the vehicle, the discharge current becomes extremely large at 100 A or more. Further, since the power supply device for a vehicle is charged by regenerative braking of the vehicle, the charging current is considerably increased. The assembled battery charged and discharged with a large current generates heat and causes deterioration of the battery. In order to prevent deterioration of the battery that has generated heat, the assembled battery for the vehicle is forced to blow cooling air to cool it, thereby preventing temperature rise.
  • the battery block 202 is placed on the cooling plate 230 and thermally coupled thereto, and the refrigerant is circulated through the cooling plate 230 to be cooled.
  • the assembled battery for a vehicle in FIG. 20 includes a battery block 202 to which a plurality of battery cells 201 are connected, a refrigerant channel 203 that is thermally coupled to the battery block 202 and cools the battery cells 201, and a refrigerant channel.
  • a cooling mechanism 204 that supplies a refrigerant to 203 and an electronic component case 205 containing an electronic circuit connected to the battery block 202 are provided.
  • the battery block 202 is cooled by the refrigerant supplied from the cooling mechanism 204 to the refrigerant flow path 203.
  • the refrigerant is circulated sequentially through the cooling plate in which each battery block is installed.
  • a refrigerant piping system in this case, a parallel type in which refrigerant pipes are connected in parallel as shown in FIG. 8 and a serial type in which the refrigerant pipes are connected in series as shown in FIG. 7 can be considered.
  • the parallel connection type since the refrigerant before heat exchange can be supplied to each cooling plate 30, temperature variation between battery cells can be suppressed.
  • the battery block 202 cooled by the refrigerant includes an outward path battery 202 ⁇ / b> A that is thermally coupled to the outward path side of the refrigerant flow path 203, and A return path battery 202B that is thermally coupled to the return path side of the refrigerant flow path 203 is partitioned, and an electronic component case 205 that is a heat source is disposed close to the forward path battery 202A.
  • two rows of battery blocks 202 are disposed on the forward path side of the refrigerant flow path 203 and are configured to be thermally coupled to the forward path refrigerant path 203.
  • the battery is disposed on the return path side of the refrigerant flow path 203 and is divided into a return path side battery 202B that is disposed so as to be thermally coupled to the refrigerant flow path 203 on the return path side.
  • the heat generation amount of the heat source is too large, it may be considered that some of the battery cells are heated too much.
  • the battery cell included in the power supply device may be used as a heat generation source as in the region indicated by cross hatching in the figure. Nearer battery cells are more likely to be heated.
  • a main object of the present invention is to provide a power supply device capable of cooling battery cells in a uniform state in a cooling system in which a battery block is placed on a cooling plate.
  • the battery block 2 formed by laminating a plurality of battery cells 1 in which the outer can 11 is made of metal, and the battery block 2 and a cooling plate 30 for cooling the battery block 2, and interposed between the cooling plate 30 and the battery block 2.
  • a heat supply device comprising: a heat member; and a heat capacity of the heat transfer member in contact with the battery cell in a portion having a high cooling capacity in accordance with a cooling capacity for cooling the battery cell by the cooling plate.
  • the distribution of the heat resistance of the heat transfer member 40 can be adjusted so that the resistance is higher than the heat resistance of the heat transfer member 40 that is in contact with the battery cell 1 in a portion having a low cooling capacity.
  • the battery cells arranged at positions that are difficult to be cooled by the cooling plate are relatively inferior in cooling performance.
  • the deterioration of the battery cells proceeds more than the other battery cells, and the degree of deterioration is not uniform among the battery cells.
  • the overall cooling capacity can be adjusted uniformly by lowering the thermal resistance of the heat transfer member relatively, and between the battery cells. There is an advantage that deterioration due to non-uniform cooling can be suppressed.
  • the cooling plate 30 includes a pipe for circulating the refrigerant therein, and can be configured to exhibit the cooling capacity by circulating the refrigerant through the pipe.
  • coolant can be aimed at.
  • a plurality of cooling plates 30 on which the battery block 2 is placed can be provided, and the pipes of the cooling plates 30 can be connected to each other in series.
  • coolant between cooling plates can be made easy by connecting several cooling plates, and the cooling mechanism which can be installed also in space saving is realizable.
  • the power supply device which concerns on a 4th side surface, it intervenes between this battery cell 1 of the said battery block 2 comprised by laminating
  • a separator 5 is provided, and a part of the separator 5 is interposed between the cooling plate 30 and the bottom surface of the battery cell 1 to separate the cooling plate 30 from the battery cell 1 and to be generated by the separation.
  • the heat transfer member 40 can be disposed in the gap. Thereby, the battery cell and the cooling plate can be connected to each other in a thermally coupled state via the heat transfer member while effectively insulating the bottom surface of the battery cell.
  • the heat transfer member 40 can be configured in a sheet shape. Thereby, a sheet-like heat conductive member can be easily interposed between the battery block and the cooling plate.
  • the heat transfer member 40 can change the distribution of thermal resistance by changing the thickness. Thereby, the distribution of thermal resistance can be easily changed partially.
  • the heat transfer member 40 is formed by stacking a plurality of sheets, and the thickness can be changed by changing the number of stacked sheets. Thereby, the thickness of the heat transfer member, that is, the thermal resistance can be easily adjusted.
  • the heat transfer member 40 can change the distribution of thermal resistance by using materials having partially different thermal conductivities. This makes it possible to partially change the thermal resistance while maintaining the height of the heat transfer member constant.
  • the cooling plate 30 includes a pipe for circulating the coolant inside, and is configured to exhibit the cooling capacity by circulating the coolant through the pipe. it can. Thereby, a battery block can be cooled by a water cooling system.
  • the power supply device further includes an intermediate heat exchanger for cooling the coolant, and the intermediate heat exchanger can be connected to an evaporator and a condenser.
  • the cooling water which cools a battery block can be cooled using the existing cooling mechanism, and an inexpensive and highly reliable cooling system can be realized.
  • any one of the power supply devices described above can be provided.
  • FIG. 2 is a longitudinal sectional view taken along line II-II in FIG.
  • FIG. 3 is a cross-sectional view taken along line III-III in FIG.
  • It is a model horizontal sectional view which shows an example of a refrigerant flow path.
  • It is a model horizontal sectional view which shows the other example of a refrigerant flow path.
  • It is a disassembled perspective view which shows the state which fixes a some battery block on one cooling plate.
  • FIG. 7 is a perspective view showing a portion where the temperature increases due to the proximity of the battery blocks in the battery block of FIG. 6.
  • FIG. 4 is an exploded cross-sectional view of FIG. 3. It is an exploded sectional view showing a power supply device concerning a modification.
  • each element constituting the present invention may be configured such that a plurality of elements are constituted by the same member and the plurality of elements are shared by one member, and conversely, the function of one member is constituted by a plurality of members. It can also be realized by sharing.
  • the contents described in some examples and embodiments may be used in other examples and embodiments.
  • FIG. 16 an example in which the present invention is applied to an in-vehicle power supply device will be described as a power supply device according to an embodiment of the present invention.
  • the power supply apparatus shown in these drawings is most suitable for the power source of an electric vehicle such as a hybrid vehicle that travels by both an engine and a motor and an electric vehicle that travels by only a motor.
  • the power supply device of the present invention can be used for vehicles other than hybrid vehicles and electric vehicles, and can also be used for applications requiring high output other than electric vehicles.
  • a vehicle power supply device 100 shown in the perspective view of FIG. 1, the longitudinal sectional view of FIG. 2, and the transverse sectional view of FIG. 3 includes a battery block 2 in which a plurality of battery cells 1 are connected in series or in parallel, and the battery block. And a heat transfer member 40 interposed between the cooling plate 30 and the battery block 2.
  • the cooling plate 30 includes a refrigerant flow path 3 for flowing a refrigerant therein.
  • a cooling mechanism 4 that supplies a refrigerant to the refrigerant flow path 3 is connected to the cooling plate 30. This power supply device cools the battery block 2 with the refrigerant supplied from the cooling mechanism 4 to the refrigerant flow path 3. (Battery block 2)
  • the battery block 2 is arranged such that a plurality of battery cells 1 are stacked with separators 5 interposed therebetween, and both ends are sandwiched and fixed by end plates.
  • a plurality of battery cells 1 are arranged adjacent to each other, and electrode terminals of the adjacent battery cells 1 are connected.
  • the electrode terminals of the adjacent battery cells 1 are stacked on each other, and are electrically connected by fixing the stacked portion with a connector.
  • the battery cell 1 is a square battery.
  • the prismatic battery can be arranged more efficiently than the cylindrical battery, and the energy density per unit volume can be increased. Particularly, in-vehicle use, there is a high demand for space saving, which is preferable.
  • a rectangular secondary battery such as a lithium ion secondary battery can be used.
  • it can also be set as secondary batteries, such as a nickel metal hydride battery, and a secondary battery is good also as a cylindrical shape.
  • the electrode terminals of the battery cell 1 are connected in series or in parallel.
  • the outer can of the battery cell 1 is made of metal.
  • a separator 5 is sandwiched between adjacent battery cells 1 to insulate them from each other.
  • the separator 5 is a quadrangle having the same size as the outer shape of the battery cell 1 and is sandwiched and insulated between adjacent battery cells 1.
  • the separator 5 is made of an insulating material having excellent heat resistance and heat insulation, and is preferably made of a light and inexpensive resin.
  • a synthetic resin such as polypropylene or polyurethane having a low thermal conductivity (preferably 0.5 W / m or less) can be used. Thereby, while protecting the battery cell 1 with the separator 5, the adjacent battery cells 1 are insulated and insulated.
  • the battery block 2 is formed by alternately laminating separators 5 and battery cells 1 and sandwiching and fixing both end surfaces between a pair of end plates.
  • the end plate is manufactured by molding the whole with plastic or reinforcing it by insert molding metal.
  • the end plate is formed in a size capable of covering the battery cell 1 exposed at both end surfaces, with the outer shape being the outer shape of the battery cell 1.
  • the pair of end plates are connected by tie rods (not shown), and the battery cells 1 and the separators 5 stacked therebetween are sandwiched and fixed. (Cooling plate 30)
  • the battery block 2 is fixed on the cooling plate 30 by a method such as screwing.
  • the cooling plate 30 is composed of a plate-shaped metal plate, and is provided with a refrigerant flow path 3 for flowing a refrigerant therein.
  • the refrigerant flow path 3 is made of copper, aluminum, or the like, and supplies the liquefied refrigerant to the refrigerant flow path 3, vaporizes the refrigerant in the refrigerant flow path 3, and forcibly cools with the heat of vaporization of the refrigerant.
  • the battery cell 1 is cooled via the heat transfer member 40.
  • This refrigerant flow path 3 is connected to an external cooling mechanism 4. (Cooling mechanism 4)
  • the cooling mechanism 4 that forcibly cools the cooling plate 30 with the heat of vaporization of the refrigerant includes a circulation pump 21, a radiator 22, and a control circuit 20 that controls the operation of the circulation pump 21 and the fan 23 of the radiator 22.
  • the circulation pump 21 circulates the liquid refrigerant through the refrigerant path 3 and the radiator 22.
  • the control circuit 20 detects the temperature of the battery block 2 with a temperature sensor, and operates the circulation pump 21 when the detected temperature becomes higher than the set temperature.
  • the control circuit 20 detects the temperature of the refrigerant with a temperature sensor, and operates the fan 23 of the radiator 22 when the temperature of the refrigerant becomes higher than a set value.
  • the refrigerant circulated to the refrigerant path 3 by the circulation pump 21 is insulating oil or antifreeze. Silicon oil or the like can be used as the insulating oil.
  • the cooling with the refrigerant is used in the meaning including water cooling in which water or a coolant is circulated.
  • the cooling mechanism can also supply a Freon-based refrigerant that is vaporized inside the refrigerant path and cooled by heat of vaporization to the refrigerant path.
  • a cooling mechanism 4B is shown in FIG. This refrigerant is vaporized inside the refrigerant path to cool the refrigerant path.
  • the cooled refrigerant path cools the battery block 2 from the bottom surface. This cooling mechanism can cool the battery block 2 to a low temperature.
  • the cooling mechanism includes a compressor 26 that pressurizes the vaporized refrigerant, a condenser 27 that cools and liquefies the refrigerant pressurized by the compressor 26, and supplies the refrigerant liquefied by the condenser 27 to the refrigerant path 3. And an inflator 28.
  • the expander 28 is, for example, a capillary tube or an expansion valve.
  • a capillary tube or an expansion valve made of a thin tube is limited to a predetermined flow range of the refrigerant.
  • These expanders 28 are designed to have a flow rate at which all of the refrigerant is vaporized while being discharged from the refrigerant path 3. This is because the compressor 26 is designed to suck in and compress the gaseous refrigerant, and if liquid refrigerant is sucked in, it causes a failure.
  • the state in which the refrigerant is vaporized in the refrigerant path 3 varies depending on the temperature of the battery block 2.
  • the refrigerant When the temperature of the battery block 2 is high, the refrigerant is easily vaporized, and when the temperature is low, the refrigerant is difficult to vaporize. Therefore, when the flow rate of the expander 28 such as a capillary tube is controlled so that all the refrigerant is vaporized in a state where the temperature of the battery block 2 is low, in the state where the temperature of the battery block 2 is high, in the middle of the refrigerant path 3. All the refrigerant is vaporized and the cooling efficiency by the heat of vaporization is lowered. This state is likely to occur in the refrigerant path 3 on the return path side, and the temperature of the refrigerant path 3 on the return path side tends to increase. In other words, the battery block 2 on the forward path side is efficiently cooled and enters a supercooled state. Therefore, the temperature difference between the battery cells is reduced by the heat transfer member 40 (described later).
  • the refrigerant flow path 3 has a U-shaped pattern in the example shown in FIG.
  • the refrigerant flow path 3 is configured in a pipe shape, and two refrigerant paths 3 are arranged in parallel on the forward path side and the return path side. Liquid refrigerant is supplied from the cooling mechanism 4 to the refrigerant flow path 3 to be cooled.
  • the pattern of a refrigerant flow path is not restricted to this, Arbitrary patterns can be utilized, for example, it is good also considering the refrigerant flow path 3B as a wavy pattern like the cooling plate 30B shown in FIG.
  • the cooling mechanism 35 forcibly cooling the cooling plate 30B with the heat of vaporization of the refrigerant includes a compressor 36 that pressurizes the refrigerant in a gaseous state, a condenser 37 that cools and liquefies the gas pressurized by the compressor 36, And an expansion valve 38 for supplying the refrigerant liquefied by the condenser 37 to the refrigerant flow path 3B of the cooling plate 30B.
  • the cooling mechanism 35 supplies the liquefied refrigerant to the cooling plate 30B via the expansion valve 38, vaporizes the supplied refrigerant inside the cooling plate 30B, and cools the cooling plate 30B with heat of vaporization.
  • the vaporized refrigerant is pressurized by the compressor 36, supplied to the condenser 37, liquefied by the condenser 37, and circulated through the expansion valve 38 to the refrigerant flow path 3B of the cooling plate 30B to pass through the cooling plate 30B. Cooling.
  • the cooling plate is not necessarily cooled by the heat of vaporization of the refrigerant.
  • the cooled plate can be cooled by circulating the cooled liquid inside.
  • the cooling plate can be cooled by providing a cooling gas passage inside and forcibly blowing the gas cooled in this passage.
  • one battery block is cooled by one cooling plate.
  • a plurality of battery blocks can be cooled by using one cooling plate.
  • four battery blocks 2 are fixed and cooled on one large cooling plate 30.
  • a plurality of battery blocks can be cooled using a plurality of cooling plates.
  • the cooling mechanism 4 can be shared by connecting the refrigerant flow paths of the cooling plates and circulating the refrigerant.
  • the connection form between the cooling plates may be either a series connection as shown in FIG. 7 or a parallel connection as shown in FIG.
  • the serial connection facilitates the connection of the refrigerant flow path, simplifies the piping work, and is advantageous in terms of the installation space of the piping.
  • the serial connection is not limited to the example of FIG. 7, and any connection form corresponding to the installation form of the cooling plate such as connection examples as shown in FIGS. 9 and 10 can be used as appropriate. (Heat transfer member 40)
  • the heat transfer member 40 is interposed between the cooling plate 30 and the battery block 2 and thermally conducts while insulating them to cool the heat generated in the battery cell 1 with the cooling plate 30.
  • the adjacent prismatic battery cells In a power supply device in which adjacent prismatic battery cells are connected in series, the adjacent prismatic battery cells have a potential difference. Therefore, if a rectangular battery cell composed of a metal outer can is electrically connected to the cooling plate as it is, a short circuit occurs and a large short current flows. Therefore, the battery cells must be insulated. On the other hand, in order to efficiently dissipate heat with the cooling plate, it is necessary to bring the battery cell and the cooling plate into a thermally coupled state.
  • the heat transfer member 40 is made of a material having an insulating property for preventing a short circuit between adjacent battery cells while exhibiting high thermal conductivity so as to be thermally coupled to the outer can of the battery cell.
  • a material having an insulating property for preventing a short circuit between adjacent battery cells while exhibiting high thermal conductivity so as to be thermally coupled to the outer can of the battery cell.
  • acrylic resin, urethane resin, epoxy resin, silicone resin, or the like can be used.
  • the separator 5 is bent at the bottom so as to partially cover the bottom of the battery cell 1.
  • a gap GP corresponding to the thickness of the separator bottom surface 5b is formed.
  • the heat transfer member 40 is formed in a sheet shape.
  • the member is slightly elastically deformed.
  • the sheet-like heat transfer member 40 is formed slightly higher than the height of the gap GP.
  • the sheet-like heat transfer member 40 arranged in the gap GP is pressed and compressed by the bottom surface of the battery cell 1 and the top surface of the cooling plate 30, and an air layer is formed at the joining interface between them. Avoid this and make it heat-bonded.
  • the heat transfer member 40 partially changes the thermal resistance in the plane.
  • the lower side in the figure is relatively lower. It can be said that the battery block is easily heat-exchanged with the refrigerant and is easily cooled.
  • the upper battery block is cooled after the heat exchange of the refrigerant proceeds. It can be said that the block is hardly cooled.
  • heat is easily trapped between the battery blocks. The cell temperature tends to increase.
  • FIG. 13 when the heat source is disposed close to the power supply device, the battery cells in the vicinity are similarly heated and the temperature tends to increase.
  • the heat transfer member has a configuration that partially changes the thermal resistance.
  • the heat transfer member 40 is prepared so that the heat resistance is relatively low at the center of the battery cell and the heat resistance of other portions is relatively high, and the heat conduction is improved at the center portion where the heat resistance is low.
  • the heat dissipation is improved, the temperature is lowered, and the heat conduction in the peripheral portion is relatively lowered, thereby reducing the temperature difference between the peripheral portion where the temperature is likely to be lowered and the central portion where the temperature is likely to be raised.
  • the thickness is reduced at the central portion 40b of the heat transfer member 40, and the thickness of the other portion 40a is increased.
  • the heat transfer member of the thin part of the center part 40b has low thermal resistance, and heat resistance becomes high in the other part 40a.
  • heat dissipation is relatively lowered in the area around the battery block, and a difference from the cooling capacity of the central portion occurs.
  • a plurality of heat transfer members having different thicknesses are combined. Further, a plurality of sheet-like heat transfer members can be laminated and adjusted. In this method, since the height can be changed by adjusting the number of thin sheet-like heat transfer members prepared in advance, there is an advantage that adjustment work can be facilitated. Further, preferably, as shown in FIG. 14, by projecting a portion where the heat transfer member of the central portion 40 b is disposed on the cooling plate 30, the height of the surface facing the battery cell 1 of the heat transfer member is aligned, While adhering to the battery cell surface, it is possible to position the heat transfer member in the peripheral portion 40a.
  • a cooling plate having a flat surface facing the battery cell of the cooling plate can be used.
  • the height of the facing surface of the heat transfer member to the battery cell does not match, so when fixing the battery block to the cooling plate, the heat transfer member A heat transfer member that is compressed and fits in the gap GP is used.
  • a plurality of heat transfer members having the same thickness and different thermal conductivity can be arranged on a cooling plate having a flat surface facing the battery cell.
  • the thickness is made in two stages, but it is needless to say that it can be adjusted in three stages or more as in the heat transfer member 40B shown in FIG. Absent. By dividing into a plurality of regions, finer adjustment is possible. Furthermore, in addition to a configuration in which the thickness is uniform for each region, a configuration in which the thickness is continuously changed as in the heat transfer member 40C illustrated in FIG. 16 may be employed. The height can be changed by inclining the upper surface of the heat transfer member 40C, and the cooling capacity can be continuously changed in accordance with the state in which the temperature difference between the battery cells is continuously changed.
  • the heat transfer member in the center portion is made of a first material having a high thermal conductivity
  • the heat transfer member in the surrounding portion is made of a second material having a lower heat conductivity.
  • the center is opened and the elliptical 1st raw material shape
  • the heat transfer member is in the form of a sheet, but is not limited thereto, and may be in the form of a paste, for example.
  • the paste-like heat transfer member can avoid a situation in which a space between the bottom surface of the battery cell outer can and the top surface of the cooling plate is filled without any gap and a heat insulating layer such as an air layer is formed.
  • attaches a battery cell and a cooling plate can also be used as a heat-transfer member.
  • uncured resin is applied to the bottom surface of the battery cell outer can and the top surface of the cooling plate, and the two are bonded together. Thereby, fixation of a battery block and a thermal coupling state are realizable.
  • the battery block is configured by interposing a separator between the battery cells, but the separator can be omitted.
  • the separator can be omitted.
  • an insulating layer such as a shrink tube
  • a short circuit between adjacent battery cells can be avoided even if the battery cells are stacked.
  • a spacer is separately arranged between the bottom surface of the battery cell and the cooling plate to form a space for arranging the heat transfer member.
  • the spacer may be omitted, and the battery cell may be directly fixed on the cooling plate with the heat transfer member interposed.
  • the cooling plate is arranged on the battery block.
  • the present invention is not limited to this configuration.
  • the cooling plate can be arranged on the side surface of the rectangular battery cell.
  • the configuration for reducing the thermal resistance of the central portion of the battery cell has been described.
  • the configuration is not limited to this configuration, and for example, the configuration can be configured to reduce one of the thermal resistances.
  • the heat resistance of the heat transfer member facing the inflow side (left side refrigerant path 3 in FIG. 22) of the refrigerant flow path 3 arranged at both ends of the cooling plate 30 is increased, and the outflow side (FIG. In FIG. 22, the thickness of the heat transfer member 40D is changed so that the heat resistance of the heat transfer member facing the right refrigerant path 3) is lowered.
  • the thermal resistance is increased in the side region of the battery cell 1 facing the refrigerant path 3 on the inflow side.
  • the thickness on the right side of the heat transfer member 40D is reduced to reduce the thermal resistance on the outflow side of the refrigerant path 3.
  • the heat resistance is increased to suppress the temperature decrease, and on the outflow side, the heat exchange proceeds and the refrigerant is cooled by the higher temperature. Therefore, the temperature difference between the two can be reduced by reducing the thermal resistance and increasing the cooling of the battery cells.
  • the heat transfer member 40D is composed of three members.
  • the present invention is not limited to this, and the thickness change may be made finer by using two members or by using four or more members.
  • the thickness can be changed continuously.
  • the example in which the heat conduction state is changed on one cooling plate 30 has been described.
  • the heat conduction coefficient of the heat transfer member of each cooling plate By changing, temperature variation between different cooling plates can be suppressed.
  • the material of the heat transfer member used in the cooling plate is changed, the thickness is changed, or the heat resistance of the heat transfer member used in each cooling plate is partially changed as described above. May be. (Water cooling)
  • cooling using a refrigerant in which water or a coolant is circulated can be employed as described above.
  • the coolant used for water cooling may be cooled with a refrigerant.
  • an existing cooling mechanism used for an indoor air conditioner or the like can be used for cooling the coolant.
  • a cooling mechanism employing such a configuration is shown in FIG.
  • the cooling mechanism shown in this figure includes a first cooling mechanism 60 that cools the cooling plate 30C with a coolant by water cooling, and a second cooling mechanism 70 for cooling the vehicle interior that uses a refrigerant such as an indoor air conditioner. Connected with.
  • a pump 61 In the first cooling mechanism 60, a pump 61, a three-way valve 64, an intermediate heat exchanger 67, a heater 66, and a cooling plate 30C are arranged in a first circulation path 65 indicated by a thick line. Further, the radiator 62 is also connected through the three-way valve 64. The radiator 62 is air-cooled by the outside air, and when the outside air temperature is low, the three-way valve 64 is switched from the intermediate heat exchanger 67 to the radiator 62 side, and energy consumption required for cooling such as power of the compressor 76 described later can be suppressed.
  • the heater 66 is a member for adjusting the temperature by heating the coolant.
  • the second cooling mechanism 70 is provided with a compressor 76, an intermediate heat exchanger 67, an evaporator 71, and a condenser 77 in a second circulation path 75 indicated by a thin line.
  • the intermediate heat exchanger 67 and the evaporator 71 are connected in parallel via expansion valves 73 and 72, respectively.
  • a fan 63 is in close proximity to the condenser 77.
  • the fan 63 can also be used for heat dissipation of the radiator 62.
  • water containing antifreeze is used as the coolant
  • HFC is used as the refrigerant.
  • the coolant can be cooled more efficiently using the existing cooling mechanism, There is an advantage that the battery block can be cooled stably.
  • the temperature variation between the battery cells can be reduced by adjusting the thermal conductance between the battery cell 1 and the cooling plate 30.
  • a power supply device can be used as an in-vehicle power supply.
  • an electric vehicle such as a hybrid vehicle or a plug-in hybrid vehicle that runs with both an engine and a motor, or an electric vehicle that runs only with a motor can be used, and it is used as a power source for these vehicles. . (Power supply for hybrid vehicles)
  • FIG. 17 shows an example in which a power supply device is mounted on a hybrid vehicle that runs with both an engine and a motor.
  • a vehicle HV equipped with the power supply device shown in this figure includes an engine 96 and a travel motor 93 that travel the vehicle HV, a power supply device 100 that supplies power to the motor 93, and a generator that charges a battery of the power supply device 100.
  • the power supply apparatus 100 is connected to a motor 93 and a generator 94 via a DC / AC inverter 95.
  • the vehicle HV travels by both the motor 93 and the engine 96 while charging / discharging the battery of the power supply device 100.
  • the motor 93 is driven to drive the vehicle when the engine efficiency is low, for example, during acceleration or low-speed driving.
  • the motor 93 is driven by power supplied from the power supply device 100.
  • the generator 94 is driven by the engine 96 or is driven by regenerative braking when the vehicle is braked to charge the battery of the power supply device 100. (Power
  • FIG. 18 shows an example in which a power supply device is mounted on an electric vehicle that runs only with a motor.
  • a vehicle EV equipped with the power supply device shown in FIG. 1 is a motor 93 for running the vehicle EV, a power supply device 100 that supplies power to the motor 93, and a generator 94 that charges a battery of the power supply device 100.
  • the motor 93 is driven by power supplied from the power supply device 100.
  • the generator 94 is driven by energy when regeneratively braking the vehicle EV and charges the battery of the power supply device 100. (Power storage device for power storage)
  • this power supply device can be used not only as a power source for a moving body but also as a stationary power storage facility.
  • a power source for households and factories a power supply system that is charged with solar power or midnight power and discharged when necessary, or a street light that is charged with solar power during the day and discharged at night It can also be used as a backup power source for traffic lights that are driven in the event of a power failure.
  • FIG. The power supply apparatus 100 shown in this figure forms a battery unit 82 by connecting a plurality of battery packs 81 in a unit shape. Each battery pack 81 has a plurality of battery cells connected in series and / or in parallel. Each battery pack 81 is controlled by a power controller 84.
  • the power supply apparatus 100 drives the load LD after charging the battery unit 82 with the charging power supply CP. For this reason, the power supply apparatus 100 includes a charging mode and a discharging mode.
  • the load LD and the charging power source CP are connected to the power supply device 100 via the discharging switch DS and the charging switch CS, respectively.
  • ON / OFF of the discharge switch DS and the charge switch CS is switched by the power supply controller 84 of the power supply apparatus 100.
  • the power supply controller 84 switches the charging switch CS to ON and the discharging switch DS to OFF to permit charging from the charging power supply CP to the power supply apparatus 100.
  • the power controller 84 turns off the charging switch CS and turns on the discharging switch DS to discharge.
  • the mode is switched to permit discharge from the power supply apparatus 100 to the load LD.
  • the charge switch CS can be turned on and the discharge switch DS can be turned on to supply power to the load LD and charge the power supply device 100 at the same time.
  • the load LD driven by the power supply device 100 is connected to the power supply device 100 via the discharge switch DS.
  • the power supply controller 84 switches the discharge switch DS to ON, connects to the load LD, and drives the load LD with the power from the power supply apparatus 100.
  • the discharge switch DS a switching element such as an FET can be used. ON / OFF of the discharge switch DS is controlled by the power supply controller 84 of the power supply apparatus 100.
  • the power controller 84 also includes a communication interface for communicating with external devices. In the example of FIG. 19, the host device HT is connected in accordance with an existing communication protocol such as UART or RS-232C. Further, if necessary, a user interface for the user to operate the power supply system can be provided.
  • Each battery pack 81 includes a signal terminal and a power supply terminal.
  • the signal terminals include a pack input / output terminal DI, a pack abnormality output terminal DA, and a pack connection terminal DO.
  • the pack input / output terminal DI is a terminal for inputting / outputting signals from other pack batteries and the power supply controller 84
  • the pack connection terminal DO is for inputting / outputting signals to / from other pack batteries which are child packs.
  • the pack abnormality output terminal DA is a terminal for outputting the abnormality of the battery pack to the outside.
  • the power supply terminal is a terminal for connecting the battery packs 81 in series and in parallel.
  • the battery units 82 are connected to the output line OL via the parallel connection switch 85 and are connected in parallel to each other.
  • a vehicle power supply device and a vehicle including the power supply device according to the present invention are suitably used as a power supply device for a plug-in hybrid electric vehicle, a hybrid electric vehicle, an electric vehicle, or the like that can switch between an EV traveling mode and an HEV traveling mode. it can.
  • a backup power supply device that can be mounted on a rack of a computer server, a backup power supply device for a wireless base station such as a mobile phone, a power storage device for home use and a factory, a power supply for a street light, etc. It can also be used as appropriate for applications such as a backup power source for traffic lights.
  • the dustproof case is not limited to the case that houses the power supply device, and can be suitably used for other applications that require a dustproof structure.
  • Three-way valve 65 ... First circulation path 66 ... Heater 67 ... Intermediate heat exchanger 70 ... Second cooling mechanism 71 ... Evaporator 72 73 ... Expansion valve 75 ... Second circulation path 76 ... Compressor 77 ... Condenser 81 ... Battery pack 82 ... Battery unit 84 ... Power supply controller 85 ... Parallel connection switch 93 ... motor 94 ... generator 95 ... DC / AC inverter 96 ... engine 201 ... battery cell 202 ... battery block; 202A ... outward side battery; 202B ... return side battery 203 ... refrigerant flow path 204 ... cooling mechanism 205 ... electronic component case 230 ... Cooling plate HG ... Heat source; GP ... Gap; EV, HV ... Vehicle LD ... Load; CP ... Charging power supply; DS ... Discharge switch; CS ... Charge switch OL ... Output line;

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Secondary Cells (AREA)
  • Battery Mounting, Suspending (AREA)

Abstract

[Problem] To reduce a temperature difference between electrical cells on a cooling plate, and cool to a uniform state. [Solution] An electrical power supply comprising: a cell block (2) obtained by stacking a plurality of electrical cells (1), an external canister (11) being made of metal; a cooling plate (30) for cooling the cell block (2), the cooling plate connected to the cell block (2) in a heat-conducting state; and an insulating yet thermally conductive heat transfer member (40) interposed between the cooling plate (30) and the cell block (2); wherein a distribution of heat resistance of the heat transfer member(40) is adjusted according to a cooling capacity at which the electrical cell (1) is cooled by the cooling plate (30) so that, in a region of high cooling capacity, the heat resistance of the heat transfer member (40) in contact with the electrical cell (1) is higher than the heat resistance of the heat transfer member (40) in contact with the electrical cell (1) in a region of low cooling capacity.

Description

[規則37.2に基づきISAが決定した発明の名称] 強制冷却式積層型蓄電池による電源装置および車両[Name of invention determined by ISA based on Rule 37.2] Power supply device and vehicle using forced cooling stacked battery
 本発明は、複数の電池セルを積層した電池積層体を備える電源装置に関する。 The present invention relates to a power supply device including a battery stack in which a plurality of battery cells are stacked.
 車両用の電源装置は、多数の電池セルを直列に接続して出力電圧を高く、出力電力を大きくしている。また、体積に対する充電容量を大きくすることから、多数の角形電池セルを積層状態に配置する電池積層体を備える電源装置が開発されている。この電源装置は、大電流で放電されて車両を加速し、走行させるため、放電電流が100A以上と極めて大きくなる。さらに車両用の電源装置は、車両の回生制動で充電されることから充電電流も相当に大きくなる。大電流で充放電される組電池は発熱して、電池を劣化させる原因となる。発熱した電池の劣化を防止するために、車両用の組電池は強制的に冷却空気を送風して冷却することで、温度上昇を防止している。 A vehicle power supply device has a large number of battery cells connected in series to increase output voltage and output power. Further, in order to increase the charging capacity with respect to the volume, a power supply device including a battery stack in which a large number of rectangular battery cells are arranged in a stacked state has been developed. Since this power supply device is discharged with a large current to accelerate and drive the vehicle, the discharge current becomes extremely large at 100 A or more. Further, since the power supply device for a vehicle is charged by regenerative braking of the vehicle, the charging current is considerably increased. The assembled battery charged and discharged with a large current generates heat and causes deterioration of the battery. In order to prevent deterioration of the battery that has generated heat, the assembled battery for the vehicle is forced to blow cooling air to cool it, thereby preventing temperature rise.
 一方、冷却能力を高めると共に、電池セルを均一に冷却するため、冷媒を用いた冷却方式も提案されている(特許文献1~3参照)。この冷却方式は、図20に示すように、冷却プレート230の上に電池ブロック202を載置して熱結合すると共に、冷却プレート230に冷媒を循環させて冷却している。具体的には、図20の車両用組電池は、複数の電池セル201を接続した電池ブロック202と、電池ブロック202に熱結合されて電池セル201を冷却する冷媒流路203と、冷媒流路203に冷媒を供給する冷却機構204と、電池ブロック202に接続される電子回路を内蔵する電子部品ケース205とを備えている。冷却機構204から冷媒流路203に供給される冷媒で、電池ブロック202を冷却する。この方式であれば、冷却空気を循環させる方式よりも、より均一に電池セルを冷却できるものと期待されていた。 On the other hand, a cooling method using a refrigerant has been proposed in order to increase the cooling capacity and uniformly cool the battery cells (see Patent Documents 1 to 3). In this cooling method, as shown in FIG. 20, the battery block 202 is placed on the cooling plate 230 and thermally coupled thereto, and the refrigerant is circulated through the cooling plate 230 to be cooled. Specifically, the assembled battery for a vehicle in FIG. 20 includes a battery block 202 to which a plurality of battery cells 201 are connected, a refrigerant channel 203 that is thermally coupled to the battery block 202 and cools the battery cells 201, and a refrigerant channel. A cooling mechanism 204 that supplies a refrigerant to 203 and an electronic component case 205 containing an electronic circuit connected to the battery block 202 are provided. The battery block 202 is cooled by the refrigerant supplied from the cooling mechanism 204 to the refrigerant flow path 203. With this method, it was expected that the battery cells could be cooled more uniformly than the method of circulating cooling air.
特開2010-15788号公報JP 2010-15788 A 特開平6-338334号公報JP-A-6-338334 特開平5-151980号公報JP-A-5-151980
 このような冷媒循環式の冷却方式を用いて複数の電池ブロックを冷却するには、各電池ブロックを設置した冷却プレートに順次、冷媒を循環させる。この場合の冷媒の配管方式として、図8に示すように冷媒の配管を並列に接続した並列型と、図7に示すように直列に接続した直列型が考えられる。この内、並列接続型では熱交換前の冷媒を各冷却プレート30に供給できるため、電池セル間の温度ばらつきを抑制できる。 In order to cool a plurality of battery blocks using such a refrigerant circulation type cooling method, the refrigerant is circulated sequentially through the cooling plate in which each battery block is installed. As a refrigerant piping system in this case, a parallel type in which refrigerant pipes are connected in parallel as shown in FIG. 8 and a serial type in which the refrigerant pipes are connected in series as shown in FIG. 7 can be considered. Among these, in the parallel connection type, since the refrigerant before heat exchange can be supplied to each cooling plate 30, temperature variation between battery cells can be suppressed.
 しかしながら、車両に搭載する電源装置など、設置スペース等に制約がある場合は、このような並列に配管接続することが困難となることがある。この場合は、配管を直列に接続することとなるが、この方式では冷媒が熱交換されることで冷媒の温度が上昇する結果、冷媒が移送されるにつれて温度が上昇する結果、冷却能力が相対的に低下することとなり、結果として冷媒の配管の位置によって冷却能力に差が生じ、これによって冷却される電池セルに温度ばらつきが生じることがあった。 However, when there is a restriction on the installation space, such as a power supply device mounted on a vehicle, it may be difficult to connect the pipes in parallel. In this case, the pipes are connected in series. In this system, the temperature of the refrigerant rises as a result of the heat exchange of the refrigerant. As a result, the temperature rises as the refrigerant is transferred. As a result, there is a difference in cooling capacity depending on the position of the refrigerant piping, which may cause temperature variations in the battery cells to be cooled.
 このような冷却能力の差を低減すべく、図20の車両用組電池では、冷媒で冷却される電池ブロック202は、冷媒流路203の往路側に熱結合している往路側電池202Aと、冷媒流路203の復路側に熱結合している復路側電池202Bに区画すると共に、発熱源である電子部品ケース205を往路側電池202Aに接近して配設している。この構造を実現するため、2列の電池ブロック202が、冷媒流路203の往路側の上に配置されて、往路側の冷媒流路203に熱結合するように配置される往路側電池202Aと、冷媒流路203の復路側の上に配置されて、復路側の冷媒流路203に熱結合するように配置される復路側電池202Bに区画されている。 In order to reduce such a difference in cooling capacity, in the assembled battery for a vehicle in FIG. 20, the battery block 202 cooled by the refrigerant includes an outward path battery 202 </ b> A that is thermally coupled to the outward path side of the refrigerant flow path 203, and A return path battery 202B that is thermally coupled to the return path side of the refrigerant flow path 203 is partitioned, and an electronic component case 205 that is a heat source is disposed close to the forward path battery 202A. In order to realize this structure, two rows of battery blocks 202 are disposed on the forward path side of the refrigerant flow path 203 and are configured to be thermally coupled to the forward path refrigerant path 203. The battery is disposed on the return path side of the refrigerant flow path 203 and is divided into a return path side battery 202B that is disposed so as to be thermally coupled to the refrigerant flow path 203 on the return path side.
 しかしながら、常にこのような配置が可能となる訳でなく、冷媒流路の配管パターンや電池ブロックの配置状態、電子部品ケースの大きさや発熱量を適切に組み合わせることが可能となるには、スペースや再配置の柔軟性が要求されるなど、制約が伴う。また電子部品ケース等の発熱源が存在しない場合も考えられる。 However, such an arrangement is not always possible, and in order to be able to appropriately combine the piping pattern of the refrigerant flow path, the arrangement state of the battery block, the size of the electronic component case, and the heat generation amount, There are restrictions such as the need for flexibility. Further, there may be a case where a heat source such as an electronic component case does not exist.
 あるいは逆に発熱源の発熱量が大きすぎる場合には、却って一部の電池セルを加熱し過ぎてしまうことも考えられる。例えば図13の平面図に示すように発熱源HGの近傍に電源装置を配置するような態様によっては、電源装置に含まれる電池セルの内、図においてクロスハッチングで示す領域のように発熱源に近い電池セル程加熱され易くなる。 Or, conversely, if the heat generation amount of the heat source is too large, it may be considered that some of the battery cells are heated too much. For example, as shown in the plan view of FIG. 13, depending on the mode in which the power supply device is arranged in the vicinity of the heat generation source HG, the battery cell included in the power supply device may be used as a heat generation source as in the region indicated by cross hatching in the figure. Nearer battery cells are more likely to be heated.
 このように、電池セル間の温度差を抑制して均一に冷却するための調整は必ずしも容易でない。この結果、電池セルの配置場所によって電池セル間で温度ばらつきが生じることがあった。以上のような様々な理由で電池セル間で冷却のばらつきが生じると、電池セルの劣化の度合いが異なり、好ましくない。特に劣化した電池セルの劣化がさらに進むため、電源装置の性能が劣化した電池セルによって制限を受けることとなる。このため、極力均一に電池セルの冷却を実現可能な電源装置の冷却機構が求められていた。 As described above, adjustment for suppressing the temperature difference between the battery cells and cooling uniformly is not always easy. As a result, temperature variation may occur between battery cells depending on the location of the battery cells. If the variation in cooling occurs between the battery cells for various reasons as described above, the degree of deterioration of the battery cells differs, which is not preferable. In particular, since the deterioration of the deteriorated battery cell further progresses, the battery cell with the deteriorated performance of the power supply device is limited. For this reason, the cooling mechanism of the power supply device which can implement | achieve cooling of a battery cell as uniformly as possible was calculated | required.
 本発明は、従来のこのような問題点に鑑みてなされたものである。本発明の主な目的は、冷却プレート上に電池ブロックを載置する冷却方式において、電池セルを均一な状態で冷却可能な電源装置を提供することにある。 The present invention has been made in view of such conventional problems. A main object of the present invention is to provide a power supply device capable of cooling battery cells in a uniform state in a cooling system in which a battery block is placed on a cooling plate.
課題を解決するための手段及び発明の効果Means for Solving the Problems and Effects of the Invention
 上記の目的を達成するために、本発明の第1の側面に係る電源装置によれば、外装缶11を金属製とする複数の電池セル1を積層してなる電池ブロック2と、前記電池ブロック2と熱伝導状態で接続され、前記電池ブロック2を冷却するための冷却プレート30と、前記冷却プレート30と電池ブロック2との間に介在される、絶縁性を備えつつ熱伝導性を有する伝熱部材40と、を備える電源装置であって、前記冷却プレート30で前記電池セル1を冷却する冷却能力に応じて、冷却能力の高い部位では該電池セル1と接する前記伝熱部材40の熱抵抗を、冷却能力の低い部位の電池セル1と接する伝熱部材40の熱抵抗よりも高くするよう、前記伝熱部材40の熱抵抗の分布を調整できる。これにより、冷却プレートによって冷却され難い位置に配置された電池セルが、相対的に冷却性能が劣る結果、電池セルの劣化が他の電池セルよりも進み、劣化度合いが電池セル間で不均一となる事態を、冷却プレートによって冷却されやすい位置に配置された電池セルに関して、伝熱部材の熱抵抗を相対的に低下させることで、全体としての冷却能力を一様に調整でき、電池セル間の冷却の不均一に起因する劣化を抑制できる利点が得られる。 In order to achieve the above object, according to the power supply device of the first aspect of the present invention, the battery block 2 formed by laminating a plurality of battery cells 1 in which the outer can 11 is made of metal, and the battery block 2 and a cooling plate 30 for cooling the battery block 2, and interposed between the cooling plate 30 and the battery block 2. A heat supply device comprising: a heat member; and a heat capacity of the heat transfer member in contact with the battery cell in a portion having a high cooling capacity in accordance with a cooling capacity for cooling the battery cell by the cooling plate. The distribution of the heat resistance of the heat transfer member 40 can be adjusted so that the resistance is higher than the heat resistance of the heat transfer member 40 that is in contact with the battery cell 1 in a portion having a low cooling capacity. As a result, the battery cells arranged at positions that are difficult to be cooled by the cooling plate are relatively inferior in cooling performance. As a result, the deterioration of the battery cells proceeds more than the other battery cells, and the degree of deterioration is not uniform among the battery cells. With respect to the battery cells arranged at positions that are easily cooled by the cooling plate, the overall cooling capacity can be adjusted uniformly by lowering the thermal resistance of the heat transfer member relatively, and between the battery cells. There is an advantage that deterioration due to non-uniform cooling can be suppressed.
 また第2の側面に係る電源装置によれば、前記冷却プレート30が、内部に冷媒を循環させる配管を備えており、冷媒を前記配管に循環させることで冷却能力を発揮するよう構成できる。これにより、冷媒を用いた効果的かつ直接的な冷却を図ることができる。 Further, according to the power supply device according to the second aspect, the cooling plate 30 includes a pipe for circulating the refrigerant therein, and can be configured to exhibit the cooling capacity by circulating the refrigerant through the pipe. Thereby, the effective and direct cooling using a refrigerant | coolant can be aimed at.
 さらに第3の側面に係る電源装置によれば、前記電池ブロック2を載置した冷却プレート30を複数備えると共に、各冷却プレート30の配管を互いに直列に接続できる。これにより、複数の冷却プレート同士を接続することで冷却プレート間での冷媒の配管作業を容易にでき、省スペースにおいても設置可能な冷却機構を実現できる。 Furthermore, according to the power supply device according to the third aspect, a plurality of cooling plates 30 on which the battery block 2 is placed can be provided, and the pipes of the cooling plates 30 can be connected to each other in series. Thereby, the piping operation of the refrigerant | coolant between cooling plates can be made easy by connecting several cooling plates, and the cooling mechanism which can be installed also in space saving is realizable.
 さらにまた第4の側面に係る電源装置によれば、さらに前記電池セル1同士を積層して構成される前記電池ブロック2の、該電池セル1間に介在されて該電池セル1同士を絶縁するセパレータ5を備えており、前記セパレータ5の一部が、前記冷却プレート30と電池セル1の底面の間に介在され、該冷却プレート30と電池セル1とを離間させると共に、該離間されて生じた隙間に前記伝熱部材40を配置できる。これにより、電池セルの底面を効果的に絶縁しつつ、伝熱部材を介して熱結合状態に電池セルと冷却プレートとを接続できる。 Furthermore, according to the power supply device which concerns on a 4th side surface, it intervenes between this battery cell 1 of the said battery block 2 comprised by laminating | stacking the said battery cells 1, and insulates these battery cells 1 mutually. A separator 5 is provided, and a part of the separator 5 is interposed between the cooling plate 30 and the bottom surface of the battery cell 1 to separate the cooling plate 30 from the battery cell 1 and to be generated by the separation. The heat transfer member 40 can be disposed in the gap. Thereby, the battery cell and the cooling plate can be connected to each other in a thermally coupled state via the heat transfer member while effectively insulating the bottom surface of the battery cell.
 さらにまた第5の側面に係る電源装置によれば、前記伝熱部材40を、シート状に構成できる。これによりシート状の熱伝導部材を電池ブロックと冷却プレートとの間に容易に介在させることができる。 Furthermore, according to the power supply device according to the fifth aspect, the heat transfer member 40 can be configured in a sheet shape. Thereby, a sheet-like heat conductive member can be easily interposed between the battery block and the cooling plate.
 さらにまた第6の側面に係る電源装置によれば、前記伝熱部材40が、厚さを変更することで熱抵抗の分布を変化させることができる。これにより、容易に熱抵抗の分布を部分的に変更できる。 Furthermore, according to the power supply device according to the sixth aspect, the heat transfer member 40 can change the distribution of thermal resistance by changing the thickness. Thereby, the distribution of thermal resistance can be easily changed partially.
 さらにまた第7の側面に係る電源装置によれば、前記伝熱部材40が、複数枚を積層して構成されており、積層枚数を変更することで厚さを変更できる。これにより、容易に伝熱部材の厚さすなわち熱抵抗を調整できる。 Furthermore, according to the power supply device according to the seventh aspect, the heat transfer member 40 is formed by stacking a plurality of sheets, and the thickness can be changed by changing the number of stacked sheets. Thereby, the thickness of the heat transfer member, that is, the thermal resistance can be easily adjusted.
 さらにまた第8の側面に係る電源装置によれば、前記伝熱部材40が、部分的に熱伝導率の異なる材質を用いることで熱抵抗の分布を変化させることができる。これにより、伝熱部材の高さを一定に維持しつつも熱抵抗を部分的に変化させることが可能となる。 Furthermore, according to the power supply device according to the eighth aspect, the heat transfer member 40 can change the distribution of thermal resistance by using materials having partially different thermal conductivities. This makes it possible to partially change the thermal resistance while maintaining the height of the heat transfer member constant.
 さらにまた第9の側面に係る電源装置によれば、前記冷却プレート30が、内部に冷却液を循環させる配管を備えており、冷却液を前記配管に循環させることで冷却能力を発揮するよう構成できる。これにより、電池ブロックを水冷式で冷却できる。 Furthermore, according to the power supply device according to the ninth aspect, the cooling plate 30 includes a pipe for circulating the coolant inside, and is configured to exhibit the cooling capacity by circulating the coolant through the pipe. it can. Thereby, a battery block can be cooled by a water cooling system.
 さらにまた第10の側面に係る電源装置によれば、さらに冷却液を冷却するための中間熱交換器を備えており、前記中間熱交換器を、蒸発器及び凝縮器と接続できる。これにより、既存の冷却機構を用いて電池ブロックを冷却する冷却水を冷却でき、安価で信頼性の高い冷却システムが実現できる。 Furthermore, the power supply device according to the tenth aspect further includes an intermediate heat exchanger for cooling the coolant, and the intermediate heat exchanger can be connected to an evaporator and a condenser. Thereby, the cooling water which cools a battery block can be cooled using the existing cooling mechanism, and an inexpensive and highly reliable cooling system can be realized.
 さらにまた第11の側面に係る電源装置を備える車両によれば、上記いずれかの電源装置を備えることができる。 Furthermore, according to the vehicle including the power supply device according to the eleventh aspect, any one of the power supply devices described above can be provided.
本発明の一実施の形態に係る電源装置を示す斜視図である。It is a perspective view which shows the power supply device which concerns on one embodiment of this invention. 図1のII-II線における縦断面図である。FIG. 2 is a longitudinal sectional view taken along line II-II in FIG. 図1のIII-III線における横断面図である。FIG. 3 is a cross-sectional view taken along line III-III in FIG. 冷媒流路の一例を示す模式水平断面図である。It is a model horizontal sectional view which shows an example of a refrigerant flow path. 冷媒流路の他の例を示す模式水平断面図である。It is a model horizontal sectional view which shows the other example of a refrigerant flow path. 一の冷却プレート上に複数の電池ブロックを固定する状態を示す分解斜視図である。It is a disassembled perspective view which shows the state which fixes a some battery block on one cooling plate. 冷媒の配管を直列に接続した例を示す模式図である。It is a schematic diagram which shows the example which connected the piping of the refrigerant | coolant in series. 冷媒の配管を並列に接続した例を示す模式図である。It is a schematic diagram which shows the example which connected piping of the refrigerant | coolant in parallel. 冷媒の配管を直列接続する他の例を示す模式図である。It is a schematic diagram which shows the other example which connects the piping of a refrigerant | coolant in series. 冷媒の配管を直列接続するさらに他の例を示す模式図である。It is a schematic diagram which shows the further another example which connects the piping of a refrigerant | coolant in series. 図6の電池ブロックにおいて配管の配置によって温度が高くなる部分を示す斜視図である。It is a perspective view which shows the part from which the temperature becomes high by arrangement | positioning of piping in the battery block of FIG. 図6の電池ブロックにおいて電池ブロックの近接配置によって温度が高くなる部分を示す斜視図である。FIG. 7 is a perspective view showing a portion where the temperature increases due to the proximity of the battery blocks in the battery block of FIG. 6. 発熱源の近傍に電源装置を配置する例を示す平面図である。It is a top view which shows the example which arrange | positions a power supply device in the vicinity of a heat source. 図3の分解断面図である。FIG. 4 is an exploded cross-sectional view of FIG. 3. 変形例に係る電源装置を示す分解断面図である。It is an exploded sectional view showing a power supply device concerning a modification. 他の変形例に係る電源装置を示す分解断面図である。It is an exploded sectional view showing a power supply device concerning other modifications. エンジンとモータで走行するハイブリッド車に電源装置を搭載する例を示すブロック図である。It is a block diagram which shows the example which mounts a power supply device in the hybrid vehicle which drive | works with an engine and a motor. モータのみで走行する電気自動車に電源装置を搭載する例を示すブロック図である。It is a block diagram which shows the example which mounts a power supply device in the electric vehicle which drive | works only with a motor. 蓄電用の電源装置に適用する例を示すブロック図である。It is a block diagram which shows the example applied to the power supply device for electrical storage. 従来の冷媒を用いた冷却方式を示す模式図である。It is a schematic diagram which shows the cooling system using the conventional refrigerant | coolant. 他の冷却機構を示す模式図である。It is a schematic diagram which shows another cooling mechanism. 変形例に係る電源装置の分解断面図である。It is an exploded sectional view of a power supply device concerning a modification. 他の変形例に係る電源装置の分解断面図である。It is an exploded sectional view of a power supply device concerning other modifications.
 以下、本発明の実施の形態を図面に基づいて説明する。ただし、以下に示す実施の形態は、本発明の技術思想を具体化するための電源装置及びこれを用いた車両を例示するものであって、本発明は電源装置及びこれを用いた車両を以下のものに特定しない。なお、特許請求の範囲に示される部材を、実施の形態の部材に特定するものでは決してない。特に実施の形態に記載されている構成部材の寸法、材質、形状、その相対的配置等は特に特定的な記載がない限りは、本発明の範囲をそれのみに限定する趣旨ではなく、単なる説明例にすぎない。なお、各図面が示す部材の大きさや位置関係等は、説明を明確にするため誇張していることがある。さらに以下の説明において、同一の名称、符号については同一もしくは同質の部材を示しており、詳細説明を適宜省略する。さらに、本発明を構成する各要素は、複数の要素を同一の部材で構成して一の部材で複数の要素を兼用する態様としてもよいし、逆に一の部材の機能を複数の部材で分担して実現することもできる。また、一部の実施例、実施形態において説明された内容は、他の実施例、実施形態等に利用可能なものもある。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. However, the embodiment described below exemplifies a power supply device for embodying the technical idea of the present invention and a vehicle using the same, and the present invention describes the power supply device and a vehicle using the power supply device as follows. Not specific to anything. In addition, the member shown by the claim is not what specifies the member of embodiment. In particular, the dimensions, materials, shapes, relative arrangements, and the like of the constituent members described in the embodiments are not intended to limit the scope of the present invention only to the description unless otherwise specified. It's just an example. Note that the size, positional relationship, and the like of the members shown in each drawing may be exaggerated for clarity of explanation. Furthermore, in the following description, the same name and symbol indicate the same or the same members, and detailed description thereof will be omitted as appropriate. Furthermore, each element constituting the present invention may be configured such that a plurality of elements are constituted by the same member and the plurality of elements are shared by one member, and conversely, the function of one member is constituted by a plurality of members. It can also be realized by sharing. In addition, the contents described in some examples and embodiments may be used in other examples and embodiments.
 図1~図16に基づいて、本発明の一実施の形態に係る電源装置として、車載用の電源装置に適用した例を説明する。これらの図に示す電源装置は、主として、エンジンとモータの両方で走行するハイブリッド車や、モータのみで走行する電気自動車などの電動車両の電源に最適である。ただ、本発明の電源装置は、ハイブリッド車や電気自動車以外の車両に使用し、また、電動車両以外の大出力が要求される用途にも使用できる。 1 to FIG. 16, an example in which the present invention is applied to an in-vehicle power supply device will be described as a power supply device according to an embodiment of the present invention. The power supply apparatus shown in these drawings is most suitable for the power source of an electric vehicle such as a hybrid vehicle that travels by both an engine and a motor and an electric vehicle that travels by only a motor. However, the power supply device of the present invention can be used for vehicles other than hybrid vehicles and electric vehicles, and can also be used for applications requiring high output other than electric vehicles.
 図1の斜視図、図2の縦断面図及び図3の横断面図に示す車両用の電源装置100は、複数の電池セル1を直列または並列に複数接続した電池ブロック2と、この電池ブロック2を上面に熱結合状態に固定した冷却プレート30と、冷却プレート30と電池ブロック2との間に介在される伝熱部材40とを備える。冷却プレート30は、内部に冷媒を流すための冷媒流路3を備えている。また冷却プレート30には、冷媒流路3に冷媒を供給する冷却機構4が接続される。この電源装置は、冷却機構4から冷媒流路3に供給される冷媒によって電池ブロック2を冷却する。
(電池ブロック2)
A vehicle power supply device 100 shown in the perspective view of FIG. 1, the longitudinal sectional view of FIG. 2, and the transverse sectional view of FIG. 3 includes a battery block 2 in which a plurality of battery cells 1 are connected in series or in parallel, and the battery block. And a heat transfer member 40 interposed between the cooling plate 30 and the battery block 2. The cooling plate 30 includes a refrigerant flow path 3 for flowing a refrigerant therein. A cooling mechanism 4 that supplies a refrigerant to the refrigerant flow path 3 is connected to the cooling plate 30. This power supply device cools the battery block 2 with the refrigerant supplied from the cooling mechanism 4 to the refrigerant flow path 3.
(Battery block 2)
 電池ブロック2は、複数の電池セル1をセパレータ5を介して積層するように配置して、両端をエンドプレートで挟着して固定している。この電池ブロック2は、複数の電池セル1を互いに隣接して配設して、隣接する電池セル1の電極端子を接続している。隣接する電池セル1の電極端子は、互いに積層されて、積層部を連結具で固定して電気接続している。 The battery block 2 is arranged such that a plurality of battery cells 1 are stacked with separators 5 interposed therebetween, and both ends are sandwiched and fixed by end plates. In the battery block 2, a plurality of battery cells 1 are arranged adjacent to each other, and electrode terminals of the adjacent battery cells 1 are connected. The electrode terminals of the adjacent battery cells 1 are stacked on each other, and are electrically connected by fixing the stacked portion with a connector.
 図1の電池ブロック2は、電池セル1を角形電池としている。角形電池は円筒型電池と比較して効率よく配置でき、単位体積当たりのエネルギー密度を高くできる。特に、車載用途では省スペース化の要求が高く、好ましい。このような電池セル1には、リチウムイオン二次電池等、角形の二次電池が利用できる。またニッケル水素電池等の二次電池とすることもできるし、二次電池を円筒形としても良い。電池セル1の電極端子は、直列又は並列に接続される。この例では、電池セル1の外装缶を金属製としている。 In the battery block 2 in FIG. 1, the battery cell 1 is a square battery. The prismatic battery can be arranged more efficiently than the cylindrical battery, and the energy density per unit volume can be increased. Particularly, in-vehicle use, there is a high demand for space saving, which is preferable. For such a battery cell 1, a rectangular secondary battery such as a lithium ion secondary battery can be used. Moreover, it can also be set as secondary batteries, such as a nickel metal hydride battery, and a secondary battery is good also as a cylindrical shape. The electrode terminals of the battery cell 1 are connected in series or in parallel. In this example, the outer can of the battery cell 1 is made of metal.
 隣接する電池セル1の間には、セパレータ5を挟着して互いに絶縁している。セパレータ5は、電池セル1の外形に等しい大きさの四角形で、隣接する電池セル1に挟まれて絶縁する。セパレータ5は耐熱性、断熱性に優れた絶縁材で構成され、好ましくは軽量で安価な樹脂により形成される。例えば熱伝導率の小さい(望ましくは0.5W/m以下)、ポリプロピレン、ポリウレタン等の合成樹脂が利用できる。これにより、セパレータ5で電池セル1を保護すると共に、隣接する電池セル1同士を絶縁して断熱する。 A separator 5 is sandwiched between adjacent battery cells 1 to insulate them from each other. The separator 5 is a quadrangle having the same size as the outer shape of the battery cell 1 and is sandwiched and insulated between adjacent battery cells 1. The separator 5 is made of an insulating material having excellent heat resistance and heat insulation, and is preferably made of a light and inexpensive resin. For example, a synthetic resin such as polypropylene or polyurethane having a low thermal conductivity (preferably 0.5 W / m or less) can be used. Thereby, while protecting the battery cell 1 with the separator 5, the adjacent battery cells 1 are insulated and insulated.
 電池ブロック2は、セパレータ5と電池セル1を交互に積層して、両端面を一対のエンドプレートで挟着して固定される。エンドプレートは、全体をプラスチックで成形し、あるいは金属をインサート成形して補強して製作される。エンドプレートは、外形を電池セル1の外形として、両端面で露出する電池セル1を被覆できる大きさに形成している。一対のエンドプレートはタイロッド(図示せず)で連結されて、間に積層している電池セル1とセパレータ5を挟着して固定している。
(冷却プレート30)
The battery block 2 is formed by alternately laminating separators 5 and battery cells 1 and sandwiching and fixing both end surfaces between a pair of end plates. The end plate is manufactured by molding the whole with plastic or reinforcing it by insert molding metal. The end plate is formed in a size capable of covering the battery cell 1 exposed at both end surfaces, with the outer shape being the outer shape of the battery cell 1. The pair of end plates are connected by tie rods (not shown), and the battery cells 1 and the separators 5 stacked therebetween are sandwiched and fixed.
(Cooling plate 30)
 電池ブロック2は、冷却プレート30上にねじ止め等の方法で固定される。冷却プレート30は、板状の金属板で構成され、内部に冷媒を流すための冷媒流路3を設けている。冷媒流路3は、銅やアルミニウム等で構成され、この冷媒流路3に液化された冷媒を供給し、冷媒を冷媒流路3で気化させて、冷媒の気化熱で強制的に冷却して、伝熱部材40を介して電池セル1を冷却する。この冷媒流路3は、外部の冷却機構4と接続されている。
(冷却機構4)
The battery block 2 is fixed on the cooling plate 30 by a method such as screwing. The cooling plate 30 is composed of a plate-shaped metal plate, and is provided with a refrigerant flow path 3 for flowing a refrigerant therein. The refrigerant flow path 3 is made of copper, aluminum, or the like, and supplies the liquefied refrigerant to the refrigerant flow path 3, vaporizes the refrigerant in the refrigerant flow path 3, and forcibly cools with the heat of vaporization of the refrigerant. The battery cell 1 is cooled via the heat transfer member 40. This refrigerant flow path 3 is connected to an external cooling mechanism 4.
(Cooling mechanism 4)
 冷却プレート30を冷媒の気化熱で強制冷却する冷却機構4は、循環ポンプ21と放熱器22と、循環ポンプ21と放熱器22のファン23の運転を制御する制御回路20とを備える。循環ポンプ21は、液状の冷媒を冷媒経路3と放熱器22に循環させる。制御回路20は、電池ブロック2の温度を温度センサで検出して、検出温度が設定温度よりも高くなると循環ポンプ21を運転する。また、制御回路20は、冷媒の温度を温度センサで検出し、冷媒の温度が設定値よりも高くなると放熱器22のファン23を運転する。循環ポンプ21で冷媒経路3に循環される冷媒は、絶縁油や不凍液である。絶縁油には、シリコンオイル等が使用できる。なお、本明細書において冷媒による冷却には、水や冷却液を循環させる水冷も含む意味で使用する。 The cooling mechanism 4 that forcibly cools the cooling plate 30 with the heat of vaporization of the refrigerant includes a circulation pump 21, a radiator 22, and a control circuit 20 that controls the operation of the circulation pump 21 and the fan 23 of the radiator 22. The circulation pump 21 circulates the liquid refrigerant through the refrigerant path 3 and the radiator 22. The control circuit 20 detects the temperature of the battery block 2 with a temperature sensor, and operates the circulation pump 21 when the detected temperature becomes higher than the set temperature. The control circuit 20 detects the temperature of the refrigerant with a temperature sensor, and operates the fan 23 of the radiator 22 when the temperature of the refrigerant becomes higher than a set value. The refrigerant circulated to the refrigerant path 3 by the circulation pump 21 is insulating oil or antifreeze. Silicon oil or the like can be used as the insulating oil. In this specification, the cooling with the refrigerant is used in the meaning including water cooling in which water or a coolant is circulated.
 さらに冷却機構は、冷媒経路の内部で気化して気化熱で冷却するフレオン系の冷媒を冷媒経路に供給することもできる。このような冷却機構4Bを図4に示す。この冷媒は、冷媒経路の内部で気化されて、冷媒経路を冷却する。冷却された冷媒経路は電池ブロック2を底面から冷却する。この冷却機構は、電池ブロック2を低温に冷却できる。この冷却機構は、気化した冷媒を加圧するコンプレッサ26と、このコンプレッサ26で加圧された冷媒を冷却して液化させる凝縮器27と、この凝縮器27で液化された冷媒を冷媒経路3に供給する膨張器28とを備える。 Furthermore, the cooling mechanism can also supply a Freon-based refrigerant that is vaporized inside the refrigerant path and cooled by heat of vaporization to the refrigerant path. Such a cooling mechanism 4B is shown in FIG. This refrigerant is vaporized inside the refrigerant path to cool the refrigerant path. The cooled refrigerant path cools the battery block 2 from the bottom surface. This cooling mechanism can cool the battery block 2 to a low temperature. The cooling mechanism includes a compressor 26 that pressurizes the vaporized refrigerant, a condenser 27 that cools and liquefies the refrigerant pressurized by the compressor 26, and supplies the refrigerant liquefied by the condenser 27 to the refrigerant path 3. And an inflator 28.
 膨張器28は、例えば、キャピラリチューブ又は膨張弁である。細管からなるキャピラリチューブや膨張弁は、冷媒の流量が所定の範囲に制限される。これらの膨張器28は、冷媒が冷媒経路3から排出される状態ですべて気化される流量に設計される。コンプレッサ26が、気体の冷媒を吸入して圧縮するように設計されることから、液状の冷媒が吸入されると故障の原因となるからである。電池ブロック2の温度によって、冷媒が冷媒経路3の内部で気化される状態が変化する。電池ブロック2の温度が高いと冷媒は気化されやすく、温度が低いと冷媒は気化し難くなる。したがって、電池ブロック2の温度が低い状態で全ての冷媒が気化されるように、キャピラリチューブ等の膨張器28の流量を制御すると、電池ブロック2の温度が高い状態では、冷媒経路3の途中で全ての冷媒が気化されて気化熱による冷却効率が低下する。この状態は、復路側の冷媒経路3で発生しやすく、復路側の冷媒経路3の温度が高くなる傾向となる。このことは、言い換えると、往路側の電池ブロック2が効率よく冷却されて過冷却状態となる。そこで、伝熱部材40により電池セル間の温度差を少なくしている(後述)。 The expander 28 is, for example, a capillary tube or an expansion valve. A capillary tube or an expansion valve made of a thin tube is limited to a predetermined flow range of the refrigerant. These expanders 28 are designed to have a flow rate at which all of the refrigerant is vaporized while being discharged from the refrigerant path 3. This is because the compressor 26 is designed to suck in and compress the gaseous refrigerant, and if liquid refrigerant is sucked in, it causes a failure. The state in which the refrigerant is vaporized in the refrigerant path 3 varies depending on the temperature of the battery block 2. When the temperature of the battery block 2 is high, the refrigerant is easily vaporized, and when the temperature is low, the refrigerant is difficult to vaporize. Therefore, when the flow rate of the expander 28 such as a capillary tube is controlled so that all the refrigerant is vaporized in a state where the temperature of the battery block 2 is low, in the state where the temperature of the battery block 2 is high, in the middle of the refrigerant path 3. All the refrigerant is vaporized and the cooling efficiency by the heat of vaporization is lowered. This state is likely to occur in the refrigerant path 3 on the return path side, and the temperature of the refrigerant path 3 on the return path side tends to increase. In other words, the battery block 2 on the forward path side is efficiently cooled and enters a supercooled state. Therefore, the temperature difference between the battery cells is reduced by the heat transfer member 40 (described later).
 冷媒流路3は、図4に示す例ではU字状のパターンとしている。冷媒流路3はパイプ状に構成され、往路側と復路側とに2本の冷媒経路3を平行に配列している。冷媒流路3には、液状の冷媒が冷却機構4から供給されて冷却される。なお冷媒流路のパターンはこれに限られず、任意のパターンが利用でき、例えば図5に示す冷却プレート30Bのように冷媒流路3Bを波状のパターンとしてもよい。図5に示す冷却プレート30Bは、内部に設けた冷媒流路3Bに液化された冷媒を供給し、冷媒を冷媒流路3Bで気化させて、冷媒の気化熱で強制的に冷却して、電池セル1を冷却する。冷却プレート30Bを冷媒の気化熱で強制冷却する冷却機構35は、気体の状態にある冷媒を加圧するコンプレッサ36と、このコンプレッサ36で加圧された気体を冷却して液化させる凝縮器37と、この凝縮器37で液化された冷媒を冷却プレート30Bの冷媒流路3Bに供給する膨張弁38とを備えている。この冷却機構35は、膨張弁38を介して液化された冷媒を冷却プレート30Bに供給し、供給された冷媒を冷却プレート30Bの内部で気化させて気化熱で冷却プレート30Bを冷却する。気化された冷媒は、コンプレッサ36で加圧されて凝縮器37に供給され、凝縮器37で液化され、膨張弁38を介して冷却プレート30Bの冷媒流路3Bに循環されて、冷却プレート30Bを冷却する。 The refrigerant flow path 3 has a U-shaped pattern in the example shown in FIG. The refrigerant flow path 3 is configured in a pipe shape, and two refrigerant paths 3 are arranged in parallel on the forward path side and the return path side. Liquid refrigerant is supplied from the cooling mechanism 4 to the refrigerant flow path 3 to be cooled. In addition, the pattern of a refrigerant flow path is not restricted to this, Arbitrary patterns can be utilized, for example, it is good also considering the refrigerant flow path 3B as a wavy pattern like the cooling plate 30B shown in FIG. The cooling plate 30B shown in FIG. 5 supplies the liquefied refrigerant to the refrigerant flow path 3B provided therein, vaporizes the refrigerant in the refrigerant flow path 3B, and forcibly cools it with the heat of vaporization of the refrigerant. Cell 1 is cooled. The cooling mechanism 35 forcibly cooling the cooling plate 30B with the heat of vaporization of the refrigerant includes a compressor 36 that pressurizes the refrigerant in a gaseous state, a condenser 37 that cools and liquefies the gas pressurized by the compressor 36, And an expansion valve 38 for supplying the refrigerant liquefied by the condenser 37 to the refrigerant flow path 3B of the cooling plate 30B. The cooling mechanism 35 supplies the liquefied refrigerant to the cooling plate 30B via the expansion valve 38, vaporizes the supplied refrigerant inside the cooling plate 30B, and cools the cooling plate 30B with heat of vaporization. The vaporized refrigerant is pressurized by the compressor 36, supplied to the condenser 37, liquefied by the condenser 37, and circulated through the expansion valve 38 to the refrigerant flow path 3B of the cooling plate 30B to pass through the cooling plate 30B. Cooling.
 なお冷却プレートは、必ずしも冷媒の気化熱で冷却する必要はなく、たとえば、冷却された液体を内部に循環して冷却することができる。また、冷却プレートは、内部に冷却気体の通路を設けて、この通路に冷却された気体を強制送風して冷却することもできる。 The cooling plate is not necessarily cooled by the heat of vaporization of the refrigerant. For example, the cooled plate can be cooled by circulating the cooled liquid inside. Further, the cooling plate can be cooled by providing a cooling gas passage inside and forcibly blowing the gas cooled in this passage.
 以上の例では、一枚の冷却プレートで一の電池ブロックを冷却する例を示しているが、一の冷却プレートを用いて複数の電池ブロックを冷却できることはいうまでもない。例えば図6の例では、一枚の大きな冷却プレート30上に4つの電池ブロック2を固定して冷却している。 In the above example, one battery block is cooled by one cooling plate. However, it goes without saying that a plurality of battery blocks can be cooled by using one cooling plate. For example, in the example of FIG. 6, four battery blocks 2 are fixed and cooled on one large cooling plate 30.
 さらに、複数の冷却プレートを用いて複数の電池ブロックを冷却できることはいうまでもない。この場合、各冷却プレートの冷媒流路同士を連結して冷媒を循環させることで、冷却機構4を共通化でき好ましい。冷却プレート同士の接続形態は、図7に示すような直列接続または図8に示す並列接続のいずれとしてもよい。直列接続は冷媒流路の接続が容易で配管作業を簡素化でき、また配管の設置スペースの面でも有利となる。また直列接続は図7の例に限らず、図9や図10のような接続例など、冷却プレートの設置形態に応じた任意の接続形態が適宜利用できる。
(伝熱部材40)
Furthermore, it goes without saying that a plurality of battery blocks can be cooled using a plurality of cooling plates. In this case, it is preferable that the cooling mechanism 4 can be shared by connecting the refrigerant flow paths of the cooling plates and circulating the refrigerant. The connection form between the cooling plates may be either a series connection as shown in FIG. 7 or a parallel connection as shown in FIG. The serial connection facilitates the connection of the refrigerant flow path, simplifies the piping work, and is advantageous in terms of the installation space of the piping. Further, the serial connection is not limited to the example of FIG. 7, and any connection form corresponding to the installation form of the cooling plate such as connection examples as shown in FIGS. 9 and 10 can be used as appropriate.
(Heat transfer member 40)
 伝熱部材40は、冷却プレート30と電池ブロック2との間に介在され、これらを絶縁しつつも熱伝導させて電池セル1の発熱を冷却プレート30で冷却する。隣接する角形電池セルを直列に接続している電源装置は、隣接する角形電池セルに電位差がある。したがって、金属製の外装缶で構成された角形電池セルをそのまま冷却プレートに電気接続すると、短絡して大きなショート電流が流れてしまう。そこで、電池セル間を絶縁しなければならない。一方で冷却プレートで効率よく放熱させるには、電池セルと冷却プレートとを熱結合状態とする必要がある。このため伝熱部材40は、電池セルの外装缶と熱結合するよう高い熱伝導率を発揮しつつ、隣接する電池セル間での短絡を防止するための絶縁性を備える材質で構成される。このような材質としては、アクリル系、ウレタン系、エポキシ系、シリコーン系の樹脂等が利用できる。 The heat transfer member 40 is interposed between the cooling plate 30 and the battery block 2 and thermally conducts while insulating them to cool the heat generated in the battery cell 1 with the cooling plate 30. In a power supply device in which adjacent prismatic battery cells are connected in series, the adjacent prismatic battery cells have a potential difference. Therefore, if a rectangular battery cell composed of a metal outer can is electrically connected to the cooling plate as it is, a short circuit occurs and a large short current flows. Therefore, the battery cells must be insulated. On the other hand, in order to efficiently dissipate heat with the cooling plate, it is necessary to bring the battery cell and the cooling plate into a thermally coupled state. For this reason, the heat transfer member 40 is made of a material having an insulating property for preventing a short circuit between adjacent battery cells while exhibiting high thermal conductivity so as to be thermally coupled to the outer can of the battery cell. As such a material, acrylic resin, urethane resin, epoxy resin, silicone resin, or the like can be used.
 電池セル1の底面と冷却プレート30の上面との間には、図3に示すように伝熱部材40を配置するための隙間GPが設けられる。このためセパレータ5は、電池セル1の底面を部分的に被覆するように底面を折曲している。セパレータ底面5bを電池セル1の底面と冷却プレート30の上面との間に介在させることで、セパレータ底面5bの厚さに応じた隙間GPが形成される。 Between the bottom surface of the battery cell 1 and the top surface of the cooling plate 30, a gap GP for arranging the heat transfer member 40 is provided as shown in FIG. Therefore, the separator 5 is bent at the bottom so as to partially cover the bottom of the battery cell 1. By interposing the separator bottom surface 5b between the bottom surface of the battery cell 1 and the top surface of the cooling plate 30, a gap GP corresponding to the thickness of the separator bottom surface 5b is formed.
 さらに図3の例では、伝熱部材40をシート状としている。また好ましくは若干弾性変形する部材とする。このシート状伝熱部材40は、隙間GPの高さよりも若干高く形成される。これにより、隙間GPに配置されたシート状伝熱部材40を、電池セル1の底面と冷却プレート30の上面とで押圧して圧縮し、これらとの接合界面に空気層が形成される事態を回避し、熱結合状態とする。 Further, in the example of FIG. 3, the heat transfer member 40 is formed in a sheet shape. Preferably, the member is slightly elastically deformed. The sheet-like heat transfer member 40 is formed slightly higher than the height of the gap GP. As a result, the sheet-like heat transfer member 40 arranged in the gap GP is pressed and compressed by the bottom surface of the battery cell 1 and the top surface of the cooling plate 30, and an air layer is formed at the joining interface between them. Avoid this and make it heat-bonded.
 さらにまた伝熱部材40は、平面において部分的に熱抵抗を変化させている。例えば図11に示すように、一枚の冷却プレート30上に4つの電池ブロック2を載置する構成において、冷媒流路3をU字状に配管する場合は、相対的に図において下側の電池ブロックは冷媒で熱交換されやすく冷却され易いといえるが、一方で上側の電池ブロックは、冷媒の熱交換が進んだ後で冷却されることとなるため、相対的に冷却能力が劣り、電池ブロックが冷却され難いということができる。あるいは電池ブロックの配置状態を考える場合、図12に示すように4つの電池ブロックを近接して配置すると、電池ブロック同士の間は熱が籠もりやすくなる結果、斜線で示すようにこの部分の電池セルの温度が高くなる傾向にある。さらには図13に示すように、電源装置に発熱源を近接して配置する場合は、この近傍の電池セルが同様に加熱されて温度が高くなる傾向が生じる。 Furthermore, the heat transfer member 40 partially changes the thermal resistance in the plane. For example, as shown in FIG. 11, in the configuration in which four battery blocks 2 are placed on one cooling plate 30, when the refrigerant flow path 3 is piped in a U shape, the lower side in the figure is relatively lower. It can be said that the battery block is easily heat-exchanged with the refrigerant and is easily cooled. On the other hand, the upper battery block is cooled after the heat exchange of the refrigerant proceeds. It can be said that the block is hardly cooled. Alternatively, when considering the arrangement state of the battery blocks, if four battery blocks are arranged close to each other as shown in FIG. 12, heat is easily trapped between the battery blocks. The cell temperature tends to increase. Furthermore, as shown in FIG. 13, when the heat source is disposed close to the power supply device, the battery cells in the vicinity are similarly heated and the temperature tends to increase.
 以上のように、電池セルの配置状態や冷媒経路の配管状態、あるいは発熱源の存在などにより、構造的に一部の電池セルが他の電池セルよりも放熱されにくい傾向がある場合に、これを抑制するために伝熱部材の熱抵抗を部分的に変化させることで、このような不均一を緩和して、電池セルの温度を一定に近付けることが可能となる。このため伝熱部材は、部分的に熱抵抗を変化させるような構成を備えている。 As described above, when some battery cells tend to be less likely to dissipate heat than other battery cells due to the arrangement state of the battery cells, the piping state of the refrigerant path, or the presence of a heat source. In order to suppress this, the thermal resistance of the heat transfer member is partially changed, so that such non-uniformity can be alleviated and the temperature of the battery cell can be brought close to a constant level. For this reason, the heat transfer member has a configuration that partially changes the thermal resistance.
 例えば、一枚の冷却プレート30上に配置された電池セルの中央部分で温度が高くなる場合の温度補正を考える。この場合、電池セルの中央において熱抵抗を相対的に低くし、他の部分の熱抵抗を相対的に高くするような伝熱部材40を用意し、熱抵抗の低い中央部分で熱伝導を良くして放熱性を高め、温度を低下させると共に、周辺部分の熱伝導を相対的に低下させることで、温度が下がりやすい周辺部分と温度が上がりやすい中央部分との温度差を低減する。具体的には、図14に示すように伝熱部材40の中央部分40bで厚さを薄くして、それ以外の部分40aの厚さを厚く形成する。これにより、中央部分40bの薄い部分の伝熱部材は熱抵抗が低く、それ以外の部分40aでは熱抵抗が高くなる。この結果、電池ブロックの周囲の領域では放熱性が相対的に低下し、中央部分の冷却能力と差が生じる。この冷却能力の差を、場所による電池セル間の温度差と近付ける又は一致させるように調整することで、電池セル間の温度差を低減して部分的な劣化を回避し、信頼性の高い電源装置を実現できる。 For example, let us consider temperature correction when the temperature rises at the central portion of the battery cell arranged on one cooling plate 30. In this case, the heat transfer member 40 is prepared so that the heat resistance is relatively low at the center of the battery cell and the heat resistance of other portions is relatively high, and the heat conduction is improved at the center portion where the heat resistance is low. Thus, the heat dissipation is improved, the temperature is lowered, and the heat conduction in the peripheral portion is relatively lowered, thereby reducing the temperature difference between the peripheral portion where the temperature is likely to be lowered and the central portion where the temperature is likely to be raised. Specifically, as shown in FIG. 14, the thickness is reduced at the central portion 40b of the heat transfer member 40, and the thickness of the other portion 40a is increased. Thereby, the heat transfer member of the thin part of the center part 40b has low thermal resistance, and heat resistance becomes high in the other part 40a. As a result, heat dissipation is relatively lowered in the area around the battery block, and a difference from the cooling capacity of the central portion occurs. By adjusting this difference in cooling capacity so that it approaches or matches the temperature difference between battery cells depending on the location, the temperature difference between battery cells is reduced to avoid partial deterioration, and a highly reliable power supply A device can be realized.
 このような伝熱部材40の厚さの変更には、異なる厚さの伝熱部材を複数組み合わせて構成する。また、シート状の伝熱部材を複数枚積層して調整することもできる。この方法では、予め用意した薄いシート状伝熱部材の枚数を調整することで高さを変更できるため、調整作業を容易にできる利点が得られる。また、好ましくは図14に示すように、冷却プレート30上に、中央部分40bの伝熱部材を配置する部分を突出させることで、伝熱部材の電池セル1に対する対向面の高さを揃え、電池セル表面への密着を図ると共に、周辺部分40aの伝熱部材の位置決めを図ることができる。ただ、必ずしも冷却プレートを突出させる必要はなく、例えば冷却プレートの電池セルに対する対向面を平面とした冷却プレートを使用することもできる。この冷却プレートの上に、異なる厚さの電熱部材を配置する場合は、伝熱部材の電池セルに対する対向面の高さが一致しないので、電池ブロックを冷却プレートに固定する際に、伝熱部材が圧縮されて隙間GPに収まるような伝熱部材を使用する。あるいは、電池セルに対する対向面が平面の冷却プレートの上に、同じ厚さで異なる熱伝導率を有する複数の伝熱部材を配置することもできる。 For changing the thickness of the heat transfer member 40, a plurality of heat transfer members having different thicknesses are combined. Further, a plurality of sheet-like heat transfer members can be laminated and adjusted. In this method, since the height can be changed by adjusting the number of thin sheet-like heat transfer members prepared in advance, there is an advantage that adjustment work can be facilitated. Further, preferably, as shown in FIG. 14, by projecting a portion where the heat transfer member of the central portion 40 b is disposed on the cooling plate 30, the height of the surface facing the battery cell 1 of the heat transfer member is aligned, While adhering to the battery cell surface, it is possible to position the heat transfer member in the peripheral portion 40a. However, it is not always necessary to project the cooling plate, and for example, a cooling plate having a flat surface facing the battery cell of the cooling plate can be used. When electric heating members having different thicknesses are arranged on the cooling plate, the height of the facing surface of the heat transfer member to the battery cell does not match, so when fixing the battery block to the cooling plate, the heat transfer member A heat transfer member that is compressed and fits in the gap GP is used. Alternatively, a plurality of heat transfer members having the same thickness and different thermal conductivity can be arranged on a cooling plate having a flat surface facing the battery cell.
 上記の例では、厚さを2段階にした例を説明したが、図15に示す伝熱部材40Bのように3段階、あるいはこれ以上に分けて調整することも可能であることはいうまでもない。複数の領域に分割することで、より細かな調整が可能となる。さらに厚さを領域毎に均一にする構成の他、図16に示す伝熱部材40Cのように厚さを連続的に変化させる構成としてもよい。伝熱部材40Cの上面を傾斜させることで高さを変化させ、電池セル間の温度差が連続的に変化する状態に合わせて、冷却能力も連続的に変化させることができる。 In the above example, the example in which the thickness is made in two stages has been described, but it is needless to say that it can be adjusted in three stages or more as in the heat transfer member 40B shown in FIG. Absent. By dividing into a plurality of regions, finer adjustment is possible. Furthermore, in addition to a configuration in which the thickness is uniform for each region, a configuration in which the thickness is continuously changed as in the heat transfer member 40C illustrated in FIG. 16 may be employed. The height can be changed by inclining the upper surface of the heat transfer member 40C, and the cooling capacity can be continuously changed in accordance with the state in which the temperature difference between the battery cells is continuously changed.
 また、上記は伝熱部材40を同一の素材で構成し、厚さを異ならせることで熱抵抗を変化させる構成を説明したが、熱伝導率の異なる素材を組み合わせて熱伝導部材を構成することもできる。例えば図6の例では、中央部分の伝熱部材を、熱伝導率の高い第一素材で構成し、周囲部分の伝熱部材を、これよりも熱伝導率の低い第二素材で構成する。そして第二素材を矩形状に形成しつつ、中央を開口して、別途成型した楕円状の第一素材を嵌入して伝熱部材40を構成する。この構成であれば、伝熱部材40の厚さを均一にできるため、電池ブロックと冷却プレート30との固定をスムーズに行える利点が得られる。 Moreover, although the above demonstrated the structure which comprises the heat-transfer member 40 with the same raw material, and changed thermal resistance by varying thickness, it comprises a heat conductive member combining the raw material from which heat conductivity differs. You can also. For example, in the example of FIG. 6, the heat transfer member in the center portion is made of a first material having a high thermal conductivity, and the heat transfer member in the surrounding portion is made of a second material having a lower heat conductivity. And while forming a 2nd raw material in a rectangular shape, the center is opened and the elliptical 1st raw material shape | molded separately is inserted, and the heat-transfer member 40 is comprised. If it is this structure, since the thickness of the heat-transfer member 40 can be made uniform, the advantage which can fix a battery block and the cooling plate 30 smoothly will be acquired.
 さらに、上記の例では伝熱部材をシート状としたが、これに限定されるものでなく、例えばペースト状としてもよい。ペースト状の伝熱部材は、電池セル外装缶の底面と冷却プレート上面との空間を隙間なく埋めて空気層などの断熱層が形成される事態を回避できる。あるいは、電池セルと冷却プレートとを接着する接着材を伝熱部材とすることもできる。例えば未硬化の樹脂を電池セル外装缶底面と冷却プレート上面に塗布して、両者を接着する。これにより、電池ブロックの固定と熱結合状態とを実現できる。 Furthermore, in the above example, the heat transfer member is in the form of a sheet, but is not limited thereto, and may be in the form of a paste, for example. The paste-like heat transfer member can avoid a situation in which a space between the bottom surface of the battery cell outer can and the top surface of the cooling plate is filled without any gap and a heat insulating layer such as an air layer is formed. Or the adhesive which adhere | attaches a battery cell and a cooling plate can also be used as a heat-transfer member. For example, uncured resin is applied to the bottom surface of the battery cell outer can and the top surface of the cooling plate, and the two are bonded together. Thereby, fixation of a battery block and a thermal coupling state are realizable.
 一方で、上記の例では電池セル間にセパレータを介在させて電池ブロックを構成しているが、セパレータを省略することも可能である。例えば電池セルの外装缶表面をシュリンクチューブ等の絶縁層で被覆することで、電池セル同士を積層しても隣接する電池セル間での短絡を回避できる。この場合は、電池セルの底面と冷却プレートとの間にスペーサを別途配置して、伝熱部材を配置するための空間を形成する。或いは、スペーサも省略して、直接電池セルを冷却プレート上に、伝熱部材を介在させた状態で固定する構成としてもよい。 On the other hand, in the above example, the battery block is configured by interposing a separator between the battery cells, but the separator can be omitted. For example, by covering the outer can surface of the battery cell with an insulating layer such as a shrink tube, a short circuit between adjacent battery cells can be avoided even if the battery cells are stacked. In this case, a spacer is separately arranged between the bottom surface of the battery cell and the cooling plate to form a space for arranging the heat transfer member. Alternatively, the spacer may be omitted, and the battery cell may be directly fixed on the cooling plate with the heat transfer member interposed.
 さらに上記の例では、電池ブロック上に冷却プレートを配置した例を示したが、この構成に限られるものでなく、例えば冷却プレートを角形電池セルの側面に配置することもできる。 In the above example, the cooling plate is arranged on the battery block. However, the present invention is not limited to this configuration. For example, the cooling plate can be arranged on the side surface of the rectangular battery cell.
 また上記の例では、電池セルの中央部分の熱抵抗を低下させる構成を説明したが、この構成に限られるものでなく、例えば一方の熱抵抗を低下させるように構成することもできる。図22の例では、冷却プレート30の両端に配置された冷媒流路3の、流入側(図22において左側の冷媒経路3)に面した伝熱部材の熱抵抗を高くし、流出側(図22において右側の冷媒経路3)に面した伝熱部材の熱抵抗が低くなるように、伝熱部材40Dの厚さを変化させている。すなわち、図において伝熱部材40Dの左側の厚さを厚くすることで、流入側の冷媒経路3に面した電池セル1の側面領域で熱抵抗を高くしている。一方で、伝熱部材40Dの右側の厚さを薄くして、冷媒経路3の流出側では熱抵抗を低くしている。この結果、冷媒経路3の流入側で低温の冷媒によって冷却される領域では熱抵抗を高くして温度低下を抑制しつつ、流出側では熱交換が進んで温度が高くなった冷媒で冷却されるため、熱抵抗を低くして電池セルの冷却を高めることによって、両者の温度差を低減させることができる。またこの例では伝熱部材40Dを3つの部材で構成しているが、これに限らず2部材としたり、あるいは4部材以上として厚さの変化をより細かくしてもよい。あるいはまた図23に示す伝熱部材40Eのように、厚さが連続的に変化するように構成することもできる。 In the above example, the configuration for reducing the thermal resistance of the central portion of the battery cell has been described. However, the configuration is not limited to this configuration, and for example, the configuration can be configured to reduce one of the thermal resistances. In the example of FIG. 22, the heat resistance of the heat transfer member facing the inflow side (left side refrigerant path 3 in FIG. 22) of the refrigerant flow path 3 arranged at both ends of the cooling plate 30 is increased, and the outflow side (FIG. In FIG. 22, the thickness of the heat transfer member 40D is changed so that the heat resistance of the heat transfer member facing the right refrigerant path 3) is lowered. That is, by increasing the thickness on the left side of the heat transfer member 40D in the figure, the thermal resistance is increased in the side region of the battery cell 1 facing the refrigerant path 3 on the inflow side. On the other hand, the thickness on the right side of the heat transfer member 40D is reduced to reduce the thermal resistance on the outflow side of the refrigerant path 3. As a result, in the region cooled by the low-temperature refrigerant on the inflow side of the refrigerant path 3, the heat resistance is increased to suppress the temperature decrease, and on the outflow side, the heat exchange proceeds and the refrigerant is cooled by the higher temperature. Therefore, the temperature difference between the two can be reduced by reducing the thermal resistance and increasing the cooling of the battery cells. In this example, the heat transfer member 40D is composed of three members. However, the present invention is not limited to this, and the thickness change may be made finer by using two members or by using four or more members. Alternatively, as in the heat transfer member 40E shown in FIG. 23, the thickness can be changed continuously.
 さらに、上記の例では一枚の冷却プレート30上で、熱伝導状態を変化させた例を説明したが、複数枚の冷却プレートを用いた構成において、各冷却プレートの伝熱部材の熱伝導係数を変化させることで、異なる冷却プレート間での温度ばらつきを抑制することもでき。この場合、冷却プレートで使用する伝熱部材の材質を変更させたり、厚さを変化させたり、あるいは上述の通り、各冷却プレートで用いる伝熱部材の熱抵抗を部分的に変化させるよう構成してもよい。
(水冷)
Further, in the above example, the example in which the heat conduction state is changed on one cooling plate 30 has been described. However, in the configuration using a plurality of cooling plates, the heat conduction coefficient of the heat transfer member of each cooling plate. By changing, temperature variation between different cooling plates can be suppressed. In this case, the material of the heat transfer member used in the cooling plate is changed, the thickness is changed, or the heat resistance of the heat transfer member used in each cooling plate is partially changed as described above. May be.
(Water cooling)
 さらにまた、以上の例では冷媒を用いた冷却を説明したが、上述の通り水や冷却液を循環させる水冷を採用することもできる。加えて、水冷で用いる冷却液を、冷媒で冷却する構成としてもよい。特に、車両用電源装置においては、室内エアコン等に用いる既存の冷却機構を、冷却液の冷却に利用できる。このような構成を採用した冷却機構を、図21に示す。この図に示す冷却機構は、冷却プレート30Cを冷却液で水冷により冷却する第一冷却機構60と、室内エアコンなど冷媒を用いた車内冷却用の第二冷却機構70とを、中間熱交換器67で接続している。第一冷却機構60は、太線で示す第一循環経路65にポンプ61と三方弁64、中間熱交換器67、ヒータ66及び冷却プレート30Cを配置している。また三方弁64を介して、放熱器62とも接続される。放熱器62は外気により空冷され、外気温が低い場合に三方弁64を中間熱交換器67から放熱器62側に切り替えて、後述するコンプレッサ76の動力など、冷却に要するエネルギー消費を抑制できる。またヒータ66は、冷却液を加熱して温度を調整するための部材である。 Furthermore, although cooling using a refrigerant has been described in the above example, water cooling in which water or a coolant is circulated can be employed as described above. In addition, the coolant used for water cooling may be cooled with a refrigerant. In particular, in a vehicle power supply device, an existing cooling mechanism used for an indoor air conditioner or the like can be used for cooling the coolant. A cooling mechanism employing such a configuration is shown in FIG. The cooling mechanism shown in this figure includes a first cooling mechanism 60 that cools the cooling plate 30C with a coolant by water cooling, and a second cooling mechanism 70 for cooling the vehicle interior that uses a refrigerant such as an indoor air conditioner. Connected with. In the first cooling mechanism 60, a pump 61, a three-way valve 64, an intermediate heat exchanger 67, a heater 66, and a cooling plate 30C are arranged in a first circulation path 65 indicated by a thick line. Further, the radiator 62 is also connected through the three-way valve 64. The radiator 62 is air-cooled by the outside air, and when the outside air temperature is low, the three-way valve 64 is switched from the intermediate heat exchanger 67 to the radiator 62 side, and energy consumption required for cooling such as power of the compressor 76 described later can be suppressed. The heater 66 is a member for adjusting the temperature by heating the coolant.
 一方で第二冷却機構70は、細線で示す第二循環経路75にコンプレッサ76と中間熱交換器67と蒸発器71と凝縮器77とを設けている。中間熱交換器67と蒸発器71とはそれぞれ膨張弁73、72を介して並列に接続されている。また凝縮器77にはファン63が近接されている。このファン63は、放熱器62の放熱にも併用できる。また図21の例においては、冷却液として不凍液入りの水を、冷媒にはHFCを使用している。 On the other hand, the second cooling mechanism 70 is provided with a compressor 76, an intermediate heat exchanger 67, an evaporator 71, and a condenser 77 in a second circulation path 75 indicated by a thin line. The intermediate heat exchanger 67 and the evaporator 71 are connected in parallel via expansion valves 73 and 72, respectively. A fan 63 is in close proximity to the condenser 77. The fan 63 can also be used for heat dissipation of the radiator 62. In the example of FIG. 21, water containing antifreeze is used as the coolant, and HFC is used as the refrigerant.
 このように、冷却プレート30Cの第一冷却機構60を、中間熱交換器67を介して第二冷却機構70と接続することで、既存の冷却機構を用いて冷却液をより効率よく冷却でき、電池ブロックの冷却を安定的に行える利点が得られる。 Thus, by connecting the first cooling mechanism 60 of the cooling plate 30C to the second cooling mechanism 70 via the intermediate heat exchanger 67, the coolant can be cooled more efficiently using the existing cooling mechanism, There is an advantage that the battery block can be cooled stably.
 以上のようにして、冷却プレート30に複数の電池セル1を配置する電源装置において、電池セル1と冷却プレート30間の熱コンダクタンスを調整することによって、電池セル間の温度ばらつきを低減することができる。このような電源装置は、車載用の電源として利用できる。電源装置を搭載する車両としては、エンジンとモータの両方で走行するハイブリッド車やプラグインハイブリッド車、あるいはモータのみで走行する電気自動車などの電動車両が利用でき、これらの車両の電源として使用される。
(ハイブリッド車用電源装置)
As described above, in the power supply device in which the plurality of battery cells 1 are arranged on the cooling plate 30, the temperature variation between the battery cells can be reduced by adjusting the thermal conductance between the battery cell 1 and the cooling plate 30. it can. Such a power supply device can be used as an in-vehicle power supply. As a vehicle equipped with a power supply device, an electric vehicle such as a hybrid vehicle or a plug-in hybrid vehicle that runs with both an engine and a motor, or an electric vehicle that runs only with a motor can be used, and it is used as a power source for these vehicles. .
(Power supply for hybrid vehicles)
 図17に、エンジンとモータの両方で走行するハイブリッド車に電源装置を搭載する例を示す。この図に示す電源装置を搭載した車両HVは、車両HVを走行させるエンジン96及び走行用のモータ93と、モータ93に電力を供給する電源装置100と、電源装置100の電池を充電する発電機94とを備えている。電源装置100は、DC/ACインバータ95を介してモータ93と発電機94に接続している。車両HVは、電源装置100の電池を充放電しながらモータ93とエンジン96の両方で走行する。モータ93は、エンジン効率の悪い領域、例えば加速時や低速走行時に駆動されて車両を走行させる。モータ93は、電源装置100から電力が供給されて駆動する。発電機94は、エンジン96で駆動され、あるいは車両にブレーキをかけるときの回生制動で駆動されて、電源装置100の電池を充電する。
(電気自動車用電源装置)
FIG. 17 shows an example in which a power supply device is mounted on a hybrid vehicle that runs with both an engine and a motor. A vehicle HV equipped with the power supply device shown in this figure includes an engine 96 and a travel motor 93 that travel the vehicle HV, a power supply device 100 that supplies power to the motor 93, and a generator that charges a battery of the power supply device 100. 94. The power supply apparatus 100 is connected to a motor 93 and a generator 94 via a DC / AC inverter 95. The vehicle HV travels by both the motor 93 and the engine 96 while charging / discharging the battery of the power supply device 100. The motor 93 is driven to drive the vehicle when the engine efficiency is low, for example, during acceleration or low-speed driving. The motor 93 is driven by power supplied from the power supply device 100. The generator 94 is driven by the engine 96 or is driven by regenerative braking when the vehicle is braked to charge the battery of the power supply device 100.
(Power supply for electric vehicles)
 また図18に、モータのみで走行する電気自動車に電源装置を搭載する例を示す。この図に示す電源装置を搭載した車両EVは、車両EVを走行させる走行用のモータ93と、このモータ93に電力を供給する電源装置100と、この電源装置100の電池を充電する発電機94とを備えている。モータ93は、電源装置100から電力が供給されて駆動する。発電機94は、車両EVを回生制動する時のエネルギーで駆動されて、電源装置100の電池を充電する。
(蓄電用電源装置)
FIG. 18 shows an example in which a power supply device is mounted on an electric vehicle that runs only with a motor. A vehicle EV equipped with the power supply device shown in FIG. 1 is a motor 93 for running the vehicle EV, a power supply device 100 that supplies power to the motor 93, and a generator 94 that charges a battery of the power supply device 100. And. The motor 93 is driven by power supplied from the power supply device 100. The generator 94 is driven by energy when regeneratively braking the vehicle EV and charges the battery of the power supply device 100.
(Power storage device for power storage)
 さらに、この電源装置は、移動体用の動力源としてのみならず、載置型の蓄電用設備としても利用できる。例えば家庭用、工場用の電源として、太陽光発電の電力や深夜電力などで充電し、必要時に放電する電源システム、あるいは日中の太陽光発電の電力を充電して夜間に放電する街路灯用の電源や、停電時に駆動する信号機用のバックアップ電源などにも利用できる。このような例を図19に示す。この図に示す電源装置100は、複数の電池パック81をユニット状に接続して電池ユニット82を構成している。各電池パック81は、複数の電池セルが直列及び/又は並列に接続されている。各電池パック81は、電源コントローラ84により制御される。この電源装置100は、電池ユニット82を充電用電源CPで充電した後、負荷LDを駆動する。このため電源装置100は、充電モードと放電モードを備える。負荷LDと充電用電源CPはそれぞれ、放電スイッチDS及び充電スイッチCSを介して電源装置100と接続されている。放電スイッチDS及び充電スイッチCSのON/OFFは、電源装置100の電源コントローラ84によって切り替えられる。充電モードにおいては、電源コントローラ84は充電スイッチCSをONに、放電スイッチDSをOFFに切り替えて、充電用電源CPから電源装置100への充電を許可する。また充電が完了し満充電になると、あるいは所定値以上の容量が充電された状態で負荷LDからの要求に応じて、電源コントローラ84は充電スイッチCSをOFFに、放電スイッチDSをONにして放電モードに切り替え、電源装置100から負荷LDへの放電を許可する。また、必要に応じて、充電スイッチCSをONに、放電スイッチDSをONにして、負荷LDの電力供給と、電源装置100への充電を同時に行うこともできる。 Furthermore, this power supply device can be used not only as a power source for a moving body but also as a stationary power storage facility. For example, as a power source for households and factories, a power supply system that is charged with solar power or midnight power and discharged when necessary, or a street light that is charged with solar power during the day and discharged at night It can also be used as a backup power source for traffic lights that are driven in the event of a power failure. Such an example is shown in FIG. The power supply apparatus 100 shown in this figure forms a battery unit 82 by connecting a plurality of battery packs 81 in a unit shape. Each battery pack 81 has a plurality of battery cells connected in series and / or in parallel. Each battery pack 81 is controlled by a power controller 84. The power supply apparatus 100 drives the load LD after charging the battery unit 82 with the charging power supply CP. For this reason, the power supply apparatus 100 includes a charging mode and a discharging mode. The load LD and the charging power source CP are connected to the power supply device 100 via the discharging switch DS and the charging switch CS, respectively. ON / OFF of the discharge switch DS and the charge switch CS is switched by the power supply controller 84 of the power supply apparatus 100. In the charging mode, the power supply controller 84 switches the charging switch CS to ON and the discharging switch DS to OFF to permit charging from the charging power supply CP to the power supply apparatus 100. Further, when the charging is completed and the battery is fully charged, or in response to a request from the load LD in a state where a capacity of a predetermined value or more is charged, the power controller 84 turns off the charging switch CS and turns on the discharging switch DS to discharge. The mode is switched to permit discharge from the power supply apparatus 100 to the load LD. Further, if necessary, the charge switch CS can be turned on and the discharge switch DS can be turned on to supply power to the load LD and charge the power supply device 100 at the same time.
 電源装置100で駆動される負荷LDは、放電スイッチDSを介して電源装置100と接続されている。電源装置100の放電モードにおいては、電源コントローラ84が放電スイッチDSをONに切り替えて、負荷LDに接続し、電源装置100からの電力で負荷LDを駆動する。放電スイッチDSはFET等のスイッチング素子が利用できる。放電スイッチDSのON/OFFは、電源装置100の電源コントローラ84によって制御される。また電源コントローラ84は、外部機器と通信するための通信インターフェースを備えている。図19の例では、UARTやRS-232C等の既存の通信プロトコルに従い、ホスト機器HTと接続されている。また必要に応じて、電源システムに対してユーザが操作を行うためのユーザインターフェースを設けることもできる。 The load LD driven by the power supply device 100 is connected to the power supply device 100 via the discharge switch DS. In the discharge mode of the power supply apparatus 100, the power supply controller 84 switches the discharge switch DS to ON, connects to the load LD, and drives the load LD with the power from the power supply apparatus 100. As the discharge switch DS, a switching element such as an FET can be used. ON / OFF of the discharge switch DS is controlled by the power supply controller 84 of the power supply apparatus 100. The power controller 84 also includes a communication interface for communicating with external devices. In the example of FIG. 19, the host device HT is connected in accordance with an existing communication protocol such as UART or RS-232C. Further, if necessary, a user interface for the user to operate the power supply system can be provided.
 各電池パック81は、信号端子と電源端子を備える。信号端子は、パック入出力端子DIと、パック異常出力端子DAと、パック接続端子DOとを含む。パック入出力端子DIは、他のパック電池や電源コントローラ84からの信号を入出力するための端子であり、パック接続端子DOは子パックである他のパック電池に対して信号を入出力するための端子である。またパック異常出力端子DAは、パック電池の異常を外部に出力するための端子である。さらに電源端子は、電池パック81同士を直列、並列に接続するための端子である。また電池ユニット82は並列接続スイッチ85を介して出力ラインOLに接続されて互いに並列に接続されている。 Each battery pack 81 includes a signal terminal and a power supply terminal. The signal terminals include a pack input / output terminal DI, a pack abnormality output terminal DA, and a pack connection terminal DO. The pack input / output terminal DI is a terminal for inputting / outputting signals from other pack batteries and the power supply controller 84, and the pack connection terminal DO is for inputting / outputting signals to / from other pack batteries which are child packs. Terminal. The pack abnormality output terminal DA is a terminal for outputting the abnormality of the battery pack to the outside. Furthermore, the power supply terminal is a terminal for connecting the battery packs 81 in series and in parallel. The battery units 82 are connected to the output line OL via the parallel connection switch 85 and are connected in parallel to each other.
 本発明に係る車両用電源装置及び電源装置を備える車両は、EV走行モードとHEV走行モードとを切り替え可能なプラグイン式ハイブリッド電気自動車やハイブリッド式電気自動車、電気自動車などの電源装置として好適に利用できる。またコンピュータサーバのラックに搭載可能なバックアップ電源装置、携帯電話等の無線基地局用のバックアップ電源装置、家庭内用、工場用の蓄電用電源、街路灯の電源等、太陽電池と組み合わせた蓄電装置、信号機などのバックアップ電源用などの用途にも適宜利用できる。さらに防塵ケースは、電源装置を収納するケースに限られず、防塵構造が求められる他の用途にも好適に利用できる。 A vehicle power supply device and a vehicle including the power supply device according to the present invention are suitably used as a power supply device for a plug-in hybrid electric vehicle, a hybrid electric vehicle, an electric vehicle, or the like that can switch between an EV traveling mode and an HEV traveling mode. it can. Also, a backup power supply device that can be mounted on a rack of a computer server, a backup power supply device for a wireless base station such as a mobile phone, a power storage device for home use and a factory, a power supply for a street light, etc. It can also be used as appropriate for applications such as a backup power source for traffic lights. Furthermore, the dustproof case is not limited to the case that houses the power supply device, and can be suitably used for other applications that require a dustproof structure.
100…電源装置
1…電池セル
2…電池ブロック
3、3B…冷媒流路
4、4B、35…冷却機構
5…セパレータ;5b…セパレータ底面
20…制御回路
21…循環ポンプ
22…放熱器
23…ファン
26…コンプレッサ
27…凝縮器
28…膨張器
30、30B、30C…冷却プレート
36…コンプレッサ
37…凝縮器
38…膨張弁
40、40B、40C、40D、40E…伝熱部材
40a…中央以外の部分;40b…中央部分
60…第一冷却機構
61…ポンプ
62…放熱器
63…ファン
64…三方弁
65…第一循環経路
66…ヒータ
67…中間熱交換器
70…第二冷却機構
71…蒸発器
72、73…膨張弁
75…第二循環経路
76…コンプレッサ
77…凝縮器
81…電池パック
82…電池ユニット
84…電源コントローラ
85…並列接続スイッチ
93…モータ
94…発電機
95…DC/ACインバータ
96…エンジン
201…電池セル
202…電池ブロック;202A…往路側電池;202B…復路側電池
203…冷媒流路
204…冷却機構
205…電子部品ケース
230…冷却プレート
HG…発熱源;GP…隙間;EV、HV…車両
LD…負荷;CP…充電用電源;DS…放電スイッチ;CS…充電スイッチ
OL…出力ライン;HT…ホスト機器
DESCRIPTION OF SYMBOLS 100 ... Power supply device 1 ... Battery cell 2 ... Battery block 3, 3B ... Refrigerant flow path 4, 4B, 35 ... Cooling mechanism 5 ... Separator; 5b ... Separator bottom face 20 ... Control circuit 21 ... Circulation pump 22 ... Radiator 23 ... Fan 26 ... Compressor 27 ... Condenser 28 ... Expander 30, 30B, 30C ... Cooling plate 36 ... Compressor 37 ... Condenser 38 ... Expansion valve 40, 40B, 40C, 40D, 40E ... Heat transfer member 40a ... Parts other than the center; 40b ... Central part 60 ... First cooling mechanism 61 ... Pump 62 ... Radiator 63 ... Fan 64 ... Three-way valve 65 ... First circulation path 66 ... Heater 67 ... Intermediate heat exchanger 70 ... Second cooling mechanism 71 ... Evaporator 72 73 ... Expansion valve 75 ... Second circulation path 76 ... Compressor 77 ... Condenser 81 ... Battery pack 82 ... Battery unit 84 ... Power supply controller 85 ... Parallel connection switch 93 ... motor 94 ... generator 95 ... DC / AC inverter 96 ... engine 201 ... battery cell 202 ... battery block; 202A ... outward side battery; 202B ... return side battery 203 ... refrigerant flow path 204 ... cooling mechanism 205 ... electronic component case 230 ... Cooling plate HG ... Heat source; GP ... Gap; EV, HV ... Vehicle LD ... Load; CP ... Charging power supply; DS ... Discharge switch; CS ... Charge switch OL ... Output line;

Claims (11)

  1.  外装缶を金属製とする複数の電池セル(1)を積層してなる電池ブロック(2)と、
     前記電池ブロック(2)と熱結合状態で接続され、前記電池ブロック(2)を冷却するための冷却プレート(30)と、
     前記冷却プレート(30)と電池ブロック(2)との間に介在される伝熱部材(40)と、
    を備える電源装置であって、
     前記冷却プレート(30)で前記電池セル(1)を冷却する冷却能力に応じて、冷却能力の高い部位では該電池セル(1)と接する前記伝熱部材(40)の熱抵抗を、冷却能力の低い部位の電池セル(1)と接する伝熱部材(40)の熱抵抗よりも高くするよう、前記伝熱部材(40)の熱抵抗の分布を調整してなることを特徴とする電源装置。
    A battery block (2) formed by laminating a plurality of battery cells (1) whose outer can is made of metal; and
    A cooling plate (30) connected to the battery block (2) in a thermally coupled state to cool the battery block (2);
    A heat transfer member (40) interposed between the cooling plate (30) and the battery block (2);
    A power supply device comprising:
    In accordance with the cooling capacity for cooling the battery cell (1) with the cooling plate (30), the heat resistance of the heat transfer member (40) in contact with the battery cell (1) at a portion with a high cooling capacity, the cooling capacity The power supply device is characterized in that the distribution of the thermal resistance of the heat transfer member (40) is adjusted so as to be higher than the thermal resistance of the heat transfer member (40) in contact with the battery cell (1) in a low-temperature region .
  2.  請求項1に記載の電源装置であって、
     前記冷却プレート(30)が、内部に冷媒を循環させる配管を備えており、冷媒を前記配管に循環させることで冷却能力を発揮するよう構成してなることを特徴とする電源装置。
    The power supply device according to claim 1,
    The power supply device, wherein the cooling plate (30) includes a pipe for circulating a refrigerant therein, and exhibits cooling capacity by circulating the refrigerant through the pipe.
  3.  請求項2に記載の電源装置であって、
     前記電池ブロック(2)を載置した冷却プレート(30)を複数備えると共に、
     各冷却プレート(30)の配管が互いに直列に接続されてなることを特徴とする電源装置。
    The power supply device according to claim 2,
    With a plurality of cooling plates (30) on which the battery block (2) is placed,
    A power supply device, wherein the piping of each cooling plate (30) is connected in series with each other.
  4.  請求項1から3のいずれか一に記載の電源装置であって、さらに、
     前記電池セル(1)同士を積層して構成される前記電池ブロック(2)の、該電池セル(1)間に介在されて該電池セル(1)同士を絶縁するセパレータ(5)を備えており、
     前記セパレータ(5)の一部が、前記冷却プレート(30)と電池セル(1)の底面の間に介在され、該冷却プレート(30)と電池セル(1)とを離間させると共に、該離間されて生じた隙間に前記伝熱部材(40)を配置してなることを特徴とする電源装置。
    The power supply device according to any one of claims 1 to 3, further comprising:
    The battery block (2) configured by laminating the battery cells (1) includes a separator (5) interposed between the battery cells (1) to insulate the battery cells (1). And
    A part of the separator (5) is interposed between the cooling plate (30) and the bottom surface of the battery cell (1) to separate the cooling plate (30) and the battery cell (1), and A power supply device, wherein the heat transfer member (40) is arranged in a gap generated by the above.
  5.  請求項1から4のいずれか一に記載の電源装置であって、
     前記伝熱部材(40)が、シート状に構成されてなることを特徴とする電源装置。
    The power supply device according to any one of claims 1 to 4,
    The power supply device, wherein the heat transfer member (40) is formed in a sheet shape.
  6.  請求項5に記載の電源装置であって、
     前記伝熱部材(40)が、厚さを変更することで熱抵抗の分布を変化させてなることを特徴とする電源装置。
    The power supply device according to claim 5,
    The power supply device, wherein the heat transfer member (40) has a distribution of thermal resistance changed by changing a thickness thereof.
  7.  請求項6に記載の電源装置であって、
     前記伝熱部材(40)が、複数枚を積層して構成され、積層枚数を変更することで厚さを変更してなることを特徴とする電源装置。
    The power supply device according to claim 6,
    The heat transfer member (40) is configured by laminating a plurality of sheets, and the thickness is changed by changing the number of stacked sheets.
  8.  請求項1から7のいずれか一に記載の電源装置であって、
     前記伝熱部材(40)が、部分的に熱伝導率の異なる材質を用いることで熱抵抗の分布を変化させてなることを特徴とする電源装置。
    The power supply device according to any one of claims 1 to 7,
    The power supply device according to claim 1, wherein the heat transfer member (40) is made of a material having partially different thermal conductivity to change the distribution of thermal resistance.
  9.  請求項2から8に記載の電源装置であって、
     前記冷却プレート(30)が、内部に冷却液を循環させる配管を備えており、冷却液を前記配管に循環させることで冷却能力を発揮するよう構成してなることを特徴とする電源装置。
    The power supply device according to claim 2, wherein
    The power supply apparatus according to claim 1, wherein the cooling plate (30) includes a pipe for circulating a cooling liquid therein, and exhibits cooling capacity by circulating the cooling liquid through the pipe.
  10.  請求項9に記載の電源装置であって、さらに、
     冷却液を冷却するための中間熱交換器を備えてなり、
     前記中間熱交換器が、蒸発器及び凝縮器と接続されてなることを特徴とする電源装置。
    The power supply device according to claim 9, further comprising:
    An intermediate heat exchanger for cooling the coolant,
    The power supply apparatus, wherein the intermediate heat exchanger is connected to an evaporator and a condenser.
  11.  請求項1から10のいずれか一に記載の電源装置を備える車両。 A vehicle comprising the power supply device according to any one of claims 1 to 10.
PCT/JP2012/054789 2011-02-28 2012-02-27 Electrical power supply and vehicle using forced-cooling stacked storage cell WO2012118015A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011043341 2011-02-28
JP2011-043341 2011-02-28

Publications (1)

Publication Number Publication Date
WO2012118015A1 true WO2012118015A1 (en) 2012-09-07

Family

ID=46757949

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/054789 WO2012118015A1 (en) 2011-02-28 2012-02-27 Electrical power supply and vehicle using forced-cooling stacked storage cell

Country Status (1)

Country Link
WO (1) WO2012118015A1 (en)

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014120340A (en) * 2012-12-17 2014-06-30 Toyota Industries Corp Battery pack
EP2784870A1 (en) * 2013-03-27 2014-10-01 Kobelco Construction Machinery Co., Ltd. Battery cooling structure
JP2014192120A (en) * 2013-03-28 2014-10-06 Toyota Industries Corp Battery pack
WO2015008563A1 (en) * 2013-07-17 2015-01-22 カルソニックカンセイ株式会社 Assembled battery
JP2015109200A (en) * 2013-12-04 2015-06-11 株式会社豊田自動織機 Battery pack and manufacturing method of the same
WO2015115233A1 (en) 2014-01-30 2015-08-06 日立建機株式会社 Hybrid construction machine
WO2016194546A1 (en) * 2015-06-03 2016-12-08 株式会社豊田自動織機 Battery pack and battery pack production method
JP2016219243A (en) * 2015-05-20 2016-12-22 株式会社豊田自動織機 Battery module
JPWO2014155609A1 (en) * 2013-03-28 2017-02-16 日立オートモティブシステムズ株式会社 Battery module
JP2018037343A (en) * 2016-09-01 2018-03-08 トヨタ自動車株式会社 Battery pack
JP2018056092A (en) * 2016-09-30 2018-04-05 日立オートモティブシステムズ株式会社 Battery module
FR3059475A1 (en) * 2016-11-29 2018-06-01 Peugeot Citroen Automobiles Sa THERMAL EXCHANGE DEVICE FOR A LOWER CHASSIS OF A BATTERY HOUSING
JP2018188144A (en) * 2018-06-20 2018-11-29 日立建機株式会社 Arrangement structure of power storage device and dump truck
WO2018202813A3 (en) * 2017-05-05 2018-12-13 Mubea Carbo Tech Gmbh Support structure
US20190372184A1 (en) * 2012-08-31 2019-12-05 Avl Powertrain Engineering, Inc. High Power Battery Cells Having Improved Cooling
CN111146368A (en) * 2018-11-06 2020-05-12 罗伯特·博世有限公司 Housing for a battery cell, battery cell and method for producing a battery cell
CN111430607A (en) * 2018-12-20 2020-07-17 松下知识产权经营株式会社 Vehicle, heat exchange plate and battery pack
JP2020184429A (en) * 2019-04-26 2020-11-12 トヨタ自動車株式会社 Cooling unit
CN112350011A (en) * 2019-07-23 2021-02-09 Sk新技术株式会社 Battery module
WO2021170541A1 (en) * 2020-02-27 2021-09-02 Abtery Ab Cooling arrangement for an electrical storage device allowing graded or variable local cooling

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05151980A (en) * 1991-11-29 1993-06-18 Sanyo Electric Co Ltd Cooling plate of fuel cell
JPH06338334A (en) * 1993-05-27 1994-12-06 Toshiba Corp Cooling plate and cooling system for fuel cell
JP2004047361A (en) * 2002-07-15 2004-02-12 Sanyo Electric Co Ltd Power supply device
JP2010015788A (en) * 2008-07-02 2010-01-21 Sanyo Electric Co Ltd Battery pack for vehicle
JP2010272378A (en) * 2009-05-21 2010-12-02 Sanyo Electric Co Ltd Battery system for vehicle
JP2010277863A (en) * 2009-05-28 2010-12-09 Sanyo Electric Co Ltd Vehicular battery system and vehicle loading the same
EP2317586A1 (en) * 2009-10-30 2011-05-04 Sanyo Electric Co., Ltd. Power supply device including a plurality of battery cells arranged side by side

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05151980A (en) * 1991-11-29 1993-06-18 Sanyo Electric Co Ltd Cooling plate of fuel cell
JPH06338334A (en) * 1993-05-27 1994-12-06 Toshiba Corp Cooling plate and cooling system for fuel cell
JP2004047361A (en) * 2002-07-15 2004-02-12 Sanyo Electric Co Ltd Power supply device
JP2010015788A (en) * 2008-07-02 2010-01-21 Sanyo Electric Co Ltd Battery pack for vehicle
JP2010272378A (en) * 2009-05-21 2010-12-02 Sanyo Electric Co Ltd Battery system for vehicle
JP2010277863A (en) * 2009-05-28 2010-12-09 Sanyo Electric Co Ltd Vehicular battery system and vehicle loading the same
EP2317586A1 (en) * 2009-10-30 2011-05-04 Sanyo Electric Co., Ltd. Power supply device including a plurality of battery cells arranged side by side

Cited By (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190372184A1 (en) * 2012-08-31 2019-12-05 Avl Powertrain Engineering, Inc. High Power Battery Cells Having Improved Cooling
JP2014120340A (en) * 2012-12-17 2014-06-30 Toyota Industries Corp Battery pack
EP2784870A1 (en) * 2013-03-27 2014-10-01 Kobelco Construction Machinery Co., Ltd. Battery cooling structure
CN104078720A (en) * 2013-03-27 2014-10-01 神钢建机株式会社 Battery cooling structure
US9306250B2 (en) 2013-03-27 2016-04-05 Kobelco Construction Machinery Co., Ltd. Battery cooling structure
JP2014192010A (en) * 2013-03-27 2014-10-06 Kobelco Contstruction Machinery Ltd Battery cooling structure
KR20140119629A (en) * 2013-03-27 2014-10-10 코벨코 겐키 가부시키가이샤 Battery cooling structure
KR102189760B1 (en) 2013-03-27 2020-12-11 코벨코 겐키 가부시키가이샤 Battery cooling structure
JP2014192120A (en) * 2013-03-28 2014-10-06 Toyota Industries Corp Battery pack
JPWO2014155609A1 (en) * 2013-03-28 2017-02-16 日立オートモティブシステムズ株式会社 Battery module
WO2015008563A1 (en) * 2013-07-17 2015-01-22 カルソニックカンセイ株式会社 Assembled battery
CN105359331A (en) * 2013-07-17 2016-02-24 康奈可关精株式会社 Assembled battery
US10153526B2 (en) 2013-07-17 2018-12-11 Calsonic Kansei Corporation Assembled battery
JPWO2015008563A1 (en) * 2013-07-17 2017-03-02 カルソニックカンセイ株式会社 Assembled battery
WO2015083512A1 (en) * 2013-12-04 2015-06-11 株式会社 豊田自動織機 Battery pack and method for producing same
JP2015109200A (en) * 2013-12-04 2015-06-11 株式会社豊田自動織機 Battery pack and manufacturing method of the same
WO2015115233A1 (en) 2014-01-30 2015-08-06 日立建機株式会社 Hybrid construction machine
US9896822B2 (en) 2014-01-30 2018-02-20 Hitachi Construction Machinery Co., Ltd. Hybrid construction machine
JP2016219243A (en) * 2015-05-20 2016-12-22 株式会社豊田自動織機 Battery module
JP2016225235A (en) * 2015-06-03 2016-12-28 株式会社豊田自動織機 Battery pack and manufacturing method of battery pack
WO2016194546A1 (en) * 2015-06-03 2016-12-08 株式会社豊田自動織機 Battery pack and battery pack production method
JP2018037343A (en) * 2016-09-01 2018-03-08 トヨタ自動車株式会社 Battery pack
JP2018056092A (en) * 2016-09-30 2018-04-05 日立オートモティブシステムズ株式会社 Battery module
FR3059475A1 (en) * 2016-11-29 2018-06-01 Peugeot Citroen Automobiles Sa THERMAL EXCHANGE DEVICE FOR A LOWER CHASSIS OF A BATTERY HOUSING
CN110462328A (en) * 2017-05-05 2019-11-15 慕贝尔碳纤维技术有限公司 Support construction
WO2018202813A3 (en) * 2017-05-05 2018-12-13 Mubea Carbo Tech Gmbh Support structure
US11376941B2 (en) 2017-05-05 2022-07-05 Mubea Carbo Tech Gmbh Electric vehicle battery cooling structure
EP4220062A1 (en) * 2017-05-05 2023-08-02 Mubea Carbo Tech GmbH Support structure
JP2018188144A (en) * 2018-06-20 2018-11-29 日立建機株式会社 Arrangement structure of power storage device and dump truck
CN111146368A (en) * 2018-11-06 2020-05-12 罗伯特·博世有限公司 Housing for a battery cell, battery cell and method for producing a battery cell
CN111430607A (en) * 2018-12-20 2020-07-17 松下知识产权经营株式会社 Vehicle, heat exchange plate and battery pack
JP2020184429A (en) * 2019-04-26 2020-11-12 トヨタ自動車株式会社 Cooling unit
CN112350011A (en) * 2019-07-23 2021-02-09 Sk新技术株式会社 Battery module
US11799148B2 (en) 2019-07-23 2023-10-24 Sk On Co., Ltd. Battery module
WO2021170541A1 (en) * 2020-02-27 2021-09-02 Abtery Ab Cooling arrangement for an electrical storage device allowing graded or variable local cooling

Similar Documents

Publication Publication Date Title
WO2012118015A1 (en) Electrical power supply and vehicle using forced-cooling stacked storage cell
WO2012133707A1 (en) Power source device and vehicle provided with power source device
JP5985255B2 (en) Power supply device, vehicle including this power supply device, and power storage device
WO2013146561A1 (en) Power supply device, and vehicle and power storage device equipped with same
JP5734704B2 (en) Power supply device and vehicle equipped with power supply device
JP2013125617A (en) Power supply device and vehicle having the same, and power storage device
WO2019155713A1 (en) Power supply device, and electric vehicle and power storage device provided with said power supply device
JP5137480B2 (en) Power supply for vehicle
EP2362463B1 (en) Power source apparatus with electrical components disposed in the battery blocks
JP7348180B2 (en) Battery system and electric vehicle and power storage device equipped with the battery system
JP5456371B2 (en) Battery system for vehicle and vehicle equipped with this battery system
JP6073583B2 (en) Power supply device, vehicle including this power supply device, and power storage device
WO2012133711A1 (en) Method for producing power source device, power source device, and vehicle provided with power source device
WO2012133709A1 (en) Power source device, and vehicle provided with power source device
US20140023906A1 (en) Power supply apparatus and vehicle having the same
WO2013084756A1 (en) Power source device, vehicle equipped with same and electricity storage device
JP2013012441A (en) Electric power source device and vehicle including the same
WO2013161654A1 (en) Power-supply device, vehicle provided with power-supply device, and electricity-storage device
JP2013084444A (en) Electric power supply apparatus and vehicle including the same
WO2021024776A1 (en) Power supply device, electric vehicle comprising said power supply device, and power storage device
JP2012248339A (en) Power unit for electric power and vehicle with power unit
JP2014504779A (en) Battery module storage device, battery module temperature control device, and power storage system including them
JP2013025982A (en) Power supply device and vehicle with power supply device
JP2010015788A (en) Battery pack for vehicle
WO2013002090A1 (en) Power supply device, vehicle including same, and method for manufacturing power supply device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12752787

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12752787

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP