WO2012133711A1 - Method for producing power source device, power source device, and vehicle provided with power source device - Google Patents

Method for producing power source device, power source device, and vehicle provided with power source device Download PDF

Info

Publication number
WO2012133711A1
WO2012133711A1 PCT/JP2012/058485 JP2012058485W WO2012133711A1 WO 2012133711 A1 WO2012133711 A1 WO 2012133711A1 JP 2012058485 W JP2012058485 W JP 2012058485W WO 2012133711 A1 WO2012133711 A1 WO 2012133711A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery stack
battery
power supply
covering case
supply device
Prior art date
Application number
PCT/JP2012/058485
Other languages
French (fr)
Japanese (ja)
Inventor
康広 浅井
高志 瀬戸
橋本 裕之
土屋 正樹
貴英 籠谷
Original Assignee
三洋電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三洋電機株式会社 filed Critical 三洋電機株式会社
Publication of WO2012133711A1 publication Critical patent/WO2012133711A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/262Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders with fastening means, e.g. locks
    • H01M50/264Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders with fastening means, e.g. locks for cells or batteries, e.g. straps, tie rods or peripheral frames
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/204Racks, modules or packs for multiple batteries or multiple cells
    • H01M50/207Racks, modules or packs for multiple batteries or multiple cells characterised by their shape
    • H01M50/209Racks, modules or packs for multiple batteries or multiple cells characterised by their shape adapted for prismatic or rectangular cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/233Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by physical properties of casings or racks, e.g. dimensions
    • H01M50/24Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by physical properties of casings or racks, e.g. dimensions adapted for protecting batteries from their environment, e.g. from corrosion
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/289Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by spacing elements or positioning means within frames, racks or packs
    • H01M50/293Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by spacing elements or positioning means within frames, racks or packs characterised by the material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention mainly relates to a power supply device for a large current used for a power source of a motor driving a vehicle such as a hybrid vehicle or an electric vehicle, or a power storage application for home use or factory use, a manufacturing method thereof, and such a method.
  • the present invention relates to a vehicle including a power supply device.
  • a cooling pipe 260 that circulates a refrigerant is disposed on the lower surface of the battery stack 205 in which the battery cells 201 are stacked, and is connected to the cooling mechanism 269.
  • the cooling pipe 260 extends and extends in the direction intersecting the stacking direction in which the battery cells 201 are stacked.
  • the cooling pipe 260 is extended in parallel with the stacking direction in which the battery cells 201 are stacked.
  • the cooling plate 261 is disposed on the lower surface of the battery stack 205, and the cooling pipe 260 is provided on the cooling plate 261, thereby removing heat from the battery stack 205 via the cooling plate 261 and cooling. I am letting.
  • JP 2009-134901 A JP 2009-134936 A JP 2010-15788 A Japanese Utility Model Publication No. 34-16929
  • a fastener such as a metal bind bar is used to fasten the stacked battery cells. Since the bind bar is arranged on the side surface of the battery stack, in the configuration in which the battery stack is surrounded by a cover case or the like, the cover case is covered from above the bind bar. There was a problem of getting bigger. In particular, power supply devices for in-vehicle use are required to be as small and light as possible because of installation space.
  • the binding bar if the binding bar is to be eliminated, the battery cell cannot be fastened, and the battery stack cannot be inserted into the covering case.
  • a main object of the present invention is to provide a method of manufacturing a power supply device that can be inserted into a covering case in a state where battery cells are stacked without using a bind bar, a power supply device, and a vehicle including the power supply device. .
  • a battery stack formed by stacking a plurality of prismatic battery cells having a rectangular outer shape, And a covering case having an opening on one side for housing the battery stack, wherein the end faces on both sides of the battery stack are bound to one or more in a state where the rectangular battery cells are stacked.
  • the battery stack In the state of pressing and clamping with a jig, and in the state of being clamped with the one or more binding jigs, the battery stack is positioned in an opening portion opened on one surface of the covering case, and the single or plural A step of inserting the battery stack from the opening of the covering case while releasing the pressing of the binding jig.
  • the battery stack can be pushed into the covering case in a stacked state without using a bind bar.
  • the one or more binding jigs are arranged in order from the bottom in the height direction, the first binding jig, the second binding jig, and the third binding jig.
  • an end plate can be disposed on the end surface of the battery stack.
  • the battery stack is sandwiched through the end plate, and can be safely pressed without damaging the prismatic battery cells located on the end face with an external force.
  • the upper surface pressing jig can press the upper surface of the end plate when the battery stack is press-fitted from the upper surface. As a result, even when pressing from the upper surface of the battery stack, by receiving an external force from the end plate, it is possible to reduce the load on the rectangular battery cell and to push it into the covering case with high reliability.
  • the covering case has a frame shape opened in the vertical direction, and when the battery stack is press-fitted into the covering case, from the lower opening end.
  • the opening portion of the end face plate of the covering case can be expanded with an expansion jig.
  • a battery stack formed by stacking a plurality of prismatic battery cells having a rectangular outer shape, and one surface for storing the battery stack are opened.
  • a method of manufacturing a power supply device comprising: a covering case; and a step of inserting both end faces between a pair of rotatable rotating roller jigs in a state where the rectangular battery cells are stacked, and the battery stacking With the body inserted between the rotating roller jigs and being sandwiched between them, the pair of roller jigs are placed on each other so that the battery stack is inserted into the covering case by being positioned at one surface opening of the covering case.
  • the covering case has an open top surface that houses the battery stack, and the battery stack is positioned at the top opening of the covering case. And rotating the pair of roller jigs in opposite directions so as to lower the battery stack, lowering the battery stack while maintaining the pressed state, and lowering the battery stack from the lower end, It can be inserted into the opening of the covering case. Accordingly, the battery stack can be pressed and lowered simultaneously using a single jig, and the battery stack can be more easily and quickly pressed into the covering case without using a fastener such as a bind bar. .
  • a battery stack formed by stacking a plurality of prismatic battery cells having a rectangular outer shape, and a covering case having an open upper surface for storing the battery stack.
  • the battery stack is press-fitted into the covering case without a fastener for fastening in the stacked state.
  • a battery stack formed by stacking a plurality of prismatic battery cells having a rectangular outer shape, and a covering case having an open upper surface for storing the battery stack. , And the battery laminate is housed in the covering case, and pressure is applied in the stacking direction of the rectangular battery cells.
  • the above power supply device can be used for a vehicle including the power supply device according to the tenth aspect.
  • FIG. 1 It is a disassembled perspective view of a power supply device provided with the power supply device which concerns on Example 1 of this invention. It is a perspective view which shows the assembled battery of FIG. It is a disassembled perspective view which shows the state which removed the cooling plate from the battery laminated body of FIG. It is a disassembled perspective view which shows the battery laminated body of FIG. It is a disassembled perspective view of the battery laminated body of FIG. It is a disassembled perspective view of the battery laminated body of FIG. It is a schematic cross section which shows the example which arrange
  • FIG. 1 It is a perspective view which shows the assembled battery of FIG. It is a disassembled perspective view which shows the state which removed the cooling plate from the battery laminated body of FIG. It is a disassembled perspective view which shows the battery laminated body of FIG. It is a disassembled perspective
  • FIG. 3 is a schematic vertical sectional view showing a method for press-fitting a battery stack according to Example 1 into a covering case.
  • FIG. 10 is a schematic vertical sectional view showing a state in which the battery stack is inserted by releasing the pressing of the first binding jig in the state of FIG. 9.
  • FIG. 11 is a schematic vertical sectional view showing a state in which the battery stack is pushed in by releasing the pressing of the second binding jig from the state of FIG. 10.
  • FIG. 12 is a schematic vertical sectional view showing a state in which the battery stack is further pushed from the state of FIG. 11 and the pressing of the third binding jig is released.
  • FIG. 10 is a schematic vertical sectional view showing a state in which the battery stack is inserted by releasing the pressing of the first binding jig in the state of FIG. 9.
  • FIG. 11 is a schematic vertical sectional view showing a state in which the battery stack is pushed in by releasing the pressing of the second binding j
  • FIG. 13 is a schematic vertical sectional view showing a state in which the battery stack is further pushed in from the state of FIG. 12.
  • FIG. 14 is a schematic vertical sectional view showing a state in which the cover portion is fixed in the state of FIG. 13.
  • 4 is a flowchart illustrating a method for press-fitting a battery stack according to Example 1 into a covering case.
  • FIG. 6 is a schematic vertical sectional view showing a method for press-fitting a battery laminate according to Example 2 into a covering case. It is a block diagram which shows the example which mounts a power supply device in the hybrid vehicle which drive
  • FIG. 6 is a schematic vertical sectional view showing a method for press-fitting a battery laminate according to Example 3 into a covering case.
  • FIG. It is a schematic plan view which shows another cooling mechanism. It is a schematic plan view which shows another cooling mechanism.
  • each element constituting the present invention may be configured such that a plurality of elements are constituted by the same member and the plurality of elements are shared by one member, and conversely, the function of one member is constituted by a plurality of members. It can also be realized by sharing.
  • the contents described in some examples and embodiments may be used in other examples and embodiments.
  • FIG. 1 is an exploded perspective view of the power supply device 100
  • FIG. 2 is a perspective view showing the battery stack 5 of FIG. 1
  • FIG. 3 is an exploded perspective view with the cooling plate 61 removed from the battery stack 5 of FIG. 4
  • FIG. 5 is an exploded perspective view of the battery stack 5 of FIG.
  • This power supply device 100 is mainly mounted on an electric vehicle such as a hybrid vehicle or an electric vehicle, and is used as a power source for supplying electric power to a traveling motor of the vehicle and causing the vehicle to travel.
  • the power supply device of the present invention can be used for vehicles other than hybrid vehicles and electric vehicles, and can also be used for applications requiring high output other than electric vehicles.
  • Power supply device 100 Power supply device 100
  • the external appearance of the power supply device 100 is a box shape whose upper surface is rectangular.
  • a box-shaped outer case 70 is divided into two, and a plurality of assembled batteries 10 are accommodated therein.
  • the exterior case 70 includes a lower case 71, an upper case 72, and end plates 73 connected to both ends of the lower case 71 and the upper case 72.
  • the upper case 72 and the lower case 71 have a flange portion 74 protruding outward, and the flange portion 74 is fixed with a bolt and a nut.
  • the outer case 70 has a flange 74 disposed on the side surface of the outer case 70. Further, in the example shown in FIG.
  • the assembled battery 10 is composed of four battery stacks 5 in the example shown in FIG. That is, two battery stacks 5 are connected in the stacking direction of the rectangular battery cells 1 to form one battery stack continuous body 10B, and two battery stack continuous bodies 10B in such a connected state are arranged in parallel.
  • the assembled battery 10 is configured.
  • each battery stack 5 constituting the assembled battery 10 includes a plurality of prismatic battery cells 1, a separator 2 that interposes a plurality of prismatic battery cells 1 on the surface where the plurality of prismatic battery cells 1 are stacked, and a battery 2.
  • a pair of end plates 3 disposed on an end surface in the stacking direction of the stacked body 5 and a covering case 16 that houses a battery stacked body 5 in which a plurality of rectangular battery cells 1 and separators 2 are stacked alternately are provided. (Battery laminate 5)
  • the battery stack 5 is formed by stacking a plurality of rectangular battery cells 1 via an insulating separator 2. Further, as shown in FIG. 4, a pair of end plates 3 are arranged on both end faces of the battery stack 5. In this way, a battery stack 5 in which a plurality of prismatic battery cells 1 and separators 2 are alternately stacked by interposing a separator 2 that insulates adjacent prismatic battery cells 1 on a stacking surface of the prismatic battery cells 1. Yes.
  • Each battery stack 5 is covered with a covering case 16. Further, as shown in FIG. 3, the covering case 16 is fixed on a cooling plate 61 for cooling it. A connection structure for fixing the battery stack 5 on the cooling plate 61 is provided. (Square battery cell 1)
  • the outer can constituting the outer shape is a rectangular shape whose thickness is smaller than the width.
  • Positive and negative electrode terminals are provided on the sealing plate for closing the outer can, and a safety valve is provided between the electrode terminals.
  • the safety valve is configured to open when the internal pressure of the outer can rises to a predetermined value or more, and to release the internal gas. The increase in the internal pressure of the outer can can be stopped by opening the safety valve.
  • the unit cell constituting the rectangular battery cell 1 is a rechargeable secondary battery such as a lithium ion battery, a nickel-hydrogen battery, or a nickel-cadmium battery.
  • the battery cell used in the present invention is not limited to a rectangular battery cell, but may be a cylindrical battery cell or a rectangular battery cell in which an exterior body is covered with a laminate material or other shapes.
  • the respective rectangular battery cells 1 that are stacked to form the battery stack 5 are connected in series by connecting adjacent positive and negative electrode terminals with a bus bar 6.
  • the assembled battery 10 in which the adjacent rectangular battery cells 1 are connected in series can increase the output voltage and increase the output.
  • an assembled battery can also connect adjacent square battery cells in parallel, or a combination of series and parallel.
  • the rectangular battery cell 1 is manufactured with a metal outer can.
  • an insulating separator 2 is sandwiched between the adjacent rectangular battery cells 1 in order to prevent short-circuiting of the outer can of the rectangular battery cell 1.
  • the outer can of the rectangular battery cell can also be made of an insulating material such as plastic. In this case, since it is not necessary for the rectangular battery cell to insulate and laminate the outer can, the separator can be made of metal or the separator can be made unnecessary. (Separator 2)
  • the separator 2 is a spacer for laminating adjacent rectangular battery cells 1 electrically and thermally.
  • the separator 2 is made of an insulating material such as plastic, and is disposed between the adjacent rectangular battery cells 1 to insulate the adjacent rectangular battery cells 1. (End plate 3)
  • a pair of end plates 3 are arranged on both end faces of the battery stack 5 in which the prismatic battery cells 1 and the separators 2 are alternately stacked, and the battery stack 5 is formed by the pair of end plates 3. It is pinched.
  • the end plate 3 is made of a material that exhibits sufficient strength, for example, metal.
  • the end plate 3 has a fixing structure for fixing to the lower case 71 shown in FIG.
  • the end plate can be manufactured from a resin material, or can be manufactured by reinforcing an end plate made of resin with a metal member. (Coating case 16)
  • the battery stack 5 is press-fitted into the covering case 16 as shown in FIG.
  • the battery cell 1 is inserted into the covering case 16 while keeping the battery cell 1 in a laminated state, that is, in a state where the battery laminated body 5 is constrained to have a certain thickness or less in the lamination direction.
  • the covering case 16 is formed in a bottomed box shape having an open upper surface, as shown in the exploded perspective view of FIG.
  • the covering case 16 is made of metal to enhance heat dissipation and to enhance heat conduction at the joint surface with the cooling plate 61.
  • the inner surface of the covering case 16 is insulated to insulate the stacked rectangular battery cells 1.
  • the heat conductive sheet 12 having insulating properties and heat conductivity can be arranged on the bottom surface of the covering case 16.
  • the covering case is made of metal, but may be made of resin or the like if sufficient strength can be maintained.
  • thermal conductivity can also be improved by insert-forming a metal plate in the resin-made covering case.
  • a fiber sheet, a mica sheet, etc. can be utilized suitably for resin.
  • the battery stack 5 is waterproofed by a covering case 16. Thereby, the penetration
  • a cooling system that takes heat away from the prismatic battery cells by heat exchange using a refrigerant is used as a cooling system for the prismatic battery cells, cooling can be performed more efficiently, but the cooling part is kept at a relatively low temperature for high cooling performance. As a result, the temperature may drop below the dew point, and moisture in the air present around the battery stack may be cooled and condensed on the surface of the prismatic battery cell. Therefore, the cover case is not simply made waterproof, but has a waterproof structure for protecting the surface of the battery stack surrounded by the cover case from such water droplets. (Buffer member 18)
  • a buffer member 18 is disposed between the battery stack 5 and the covering case 16 as shown in the cross-sectional view of FIG. 7. That is, the buffer member 18 is filled in the gap between the battery stack 5 and the covering case 16, and the situation in which moisture in the air existing in the gap is condensed to adversely affect the battery stack 5 is avoided. .
  • the periphery of the battery stack 5 is covered with a resin as the buffer member 18.
  • the resin is injected between the battery stack 5 and the covering case 16 by surrounding the battery stack 5 with the covering case 16. This eliminates the gap between the battery stack 5 and the covering case 16, thereby avoiding a situation where the surface of the battery stack 5 is dewed and adversely affected.
  • a filler as a buffer member 18 is filled in a gap between the battery stack 5 within a region surrounded by the covering case 16. Yes.
  • a waterproof structure is obtained in which the periphery of the battery stack 5 is waterproof as shown in FIG. (Filler)
  • Urethane resin can be suitably used as the filler.
  • the filler By potting with the filler as described above, gaps are eliminated, the surface of the rectangular battery cell 1 is protected, and conduction and corrosion due to condensation can be avoided.
  • the resin can be injected under pressure. After filling the resin, it is dried until the resin is completely cured. (Water absorption sheet)
  • a water absorbing sheet can be used as the buffer member 18.
  • the water-absorbing sheet is a sheet material having a hygroscopic property and a water-absorbing property composed of a polymer material or the like, and thus, condensation can be avoided at a low cost with a simple configuration without obtaining a complicated process such as potting.
  • the buffer member 18 is not limited to this, and a structure such as a packing structure, an O-ring, a sealing structure using a gasket, a sheet-like elastic member or other potting material, or a battery stack can be used as appropriate. . (Cover 24)
  • the upper surface is closed with the cover 24 as shown in FIG.
  • it is fixed to the upper surface of the covering case 16 via packing or the like.
  • a gas duct 26 communicating with the safety valve of the rectangular battery cell 1 is provided on the inner surface of the cover portion 24.
  • the bus bar 6 can also be insert-molded in the cover part 24, and by joining the cover part 24 to the top surface of the battery stack 5, the electrode terminals of the respective rectangular battery cells 1 can be connected together. It becomes possible.
  • a circuit board on which a control circuit for controlling the power supply device 100 is mounted is disposed on the upper surface of the cover portion 24. Further, the circuit board may be integrally provided in the cover portion.
  • the covering case 16 can also seal a fitting part airtightly, using the member which comprises each surface as a fitting structure.
  • a fitting structure a packing, an O-ring, a gasket or the like can be used, and the covering case 16 can be sealed. (Linked structure)
  • the battery stack 5 and the cooling plate 61 have a connection structure for fixing the battery stack 5 on the cooling plate 61.
  • the connection structure includes a connection bar 50 ⁇ / b> B.
  • the connecting bar 50B is a U-shaped metal plate that extends in the vertical direction on the side surface of the cover portion 24, and is locked to the upper surface of the covering case 16 and to the bottom surface of the cooling plate 61, It is fixed by screwing.
  • the cooling plate 61 is fixed to the bottom surface of the covering case 16 by the connecting bar 50B. (Connection bar 50B)
  • the connecting bar 50 ⁇ / b> B has a shape in which the strip strip is bent in a substantially U shape in a cross-sectional view.
  • the strip strip is made of, for example, a metal plate so as to exhibit sufficient strength. Preferably, the strength is improved by forming a step on the surface of the strip.
  • the length of the connecting bar 50 ⁇ / b> B is a substantially U-shaped bent portion that is large enough to sandwich the height of the cover portion 24 on the top surface of the covering case 16 and the cooling plate 61 on the bottom surface. In this manner, the plate connecting portion can be easily added to the cooling plate 61 by using the connecting bar 50B. In particular, a coupling mechanism can be added without complicating the shape of the cooling plate 61 having a refrigerant circulation function or the like. (Cooling mechanism 69)
  • the cooling plate 61 is connected to a cooling mechanism.
  • the cooling mechanism includes, for example, a refrigerant circulation mechanism.
  • FIG. 8 shows an example of such a refrigerant circulation mechanism.
  • the battery stack 5 in which a plurality of rectangular battery cells 1 are stacked is disposed on the upper surface of the cooling plate 61.
  • the cooling plate 61 is disposed in a thermally coupled state to the rectangular battery cells 1 constituting the battery stack 5.
  • the cooling plate 61 is provided with a cooling pipe 60 as a refrigerant pipe through which the refrigerant flows, and the cooling pipe 60 is connected to a cooling mechanism 69.
  • the power supply device can also cool each member such as an electronic circuit disposed on the end face of the battery stack.
  • the cooling plate 61 including the cooling pipe 60 that circulates the refrigerant therein is brought into contact with the bottom surface of the covering case 16 to be cooled, so that the heat dissipation is improved and the power supply device can be stably supplied even at high output. Can be available. (Cooling plate 61)
  • the cooling plate 61 is a heat radiator that conducts heat of the rectangular battery cell 1 to dissipate it to the outside.
  • the cooling plate 61 incorporates a cooling pipe 60 that is a refrigerant pipe made of copper, aluminum, or the like that circulates a liquefied refrigerant that is a cooling liquid as a heat exchanger.
  • the cooling pipe 60 is thermally coupled to the upper surface plate of the cooling plate 61, and a heat insulating material is disposed between the cooling plate 60 and the bottom plate to insulate the space from the bottom plate.
  • the cooling plate 61 can be composed of only a metal plate. For example, it is made into the shape excellent in heat dissipation and heat transfer property, such as a metal body provided with a radiation fin. Or you may utilize not only metal but the heat-transfer sheet
  • the cooling plate 61 is cooled by supplying the coolant from the cooling mechanism 69 to the refrigerant piping provided inside.
  • the cooling plate 61 can cool the cooling liquid supplied from the cooling mechanism 69 more efficiently as a refrigerant that cools the cooling plate 61 with heat of vaporization that evaporates inside the refrigerant pipe 61.
  • two battery stacks 5 are placed on each cooling plate 61. As described above, two battery stacks 5 are connected in the length direction, that is, the stacking direction of the rectangular battery cells 1 to form one battery stack continuous body 10B, and the two batteries in such a connected state are formed.
  • the stacked body 5 is supported by one cooling plate 61. Two of these battery stack continuous bodies 10B are arranged in parallel to constitute the assembled battery 10.
  • the cooling plate 61 is extended in the stacking direction of the rectangular battery cells 1, and the cooling pipe 60 piped inside is meandered so as to be folded back at the end edge, thereby forming three straight lines.
  • a cooling pipe 60 is disposed on the lower surface of the battery stack 5.
  • coolant is made common by connecting the cooling pipes 60 with battery lamination
  • a plurality of cooling pipes can be arranged on the lower surface of the battery stack, and can be divided into, for example, folded portions of the meandering cooling pipe shown in FIG. 8 to form a plurality of cooling pipes.
  • the cooling pipes may be connected to share a refrigerant path.
  • position a cooling pipe can be changed suitably.
  • the cooling plate 61 also functions as a soaking means for equalizing the temperatures of the plurality of rectangular battery cells 1. That is, by adjusting the thermal energy absorbed by the cooling plate 61 from the rectangular battery cell 1, the rectangular battery cell whose temperature is increased, for example, the rectangular battery cell in the central portion is efficiently cooled, and the temperature is decreased, for example, both ends The cooling of the rectangular battery cells is reduced, and the temperature difference between the rectangular battery cells is reduced. As a result, the temperature unevenness of the prismatic battery cells can be reduced, and a situation in which some of the prismatic battery cells are deteriorated and overcharge and overdischarge can be avoided.
  • the cooling plate 61 in the bottom face of the battery laminated body 5 was shown in FIG. 8, it is not restricted to this structure.
  • the cooling plate can be arranged on both side surfaces of the rectangular battery cell, or can be arranged only on one side surface.
  • the cooling mechanism 69 shown in FIG. 8 forcibly cools the cooling pipe 60 with the heat of vaporization of the refrigerant.
  • the cooling mechanism 69 includes a circulation pump P and a radiator 54, and a control circuit CT that controls the operation of the fan 53 of the circulation pump P and the radiator 54.
  • the circulation pump P circulates the liquid refrigerant through the refrigerant path and the radiator 54.
  • the control circuit CT detects the temperature of the battery stack 5 with a temperature sensor, and operates the circulation pump P when the detected temperature becomes higher than the set temperature.
  • the control circuit CT detects the temperature of the refrigerant with a temperature sensor, and operates the fan 53 of the radiator 54 when the temperature of the refrigerant becomes higher than a set value.
  • the refrigerant circulated through the refrigerant path by the circulation pump P is insulating oil or antifreeze. Silicon oil or the like can be used as the insulating oil.
  • the cooling with the refrigerant is used in the meaning including water cooling in which water or a coolant is circulated. (Cooling mechanism 69B according to a modification)
  • the cooling mechanism can supply a refrigerant that is vaporized inside the refrigerant path and cooled by the heat of vaporization to the refrigerant path.
  • a cooling mechanism 69B according to such a modification is shown in FIG. This refrigerant is vaporized inside the refrigerant path to cool the refrigerant path.
  • the cooled refrigerant path cools the battery stack 5 from the bottom surface.
  • the cooling mechanism 69B can cool the battery stack 5 to a low temperature.
  • the cooling mechanism 69B includes a compressor C that pressurizes the vaporized refrigerant, a condenser 57 that cools and liquefies the refrigerant pressurized by the compressor C, and supplies the refrigerant liquefied by the condenser 57 to the refrigerant path. And an inflator 58.
  • the expander 58 is, for example, a capillary tube or an expansion valve. A capillary tube or an expansion valve made of a thin tube is limited to a predetermined flow range of the refrigerant.
  • These expanders 58 are designed to have a flow rate at which all of the refrigerant is vaporized while being discharged from the refrigerant path.
  • the battery cell 1 can also be cooled by supplying the liquefied refrigerant to the refrigerant flow path, evaporating the refrigerant in the refrigerant flow path, and forcibly cooling with the heat of vaporization of the refrigerant.
  • a cooling mechanism 69B that forcibly cools the cooling plate 61B with the heat of vaporization of the refrigerant supplies the liquefied refrigerant to the cooling pipe 60B via the expansion valve 65, and vaporizes the supplied refrigerant by evaporating inside the cooling pipe 60B.
  • the cooling plate 61B is cooled by heat.
  • the vaporized refrigerant is pressurized by the compressor C, supplied to the condenser 57, liquefied by the condenser 57, and circulated through the expansion valve 65 to the refrigerant flow path of the cooling pipe 60B to cool the cooling plate 61B.
  • Cooling mechanism 69C according to a modification
  • the cooling pipe is not necessarily cooled by the heat of vaporization of the refrigerant, and for example, water cooling that circulates and cools the cooled liquid can be adopted. Further, the cooling pipe may be provided with a cooling gas passage in the interior, and the cooled gas may be cooled by forcibly blowing the cooled gas. In addition, when employing water cooling in which water or a coolant is circulated, the coolant used in the water cooling may be cooled with a refrigerant. In particular, in a vehicle power supply device, an existing cooling mechanism used for an indoor air conditioner or the like can be used for cooling the coolant. FIG. 25 shows a cooling mechanism 69C employing such a configuration.
  • the cooling mechanism 69C shown in this figure includes a first cooling mechanism 69a that cools the cooling plate 61C with a cooling liquid by water cooling, and a second cooling mechanism 69b for cooling the vehicle interior that uses a refrigerant such as an indoor air conditioner. 67 is connected.
  • a pump P a three-way valve 64, an intermediate heat exchanger 67, a heater 66, and a cooling pipe 60C are arranged in a first circulation path 65 indicated by a thick line.
  • the radiator 54B is also connected through the three-way valve 64.
  • the radiator 54B is air-cooled by outside air, and when the outside air temperature is low, the three-way valve 64 can be switched from the intermediate heat exchanger 67 to the radiator 54B side to suppress energy consumption required for cooling, such as the power of the compressor C.
  • the heater 66 is a member for adjusting the temperature by heating the coolant.
  • the second cooling mechanism 69b is provided with a compressor C, an intermediate heat exchanger 67, an evaporator 56, and a condenser 57B in a second circulation path 55B indicated by a thin line.
  • the intermediate heat exchanger 67 and the evaporator 56 are connected in parallel via expansion valves 58C and 58B, respectively.
  • a fan 53B is in close proximity to the condenser 57B. This fan 53B can also be used for heat dissipation of the radiator 54B.
  • water containing antifreeze is used as the coolant
  • HFC is used as the refrigerant.
  • the coolant can be cooled more efficiently using the existing cooling mechanism, There is an advantage that the battery block can be cooled stably. (Thermal conductive sheet 12)
  • a heat transfer member such as the heat conductive sheet 12 is interposed between the cooling plate 61 and the square battery cell 1.
  • the heat conductive sheet 12 is preferably made of an insulating material having excellent heat conductivity, and more preferably has a certain degree of elasticity. Examples of such a material include acrylic, urethane, epoxy, and silicone resins. By doing in this way, heat conduction can be maintained, electrically insulating between the battery laminated body 5 and the cooling plate 61. FIG. Moreover, it can replace with a heat conductive sheet and can also use a heat conductive paste. Furthermore, an additional insulating film can be interposed in order to reliably maintain the insulating property.
  • the cooling pipe can be made of an insulating material. When sufficient insulation is achieved in this way, the heat conductive sheet or the like may be omitted.
  • the surface of the heat conductive sheet 12 is elastically deformed, and a space is eliminated at the contact surface between the battery stack 5 and the cooling plate 61, so that the thermal coupling state can be improved satisfactorily.
  • the power supply device 100 seals the battery stack 5 to have a waterproof structure, and protects the prismatic battery cell 1 from condensation and the like.
  • the inner space can be defined by the covering case 16, and the buffer member 18 can be disposed and sealed by potting or the like. (Press-in method for battery stack)
  • step S1 as shown in FIG. 9, the prismatic battery cells 1 are stacked, and the pair of end plates 3 are disposed on the end faces, and are sandwiched by binding jigs from both end faces.
  • the binding jig is composed of three parts: a first binding jig BJ1, a second binding jig BJ2, and a third binding jig BJ3.
  • the first to third binding jigs BJ1 to BJ3 are arranged in the vertical direction on the end surface of the end plate 3, that is, the back surface side of the surface that presses the battery stack 5. Further, each binding jig is pressed from the end face so that the length of the battery stack 5 can be inserted into the opening of the covering case 16.
  • the size of the opening of the covering case 16 is set in accordance with the length in the stacking direction of the rectangular battery cells 1 of the battery stack 5 sandwiched with an appropriate pressure. Moreover, it becomes possible to press safely, without damaging a square battery cell by pinching via the end plate arrange
  • an upper surface pressing jig PJ1 and a second pressing jig PJ2 can be provided on the upper surface of the battery stack 5.
  • the upper surface pressing jig PJ1 presses the portion of the end plate 3 from the upper surface of the battery stack 5.
  • the second pressing jig PJ2 presses the middle part.
  • the upper surface pressing jig PJ1, the second pressing jig PJ2 arranged on the upper surface, the first binding jig BJ1, the second binding jig BJ2, and the third binding jig BJ3 arranged on the both side surfaces are a jig.
  • the tool control unit CR controls the pressing state, the pressing release state, the pressing force, and the like.
  • the jig control unit CR controls the pressing / releasing operation of each jig at an appropriate timing. For example, as described later, the timing of pressing the upper surface of the battery stack 5 with the upper surface pressing jig PJ1 and the second pressing jig PJ2 is synchronized with the timing when the second binding jig BJ2 and the third binding jig BJ3 are released. In addition, a smooth press-fitting operation can be performed by setting the extrusion amount for each binding jig.
  • step S2 the battery stack 5 thus sandwiched is positioned in the upper surface opening of the covering case 16, and the first binding jig BJ1 is released as shown in FIG. Then, the battery stack 5 is inserted into the opening of the covering case 16 from the lower end. In this state, since the battery stack 5 is sandwiched between the second binding jig BJ2 and the third binding jig BJ3, the length of the battery stack 5 is maintained in the pressed state as shown in FIG. 16 can be inserted.
  • step S3 the second binding jig BJ2 is released from the state shown in FIG. 11, the battery stack 5 is further lowered, and the battery stack 5 is inserted deeper into the opening of the covering case 16.
  • the battery stack 5 is sandwiched near the upper end by the third binding jig BJ3, while the vicinity of the lower end is in contact with the inner surface of the covering case 16, and resistance due to friction can occur.
  • a pressing force for pressing from the upper surface of the battery stack 5 is supplementarily applied by the upper surface pressing jig PJ1.
  • the upper surface pushing jig PJ1 can avoid a situation in which a strong stress is directly applied to the prismatic battery cell 1 by pressing the upper surface of the end plate.
  • the upper surface of the battery stack becomes a flat plane, and the prismatic battery cell 1 sandwiched between the pair of end plates is displaced. It is also preferable to provide a second pressing jig PJ2 that presses the upper surface of the prismatic battery cell 1 so that it does not protrude or project in the middle.
  • step S4 the third binding jig BJ3 is released from the state of FIG. 12, and the battery stack 5 is pressed from the upper surface by the upper surface pressing jig PJ1, and the battery stack 5 is covered as shown in FIG. Press fit into the case 16. Since the side surface of the battery stack 5 is in contact with the inner surface of the covering case 16 and resistance due to friction may occur, pressing for press-fitting is performed from the upper surface of the battery stack 5 with the upper surface pressing jig PJ1. At this time, the second pressing jig PJ2 also presses from the upper surface of the prismatic battery cell 1. Finally, as shown in FIG. 14, the upper surface of the covering case 16 is closed by the cover portion 24, and the battery stack 5 can be stored in the covering case 16.
  • the battery stack 5 press-fitted into the covering case 16 is in a state in which pressure is applied in the stacking direction of the rectangular battery cells 1 as shown in the cross-sectional view of FIG. If it is this structure, fastening members, such as a bind bar for fastening a battery laminated body, can be made unnecessary, and the outer periphery of a battery laminated body can be coat
  • fastening members such as a bind bar for fastening a battery laminated body
  • a buffer member is disposed in the gap between the covering case and the battery stack, so that condensation on the surface of the battery stack can be prevented.
  • the buffer member can avoid a situation where moisture in the air is condensed by filling the space on the surface of the battery stack with the resin, for example, by injecting resin into the gap.
  • an elastic sheet, a water absorption sheet, etc. can also be used as a buffer member.
  • the covering case can be made waterproof.
  • the battery stack is waterproofed by closing the joint surface between the cover portion covering the upper surface of the cover case and the cover case using packing or an O-ring.
  • the number of binding jigs is three, but it can be four or more. It is also possible to configure with two. Note that a configuration having a plurality of pressing portions with a single binding jig is also included in the plurality of band jigs referred to in this specification.
  • Example 2 it is also possible to insert the battery stack from the lower surface of the covering case by inverting the upper and lower sides of the covering case shown in Example 1, opening the lower surface of the covering case.
  • the covering case it is sufficient for the covering case to have at least one open surface so that the battery stack can be inserted.
  • the battery case was press-fitted from the top opening with the covering case as a bottomed box shape.
  • the covering case it is also possible to use a cylindrical form in which not only the upper surface but also the lower surface is opened as the covering case.
  • press-fitting can be performed more smoothly by opening the lower surface side of the covering case in addition to press-fitting in the same manner as in the first embodiment.
  • This method will be described as a second embodiment with reference to FIG.
  • the pair of end face plates 16c of the opposing covering case 16B are locked on the lower surface side of the covering case 16B using the expanding jig OJ, and pulled in directions opposite to each other, that is, in the direction of expanding the opening. It is forcibly opened.
  • the press-fitting method of Example 2 can be performed in substantially the same manner as in Example 1.
  • the battery stack 5 When the battery stack 5 is inserted into the cover case 16B and press-fitted, it is covered from the lower opening end with the expansion jig OJ.
  • the end plate 16c of the case 16B is pulled with the expansion jig OJ so as to expand the opening.
  • the frictional force between the inner surface of the covering case 16B and the battery stack 5 can be reduced to facilitate press-fitting. .
  • the battery stack 5 is pressed using the binding jig, while the battery stack 5 is press-fitted into the covering case 16 using the upper surface pressing jig.
  • An example of performing the above with individual jigs has been described. However, it is not limited to this method, and clamping and pressing can be performed with a common jig. Such an example will be described as Example 3 based on the schematic vertical sectional view of FIG.
  • a pair of rotatable rotating roller jigs RJ are disposed on both end faces of the battery stack 5.
  • the rotating roller jig RJ includes a pair of elliptical or flat rotating bodies that are long in the vertical direction and whose surfaces are covered with an elastic member or the like.
  • the battery stack 5 can be sandwiched from both sides by inserting the battery stack 5 between the pair of rotating roller jigs RJ configured as described above. Further, by rotating the pair of rotating roller jigs RJ in opposite directions, the battery stack 5 can be sent downward while being sandwiched. In other words, the battery stack 5 can be lowered while maintaining the sandwiched posture. For this reason, prior to the rotation of the rotating roller jig RJ, the battery case 5 can be guided into the cover case 16 while maintaining the clamping state by arranging the case 16 below the battery layer 5. With this method, the battery stack 5 can be smoothly lowered while being sandwiched in the lateral direction. Moreover, you may make it press from upper direction together using an upper surface pressing jig etc. as needed.
  • the battery stack 5 is sandwiched between the rotating roller jigs RJ that are spaced apart from each other in a state where the rotation is stopped, and the rotating roller jig RJ is moved on the covering case 16 and then rotated.
  • a pair of rotating roller jigs RJ is fixed in advance above the covering case 16 with a width that allows the battery stack 5 to be sandwiched in advance, and the rotating battery jig RJ is rotated and the battery stack is viewed from above.
  • the battery stack 5 can be pushed downward and guided into the covering case 16 while being pressed. With this method, there is an advantage that the battery stack 5 can be guided into the covering case 16 in a short time.
  • the battery stack 5 can be continuously sandwiched and press-fitted, a complicated operation as in the first embodiment is not required, and the battery stack 5 can be smoothly covered with a series of operations using the rotating roller jig RJ. 16 can be press-fitted. In some cases, the battery stack 5 may be inserted into the covering case 16 as it is without forcibly pressing it from above.
  • the above power supply apparatus can be used as a vehicle-mounted power supply.
  • a vehicle equipped with a power supply device an electric vehicle such as a hybrid vehicle or a plug-in hybrid vehicle that runs with both an engine and a motor, or an electric vehicle that runs only with a motor can be used, and is used as a power source for these vehicles . (Power supply for hybrid vehicles)
  • FIG. 17 shows an example in which a power supply device is mounted on a hybrid vehicle that runs with both an engine and a motor.
  • a vehicle HV equipped with the power supply device shown in this figure includes an engine 96 and a travel motor 93 that travel the vehicle HV, a power supply device 100 that supplies power to the motor 93, and a generator that charges a battery of the power supply device 100.
  • the power supply apparatus 100 is connected to a motor 93 and a generator 94 via a DC / AC inverter 95.
  • the vehicle HV travels by both the motor 93 and the engine 96 while charging / discharging the battery of the power supply device 100.
  • the motor 93 is driven to drive the vehicle when the engine efficiency is low, for example, during acceleration or low-speed driving.
  • the motor 93 is driven by power supplied from the power supply device 100.
  • the generator 94 is driven by the engine 96 or is driven by regenerative braking when the vehicle is braked to charge the battery of the power supply device 100. (Power
  • FIG. 18 shows an example in which a power supply device is mounted on an electric vehicle that runs only with a motor.
  • a vehicle EV equipped with the power supply device shown in FIG. 1 is a motor 93 for running the vehicle EV, a power supply device 100 that supplies power to the motor 93, and a generator 94 that charges a battery of the power supply device 100.
  • the motor 93 is driven by power supplied from the power supply device 100.
  • the generator 94 is driven by energy when regeneratively braking the vehicle EV and charges the battery of the power supply device 100. (Power storage device for power storage)
  • this power supply device can be used not only as a power source for a moving body but also as a stationary power storage facility.
  • a power source for home and factory use a power supply system that is charged with sunlight or midnight power and discharged when necessary, or a streetlight power supply that charges sunlight during the day and discharges at night, or during a power outage It can also be used as a backup power source for driving signals.
  • FIG. The power supply apparatus 100 shown in this figure forms a battery unit 82 by connecting a plurality of battery packs 81 in a unit shape.
  • Each battery pack 81 has a plurality of prismatic battery cells 1 connected in series and / or in parallel.
  • Each battery pack 81 is controlled by a power controller 84.
  • the power supply apparatus 100 drives the load LD after charging the battery unit 82 with the charging power supply CP. For this reason, the power supply apparatus 100 includes a charging mode and a discharging mode.
  • the load LD and the charging power source CP are connected to the power supply device 100 via the discharging switch DS and the charging switch CS, respectively.
  • ON / OFF of the discharge switch DS and the charge switch CS is switched by the power supply controller 84 of the power supply apparatus 100.
  • the power supply controller 84 switches the charging switch CS to ON and the discharging switch DS to OFF to permit charging from the charging power supply CP to the power supply apparatus 100.
  • the power controller 84 turns off the charging switch CS and turns on the discharging switch DS to discharge.
  • the mode is switched to permit discharge from the power supply apparatus 100 to the load LD.
  • the charge switch CS can be turned on and the discharge switch DS can be turned on to supply power to the load LD and charge the power supply device 100 at the same time.
  • the load LD driven by the power supply device 100 is connected to the power supply device 100 via the discharge switch DS.
  • the power supply controller 84 switches the discharge switch DS to ON, connects to the load LD, and drives the load LD with the power from the power supply apparatus 100.
  • the discharge switch DS a switching element such as an FET can be used. ON / OFF of the discharge switch DS is controlled by the power supply controller 84 of the power supply apparatus 100.
  • the power controller 84 also includes a communication interface for communicating with external devices. In the example of FIG. 19, the host device HT is connected in accordance with an existing communication protocol such as UART or RS-232C. Further, if necessary, a user interface for the user to operate the power supply system can be provided.
  • Each battery pack 81 includes a signal terminal and a power supply terminal.
  • the signal terminals include a pack input / output terminal DI, a pack abnormality output terminal DA, and a pack connection terminal DO.
  • the pack input / output terminal DI is a terminal for inputting / outputting signals from other pack batteries and the power supply controller 84
  • the pack connection terminal DO is for inputting / outputting signals to / from other pack batteries which are child packs.
  • the pack abnormality output terminal DA is a terminal for outputting the abnormality of the battery pack to the outside.
  • the power supply terminal is a terminal for connecting the battery packs 81 in series and in parallel.
  • the battery units 82 are connected to the output line OL via the parallel connection switch 85 and are connected in parallel to each other.
  • a power supply device manufacturing method, a power supply device, and a vehicle including the power supply device according to the present invention include a plug-in hybrid electric vehicle, a hybrid electric vehicle, and an electric vehicle that can switch between an EV traveling mode and an HEV traveling mode. Can be suitably used. Also, a backup power supply device that can be mounted on a rack of a computer server, a backup power supply device for a wireless base station such as a mobile phone, a power storage device for home use and a factory, a power supply for a street light, etc. Also, it can be used as appropriate for applications such as a backup power source such as a traffic light.
  • SYMBOLS 100 Power supply device 1 ... Square battery cell 2 ... Separator 3 ... End plate 5 ... Battery laminated body 6 ... Bus bar 10 ; Battery assembly 10B ... Battery laminated continuous body 12 ... Thermal conductive sheet 16, 16B ... Covering case; 16c ... End plate 18 ... Buffer member 24 ... Cover portion 26 ... Gas duct 50B ... Connecting bars 53, 53B ... Fans 54, 54B ... Radiator 55B ... Second circulation path 56 ... Evaporator 57, 57B ... Condenser 58 ... Expander; 58B, 58C ... expansion valves 60, 60B, 60C ... cooling pipes 61, 61B, 61C ... cooling plate 64 ...

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Battery Mounting, Suspending (AREA)
  • Secondary Cells (AREA)

Abstract

The present invention reduces the size and weight of a power source device and enables stacked square battery cells to be inserted into a cover case without using a binding bar. A method for producing a power source device, the method involving: a step for sandwiching both end surfaces of stacked square battery cells (1) by means of a first binding tool (BJ1), a second binding tool (BJ2) and a third binding tool (BJ3) arranged from the bottom in said order in the height direction; a step for positioning a battery stack (5) on the upper surface opening of a cover case (16) while sandwiching the battery stack (5) by means of the first binding tool (BJ1), the second binding tool (BJ2) and the third binding tool (BJ3), and for lowering the battery stack (5) by releasing the first binding tool (BJ1), and inserting the battery stack (5) into the opening of the cover case (16) from the bottom end of the battery stack (5); a step for lowering the battery stack (5) even further by releasing the second binding tool (BJ2) and for continually inserting the battery stack (5) into the cover case (16); and a step for releasing the third binding tool (BJ3), pressing the upper surface of the battery stack (5) with an upper surface pressing tool (PJ1), and for press fitting the battery stack (5) into the cover case (16).

Description

電源装置の製造方法及び電源装置並びに電源装置を備える車両Manufacturing method of power supply device, power supply device, and vehicle including power supply device
 本発明は、主として、ハイブリッド車や電気自動車等の自動車を駆動するモータの電源用、あるいは家庭用、工場用の蓄電用途等に使用される大電流用の電源装置及びその製造方法並びにこのような電源装置を備える車両に関する。 The present invention mainly relates to a power supply device for a large current used for a power source of a motor driving a vehicle such as a hybrid vehicle or an electric vehicle, or a power storage application for home use or factory use, a manufacturing method thereof, and such a method. The present invention relates to a vehicle including a power supply device.
 車両用の組電池等、出力を高くした電源装置が求められている。このような電源装置では、多数の電池セルを直列に接続して出力電圧を高く、出力電力を大きくしている。電池セルは、大電流で充放電されると発熱する。特に、使用する電池セルの数が増えるに従い、発熱量も増大する。よって、効率よく電池セルの放熱を熱伝導して発散させる放熱機構が求められる。このような放熱機構としては、電池セルに対して冷却風を送風する空冷方式の他、冷媒を供給、循環させた冷却パイプを電池セルに接触させて、熱交換により直接冷却する方式も提案されている(例えば特許文献1、2、3参照)。このようなバッテリシステムにおいては、例えば図20、図21に示すように、電池セル201を積層した電池積層体205の下面に、冷媒を循環させる冷却パイプ260を配置し、冷却機構269に接続することで、冷却パイプ260あるいは冷却プレート261を介して、電池積層体205から熱を奪い冷却させている。図20の例では、冷却パイプ260が電池セル201を積層する積層方向と交差する方向に延長して配管している。また図21の例では、電池セル201を積層する積層方向と平行に冷却パイプ260を延長して配管している。さらに図22の例では、電池積層体205の下面に冷却プレート261を配置し、冷却プレート261に冷却パイプ260を配管することで、冷却プレート261を介して、電池積層体205から熱を奪い冷却させている。 There is a demand for power supplies with high output, such as battery packs for vehicles. In such a power supply device, a large number of battery cells are connected in series to increase the output voltage and increase the output power. The battery cell generates heat when charged and discharged with a large current. In particular, the amount of heat generation increases as the number of battery cells used increases. Therefore, there is a need for a heat dissipation mechanism that efficiently conducts and dissipates heat dissipation from battery cells. As such a heat dissipation mechanism, in addition to an air cooling method in which cooling air is blown to the battery cell, a method in which a cooling pipe supplied and circulated with refrigerant is brought into contact with the battery cell and directly cooled by heat exchange has been proposed. (For example, see Patent Documents 1, 2, and 3). In such a battery system, for example, as shown in FIGS. 20 and 21, a cooling pipe 260 that circulates a refrigerant is disposed on the lower surface of the battery stack 205 in which the battery cells 201 are stacked, and is connected to the cooling mechanism 269. Thus, heat is taken from the battery stack 205 via the cooling pipe 260 or the cooling plate 261 to be cooled. In the example of FIG. 20, the cooling pipe 260 extends and extends in the direction intersecting the stacking direction in which the battery cells 201 are stacked. In the example of FIG. 21, the cooling pipe 260 is extended in parallel with the stacking direction in which the battery cells 201 are stacked. Further, in the example of FIG. 22, the cooling plate 261 is disposed on the lower surface of the battery stack 205, and the cooling pipe 260 is provided on the cooling plate 261, thereby removing heat from the battery stack 205 via the cooling plate 261 and cooling. I am letting.
 これらの冷却方式では、隣接する電池セル同士の隙間に冷却空気を送風する空冷式の冷却方式に比べ、冷媒を用いた熱交換によってより効率よく電池セルの熱を奪うことが可能である反面、高い冷却性能のために冷却部分が比較的低温になる結果、温度が結露点以下に低下し、空気中の水分が冷やされて電池セルの表面に結露することがある。このような結露が生じると、意図しない通電が生じたり、腐食を生じることがある。 In these cooling methods, it is possible to take the heat of the battery cells more efficiently by heat exchange using a refrigerant, compared to an air-cooled cooling method in which cooling air is blown into the gap between adjacent battery cells, As a result of the relatively low temperature of the cooling part due to high cooling performance, the temperature may drop below the dew point, causing moisture in the air to cool and condensation on the surface of the battery cell. If such condensation occurs, unintended energization may occur or corrosion may occur.
特開2009-134901号公報JP 2009-134901 A 特開2009-134936号公報JP 2009-134936 A 特開2010-15788号公報JP 2010-15788 A 実公昭34-16929号公報Japanese Utility Model Publication No. 34-16929
 電池セル表面への結露を防止するには、電池セルの周囲をケース等で囲み、外部から水滴が浸入しないように防水することが考えられる。また、電池セルを外力等から保護する観点からも、ケース等で覆い保護することは有益といえる。そこで、電池セルを積層した電池積層体を被覆ケースに収納することが考えられる。 In order to prevent condensation on the battery cell surface, it is conceivable to surround the battery cell with a case or the like and waterproof it so that water droplets do not enter from the outside. Moreover, it can be said that it is beneficial to cover and protect the battery cell with a case or the like from the viewpoint of protecting the battery cell from external force or the like. Therefore, it is conceivable to store a battery stack in which battery cells are stacked in a covering case.
 一方で、複数の電池セルを積層して電池積層体を構成する構造においては、積層した電池セルを締結するために、金属製のバインドバー等の締結具が用いられている。バインドバーは、電池積層体の側面に配置されていることから、この電池積層体を被覆ケースなどで囲む構成では、バインドバーの上から被覆ケースを被覆することとなって、被覆ケースの外形が大きくなるという問題があった。特に、車載用途等の電源装置では、設置スペースの関係から、可能な限りの小型化、軽量化が求められている。 On the other hand, in a structure in which a plurality of battery cells are stacked to form a battery stack, a fastener such as a metal bind bar is used to fasten the stacked battery cells. Since the bind bar is arranged on the side surface of the battery stack, in the configuration in which the battery stack is surrounded by a cover case or the like, the cover case is covered from above the bind bar. There was a problem of getting bigger. In particular, power supply devices for in-vehicle use are required to be as small and light as possible because of installation space.
 一方で、バインドバーを排除しようとすれば、電池セルの締結ができなくなるため、被覆ケース内に電池積層体を挿入できなくなる。 On the other hand, if the binding bar is to be eliminated, the battery cell cannot be fastened, and the battery stack cannot be inserted into the covering case.
 本発明は、このような問題点を解決するためになされたものである。本発明の主な目的は、バインドバーを使用することなく、電池セルを積層した状態で被覆ケース内に挿入可能な電源装置の製造方法及び電源装置並びに電源装置を備える車両を提供することにある。 The present invention has been made to solve such problems. A main object of the present invention is to provide a method of manufacturing a power supply device that can be inserted into a covering case in a state where battery cells are stacked without using a bind bar, a power supply device, and a vehicle including the power supply device. .
課題を解決するための手段及び発明の効果Means for Solving the Problems and Effects of the Invention
 上記の目的を達成するために、本発明の第1の側面に係る電源装置の製造方法によれば、外形を角型とする複数の角型電池セルを積層してなる電池積層体と、前記電池積層体を収納する一面を開口した被覆ケースと、を備える電源装置の製造方法であって、前記角型電池セルを積層した状態で、前記電池積層体の両側端面を、単数又は複数のバインド治具で押圧して挟持する工程と、前記単数又は複数のバインド治具で挟持した状態で、前記電池積層体を、前記被覆ケースの一面に開口された開口部分に位置させ、前記単数又は複数のバインド治具の押圧を解除させながら、前記電池積層体を、前記被覆ケースの開口から挿入する工程とを含むことができる。これにより、バインドバーを使用することなく電池積層体を積層状態で、被覆ケース内に押し込むことが可能となる。 In order to achieve the above object, according to the method for manufacturing a power supply device according to the first aspect of the present invention, a battery stack formed by stacking a plurality of prismatic battery cells having a rectangular outer shape, And a covering case having an opening on one side for housing the battery stack, wherein the end faces on both sides of the battery stack are bound to one or more in a state where the rectangular battery cells are stacked. In the state of pressing and clamping with a jig, and in the state of being clamped with the one or more binding jigs, the battery stack is positioned in an opening portion opened on one surface of the covering case, and the single or plural A step of inserting the battery stack from the opening of the covering case while releasing the pressing of the binding jig. As a result, the battery stack can be pushed into the covering case in a stacked state without using a bind bar.
 また第2の側面に係る電源装置の製造方法によれば、前記単数又は複数のバインド治具が、高さ方向に下から順に並べた第一バインド治具、第二バインド治具、第三バインド治具で構成されており、前記被覆ケースの開口から挿入する工程が、前記第一バインド治具、第二バインド治具、第三バインド治具で挟持した状態で、前記電池積層体を、前記被覆ケースの上面開口に位置させ、前記第一バインド治具の押圧を解除して、前記電池積層体を降下させ、前記電池積層体を下端から、前記被覆ケースの開口に挿入する工程と、さらに前記第二バインド治具の押圧を解除して、前記電池積層体をさらに降下させ、前記被覆ケースへの挿入を推し進める工程と、さらに前記第三バインド治具の押圧を解除して、前記電池積層体を上面から上面押込治具にて押圧し、前記電池積層体を前記被覆ケース内に圧入する工程とを含むことができる。これにより、バインドバーを使用することなく電池積層体を積層状態で、被覆ケース内に押し込むことが可能となる。 Further, according to the method for manufacturing the power supply device according to the second aspect, the one or more binding jigs are arranged in order from the bottom in the height direction, the first binding jig, the second binding jig, and the third binding jig. A step of inserting from the opening of the covering case, the battery stack in the state of being sandwiched between the first binding jig, the second binding jig, and the third binding jig, Positioning the upper surface opening of the covering case, releasing the pressing of the first binding jig, lowering the battery stack, and inserting the battery stack from the lower end into the opening of the covering case; and Releasing the pressing of the second binding jig, further lowering the battery stack, and pushing the insertion into the covering case; and further releasing the pressing of the third binding jig; Body from top to top Pressed at write jig, the battery stack may include a step of press-fitting into the cover case. As a result, the battery stack can be pushed into the covering case in a stacked state without using a bind bar.
 さらに第3の側面に係る電源装置の製造方法によれば、前記電池積層体の端面にエンドプレートを配置することができる。これにより、電池積層体の挟持は、エンドプレートを介して行われることとなり、端面に位置する角型電池セルを外力で破損することなく、安全に押圧することが可能となる。 Furthermore, according to the method of manufacturing the power supply device according to the third aspect, an end plate can be disposed on the end surface of the battery stack. As a result, the battery stack is sandwiched through the end plate, and can be safely pressed without damaging the prismatic battery cells located on the end face with an external force.
 さらにまた第4の側面に係る電源装置の製造方法によれば、前記上面押込治具が、前記電池積層体を上面から圧入する際、前記エンドプレートの上面を押圧することができる。これにより、電池積層体の上面からの押圧作業に際しても、エンドプレートで外力を受けることで、角型電池セルへの負荷を軽減して、信頼性高く被覆ケース内に押し込むことが可能となる。 Furthermore, according to the method for manufacturing the power supply device according to the fourth aspect, the upper surface pressing jig can press the upper surface of the end plate when the battery stack is press-fitted from the upper surface. As a result, even when pressing from the upper surface of the battery stack, by receiving an external force from the end plate, it is possible to reduce the load on the rectangular battery cell and to push it into the covering case with high reliability.
 さらにまた第5の側面に係る電源装置の製造方法によれば、前記被覆ケースが上下方向に開口された枠状であり、前記電池積層体を前記被覆ケースに圧入する際、下方の開口端から前記被覆ケースの端面板を、拡開治具にて、開口部を拡開することができる。これにより、電池積層体を圧入する工程で、第一バインド治具及び第二バインド治具が解除されて積層方向に広がろうとする電池積層体に対して、被覆ケース側を拡開することで圧入の際の負荷を軽減できる利点が得られる。 Furthermore, according to the method of manufacturing the power supply device according to the fifth aspect, the covering case has a frame shape opened in the vertical direction, and when the battery stack is press-fitted into the covering case, from the lower opening end. The opening portion of the end face plate of the covering case can be expanded with an expansion jig. Thereby, in the step of press-fitting the battery stack, the first binding jig and the second binding jig are released and the covering case side is expanded with respect to the battery stack that is about to spread in the stacking direction. There is an advantage that the load during press-fitting can be reduced.
 さらにまた第6の側面に係る電源装置の製造方法によれば、外形を角型とする複数の角型電池セルを積層してなる電池積層体と、前記電池積層体を収納する一面を開口した被覆ケースと、を備える電源装置の製造方法であって、前記角型電池セルを積層した状態で、両側端面を、回転可能な一対の回転ローラ治具の間に挿入する工程と、前記電池積層体を、前記回転ローラ治具間に挿入されて挟持された状態で、前記被覆ケースの一面開口に位置させて、前記電池積層体を被覆ケースに挿入させるよう、前記一対のローラ治具を互いに逆方向に回転させ、前記電池積層体を押圧状態に維持しながら、前記電池積層体を一端面から、前記被覆ケースの開口に挿入する工程とを含むことができる。これにより、一の治具を用いて電池積層体の挟持と挿入とを同時に行うことができ、より簡単且つ迅速に電池積層体を被覆ケース内にバインドバー等の締結具を用いることなく圧入できる。 Furthermore, according to the method for manufacturing the power supply device according to the sixth aspect, a battery stack formed by stacking a plurality of prismatic battery cells having a rectangular outer shape, and one surface for storing the battery stack are opened. A method of manufacturing a power supply device comprising: a covering case; and a step of inserting both end faces between a pair of rotatable rotating roller jigs in a state where the rectangular battery cells are stacked, and the battery stacking With the body inserted between the rotating roller jigs and being sandwiched between them, the pair of roller jigs are placed on each other so that the battery stack is inserted into the covering case by being positioned at one surface opening of the covering case. A step of rotating the battery stack in the opposite direction and inserting the battery stack from one end face into the opening of the covering case while maintaining the battery stack in a pressed state. Accordingly, the battery stack can be sandwiched and inserted at the same time using one jig, and the battery stack can be press-fitted into the covering case more easily and without using a fastener such as a bind bar. .
 さらにまた第7の側面に係る電源装置の製造方法によれば、前記被覆ケースが、前記電池積層体を収納する上面を開口しており、前記電池積層体を、前記被覆ケースの上面開口に位置させて、前記電池積層体を降下させるよう、前記一対のローラ治具を互いに逆方向に回転させて、前記電池積層体を押圧状態に維持しながら降下させて、前記電池積層体を下端から、前記被覆ケースの開口に挿入することができる。これにより、一の治具を用いて電池積層体の押圧と降下とを同時に行うことができ、より簡単且つ迅速に電池積層体を被覆ケース内にバインドバー等の締結具を用いることなく圧入できる。 Furthermore, according to the method for manufacturing the power supply device according to the seventh aspect, the covering case has an open top surface that houses the battery stack, and the battery stack is positioned at the top opening of the covering case. And rotating the pair of roller jigs in opposite directions so as to lower the battery stack, lowering the battery stack while maintaining the pressed state, and lowering the battery stack from the lower end, It can be inserted into the opening of the covering case. Accordingly, the battery stack can be pressed and lowered simultaneously using a single jig, and the battery stack can be more easily and quickly pressed into the covering case without using a fastener such as a bind bar. .
 さらにまた第8の側面に係る電源装置によれば、外形を角型とする複数の角型電池セルを積層してなる電池積層体と、前記電池積層体を収納する上面を開口した被覆ケースと、を備え、前記電池積層体は、積層状態に締結する締結具を有しない状態で、前記被覆ケース内に圧入されている。これにより、電池積層体を積層状態で、被覆ケース内に圧入された電源装置として、バインドバー等の締結具を使用しないことで外形を小型化できる利点が得られる。 Furthermore, according to the power supply device according to the eighth aspect, a battery stack formed by stacking a plurality of prismatic battery cells having a rectangular outer shape, and a covering case having an open upper surface for storing the battery stack. The battery stack is press-fitted into the covering case without a fastener for fastening in the stacked state. Thereby, the advantage which can reduce an external shape by not using fasteners, such as a bind bar, as a power supply device press-fit in the covering case in the lamination | stacking state by a battery laminated body is acquired.
 さらにまた第9の側面に係る電源装置によれば、外形を角型とする複数の角型電池セルを積層してなる電池積層体と、前記電池積層体を収納する上面を開口した被覆ケースと、を備え、前記電池積層体は、前記被覆ケース内に収納された状態で、該角型電池セルの積層方向に圧力が印加されているものとすることができる。 Furthermore, according to the power supply device according to the ninth aspect, a battery stack formed by stacking a plurality of prismatic battery cells having a rectangular outer shape, and a covering case having an open upper surface for storing the battery stack. , And the battery laminate is housed in the covering case, and pressure is applied in the stacking direction of the rectangular battery cells.
 さらにまた第10の側面に係る電源装置を備える車両には、上記電源装置を利用できる。 Furthermore, the above power supply device can be used for a vehicle including the power supply device according to the tenth aspect.
本発明の実施例1に係る電源装置を備える電源装置の分解斜視図である。It is a disassembled perspective view of a power supply device provided with the power supply device which concerns on Example 1 of this invention. 図1の組電池を示す斜視図である。It is a perspective view which shows the assembled battery of FIG. 図2の電池積層体から冷却プレートを外した状態を示す分解斜視図である。It is a disassembled perspective view which shows the state which removed the cooling plate from the battery laminated body of FIG. 図2の電池積層体を示す分解斜視図である。It is a disassembled perspective view which shows the battery laminated body of FIG. 図4の電池積層体の分解斜視図である。It is a disassembled perspective view of the battery laminated body of FIG. 図14の電池積層体の分解斜視図である。It is a disassembled perspective view of the battery laminated body of FIG. 電池積層体に吸水シートを配置する例を示す模式断面図である。It is a schematic cross section which shows the example which arrange | positions a water absorbing sheet to a battery laminated body. 冷却パイプの配置状態と冷却機構を示す模式平面図である。It is a schematic plan view which shows the arrangement state of a cooling pipe and a cooling mechanism. 実施例1に係る電池積層体の被覆ケースへの圧入方法を示す模式垂直断面図である。FIG. 3 is a schematic vertical sectional view showing a method for press-fitting a battery stack according to Example 1 into a covering case. 図9の状態で第一バインド治具の押圧を解除して電池積層体を挿入する状態を示す模式垂直断面図である。FIG. 10 is a schematic vertical sectional view showing a state in which the battery stack is inserted by releasing the pressing of the first binding jig in the state of FIG. 9. 図10の状態から第二バインド治具の押圧を解除して電池積層体を押し込む状態を示す模式垂直断面図である。FIG. 11 is a schematic vertical sectional view showing a state in which the battery stack is pushed in by releasing the pressing of the second binding jig from the state of FIG. 10. 図11の状態から電池積層体をさらに押し込み、第三バインド治具の押圧を解除する状態を示す模式垂直断面図である。FIG. 12 is a schematic vertical sectional view showing a state in which the battery stack is further pushed from the state of FIG. 11 and the pressing of the third binding jig is released. 図12の状態から電池積層体をさらに押し込む状態を示す模式垂直断面図である。FIG. 13 is a schematic vertical sectional view showing a state in which the battery stack is further pushed in from the state of FIG. 12. 図13の状態でカバー部を固定する状態を示す模式垂直断面図である。FIG. 14 is a schematic vertical sectional view showing a state in which the cover portion is fixed in the state of FIG. 13. 実施例1に係る電池積層体の被覆ケースへの圧入方法を示すフローチャートである。4 is a flowchart illustrating a method for press-fitting a battery stack according to Example 1 into a covering case. 実施例2に係る電池積層体の被覆ケースへの圧入方法を示す模式垂直断面図である。FIG. 6 is a schematic vertical sectional view showing a method for press-fitting a battery laminate according to Example 2 into a covering case. エンジンとモータで走行するハイブリッド車に電源装置を搭載する例を示すブロック図である。It is a block diagram which shows the example which mounts a power supply device in the hybrid vehicle which drive | works with an engine and a motor. モータのみで走行する電気自動車に電源装置を搭載する例を示すブロック図である。It is a block diagram which shows the example which mounts a power supply device in the electric vehicle which drive | works only with a motor. 蓄電用の電源装置に適用する例を示すブロック図である。It is a block diagram which shows the example applied to the power supply device for electrical storage. 従来の電源装置の冷却機構を示す斜視図である。It is a perspective view which shows the cooling mechanism of the conventional power supply device. 従来の他の電源装置の冷却機構を示す斜視図である。It is a perspective view which shows the cooling mechanism of the other conventional power supply device. 従来のさらに他の電源装置の冷却機構を示す斜視図である。It is a perspective view which shows the cooling mechanism of the further another conventional power supply device. 実施例3に係る電池積層体の被覆ケースへの圧入方法を示す模式垂直断面図である。6 is a schematic vertical sectional view showing a method for press-fitting a battery laminate according to Example 3 into a covering case. FIG. 他の冷却機構を示す模式平面図である。It is a schematic plan view which shows another cooling mechanism. さらに別の冷却機構を示す模式平面図である。It is a schematic plan view which shows another cooling mechanism.
 以下、本発明の実施の形態を図面に基づいて説明する。ただし、以下に示す実施の形態は、本発明の技術思想を具体化するための電源装置の製造方法及び電源装置並びに電源装置を備える車両を例示するものであって、本発明は電源装置の製造方法及び電源装置並びに電源装置を備える車両を以下のものに特定しない。また、特許請求の範囲に示される部材を、実施の形態の部材に特定するものでは決してない。特に実施の形態に記載されている構成部材の寸法、材質、形状、その相対的配置等は、特定的な記載がない限りは、本発明の範囲をそれのみに限定する趣旨ではなく、単なる説明例にすぎない。なお、各図面が示す部材の大きさや位置関係等は、説明を明確にするため誇張していることがある。さらに以下の説明において、同一の名称、符号については同一もしくは同質の部材を示しており、詳細説明を適宜省略する。さらに、本発明を構成する各要素は、複数の要素を同一の部材で構成して一の部材で複数の要素を兼用する態様としてもよいし、逆に一の部材の機能を複数の部材で分担して実現することもできる。また、一部の実施例、実施形態において説明された内容は、他の実施例、実施形態等に利用可能なものもある。
(実施例1)
Hereinafter, embodiments of the present invention will be described with reference to the drawings. However, the embodiment described below exemplifies a method of manufacturing a power supply device, a power supply device, and a vehicle including the power supply device for embodying the technical idea of the present invention. The method, the power supply device, and the vehicle equipped with the power supply device are not specified as follows. Moreover, the member shown by the claim is not what specifies the member of embodiment. In particular, the dimensions, materials, shapes, relative arrangements, and the like of the constituent members described in the embodiments are not intended to limit the scope of the present invention only to the description unless otherwise specified. It's just an example. Note that the size, positional relationship, and the like of the members shown in each drawing may be exaggerated for clarity of explanation. Furthermore, in the following description, the same name and symbol indicate the same or the same members, and detailed description thereof will be omitted as appropriate. Furthermore, each element constituting the present invention may be configured such that a plurality of elements are constituted by the same member and the plurality of elements are shared by one member, and conversely, the function of one member is constituted by a plurality of members. It can also be realized by sharing. In addition, the contents described in some examples and embodiments may be used in other examples and embodiments.
Example 1
 図1~図5に、本発明の実施例1に係る電源装置100として、車載用の電源装置に適用した例を説明する。これらの図において、図1は電源装置100の分解斜視図、図2は図1の電池積層体5を示す斜視図、図3は図2の電池積層体5から冷却プレート61を外した分解斜視図、図4は図2の電池積層体5の分解斜視図、図5は図4の電池積層体5の分解斜視図を、それぞれ示している。この電源装置100は、主としてハイブリッド車や電気自動車等の電動車両に搭載されて、車両の走行モータに電力を供給して、車両を走行させる電源に使用される。ただ、本発明の電源装置は、ハイブリッド車や電気自動車以外の車両に使用でき、また電動車両以外の大出力が要求される用途にも使用できる。
(電源装置100)
1 to 5 illustrate an example in which the power supply device 100 according to the first embodiment of the present invention is applied to an in-vehicle power supply device. In these drawings, FIG. 1 is an exploded perspective view of the power supply device 100, FIG. 2 is a perspective view showing the battery stack 5 of FIG. 1, and FIG. 3 is an exploded perspective view with the cooling plate 61 removed from the battery stack 5 of FIG. 4 is an exploded perspective view of the battery stack 5 of FIG. 2, and FIG. 5 is an exploded perspective view of the battery stack 5 of FIG. This power supply device 100 is mainly mounted on an electric vehicle such as a hybrid vehicle or an electric vehicle, and is used as a power source for supplying electric power to a traveling motor of the vehicle and causing the vehicle to travel. However, the power supply device of the present invention can be used for vehicles other than hybrid vehicles and electric vehicles, and can also be used for applications requiring high output other than electric vehicles.
(Power supply device 100)
 電源装置100の外観は、図1の分解斜視図に示すように、上面を長方形状とする箱形である。この電源装置100は、箱形の外装ケース70を二分割して、内部に複数の組電池10を収納している。外装ケース70は、下ケース71と、上ケース72と、これらの下ケース71、上ケース72の両端に連結している端面プレート73とを備えている。上ケース72と下ケース71は、外側に突出する鍔部74を有し、この鍔部74をボルトとナットで固定している。外装ケース70は、鍔部74を外装ケース70の側面に配置している。また図1に示す例では、電池積層体5を長手方向に2つ、横方向に2列、計4個下ケース71に収納している。各電池積層体5は、外装ケース70内部の定位置に固定している。端面プレート73は、下ケース71と上ケース72の両端に連結されて、外装ケース70の両端を閉塞している。
(組電池10)
As shown in the exploded perspective view of FIG. 1, the external appearance of the power supply device 100 is a box shape whose upper surface is rectangular. In the power supply device 100, a box-shaped outer case 70 is divided into two, and a plurality of assembled batteries 10 are accommodated therein. The exterior case 70 includes a lower case 71, an upper case 72, and end plates 73 connected to both ends of the lower case 71 and the upper case 72. The upper case 72 and the lower case 71 have a flange portion 74 protruding outward, and the flange portion 74 is fixed with a bolt and a nut. The outer case 70 has a flange 74 disposed on the side surface of the outer case 70. Further, in the example shown in FIG. 1, two battery stacks 5 are housed in the lower case 71 in total, two in the longitudinal direction and two in the lateral direction. Each battery stack 5 is fixed at a fixed position inside the outer case 70. The end surface plate 73 is connected to both ends of the lower case 71 and the upper case 72 and closes both ends of the exterior case 70.
(Battery 10)
 組電池10は、図1に示す例では、4つの電池積層体5で構成される。すなわち、角型電池セル1の積層方向に2つの電池積層体5が連結されて一の電池積層連続体10Bを構成し、このような連結状態にある電池積層連続体10Bを2つ平行に並べて、組電池10を構成している。 The assembled battery 10 is composed of four battery stacks 5 in the example shown in FIG. That is, two battery stacks 5 are connected in the stacking direction of the rectangular battery cells 1 to form one battery stack continuous body 10B, and two battery stack continuous bodies 10B in such a connected state are arranged in parallel. The assembled battery 10 is configured.
 組電池10を構成する各電池積層体5の斜視図を図2に示す。電池積層体5は、図4に示すように、複数の角形電池セル1と、複数の角形電池セル1同士を積層する面に介在させて、角形電池セル1間を絶縁するセパレータ2と、電池積層体5の積層方向の端面に配置された一対のエンドプレート3と、複数の角形電池セル1とセパレータ2を交互に積層した電池積層体5を収納する被覆ケース16とを備えている。
(電池積層体5)
A perspective view of each battery stack 5 constituting the assembled battery 10 is shown in FIG. As shown in FIG. 4, the battery stack 5 includes a plurality of prismatic battery cells 1, a separator 2 that interposes a plurality of prismatic battery cells 1 on the surface where the plurality of prismatic battery cells 1 are stacked, and a battery 2. A pair of end plates 3 disposed on an end surface in the stacking direction of the stacked body 5 and a covering case 16 that houses a battery stacked body 5 in which a plurality of rectangular battery cells 1 and separators 2 are stacked alternately are provided.
(Battery laminate 5)
 電池積層体5は、図5に示すように複数の角形電池セル1を、絶縁性のセパレータ2を介して積層している。さらに図4に示すように、この電池積層体5の両端面に一対のエンドプレート3を配置している。このように、互いに隣接する角形電池セル1を絶縁するセパレータ2を角形電池セル1同士の積層面に介在させて、複数の角形電池セル1とセパレータ2とを交互に積層した電池積層体5としている。 As shown in FIG. 5, the battery stack 5 is formed by stacking a plurality of rectangular battery cells 1 via an insulating separator 2. Further, as shown in FIG. 4, a pair of end plates 3 are arranged on both end faces of the battery stack 5. In this way, a battery stack 5 in which a plurality of prismatic battery cells 1 and separators 2 are alternately stacked by interposing a separator 2 that insulates adjacent prismatic battery cells 1 on a stacking surface of the prismatic battery cells 1. Yes.
 各電池積層体5は、それぞれ被覆ケース16で被覆される。また被覆ケース16は、図3に示すように、これを冷却するための冷却プレート61上に固定されている。電池積層体5を冷却プレート61上に固定するための連結構造を備えている。
(角形電池セル1)
Each battery stack 5 is covered with a covering case 16. Further, as shown in FIG. 3, the covering case 16 is fixed on a cooling plate 61 for cooling it. A connection structure for fixing the battery stack 5 on the cooling plate 61 is provided.
(Square battery cell 1)
 角形電池セル1は、その外形を構成する外装缶を、幅よりも厚さを薄くした角形としている。この外装缶を閉塞する封口板に正負の電極端子を設けると共に、電極端子の間に安全弁を設けている。安全弁は、外装缶の内圧が所定値以上に上昇した際に開弁して、内部のガスを放出できるように構成される。安全弁の開弁により、外装缶の内圧上昇を停止することができる。この角形電池セル1を構成する素電池は、リチウムイオン電池、ニッケル-水素電池、ニッケル-カドミウム電池等の充電可能な二次電池である。特に、角形電池セル1にリチウムイオン二次電池を使用すると、電池セル全体の体積や質量に対する充電容量を大きくできる特長がある。さらに、本発明で用いる電池セルは角形電池セルに限らず、円筒型電池セルや外装体がラミネート材料で被覆された角形やその他の形状のラミネート電池セルであってもよい。 In the rectangular battery cell 1, the outer can constituting the outer shape is a rectangular shape whose thickness is smaller than the width. Positive and negative electrode terminals are provided on the sealing plate for closing the outer can, and a safety valve is provided between the electrode terminals. The safety valve is configured to open when the internal pressure of the outer can rises to a predetermined value or more, and to release the internal gas. The increase in the internal pressure of the outer can can be stopped by opening the safety valve. The unit cell constituting the rectangular battery cell 1 is a rechargeable secondary battery such as a lithium ion battery, a nickel-hydrogen battery, or a nickel-cadmium battery. In particular, when a lithium ion secondary battery is used for the prismatic battery cell 1, there is an advantage that the charge capacity with respect to the volume and mass of the entire battery cell can be increased. Furthermore, the battery cell used in the present invention is not limited to a rectangular battery cell, but may be a cylindrical battery cell or a rectangular battery cell in which an exterior body is covered with a laminate material or other shapes.
 積層されて電池積層体5を構成する各角形電池セル1は、隣接する正負の電極端子をバスバー6で連結して互いに直列に接続している。隣接する角形電池セル1を互いに直列に接続する組電池10は、出力電圧を高くして出力を大きくできる。ただ、組電池は、隣接する角形電池セルを並列に、或いは、直列と並列を組み合わせて接続することもできる。また角形電池セル1は、金属製の外装缶で製作している。この角形電池セル1は、隣接する角形電池セル1の外装缶のショートを防止するために絶縁材のセパレータ2を挟着している。なお、角形電池セルの外装缶は、プラスチック等の絶縁材で製作することもできる。この場合、角形電池セルは外装缶を絶縁して積層する必要がないので、セパレータを金属製とすることやセパレータを不要とすることもできる。
(セパレータ2)
The respective rectangular battery cells 1 that are stacked to form the battery stack 5 are connected in series by connecting adjacent positive and negative electrode terminals with a bus bar 6. The assembled battery 10 in which the adjacent rectangular battery cells 1 are connected in series can increase the output voltage and increase the output. However, an assembled battery can also connect adjacent square battery cells in parallel, or a combination of series and parallel. The rectangular battery cell 1 is manufactured with a metal outer can. In this rectangular battery cell 1, an insulating separator 2 is sandwiched between the adjacent rectangular battery cells 1 in order to prevent short-circuiting of the outer can of the rectangular battery cell 1. Note that the outer can of the rectangular battery cell can also be made of an insulating material such as plastic. In this case, since it is not necessary for the rectangular battery cell to insulate and laminate the outer can, the separator can be made of metal or the separator can be made unnecessary.
(Separator 2)
 セパレータ2は、隣接する角形電池セル1を電気的、熱的に絶縁して積層するスペーサである。このセパレータ2はプラスチック等の絶縁材で製作しており、互いに隣接する角形電池セル1同士の間に配置されて、隣接する角形電池セル1を絶縁している。
(エンドプレート3)
The separator 2 is a spacer for laminating adjacent rectangular battery cells 1 electrically and thermally. The separator 2 is made of an insulating material such as plastic, and is disposed between the adjacent rectangular battery cells 1 to insulate the adjacent rectangular battery cells 1.
(End plate 3)
 角形電池セル1とセパレータ2とを交互に積層した電池積層体5の両端面には、図4に示すように一対のエンドプレート3を配置して、一対のエンドプレート3で電池積層体5を挟持している。エンドプレート3は、十分な強度を発揮する材質、例えば金属製とする。このエンドプレート3は、図1に示す下ケース71と固定するための固定構造を備えている。なお、エンドプレートは、樹脂製の材質で製作、或いは、樹脂製からなるエンドプレートを金属製の部材で補強して製作することもできる。
(被覆ケース16)
As shown in FIG. 4, a pair of end plates 3 are arranged on both end faces of the battery stack 5 in which the prismatic battery cells 1 and the separators 2 are alternately stacked, and the battery stack 5 is formed by the pair of end plates 3. It is pinched. The end plate 3 is made of a material that exhibits sufficient strength, for example, metal. The end plate 3 has a fixing structure for fixing to the lower case 71 shown in FIG. The end plate can be manufactured from a resin material, or can be manufactured by reinforcing an end plate made of resin with a metal member.
(Coating case 16)
 この電池積層体5は、図6に示すように、被覆ケース16に圧入される。ここでは電池セル1を積層状態に維持したまま、すなわち電池積層体5を積層方向に一定以下の厚さとなるよう拘束した状態で、被覆ケース16内に挿入する。実施例1において被覆ケース16は、図6の分解斜視図に示すように、上面を開口した有底箱形に形成される。この被覆ケース16は、金属製として放熱性を高め、また冷却プレート61との接合面での熱伝導を高めている。その一方で、被覆ケース16の内面を絶縁して、積層された角形電池セル1間の絶縁を図っている。また必要に応じて、絶縁性を備えつつ熱伝導性を有する熱伝導シート12を、被覆ケース16の底面に配置することもできる。このようにして電池積層体5を被覆ケース16で覆うことで、密閉構造が実現される。なお、この例では被覆ケースを金属製としているが、十分な強度が維持できる場合は、樹脂製等とすることもできる。また、樹脂製の被覆ケースにおいて金属板をインサート形成することで、熱伝導性を向上させることもできる。また樹脂には、ファイバーシートやマイカシート等が好適に利用できる。
(防水構造)
The battery stack 5 is press-fitted into the covering case 16 as shown in FIG. Here, the battery cell 1 is inserted into the covering case 16 while keeping the battery cell 1 in a laminated state, that is, in a state where the battery laminated body 5 is constrained to have a certain thickness or less in the lamination direction. In the first embodiment, the covering case 16 is formed in a bottomed box shape having an open upper surface, as shown in the exploded perspective view of FIG. The covering case 16 is made of metal to enhance heat dissipation and to enhance heat conduction at the joint surface with the cooling plate 61. On the other hand, the inner surface of the covering case 16 is insulated to insulate the stacked rectangular battery cells 1. Further, if necessary, the heat conductive sheet 12 having insulating properties and heat conductivity can be arranged on the bottom surface of the covering case 16. By covering the battery stack 5 with the covering case 16 in this way, a sealed structure is realized. In this example, the covering case is made of metal, but may be made of resin or the like if sufficient strength can be maintained. Moreover, thermal conductivity can also be improved by insert-forming a metal plate in the resin-made covering case. Moreover, a fiber sheet, a mica sheet, etc. can be utilized suitably for resin.
(Waterproof structure)
 電池積層体5は、被覆ケース16で周囲を防水している。これにより、外部からの水分の浸入を阻止し、意図しない導通や腐食を回避できる。その一方で、外部から侵入する水分のみならず、内部で結露等によって発生した水滴からも保護する必要がある。特に角形電池セルの冷却方式として、冷媒を用いた熱交換によって角形電池セルの熱を奪う冷媒方式を利用すると、より効率よく冷却可能な反面、高い冷却性能のために冷却部分が比較的低温になる結果、温度が結露点以下に低下して、電池積層体の周囲に存在する空気中の水分が冷やされて角形電池セルの表面に結露することがある。そこで、単に被覆ケースを防水構造とするのでなく、被覆ケースで囲まれた電池積層体の表面をこのような水滴から保護するための防水構造としている。
(緩衝部材18)
The battery stack 5 is waterproofed by a covering case 16. Thereby, the penetration | invasion of the water | moisture content from the outside is blocked | prevented and unintentional conduction | electrical_connection and corrosion can be avoided. On the other hand, it is necessary to protect not only moisture entering from the outside but also water droplets generated by condensation inside. In particular, if a cooling system that takes heat away from the prismatic battery cells by heat exchange using a refrigerant is used as a cooling system for the prismatic battery cells, cooling can be performed more efficiently, but the cooling part is kept at a relatively low temperature for high cooling performance. As a result, the temperature may drop below the dew point, and moisture in the air present around the battery stack may be cooled and condensed on the surface of the prismatic battery cell. Therefore, the cover case is not simply made waterproof, but has a waterproof structure for protecting the surface of the battery stack surrounded by the cover case from such water droplets.
(Buffer member 18)
 このような電池積層体5の防水構造を実現するため、図7の断面図に示すように、電池積層体5と被覆ケース16との間に緩衝部材18を配置している。すなわち、電池積層体5と被覆ケース16との間の隙間に緩衝部材18を詰めて、この隙間に存在する空気中の水分が結露して電池積層体5に悪影響を与える事態を回避している。 In order to realize such a waterproof structure of the battery stack 5, a buffer member 18 is disposed between the battery stack 5 and the covering case 16 as shown in the cross-sectional view of FIG. 7. That is, the buffer member 18 is filled in the gap between the battery stack 5 and the covering case 16, and the situation in which moisture in the air existing in the gap is condensed to adversely affect the battery stack 5 is avoided. .
 実施例1の例では、緩衝部材18として電池積層体5の周囲を樹脂で被覆している。ここでは、電池積層体5の表面に樹脂を保持するため、電池積層体5の周囲を被覆ケース16で囲むことにより、電池積層体5と被覆ケース16との間に樹脂を注入している。これによって電池積層体5と被覆ケース16との間の隙間を無くし、電池積層体5の表面が結露して悪影響を与える事態を回避できる。実施例1では、エンドプレート3と被覆ケース16で防水構造を実現するため、被覆ケース16で囲まれた領域内で、電池積層体5との隙間に、緩衝部材18として充填材を充填している。これによって、図7に示すように電池積層体5の周囲を防水した防水構造が得られる。
(充填材)
In the example of Example 1, the periphery of the battery stack 5 is covered with a resin as the buffer member 18. Here, in order to hold the resin on the surface of the battery stack 5, the resin is injected between the battery stack 5 and the covering case 16 by surrounding the battery stack 5 with the covering case 16. This eliminates the gap between the battery stack 5 and the covering case 16, thereby avoiding a situation where the surface of the battery stack 5 is dewed and adversely affected. In Example 1, in order to realize a waterproof structure with the end plate 3 and the covering case 16, a filler as a buffer member 18 is filled in a gap between the battery stack 5 within a region surrounded by the covering case 16. Yes. As a result, a waterproof structure is obtained in which the periphery of the battery stack 5 is waterproof as shown in FIG.
(Filler)
 充填材にはウレタン系樹脂が好適に利用できる。このように充填材でポッティングすることで、隙間を無くし、角形電池セル1の表面を保護し、結露による導通や腐食を回避できる。なお充填材を隙間に行き渡らせ、気泡の発生を回避するよう、充填材の充填時には被覆ケース16内を減圧又は負圧とすることが好ましい。あるいは逆に、樹脂を加圧して注入することもできる。樹脂の充填後、樹脂が完全に硬化するまで乾燥させる。
(吸水シート)
Urethane resin can be suitably used as the filler. By potting with the filler as described above, gaps are eliminated, the surface of the rectangular battery cell 1 is protected, and conduction and corrosion due to condensation can be avoided. In addition, it is preferable to make the inside of the covering case 16 have a reduced pressure or a negative pressure when filling the filler so as to spread the filler in the gap and avoid the generation of bubbles. Or conversely, the resin can be injected under pressure. After filling the resin, it is dried until the resin is completely cured.
(Water absorption sheet)
 あるいは、緩衝部材18として吸水シートを使用することもできる。吸水シートは、高分子材料等で構成された吸湿性、吸水性を備えるシート材であり、これによってポッティング等の複雑な工程を得ずとも、簡単な構成で安価に結露を回避できる。また、緩衝部材18はこれに限らず、パッキンやOリング、ガスケットによる封止構造、シート状の弾性部材や他のポッティング材、あるいは電池積層体を防水袋に収納する等の構成が適宜利用できる。
(カバー部24)
Alternatively, a water absorbing sheet can be used as the buffer member 18. The water-absorbing sheet is a sheet material having a hygroscopic property and a water-absorbing property composed of a polymer material or the like, and thus, condensation can be avoided at a low cost with a simple configuration without obtaining a complicated process such as potting. The buffer member 18 is not limited to this, and a structure such as a packing structure, an O-ring, a sealing structure using a gasket, a sheet-like elastic member or other potting material, or a battery stack can be used as appropriate. .
(Cover 24)
 充填材の充填後に、図3に示すようにカバー部24で上面を閉塞する。ここでは、パッキン等を介して、被覆ケース16の上面に固定される。カバー部24の内面には、角形電池セル1の安全弁と連通されたガスダクト26を設けている。ガスダクト26を各角形電池セル1の安全弁と連結し、さらにガスダクト26を外部に配管することで、角形電池セル1の内圧が上昇した際に排出されるガスを、安全に外部に排出できる。またカバー部24に、バスバー6をインサート成形することもでき、これによってカバー部24を電池積層体5の天面に接合することによって、各角形電池セル1の電極端子を纏めて結線することが可能となる。またカバー部24の上面には、電源装置100を制御するための制御回路を実装した回路基板が配置される。またカバー部に回路基板を一体的に設けてもよい。 After filling with the filler, the upper surface is closed with the cover 24 as shown in FIG. Here, it is fixed to the upper surface of the covering case 16 via packing or the like. A gas duct 26 communicating with the safety valve of the rectangular battery cell 1 is provided on the inner surface of the cover portion 24. By connecting the gas duct 26 to the safety valve of each rectangular battery cell 1 and piping the gas duct 26 to the outside, the gas discharged when the internal pressure of the rectangular battery cell 1 rises can be safely discharged to the outside. Moreover, the bus bar 6 can also be insert-molded in the cover part 24, and by joining the cover part 24 to the top surface of the battery stack 5, the electrode terminals of the respective rectangular battery cells 1 can be connected together. It becomes possible. A circuit board on which a control circuit for controlling the power supply device 100 is mounted is disposed on the upper surface of the cover portion 24. Further, the circuit board may be integrally provided in the cover portion.
 このようにして被覆ケース16で電池積層体5を収納する。被覆ケース16は、各面を構成する部材を嵌合構造として、嵌合部分を気密に封止することもできる。このような嵌合構造としては、パッキン、Oリング、ガスケット等が利用でき、被覆ケース16を封止できる。
(連結構造)
In this way, the battery stack 5 is accommodated in the covering case 16. The covering case 16 can also seal a fitting part airtightly, using the member which comprises each surface as a fitting structure. As such a fitting structure, a packing, an O-ring, a gasket or the like can be used, and the covering case 16 can be sealed.
(Linked structure)
 一方で、電池積層体5及び冷却プレート61は、電池積層体5を冷却プレート61上に固定するための連結構造を備えている。連結構造は、図3に示す例では、連結バー50Bで構成される。連結バー50Bは、カバー部24の側面において垂直方向に延長された断面視コ字状の金属板であり、被覆ケース16の上面に係止されると共に、冷却プレート61の底面に係止され、ねじ止めなどにより固定される。この連結バー50Bによって冷却プレート61を被覆ケース16の底面に固定する。
(連結バー50B)
On the other hand, the battery stack 5 and the cooling plate 61 have a connection structure for fixing the battery stack 5 on the cooling plate 61. In the example illustrated in FIG. 3, the connection structure includes a connection bar 50 </ b> B. The connecting bar 50B is a U-shaped metal plate that extends in the vertical direction on the side surface of the cover portion 24, and is locked to the upper surface of the covering case 16 and to the bottom surface of the cooling plate 61, It is fixed by screwing. The cooling plate 61 is fixed to the bottom surface of the covering case 16 by the connecting bar 50B.
(Connection bar 50B)
 連結バー50Bは、図3の分解斜視図に示すように、ストリップ条を断面視略コ字状に折曲した形状としている。ストリップ条は、十分な強度を発揮できるよう、例えば金属板で構成する。好ましくは、ストリップ条の表面に段差を形成して強度を向上させる。この連結バー50Bの長さは、略コ字状の折曲部分で、被覆ケース16の上面にカバー部24を、底面に冷却プレート61を重ねた高さを挟み込める大きさとする。このようにして、連結バー50Bを用いることで冷却プレート61に容易にプレート連結部を付加できる。特に、冷媒循環機能等を備える冷却プレート61の形状を複雑化することなく連結機構を追加できる。
(冷却機構69)
As shown in the exploded perspective view of FIG. 3, the connecting bar 50 </ b> B has a shape in which the strip strip is bent in a substantially U shape in a cross-sectional view. The strip strip is made of, for example, a metal plate so as to exhibit sufficient strength. Preferably, the strength is improved by forming a step on the surface of the strip. The length of the connecting bar 50 </ b> B is a substantially U-shaped bent portion that is large enough to sandwich the height of the cover portion 24 on the top surface of the covering case 16 and the cooling plate 61 on the bottom surface. In this manner, the plate connecting portion can be easily added to the cooling plate 61 by using the connecting bar 50B. In particular, a coupling mechanism can be added without complicating the shape of the cooling plate 61 having a refrigerant circulation function or the like.
(Cooling mechanism 69)
 冷却プレート61は、冷却機構に接続されている。冷却機構は、例えば冷媒循環機構を備えている。図8に、このような冷媒循環機構の一例を示す。図8に示す組電池10は、複数の角形電池セル1を積層している電池積層体5を、冷却プレート61の上面に配置している。この冷却プレート61は、電池積層体5を構成する角形電池セル1に熱結合状態に配置している。冷却プレート61は、内部に冷媒を流す冷媒配管として冷却パイプ60を備えており、この冷却パイプ60を冷却機構69に連結している。この電源装置は、電池積層体5を冷却プレート61に接触させて直接、効果的に冷却できることに加え、電池積層体の端面に配置した電子回路等の各部材も併せて冷却することもできる。このように、内部に冷媒を循環させる冷却パイプ60を内蔵した冷却プレート61を、被覆ケース16の底面と接触させて冷却することで、放熱性を向上させ、電源装置を高出力でも安定的に利用可能とできる。
(冷却プレート61)
The cooling plate 61 is connected to a cooling mechanism. The cooling mechanism includes, for example, a refrigerant circulation mechanism. FIG. 8 shows an example of such a refrigerant circulation mechanism. In the battery pack 10 shown in FIG. 8, the battery stack 5 in which a plurality of rectangular battery cells 1 are stacked is disposed on the upper surface of the cooling plate 61. The cooling plate 61 is disposed in a thermally coupled state to the rectangular battery cells 1 constituting the battery stack 5. The cooling plate 61 is provided with a cooling pipe 60 as a refrigerant pipe through which the refrigerant flows, and the cooling pipe 60 is connected to a cooling mechanism 69. In addition to being able to cool the battery stack 5 directly and effectively by bringing the battery stack 5 into contact with the cooling plate 61, the power supply device can also cool each member such as an electronic circuit disposed on the end face of the battery stack. In this way, the cooling plate 61 including the cooling pipe 60 that circulates the refrigerant therein is brought into contact with the bottom surface of the covering case 16 to be cooled, so that the heat dissipation is improved and the power supply device can be stably supplied even at high output. Can be available.
(Cooling plate 61)
 冷却プレート61は、角形電池セル1の熱を熱伝導して外部に放熱するための放熱体であり、図8の例では冷媒配管を配設している。冷却プレート61は、熱交換器として、冷却液である液化された冷媒を循環させる銅やアルミニウム等の冷媒配管である冷却パイプ60を内蔵している。冷却パイプ60は、冷却プレート61の上面板に熱結合されており、底板との間には断熱材を配設して、底板との間を断熱している。また、冷却プレート61にはこのような冷媒による冷却機能を付加する他、金属板のみで構成することもできる。例えば放熱フィンを設けた金属体等、放熱、伝熱性に優れた形状とする。または金属製に限らず、絶縁性を有する伝熱シートを利用しても良い。 The cooling plate 61 is a heat radiator that conducts heat of the rectangular battery cell 1 to dissipate it to the outside. In the example of FIG. The cooling plate 61 incorporates a cooling pipe 60 that is a refrigerant pipe made of copper, aluminum, or the like that circulates a liquefied refrigerant that is a cooling liquid as a heat exchanger. The cooling pipe 60 is thermally coupled to the upper surface plate of the cooling plate 61, and a heat insulating material is disposed between the cooling plate 60 and the bottom plate to insulate the space from the bottom plate. Further, in addition to the cooling function by such a refrigerant, the cooling plate 61 can be composed of only a metal plate. For example, it is made into the shape excellent in heat dissipation and heat transfer property, such as a metal body provided with a radiation fin. Or you may utilize not only metal but the heat-transfer sheet | seat which has insulation.
 冷却プレート61は、内部に配管された冷媒配管に、冷却機構69から冷却液が供給されて冷却される。冷却プレート61は、冷却機構69から供給される冷却液を、冷媒配管61の内部で気化する気化熱で冷却プレート61を冷却する冷媒としてより効率よく冷却できる。 The cooling plate 61 is cooled by supplying the coolant from the cooling mechanism 69 to the refrigerant piping provided inside. The cooling plate 61 can cool the cooling liquid supplied from the cooling mechanism 69 more efficiently as a refrigerant that cools the cooling plate 61 with heat of vaporization that evaporates inside the refrigerant pipe 61.
 図8の例では、各冷却プレート61上に2つの電池積層体5を載置している。上述の通り、長さ方向すなわち角型電池セル1の積層方向に2つの電池積層体5が連結されて一の電池積層連続体10Bを構成しており、このような連結状態にある2つの電池積層体5を、一の冷却プレート61で支持している。これらの電池積層連続体10Bを2つ平行に並べて、組電池10を構成している。 In the example of FIG. 8, two battery stacks 5 are placed on each cooling plate 61. As described above, two battery stacks 5 are connected in the length direction, that is, the stacking direction of the rectangular battery cells 1 to form one battery stack continuous body 10B, and the two batteries in such a connected state are formed. The stacked body 5 is supported by one cooling plate 61. Two of these battery stack continuous bodies 10B are arranged in parallel to constitute the assembled battery 10.
 また図8の例では、冷却プレート61を角型電池セル1の積層方向に延長すると共に、内部に配管された冷却パイプ60を端縁で折り返すようにして蛇行させることで、3列の直線状冷却パイプ60が電池積層体5の下面に配置される。そして、電池積層連続体10B同士で冷却パイプ60同士を接続することで、冷媒の循環経路を共通化している。このように、一の冷却プレート61上に複数の電池積層体5を載置して冷却させる構成とすれば、冷却機構を共用でき、冷却プレート61を共通化してより安価で簡素化された冷却機構を実現できる。ただ、電池積層体の下面に複数本の冷却パイプを配置することもでき、例えば、図8で示す蛇行した冷却パイプの折り返し部分で分割して、複数本の冷却パイプとすることができる。これにより、蛇行部分を無くすことができるので、軽量化を図ることができる。このとき、各冷却パイプ同士を接続して、冷媒経路を共通化させても良い。なお、冷却パイプを配置する構成や形状は、適宜変更することができる。 In the example of FIG. 8, the cooling plate 61 is extended in the stacking direction of the rectangular battery cells 1, and the cooling pipe 60 piped inside is meandered so as to be folded back at the end edge, thereby forming three straight lines. A cooling pipe 60 is disposed on the lower surface of the battery stack 5. And the circulation path of a refrigerant | coolant is made common by connecting the cooling pipes 60 with battery lamination | stacking continuous bodies 10B. Thus, if it is set as the structure which mounts and cools the several battery laminated body 5 on the one cooling plate 61, a cooling mechanism can be shared and the cooling plate 61 is made common and cheaper and simplified cooling. The mechanism can be realized. However, a plurality of cooling pipes can be arranged on the lower surface of the battery stack, and can be divided into, for example, folded portions of the meandering cooling pipe shown in FIG. 8 to form a plurality of cooling pipes. Thereby, since the meandering portion can be eliminated, the weight can be reduced. At this time, the cooling pipes may be connected to share a refrigerant path. In addition, the structure and shape which arrange | position a cooling pipe can be changed suitably.
 さらに冷却プレート61は、複数の角形電池セル1の温度を均等化する均熱化手段としても機能する。すなわち、冷却プレート61が角形電池セル1から吸収する熱エネルギーを調整して、温度が高くなる角形電池セル、例えば中央部の角形電池セルを効率よく冷却して、温度が低くなる領域、例えば両端部の角形電池セルの冷却を少なくして、角形電池セルの温度差を少なくする。これによって、角形電池セルの温度むらを低減して、一部の角形電池セルの劣化が進み過充電、過放電となる事態を回避できる。 Furthermore, the cooling plate 61 also functions as a soaking means for equalizing the temperatures of the plurality of rectangular battery cells 1. That is, by adjusting the thermal energy absorbed by the cooling plate 61 from the rectangular battery cell 1, the rectangular battery cell whose temperature is increased, for example, the rectangular battery cell in the central portion is efficiently cooled, and the temperature is decreased, for example, both ends The cooling of the rectangular battery cells is reduced, and the temperature difference between the rectangular battery cells is reduced. As a result, the temperature unevenness of the prismatic battery cells can be reduced, and a situation in which some of the prismatic battery cells are deteriorated and overcharge and overdischarge can be avoided.
 なお、図8では、電池積層体5の底面に冷却プレート61を配置する例を示したが、この構成に限られるものでない。例えば冷却プレートを角形電池セルの両側面に配置したり、一方の側面のみに配置したりすることもできる。 In addition, although the example which arrange | positions the cooling plate 61 in the bottom face of the battery laminated body 5 was shown in FIG. 8, it is not restricted to this structure. For example, the cooling plate can be arranged on both side surfaces of the rectangular battery cell, or can be arranged only on one side surface.
 図8に示す冷却機構69は、冷却パイプ60を冷媒の気化熱で強制冷却する。この冷却機構69は、循環ポンプPと放熱器54と、循環ポンプPと放熱器54のファン53の運転を制御する制御回路CTとを備える。循環ポンプPは、液状の冷媒を冷媒経路と放熱器54に循環させる。制御回路CTは、電池積層体5の温度を温度センサで検出して、検出温度が設定温度よりも高くなると循環ポンプPを運転する。また、制御回路CTは、冷媒の温度を温度センサで検出し、冷媒の温度が設定値よりも高くなると放熱器54のファン53を運転する。循環ポンプPで冷媒経路に循環される冷媒は、絶縁油や不凍液である。絶縁油には、シリコンオイル等が使用できる。なお、本明細書において冷媒による冷却には、水や冷却液を循環させる水冷も含む意味で使用する。
(変形例に係る冷却機構69B)
The cooling mechanism 69 shown in FIG. 8 forcibly cools the cooling pipe 60 with the heat of vaporization of the refrigerant. The cooling mechanism 69 includes a circulation pump P and a radiator 54, and a control circuit CT that controls the operation of the fan 53 of the circulation pump P and the radiator 54. The circulation pump P circulates the liquid refrigerant through the refrigerant path and the radiator 54. The control circuit CT detects the temperature of the battery stack 5 with a temperature sensor, and operates the circulation pump P when the detected temperature becomes higher than the set temperature. The control circuit CT detects the temperature of the refrigerant with a temperature sensor, and operates the fan 53 of the radiator 54 when the temperature of the refrigerant becomes higher than a set value. The refrigerant circulated through the refrigerant path by the circulation pump P is insulating oil or antifreeze. Silicon oil or the like can be used as the insulating oil. In this specification, the cooling with the refrigerant is used in the meaning including water cooling in which water or a coolant is circulated.
(Cooling mechanism 69B according to a modification)
 さらに冷却機構は、冷媒経路の内部で気化して気化熱で冷却する冷媒を冷媒経路に供給することもできる。このような変形例に係る冷却機構69Bを図24に示す。この冷媒は、冷媒経路の内部で気化されて、冷媒経路を冷却する。冷却された冷媒経路は電池積層体5を底面から冷却する。この冷却機構69Bは、電池積層体5を低温に冷却できる。この冷却機構69Bは、気化した冷媒を加圧するコンプレッサCと、このコンプレッサCで加圧された冷媒を冷却して液化させる凝縮器57と、この凝縮器57で液化された冷媒を冷媒経路に供給する膨張器58とを備える。膨張器58は、例えば、キャピラリチューブ又は膨張弁である。細管からなるキャピラリチューブや膨張弁は、冷媒の流量が所定の範囲に制限される。これらの膨張器58は、冷媒が冷媒経路から排出される状態ですべて気化される流量に設計される。 Further, the cooling mechanism can supply a refrigerant that is vaporized inside the refrigerant path and cooled by the heat of vaporization to the refrigerant path. A cooling mechanism 69B according to such a modification is shown in FIG. This refrigerant is vaporized inside the refrigerant path to cool the refrigerant path. The cooled refrigerant path cools the battery stack 5 from the bottom surface. The cooling mechanism 69B can cool the battery stack 5 to a low temperature. The cooling mechanism 69B includes a compressor C that pressurizes the vaporized refrigerant, a condenser 57 that cools and liquefies the refrigerant pressurized by the compressor C, and supplies the refrigerant liquefied by the condenser 57 to the refrigerant path. And an inflator 58. The expander 58 is, for example, a capillary tube or an expansion valve. A capillary tube or an expansion valve made of a thin tube is limited to a predetermined flow range of the refrigerant. These expanders 58 are designed to have a flow rate at which all of the refrigerant is vaporized while being discharged from the refrigerant path.
 また、液化された冷媒を冷媒流路に供給して、この冷媒を冷媒流路で気化させて、冷媒の気化熱で強制的に冷却して、電池セル1を冷却することもできる。冷却プレート61Bを冷媒の気化熱で強制冷却する冷却機構69Bは、膨張弁65を介して液化された冷媒を冷却パイプ60Bに供給し、供給された冷媒を冷却パイプ60Bの内部で気化させて気化熱で冷却プレート61Bを冷却する。気化された冷媒は、コンプレッサCで加圧されて凝縮器57に供給され、凝縮器57で液化され、膨張弁65を介して冷却パイプ60Bの冷媒流路に循環されて、冷却プレート61Bを冷却する。
(変形例に係る冷却機構69C)
The battery cell 1 can also be cooled by supplying the liquefied refrigerant to the refrigerant flow path, evaporating the refrigerant in the refrigerant flow path, and forcibly cooling with the heat of vaporization of the refrigerant. A cooling mechanism 69B that forcibly cools the cooling plate 61B with the heat of vaporization of the refrigerant supplies the liquefied refrigerant to the cooling pipe 60B via the expansion valve 65, and vaporizes the supplied refrigerant by evaporating inside the cooling pipe 60B. The cooling plate 61B is cooled by heat. The vaporized refrigerant is pressurized by the compressor C, supplied to the condenser 57, liquefied by the condenser 57, and circulated through the expansion valve 65 to the refrigerant flow path of the cooling pipe 60B to cool the cooling plate 61B. To do.
(Cooling mechanism 69C according to a modification)
 なお冷却パイプは、必ずしも冷媒の気化熱で冷却する必要はなく、例えば冷却された液体を内部に循環して冷却する水冷を採用することもできる。また、冷却パイプは、内部に冷却気体の通路を設けて、この通路に冷却された気体を強制送風して冷却してもよい。加えて、水や冷却液を循環させる水冷を採用する場合、水冷で用いる冷却液を、冷媒で冷却する構成としてもよい。特に、車両用電源装置においては、室内エアコン等に用いる既存の冷却機構を、冷却液の冷却に利用できる。このような構成を採用した冷却機構69Cを、図25に示す。この図に示す冷却機構69Cは、冷却プレート61Cを冷却液で水冷により冷却する第一冷却機構69aと、室内エアコンなど冷媒を用いた車内冷却用の第二冷却機構69bとを、中間熱交換器67で接続している。第一冷却機構69aは、太線で示す第一循環経路65にポンプPと三方弁64、中間熱交換器67、ヒータ66及び冷却パイプ60Cを配置している。また三方弁64を介して、放熱器54Bとも接続される。放熱器54Bは外気により空冷され、外気温が低い場合に三方弁64を中間熱交換器67から放熱器54B側に切り替えて、コンプレッサCの動力など、冷却に要するエネルギー消費を抑制できる。またヒータ66は、冷却液を加熱して温度を調整するための部材である。 Note that the cooling pipe is not necessarily cooled by the heat of vaporization of the refrigerant, and for example, water cooling that circulates and cools the cooled liquid can be adopted. Further, the cooling pipe may be provided with a cooling gas passage in the interior, and the cooled gas may be cooled by forcibly blowing the cooled gas. In addition, when employing water cooling in which water or a coolant is circulated, the coolant used in the water cooling may be cooled with a refrigerant. In particular, in a vehicle power supply device, an existing cooling mechanism used for an indoor air conditioner or the like can be used for cooling the coolant. FIG. 25 shows a cooling mechanism 69C employing such a configuration. The cooling mechanism 69C shown in this figure includes a first cooling mechanism 69a that cools the cooling plate 61C with a cooling liquid by water cooling, and a second cooling mechanism 69b for cooling the vehicle interior that uses a refrigerant such as an indoor air conditioner. 67 is connected. In the first cooling mechanism 69a, a pump P, a three-way valve 64, an intermediate heat exchanger 67, a heater 66, and a cooling pipe 60C are arranged in a first circulation path 65 indicated by a thick line. Further, the radiator 54B is also connected through the three-way valve 64. The radiator 54B is air-cooled by outside air, and when the outside air temperature is low, the three-way valve 64 can be switched from the intermediate heat exchanger 67 to the radiator 54B side to suppress energy consumption required for cooling, such as the power of the compressor C. The heater 66 is a member for adjusting the temperature by heating the coolant.
 一方で第二冷却機構69bは、細線で示す第二循環経路55BにコンプレッサCと中間熱交換器67と蒸発器56と凝縮器57Bとを設けている。中間熱交換器67と蒸発器56とはそれぞれ膨張弁58C、58Bを介して並列に接続されている。また凝縮器57Bにはファン53Bが近接されている。このファン53Bは、放熱器54Bの放熱にも併用できる。また図25の例においては、冷却液として不凍液入りの水を、冷媒にはHFCを使用している。 On the other hand, the second cooling mechanism 69b is provided with a compressor C, an intermediate heat exchanger 67, an evaporator 56, and a condenser 57B in a second circulation path 55B indicated by a thin line. The intermediate heat exchanger 67 and the evaporator 56 are connected in parallel via expansion valves 58C and 58B, respectively. A fan 53B is in close proximity to the condenser 57B. This fan 53B can also be used for heat dissipation of the radiator 54B. In the example of FIG. 25, water containing antifreeze is used as the coolant, and HFC is used as the refrigerant.
 このように、冷却プレート61Cの第一冷却機構69aを、中間熱交換器67を介して第二冷却機構69bと接続することで、既存の冷却機構を用いて冷却液をより効率よく冷却でき、電池ブロックの冷却を安定的に行える利点が得られる。
(熱伝導シート12)
Thus, by connecting the first cooling mechanism 69a of the cooling plate 61C to the second cooling mechanism 69b via the intermediate heat exchanger 67, the coolant can be cooled more efficiently using the existing cooling mechanism, There is an advantage that the battery block can be cooled stably.
(Thermal conductive sheet 12)
 加えて、冷却プレート61と角型電池セル1との間には、熱伝導シート12等の伝熱部材が介在される。熱伝導シート12は、絶縁性でかつ熱伝導に優れた材質とし、さらに好ましくはある程度の弾性を有するのが好ましい。このような材質としてはアクリル系、ウレタン系、エポキシ系、シリコーン系の樹脂等が挙げられる。このようにすることで電池積層体5と冷却プレート61との間を電気的に絶縁しつつ、熱伝導を維持できる。また、熱伝導シートに代えて、熱伝導ペースト等を利用することもできる。さらに絶縁性を確実に維持するため、追加の絶縁フィルムを介在させることもできる。また、冷却パイプを絶縁製の材質で構成することもできる。このようにして十分な絶縁性が図られる場合は、熱伝導シート等を省略してもよい。 In addition, a heat transfer member such as the heat conductive sheet 12 is interposed between the cooling plate 61 and the square battery cell 1. The heat conductive sheet 12 is preferably made of an insulating material having excellent heat conductivity, and more preferably has a certain degree of elasticity. Examples of such a material include acrylic, urethane, epoxy, and silicone resins. By doing in this way, heat conduction can be maintained, electrically insulating between the battery laminated body 5 and the cooling plate 61. FIG. Moreover, it can replace with a heat conductive sheet and can also use a heat conductive paste. Furthermore, an additional insulating film can be interposed in order to reliably maintain the insulating property. In addition, the cooling pipe can be made of an insulating material. When sufficient insulation is achieved in this way, the heat conductive sheet or the like may be omitted.
 また熱伝導シート12に弾性を持たせることで、熱伝導シート12の表面を弾性変形させて電池積層体5と冷却プレート61との接触面で空間を無くし、熱結合状態を良好に改善できる。 Further, by giving elasticity to the heat conductive sheet 12, the surface of the heat conductive sheet 12 is elastically deformed, and a space is eliminated at the contact surface between the battery stack 5 and the cooling plate 61, so that the thermal coupling state can be improved satisfactorily.
 このようにして、実施例1に係る電源装置100は電池積層体5を密閉して防水構造とし、結露等から角形電池セル1を保護している。この構成では、被覆ケース16によって内部空間を画定でき、ここにポッティング等によって緩衝部材18を配して密閉できる。
(電池積層体の圧入方法)
In this manner, the power supply device 100 according to the first embodiment seals the battery stack 5 to have a waterproof structure, and protects the prismatic battery cell 1 from condensation and the like. In this configuration, the inner space can be defined by the covering case 16, and the buffer member 18 can be disposed and sealed by potting or the like.
(Press-in method for battery stack)
 次に、被覆ケース16内に電池積層体5を圧入する方法を、図9~図14の模式垂直断面図及び図15のフローチャートに基づいて説明する。まずステップS1において、図9に示すように、角形電池セル1を積層して端面に一対のエンドプレート3を配置した状態で、両端面からバインド治具で挟持する。ここではバインド治具を第一バインド治具BJ1、第二バインド治具BJ2、第三バインド治具BJ3の3つで構成している。各第一バインド治具BJ1~第三バインド治具BJ3は、エンドプレート3の端面、すなわち電池積層体5を押圧する面の裏面側で、垂直方向に並べられる。また各バインド治具で、電池積層体5の長さを被覆ケース16の開口部に電池積層体5を挿入できる大きさにするため、端面から押圧している。言い換えると、適切な圧力で挟持された電池積層体5の角形電池セル1の積層方向の長さに合わせて、被覆ケース16の開口の大きさが設定されている。また、電池積層体5の端面に配置したエンドプレートを介して挟持することで、角形電池セルを破損することなく、安全に押圧することが可能となる。 Next, a method for press-fitting the battery stack 5 into the covering case 16 will be described with reference to schematic vertical sectional views of FIGS. 9 to 14 and a flowchart of FIG. First, in step S1, as shown in FIG. 9, the prismatic battery cells 1 are stacked, and the pair of end plates 3 are disposed on the end faces, and are sandwiched by binding jigs from both end faces. Here, the binding jig is composed of three parts: a first binding jig BJ1, a second binding jig BJ2, and a third binding jig BJ3. The first to third binding jigs BJ1 to BJ3 are arranged in the vertical direction on the end surface of the end plate 3, that is, the back surface side of the surface that presses the battery stack 5. Further, each binding jig is pressed from the end face so that the length of the battery stack 5 can be inserted into the opening of the covering case 16. In other words, the size of the opening of the covering case 16 is set in accordance with the length in the stacking direction of the rectangular battery cells 1 of the battery stack 5 sandwiched with an appropriate pressure. Moreover, it becomes possible to press safely, without damaging a square battery cell by pinching via the end plate arrange | positioned at the end surface of the battery laminated body 5. FIG.
 また、電池積層体5の上面においては、上面押込治具PJ1及び第二押圧治具PJ2を設けることができる。上面押込治具PJ1は、電池積層体5の上面からエンドプレート3の部位を押圧する。また第二押圧治具PJ2は、中間の部分を押圧する。さらに、これら上面に配置された上面押込治具PJ1、第二押圧治具PJ2及び両側側面に配置された第一バインド治具BJ1、第二バインド治具BJ2、第三バインド治具BJ3は、治具制御部CRによって押圧状態や押圧解除状態、押圧力の加減等を制御される。治具制御部CRは、適切なタイミングで各治具の押圧/解除動作を制御する。例えば、後述するように上面押込治具PJ1、第二押圧治具PJ2で電池積層体5の上面を押圧するタイミングを、第二バインド治具BJ2や第三バインド治具BJ3を解除したタイミングと同期させ、かつ押し出し量もバインド治具毎に設定することで、スムーズな圧入動作が行える。 Also, on the upper surface of the battery stack 5, an upper surface pressing jig PJ1 and a second pressing jig PJ2 can be provided. The upper surface pressing jig PJ1 presses the portion of the end plate 3 from the upper surface of the battery stack 5. The second pressing jig PJ2 presses the middle part. Further, the upper surface pressing jig PJ1, the second pressing jig PJ2 arranged on the upper surface, the first binding jig BJ1, the second binding jig BJ2, and the third binding jig BJ3 arranged on the both side surfaces are a jig. The tool control unit CR controls the pressing state, the pressing release state, the pressing force, and the like. The jig control unit CR controls the pressing / releasing operation of each jig at an appropriate timing. For example, as described later, the timing of pressing the upper surface of the battery stack 5 with the upper surface pressing jig PJ1 and the second pressing jig PJ2 is synchronized with the timing when the second binding jig BJ2 and the third binding jig BJ3 are released. In addition, a smooth press-fitting operation can be performed by setting the extrusion amount for each binding jig.
 次にステップS2において、このように挟持された電池積層体5を、被覆ケース16の上面開口に位置させ、図10に示すように第一バインド治具BJ1を解除して、電池積層体5を降下させ、電池積層体5を下端から、被覆ケース16の開口に挿入する。この状態では、電池積層体5は第二バインド治具BJ2及び第三バインド治具BJ3で挟持されるため、図11に示すように電池積層体5の長さが押圧状態に維持され、被覆ケース16内に挿入できる。 Next, in step S2, the battery stack 5 thus sandwiched is positioned in the upper surface opening of the covering case 16, and the first binding jig BJ1 is released as shown in FIG. Then, the battery stack 5 is inserted into the opening of the covering case 16 from the lower end. In this state, since the battery stack 5 is sandwiched between the second binding jig BJ2 and the third binding jig BJ3, the length of the battery stack 5 is maintained in the pressed state as shown in FIG. 16 can be inserted.
 さらにステップS3において、図11の状態から第二バインド治具BJ2を解除して、電池積層体5をさらに降下させて、電池積層体5を被覆ケース16の開口により深く挿入する。この状態では、図12に示すように電池積層体5は上端付近を第三バインド治具BJ3で挟持される一方、下端付近は被覆ケース16の内面と接触して摩擦による抵抗が生じ得るため、必要に応じて電池積層体5の上面から上面押込治具PJ1にて、押し込むための押圧力を補助的に加える。上面押込治具PJ1は、エンドプレートの上面を押圧することで、角形電池セル1に直接強い応力が印加される事態を回避できる。一方で、電極端子や安全弁等を角型電池セルの上面以外に配置した場合は、電池積層体の上面がフラットな平面になるので、一対のエンドプレートで挟持された角形電池セル1が位置ずれしたり中間で突出したりしないよう、角形電池セル1の上面を押圧する第二押圧治具PJ2も設けることが好ましい。 Further, in step S3, the second binding jig BJ2 is released from the state shown in FIG. 11, the battery stack 5 is further lowered, and the battery stack 5 is inserted deeper into the opening of the covering case 16. In this state, as shown in FIG. 12, the battery stack 5 is sandwiched near the upper end by the third binding jig BJ3, while the vicinity of the lower end is in contact with the inner surface of the covering case 16, and resistance due to friction can occur. If necessary, a pressing force for pressing from the upper surface of the battery stack 5 is supplementarily applied by the upper surface pressing jig PJ1. The upper surface pushing jig PJ1 can avoid a situation in which a strong stress is directly applied to the prismatic battery cell 1 by pressing the upper surface of the end plate. On the other hand, when an electrode terminal, a safety valve, or the like is disposed on a surface other than the upper surface of the prismatic battery cell, the upper surface of the battery stack becomes a flat plane, and the prismatic battery cell 1 sandwiched between the pair of end plates is displaced. It is also preferable to provide a second pressing jig PJ2 that presses the upper surface of the prismatic battery cell 1 so that it does not protrude or project in the middle.
 さらにステップS4において、図12の状態から第三バインド治具BJ3を解除して、電池積層体5を上面から上面押込治具PJ1にて押圧し、図13に示すように電池積層体5を被覆ケース16に圧入する。電池積層体5の側面は被覆ケース16の内面と接触しており、摩擦による抵抗が生じ得るため、上面押込治具PJ1にて、電池積層体5の上面から圧入のための押圧を行う。また、このとき第二押圧治具PJ2で角形電池セル1の上面からも押圧する。最後に、図14に示すように被覆ケース16の上面をカバー部24で閉塞して、電池積層体5を被覆ケース16内に収納できる。 Further, in step S4, the third binding jig BJ3 is released from the state of FIG. 12, and the battery stack 5 is pressed from the upper surface by the upper surface pressing jig PJ1, and the battery stack 5 is covered as shown in FIG. Press fit into the case 16. Since the side surface of the battery stack 5 is in contact with the inner surface of the covering case 16 and resistance due to friction may occur, pressing for press-fitting is performed from the upper surface of the battery stack 5 with the upper surface pressing jig PJ1. At this time, the second pressing jig PJ2 also presses from the upper surface of the prismatic battery cell 1. Finally, as shown in FIG. 14, the upper surface of the covering case 16 is closed by the cover portion 24, and the battery stack 5 can be stored in the covering case 16.
 このようにして、被覆ケース16内に圧入された電池積層体5は、図14の断面図に示すように角形電池セル1の積層方向に圧力が印加された状態となる。この構成であれば、電池積層体を締結するためのバインドバー等の締結部材を不要にでき、かつ電池積層体の外周を被覆ケース16で被覆して保護できる。 Thus, the battery stack 5 press-fitted into the covering case 16 is in a state in which pressure is applied in the stacking direction of the rectangular battery cells 1 as shown in the cross-sectional view of FIG. If it is this structure, fastening members, such as a bind bar for fastening a battery laminated body, can be made unnecessary, and the outer periphery of a battery laminated body can be coat | covered with the covering case 16, and can be protected.
 また、必要に応じて被覆ケースと電池積層体との間の隙間に緩衝部材を配することで、電池積層体の表面への結露を防止できる。緩衝部材は、例えば樹脂を隙間に注入することで、電池積層体表面の空間を樹脂で充填して、空気中の水分が結露する事態を回避できる。あるいは、緩衝部材として弾性シートや吸水シート等を使用することもできる。 Also, if necessary, a buffer member is disposed in the gap between the covering case and the battery stack, so that condensation on the surface of the battery stack can be prevented. The buffer member can avoid a situation where moisture in the air is condensed by filling the space on the surface of the battery stack with the resin, for example, by injecting resin into the gap. Or an elastic sheet, a water absorption sheet, etc. can also be used as a buffer member.
 さらに、被覆ケースを防水構造とすることもできる。例えば被覆ケースの上面を被覆するカバー部と被覆ケースとの接合面にパッキンやOリングを用いて閉塞することで、電池積層体を防水する。 Furthermore, the covering case can be made waterproof. For example, the battery stack is waterproofed by closing the joint surface between the cover portion covering the upper surface of the cover case and the cover case using packing or an O-ring.
 なお、上記の例ではバインド治具の数を3つとしたが、4つ以上とすることもできる。また、2つで構成することも可能である。なおバインド治具を一としつつ、押圧部分を複数有するような形態も、本明細書でいう複数のバンド治具に含めるものとする。 In the above example, the number of binding jigs is three, but it can be four or more. It is also possible to configure with two. Note that a configuration having a plurality of pressing portions with a single binding jig is also included in the plurality of band jigs referred to in this specification.
 さらに、実施例1に示した被覆ケースの上下を反転させて、被覆ケースの下面を開口させて、電池積層体を被覆ケースの下面から挿入することも可能である。このように、被覆ケースは電池積層体を挿入できるよう、少なくとも1面を開口させていれば足りる。
(実施例2)
Furthermore, it is also possible to insert the battery stack from the lower surface of the covering case by inverting the upper and lower sides of the covering case shown in Example 1, opening the lower surface of the covering case. Thus, it is sufficient for the covering case to have at least one open surface so that the battery stack can be inserted.
(Example 2)
 以上の方法では、被覆ケースを有底箱形として上面開口から電池積層体を圧入した。ただ、被覆ケースとして上面のみならず下面も開口した筒状の形態を利用することも可能である。この場合も、上記実施例1と同様の方法で圧入できる他、被覆ケースの下面側を開口させることで、圧入をよりスムーズに行わせることができる。この方法を実施例2として、図16に基づいて説明する。ここでは、拡開治具OJを用いて被覆ケース16Bの下面側で、対向する被覆ケース16Bの一対の端面板16cを係止して、互いに逆方向に、すなわち開口を拡開する方向に引っ張ることで強制的に開口させている。実施例2の圧入方法も、実施例1とほぼ同じ方法で行わせることができ、電池積層体5を被覆ケース16Bに挿入、圧入する際に、拡開治具OJで下方の開口端から被覆ケース16Bの端面板16cを、拡開治具OJにて、開口部を拡開するように引っ張る。このようにして開口端を拡開することで、特にステップS4において、電池積層体5を上面から押し込む際に被覆ケース16Bの内面と電池積層体5との摩擦力を軽減して圧入し易くできる。 In the above method, the battery case was press-fitted from the top opening with the covering case as a bottomed box shape. However, it is also possible to use a cylindrical form in which not only the upper surface but also the lower surface is opened as the covering case. In this case as well, press-fitting can be performed more smoothly by opening the lower surface side of the covering case in addition to press-fitting in the same manner as in the first embodiment. This method will be described as a second embodiment with reference to FIG. Here, the pair of end face plates 16c of the opposing covering case 16B are locked on the lower surface side of the covering case 16B using the expanding jig OJ, and pulled in directions opposite to each other, that is, in the direction of expanding the opening. It is forcibly opened. The press-fitting method of Example 2 can be performed in substantially the same manner as in Example 1. When the battery stack 5 is inserted into the cover case 16B and press-fitted, it is covered from the lower opening end with the expansion jig OJ. The end plate 16c of the case 16B is pulled with the expansion jig OJ so as to expand the opening. By widening the opening end in this manner, particularly in step S4, when the battery stack 5 is pushed from the upper surface, the frictional force between the inner surface of the covering case 16B and the battery stack 5 can be reduced to facilitate press-fitting. .
 また、上記とは逆に、被覆ケースの下面側から圧入することも可能であることはいうまでもない。この場合、開口を拡開させるには、被覆ケースの上面において拡開治具を用いて拡開させる。
(実施例3)
Moreover, it goes without saying that it is possible to press-fit from the lower surface side of the covering case, contrary to the above. In this case, in order to widen the opening, the opening is spread on the upper surface of the covering case using a spreading jig.
(Example 3)
 以上の実施例では、バインド治具を用いて電池積層体5を押圧する一方で、上面押込治具を用いて電池積層体5を被覆ケース16に圧入するという、両側面の挟持と上面の押圧とを個別の治具で行う例を説明した。ただ、この方法に限られず、挟持と押圧とを共通の治具で行うこともできる。このような例を実施例3として、図23の模式垂直断面図に基づいて説明する。この図に示す電池圧入装置は、電池積層体5の両端面に、回転可能な一対の回転ローラ治具RJを配置している。回転ローラ治具RJは、表面を弾性部材などで被覆した縦方向に長い楕円又は扁平状の回転体を一対備えている。このように構成される一対の回転ローラ治具RJの間に電池積層体5を挿入することで、電池積層体5を両側から挟持できる。さらに一対の回転ローラ治具RJを、互いに逆方向に回転させることで、電池積層体5を挟持しながら下方に送り出すことができる。いいかえると、電池積層体5を挟持姿勢に維持しながらこれを降下させることができる。このため、回転ローラ治具RJの回転に先立ち、電池積層体5の下方に被覆ケース16を配置しておくことで、挟持状態を保ったまま電池積層体5を被覆ケース16内に案内できる。この方法であれば、電池積層体5を横方向で挟持しながらスムーズに降下させることができる。また、必要に応じて上面押込治具等を併用して、上方から押圧させてもよい。 In the above embodiment, the battery stack 5 is pressed using the binding jig, while the battery stack 5 is press-fitted into the covering case 16 using the upper surface pressing jig. An example of performing the above with individual jigs has been described. However, it is not limited to this method, and clamping and pressing can be performed with a common jig. Such an example will be described as Example 3 based on the schematic vertical sectional view of FIG. In the battery press-fitting device shown in this figure, a pair of rotatable rotating roller jigs RJ are disposed on both end faces of the battery stack 5. The rotating roller jig RJ includes a pair of elliptical or flat rotating bodies that are long in the vertical direction and whose surfaces are covered with an elastic member or the like. The battery stack 5 can be sandwiched from both sides by inserting the battery stack 5 between the pair of rotating roller jigs RJ configured as described above. Further, by rotating the pair of rotating roller jigs RJ in opposite directions, the battery stack 5 can be sent downward while being sandwiched. In other words, the battery stack 5 can be lowered while maintaining the sandwiched posture. For this reason, prior to the rotation of the rotating roller jig RJ, the battery case 5 can be guided into the cover case 16 while maintaining the clamping state by arranging the case 16 below the battery layer 5. With this method, the battery stack 5 can be smoothly lowered while being sandwiched in the lateral direction. Moreover, you may make it press from upper direction together using an upper surface pressing jig etc. as needed.
 また、電池積層体5の挟持は、離間して配置させた回転ローラ治具RJを、回転を停止した状態で左右から挟み込み、これを被覆ケース16上に移動させた後、回転させる方式とする他、一対の回転ローラ治具RJを、予め電池積層体5を挟持できる幅にて被覆ケース16の上方に固定しておき、回転ローラ治具RJを回転させた状態で、上方から電池積層体5を送り込むことで、電池積層体5を押圧しながら下方に送出して被覆ケース16内に案内させることもできる。この方法であれば、電池積層体5を短時間で被覆ケース16内に案内できる利点が得られる。すなわち、電池積層体5の挟持、圧入を連続的に行えるため、実施例1のような複雑な操作を要せず、回転ローラ治具RJによる一連の動作でスムーズに電池積層体5を被覆ケース16内に圧入できる。また、場合によっては電池積層体5を上方から無理に押圧することなく、そのまま被覆ケース16内に挿入できる可能性もある。 In addition, the battery stack 5 is sandwiched between the rotating roller jigs RJ that are spaced apart from each other in a state where the rotation is stopped, and the rotating roller jig RJ is moved on the covering case 16 and then rotated. In addition, a pair of rotating roller jigs RJ is fixed in advance above the covering case 16 with a width that allows the battery stack 5 to be sandwiched in advance, and the rotating battery jig RJ is rotated and the battery stack is viewed from above. By feeding 5, the battery stack 5 can be pushed downward and guided into the covering case 16 while being pressed. With this method, there is an advantage that the battery stack 5 can be guided into the covering case 16 in a short time. That is, since the battery stack 5 can be continuously sandwiched and press-fitted, a complicated operation as in the first embodiment is not required, and the battery stack 5 can be smoothly covered with a series of operations using the rotating roller jig RJ. 16 can be press-fitted. In some cases, the battery stack 5 may be inserted into the covering case 16 as it is without forcibly pressing it from above.
 以上の電源装置は、車載用の電源として利用できる。電源装置を搭載する車両としては、エンジンとモータの両方で走行するハイブリッド車やプラグインハイブリッド車、あるいはモータのみで走行する電気自動車等の電動車両が利用でき、これらの車両の電源として使用される。
(ハイブリッド車用電源装置)
The above power supply apparatus can be used as a vehicle-mounted power supply. As a vehicle equipped with a power supply device, an electric vehicle such as a hybrid vehicle or a plug-in hybrid vehicle that runs with both an engine and a motor, or an electric vehicle that runs only with a motor can be used, and is used as a power source for these vehicles .
(Power supply for hybrid vehicles)
 図17に、エンジンとモータの両方で走行するハイブリッド車に電源装置を搭載する例を示す。この図に示す電源装置を搭載した車両HVは、車両HVを走行させるエンジン96及び走行用のモータ93と、モータ93に電力を供給する電源装置100と、電源装置100の電池を充電する発電機94とを備えている。電源装置100は、DC/ACインバータ95を介してモータ93と発電機94に接続している。車両HVは、電源装置100の電池を充放電しながらモータ93とエンジン96の両方で走行する。モータ93は、エンジン効率の悪い領域、例えば加速時や低速走行時に駆動されて車両を走行させる。モータ93は、電源装置100から電力が供給されて駆動する。発電機94は、エンジン96で駆動され、あるいは車両にブレーキをかけるときの回生制動で駆動されて、電源装置100の電池を充電する。
(電気自動車用電源装置)
FIG. 17 shows an example in which a power supply device is mounted on a hybrid vehicle that runs with both an engine and a motor. A vehicle HV equipped with the power supply device shown in this figure includes an engine 96 and a travel motor 93 that travel the vehicle HV, a power supply device 100 that supplies power to the motor 93, and a generator that charges a battery of the power supply device 100. 94. The power supply apparatus 100 is connected to a motor 93 and a generator 94 via a DC / AC inverter 95. The vehicle HV travels by both the motor 93 and the engine 96 while charging / discharging the battery of the power supply device 100. The motor 93 is driven to drive the vehicle when the engine efficiency is low, for example, during acceleration or low-speed driving. The motor 93 is driven by power supplied from the power supply device 100. The generator 94 is driven by the engine 96 or is driven by regenerative braking when the vehicle is braked to charge the battery of the power supply device 100.
(Power supply for electric vehicles)
 また図18に、モータのみで走行する電気自動車に電源装置を搭載する例を示す。この図に示す電源装置を搭載した車両EVは、車両EVを走行させる走行用のモータ93と、このモータ93に電力を供給する電源装置100と、この電源装置100の電池を充電する発電機94とを備えている。モータ93は、電源装置100から電力が供給されて駆動する。発電機94は、車両EVを回生制動する時のエネルギーで駆動されて、電源装置100の電池を充電する。
(蓄電用電源装置)
FIG. 18 shows an example in which a power supply device is mounted on an electric vehicle that runs only with a motor. A vehicle EV equipped with the power supply device shown in FIG. 1 is a motor 93 for running the vehicle EV, a power supply device 100 that supplies power to the motor 93, and a generator 94 that charges a battery of the power supply device 100. And. The motor 93 is driven by power supplied from the power supply device 100. The generator 94 is driven by energy when regeneratively braking the vehicle EV and charges the battery of the power supply device 100.
(Power storage device for power storage)
 さらに、この電源装置は、移動体用の動力源としてのみならず、載置型の蓄電用設備としても利用できる。例えば家庭用、工場用の電源として、太陽光や深夜電力等で充電し、必要時に放電する電源システム、あるいは日中の太陽光を充電して夜間に放電する街路灯用の電源や、停電時に駆動する信号機用のバックアップ電源等にも利用できる。このような例を図19に示す。この図に示す電源装置100は、複数の電池パック81をユニット状に接続して電池ユニット82を構成している。各電池パック81は、複数の角型電池セル1が直列及び/又は並列に接続されている。各電池パック81は、電源コントローラ84により制御される。この電源装置100は、電池ユニット82を充電用電源CPで充電した後、負荷LDを駆動する。このため電源装置100は、充電モードと放電モードを備える。負荷LDと充電用電源CPはそれぞれ、放電スイッチDS及び充電スイッチCSを介して電源装置100と接続されている。放電スイッチDS及び充電スイッチCSのON/OFFは、電源装置100の電源コントローラ84によって切り替えられる。充電モードにおいては、電源コントローラ84は充電スイッチCSをONに、放電スイッチDSをOFFに切り替えて、充電用電源CPから電源装置100への充電を許可する。また充電が完了し満充電になると、あるいは所定値以上の容量が充電された状態で負荷LDからの要求に応じて、電源コントローラ84は充電スイッチCSをOFFに、放電スイッチDSをONにして放電モードに切り替え、電源装置100から負荷LDへの放電を許可する。また、必要に応じて、充電スイッチCSをONに、放電スイッチDSをONにして、負荷LDの電力供給と、電源装置100への充電を同時に行うこともできる。 Furthermore, this power supply device can be used not only as a power source for a moving body but also as a stationary power storage facility. For example, as a power source for home and factory use, a power supply system that is charged with sunlight or midnight power and discharged when necessary, or a streetlight power supply that charges sunlight during the day and discharges at night, or during a power outage It can also be used as a backup power source for driving signals. Such an example is shown in FIG. The power supply apparatus 100 shown in this figure forms a battery unit 82 by connecting a plurality of battery packs 81 in a unit shape. Each battery pack 81 has a plurality of prismatic battery cells 1 connected in series and / or in parallel. Each battery pack 81 is controlled by a power controller 84. The power supply apparatus 100 drives the load LD after charging the battery unit 82 with the charging power supply CP. For this reason, the power supply apparatus 100 includes a charging mode and a discharging mode. The load LD and the charging power source CP are connected to the power supply device 100 via the discharging switch DS and the charging switch CS, respectively. ON / OFF of the discharge switch DS and the charge switch CS is switched by the power supply controller 84 of the power supply apparatus 100. In the charging mode, the power supply controller 84 switches the charging switch CS to ON and the discharging switch DS to OFF to permit charging from the charging power supply CP to the power supply apparatus 100. Further, when the charging is completed and the battery is fully charged, or in response to a request from the load LD in a state where a capacity of a predetermined value or more is charged, the power controller 84 turns off the charging switch CS and turns on the discharging switch DS to discharge. The mode is switched to permit discharge from the power supply apparatus 100 to the load LD. Further, if necessary, the charge switch CS can be turned on and the discharge switch DS can be turned on to supply power to the load LD and charge the power supply device 100 at the same time.
 電源装置100で駆動される負荷LDは、放電スイッチDSを介して電源装置100と接続されている。電源装置100の放電モードにおいては、電源コントローラ84が放電スイッチDSをONに切り替えて、負荷LDに接続し、電源装置100からの電力で負荷LDを駆動する。放電スイッチDSはFET等のスイッチング素子が利用できる。放電スイッチDSのON/OFFは、電源装置100の電源コントローラ84によって制御される。また電源コントローラ84は、外部機器と通信するための通信インターフェースを備えている。図19の例では、UARTやRS-232C等の既存の通信プロトコルに従い、ホスト機器HTと接続されている。また必要に応じて、電源システムに対してユーザが操作を行うためのユーザインターフェースを設けることもできる。 The load LD driven by the power supply device 100 is connected to the power supply device 100 via the discharge switch DS. In the discharge mode of the power supply apparatus 100, the power supply controller 84 switches the discharge switch DS to ON, connects to the load LD, and drives the load LD with the power from the power supply apparatus 100. As the discharge switch DS, a switching element such as an FET can be used. ON / OFF of the discharge switch DS is controlled by the power supply controller 84 of the power supply apparatus 100. The power controller 84 also includes a communication interface for communicating with external devices. In the example of FIG. 19, the host device HT is connected in accordance with an existing communication protocol such as UART or RS-232C. Further, if necessary, a user interface for the user to operate the power supply system can be provided.
 各電池パック81は、信号端子と電源端子を備える。信号端子は、パック入出力端子DIと、パック異常出力端子DAと、パック接続端子DOとを含む。パック入出力端子DIは、他のパック電池や電源コントローラ84からの信号を入出力するための端子であり、パック接続端子DOは子パックである他のパック電池に対して信号を入出力するための端子である。またパック異常出力端子DAは、パック電池の異常を外部に出力するための端子である。さらに電源端子は、電池パック81同士を直列、並列に接続するための端子である。また電池ユニット82は並列接続スイッチ85を介して出力ラインOLに接続されて互いに並列に接続されている。 Each battery pack 81 includes a signal terminal and a power supply terminal. The signal terminals include a pack input / output terminal DI, a pack abnormality output terminal DA, and a pack connection terminal DO. The pack input / output terminal DI is a terminal for inputting / outputting signals from other pack batteries and the power supply controller 84, and the pack connection terminal DO is for inputting / outputting signals to / from other pack batteries which are child packs. Terminal. The pack abnormality output terminal DA is a terminal for outputting the abnormality of the battery pack to the outside. Furthermore, the power supply terminal is a terminal for connecting the battery packs 81 in series and in parallel. The battery units 82 are connected to the output line OL via the parallel connection switch 85 and are connected in parallel to each other.
 本発明に係る電源装置の製造方法及び電源装置並びに電源装置を備える車両は、EV走行モードとHEV走行モードとを切り替え可能なプラグイン式ハイブリッド電気自動車やハイブリッド式電気自動車、電気自動車等の電源装置として好適に利用できる。またコンピュータサーバのラックに搭載可能なバックアップ電源装置、携帯電話等の無線基地局用のバックアップ電源装置、家庭内用、工場用の蓄電用電源、街路灯の電源等、太陽電池と組み合わせた蓄電装置、信号機等のバックアップ電源用等の用途にも適宜利用できる。 A power supply device manufacturing method, a power supply device, and a vehicle including the power supply device according to the present invention include a plug-in hybrid electric vehicle, a hybrid electric vehicle, and an electric vehicle that can switch between an EV traveling mode and an HEV traveling mode. Can be suitably used. Also, a backup power supply device that can be mounted on a rack of a computer server, a backup power supply device for a wireless base station such as a mobile phone, a power storage device for home use and a factory, a power supply for a street light, etc. Also, it can be used as appropriate for applications such as a backup power source such as a traffic light.
100…電源装置
1…角形電池セル
2…セパレータ
3…エンドプレート
5…電池積層体
6…バスバー
10…組電池
10B…電池積層連続体
12…熱伝導シート
16、16B…被覆ケース;16c…端面板
18…緩衝部材
24…カバー部
26…ガスダクト
50B…連結バー
53、53B…ファン
54、54B…放熱器
55B…第二循環経路
56…蒸発器
57、57B…凝縮器
58…膨張器;58B、58C…膨張弁
60、60B、60C…冷却パイプ
61、61B、61C…冷却プレート
64…三方弁
65…第一循環経路
66…ヒータ
67…中間熱交換器
69、69B、69C…冷却機構;69a…第一冷却機構;69b…第二冷却機構
70…外装ケース
71…下ケース
72…上ケース
73…端面プレート
74…鍔部
81…電池パック
82…電池ユニット
84…電源コントローラ
85…並列接続スイッチ
93…モータ
94…発電機
95…DC/ACインバータ
96…エンジン
201…電池セル
205…電池積層体
260…冷却パイプ
261…冷却プレート
269…冷却機構
BJ1…第一バインド治具
BJ2…第二バインド治具
BJ3…第三バインド治具
PJ1…上面押込治具
PJ2…第二押圧治具
CR…治具制御部
OJ…拡開治具
RJ…回転ローラ治具
EV、HV…車両
LD…負荷;CP…充電用電源;DS…放電スイッチ;CS…充電スイッチ
OL…出力ライン;HT…ホスト機器
DI…パック入出力端子;DA…パック異常出力端子;DO…パック接続端子
DESCRIPTION OF SYMBOLS 100 ... Power supply device 1 ... Square battery cell 2 ... Separator 3 ... End plate 5 ... Battery laminated body 6 ... Bus bar 10 ... Battery assembly 10B ... Battery laminated continuous body 12 ... Thermal conductive sheet 16, 16B ... Covering case; 16c ... End plate 18 ... Buffer member 24 ... Cover portion 26 ... Gas duct 50B ... Connecting bars 53, 53B ... Fans 54, 54B ... Radiator 55B ... Second circulation path 56 ... Evaporator 57, 57B ... Condenser 58 ... Expander; 58B, 58C ... expansion valves 60, 60B, 60C ... cooling pipes 61, 61B, 61C ... cooling plate 64 ... three-way valve 65 ... first circulation path 66 ... heater 67 ... intermediate heat exchangers 69, 69B, 69C ... cooling mechanism; One cooling mechanism; 69b ... second cooling mechanism 70 ... outer case 71 ... lower case 72 ... upper case 73 ... end face plate 74 ... collar 81 ... battery pack 82 ... electricity Unit 84 ... Power controller 85 ... Parallel connection switch 93 ... Motor 94 ... Generator 95 ... DC / AC inverter 96 ... Engine 201 ... Battery cell 205 ... Battery stack 260 ... Cooling pipe 261 ... Cooling plate 269 ... Cooling mechanism BJ1 ... One binding jig BJ2 ... Second binding jig BJ3 ... Third binding jig PJ1 ... Top pressing jig PJ2 ... Second pressing jig CR ... Jig controller OJ ... Expansion jig RJ ... Rotating roller jig EV HV ... Vehicle LD ... Load; CP ... Power supply for charging; DS ... Discharge switch; CS ... Charge switch OL ... Output line; HT ... Host device DI ... Pack input / output terminal; DA ... Pack abnormal output terminal; Terminal

Claims (10)

  1.  外形を角型とする複数の角型電池セルを積層してなる電池積層体と、
     前記電池積層体を収納する一面を開口した被覆ケースと、
    を備える電源装置の製造方法であって、
     前記角型電池セルを積層した状態で、前記電池積層体の両側端面を、単数又は複数のバインド治具で押圧して挟持する工程と、
     前記単数又は複数のバインド治具で挟持した状態で、前記電池積層体を、前記被覆ケースの一面に開口された開口部分に位置させ、前記単数又は複数のバインド治具の押圧を解除させながら、前記電池積層体を、前記被覆ケースの開口から挿入する工程と、
    を含むことを特徴とする電源装置の製造方法。
    A battery stack formed by stacking a plurality of prismatic battery cells having a rectangular outer shape;
    A covering case having an opening on one side for storing the battery stack;
    A method of manufacturing a power supply device comprising:
    In a state where the prismatic battery cells are stacked, pressing both side end faces of the battery stack with a single or a plurality of binding jigs; and
    While being sandwiched between the single or plural binding jigs, the battery stack is positioned at an opening portion opened on one surface of the covering case, while releasing the pressing of the single or plural binding jigs, Inserting the battery stack from the opening of the covering case;
    The manufacturing method of the power supply device characterized by the above-mentioned.
  2.  請求項1に記載の電源装置の製造方法であって、
     前記単数又は複数のバインド治具が、高さ方向に下から順に並べた第一バインド治具、第二バインド治具、第三バインド治具で構成されており、
     前記被覆ケースの開口から挿入する工程が、
     前記第一バインド治具、第二バインド治具、第三バインド治具で挟持した状態で、前記電池積層体を、前記被覆ケースの上面開口に位置させ、
     前記第一バインド治具の押圧を解除して、前記電池積層体を降下させ、前記電池積層体を下端から、前記被覆ケースの開口に挿入する工程と、
     さらに前記第二バインド治具の押圧を解除して、前記電池積層体をさらに降下させ、前記被覆ケースへの挿入を推し進める工程と、
     さらに前記第三バインド治具の押圧を解除して、前記電池積層体を上面から上面押込治具にて押圧し、前記電池積層体を前記被覆ケース内に圧入する工程と、
    を含むことを特徴とする電源装置の製造方法。
    It is a manufacturing method of the power supply device according to claim 1,
    The single or plural binding jigs are composed of a first binding jig, a second binding jig, and a third binding jig arranged in order from the bottom in the height direction,
    Inserting through the opening of the covering case,
    In a state of being sandwiched between the first binding jig, the second binding jig, and the third binding jig, the battery stack is positioned at the upper surface opening of the covering case,
    Releasing the pressing of the first binding jig, lowering the battery stack, and inserting the battery stack from the lower end into the opening of the covering case;
    Furthermore, releasing the pressing of the second binding jig, further lowering the battery stack, and pushing the insertion into the covering case,
    Furthermore, releasing the pressing of the third binding jig, pressing the battery stack with an upper surface pressing jig from the upper surface, press-fitting the battery stack into the covering case,
    The manufacturing method of the power supply device characterized by the above-mentioned.
  3.  請求項2に記載の電源装置の製造方法であって、
     前記電池積層体が、端面にエンドプレートを配置してなることを特徴とする電源装置の製造方法。
    It is a manufacturing method of the power supply device according to claim 2,
    A method of manufacturing a power supply device, wherein the battery stack is formed by arranging an end plate on an end face.
  4.  請求項3に記載の電源装置の製造方法であって、
     前記上面押込治具が、前記電池積層体を上面から圧入する際、前記エンドプレートの上面を押圧してなることを特徴とする電源装置の製造方法。
    It is a manufacturing method of the power supply device according to claim 3,
    The method of manufacturing a power supply device, wherein the upper surface pressing jig presses the upper surface of the end plate when the battery stack is press-fitted from the upper surface.
  5.  請求項1から4のいずれか一に記載の電源装置の製造方法であって、
     前記被覆ケースが上下方向に開口された枠状であり、
     前記電池積層体を前記被覆ケースに圧入する際、下方の開口端から前記被覆ケースの端面板を、拡開治具にて、開口部を拡開することを特徴とする電源装置の製造方法。
    It is a manufacturing method of the power supply device according to any one of claims 1 to 4,
    The covering case has a frame shape opened in the vertical direction,
    A method of manufacturing a power supply device, wherein when the battery stack is press-fitted into the covering case, the opening portion of the end face plate of the covering case is expanded from the lower opening end with an expanding jig.
  6. 外形を角型とする複数の角型電池セルを積層してなる電池積層体と、
     前記電池積層体を収納する一面を開口した被覆ケースと、
    を備える電源装置の製造方法であって、
     前記角型電池セルを積層した状態で、両側端面を、回転可能な一対の回転ローラ治具の間に挿入する工程と、
     前記電池積層体を、前記回転ローラ治具間に挿入されて挟持された状態で、前記被覆ケースの一面開口に位置させて、前記電池積層体を被覆ケースに挿入させるよう、前記一対のローラ治具を互いに逆方向に回転させ、前記電池積層体を押圧状態に維持しながら、前記電池積層体を一端面から、前記被覆ケースの開口に挿入する工程と、
    を含むことを特徴とする電源装置の製造方法。
    A battery stack formed by stacking a plurality of prismatic battery cells having a rectangular outer shape;
    A covering case having an opening on one side for storing the battery stack;
    A method of manufacturing a power supply device comprising:
    Inserting both end faces between a pair of rotatable rotating roller jigs in a state where the rectangular battery cells are stacked,
    In a state where the battery stack is inserted and clamped between the rotating roller jigs, the battery stack is positioned at one surface opening of the covering case, and the battery stack is inserted into the covering case. Rotating the tool in opposite directions and inserting the battery stack from one end surface into the opening of the covering case while maintaining the battery stack in a pressed state;
    The manufacturing method of the power supply device characterized by the above-mentioned.
  7.  請求項6に記載の電源装置の製造方法であって、
     前記被覆ケースが、前記電池積層体を収納する上面を開口しており、
     前記電池積層体を、前記被覆ケースの上面開口に位置させて、前記電池積層体を降下させるよう、前記一対のローラ治具を互いに逆方向に回転させて、前記電池積層体を押圧状態に維持しながら降下させて、前記電池積層体を下端から、前記被覆ケースの開口に挿入することを特徴とする電源装置の製造方法。
    It is a manufacturing method of the power supply device according to claim 6,
    The covering case has an open top surface for storing the battery stack,
    The battery stack is positioned in the upper surface opening of the covering case, and the pair of roller jigs are rotated in opposite directions so as to lower the battery stack, thereby maintaining the battery stack in a pressed state. The battery stack is lowered while being inserted from the lower end into the opening of the covering case.
  8.  外形を角型とする複数の角型電池セルを積層してなる電池積層体と、
     前記電池積層体を収納する上面を開口した被覆ケースと、
    を備え、
     前記電池積層体は、積層状態に締結する締結具を有しない状態で、前記被覆ケース内に圧入されてなることを特徴とする電源装置。
    A battery stack formed by stacking a plurality of prismatic battery cells having a rectangular outer shape;
    A covering case having an open top surface for accommodating the battery stack;
    With
    The battery stack is press-fitted into the covering case without a fastener for fastening in a stacked state.
  9.  外形を角型とする複数の角型電池セルを積層してなる電池積層体と、
     前記電池積層体を収納する上面を開口した被覆ケースと、
    を備え、
     前記電池積層体は、前記被覆ケース内に収納された状態で、該角型電池セルの積層方向に圧力が印加されてなることを特徴とする電源装置。
    A battery stack formed by stacking a plurality of prismatic battery cells having a rectangular outer shape;
    A covering case having an open top surface for accommodating the battery stack;
    With
    The battery stack is a power supply device in which pressure is applied in the stacking direction of the rectangular battery cells in a state of being housed in the covering case.
  10.  請求項8又は9に記載の電源装置を搭載してなる車両。 A vehicle comprising the power supply device according to claim 8 or 9.
PCT/JP2012/058485 2011-03-31 2012-03-29 Method for producing power source device, power source device, and vehicle provided with power source device WO2012133711A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-081317 2011-03-31
JP2011081317 2011-03-31

Publications (1)

Publication Number Publication Date
WO2012133711A1 true WO2012133711A1 (en) 2012-10-04

Family

ID=46931413

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/058485 WO2012133711A1 (en) 2011-03-31 2012-03-29 Method for producing power source device, power source device, and vehicle provided with power source device

Country Status (1)

Country Link
WO (1) WO2012133711A1 (en)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014137930A (en) * 2013-01-17 2014-07-28 Mitsubishi Heavy Ind Ltd Battery system
WO2014208020A1 (en) * 2013-06-28 2014-12-31 三洋電機株式会社 Vehicle-mounted electrical equipment auxiliary electricity storage device and car equipped with electrical equipment auxiliary electricity storage device
WO2016015958A1 (en) * 2014-07-31 2016-02-04 Bayerische Motoren Werke Aktiengesellschaft Battery module
JP2018049803A (en) * 2016-09-23 2018-03-29 トヨタ自動車株式会社 Loading method for battery stack
CN110165101A (en) * 2018-02-16 2019-08-23 丰田材料处理制造瑞典公司 For rechargeable cell to be assembled into the device and battery module of battery module
CN111370609A (en) * 2018-12-25 2020-07-03 本田技研工业株式会社 Cell structure of solid-state battery, and method for manufacturing solid-state battery
CN111477779A (en) * 2019-01-23 2020-07-31 丰田自动车株式会社 Battery device
EP3694019A1 (en) * 2019-02-08 2020-08-12 SK Innovation Co., Ltd. Battery module and manufacturing method thereof
JP2021503151A (en) * 2018-10-05 2021-02-04 エルジー・ケム・リミテッド A battery pack including a battery pack frame that can prevent welding defects and a pressing jig for manufacturing the battery pack.
WO2021021823A1 (en) * 2019-08-01 2021-02-04 TeraWatt Technology Inc. Solid state battery variable pressure optimization system
CN112582725A (en) * 2019-09-12 2021-03-30 丰田自动车株式会社 Battery module and battery module manufacturing method
WO2021117336A1 (en) * 2019-12-13 2021-06-17 日東電工株式会社 Battery cover
US20210351431A1 (en) * 2019-10-30 2021-11-11 Lg Energy Solution, Ltd. Press jig and method of manufacturing secondary battery using same
CN113875055A (en) * 2019-11-18 2021-12-31 株式会社Lg新能源 Battery module manufacturing apparatus and battery module manufacturing method
US20220285770A1 (en) * 2021-03-08 2022-09-08 Hyundai Motor Company Battery module and method of manufacturing same
EP4167366A4 (en) * 2021-04-30 2024-07-10 Contemporary Amperex Technology Co Ltd Battery and electric device
US12057547B2 (en) 2021-05-25 2024-08-06 Toyota Jidosha Kabushiki Kaisha Method of manufacturing battery pack
CN113875055B (en) * 2019-11-18 2024-10-01 株式会社Lg新能源 Battery module manufacturing apparatus and battery module manufacturing method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000286172A (en) * 1999-03-31 2000-10-13 Nippon Chemicon Corp Capacitor
JP2008124033A (en) * 2006-03-28 2008-05-29 Takehiro:Kk Battery module

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000286172A (en) * 1999-03-31 2000-10-13 Nippon Chemicon Corp Capacitor
JP2008124033A (en) * 2006-03-28 2008-05-29 Takehiro:Kk Battery module

Cited By (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014137930A (en) * 2013-01-17 2014-07-28 Mitsubishi Heavy Ind Ltd Battery system
WO2014208020A1 (en) * 2013-06-28 2014-12-31 三洋電機株式会社 Vehicle-mounted electrical equipment auxiliary electricity storage device and car equipped with electrical equipment auxiliary electricity storage device
CN105164830A (en) * 2013-06-28 2015-12-16 三洋电机株式会社 Vehicle-mounted electrical equipment auxiliary electricity storage device and car equipped with electrical equipment auxiliary electricity storage device
JPWO2014208020A1 (en) * 2013-06-28 2017-02-23 三洋電機株式会社 On-vehicle electrical spare storage device and vehicle equipped with this electrical spare storage device
US9911964B2 (en) 2013-06-28 2018-03-06 Sanyo Electric Co., Ltd. Vehicle-mounted electrical equipment auxiliary electricity storage device and car equipped with electrical equipment auxiliary electricity storage device
WO2016015958A1 (en) * 2014-07-31 2016-02-04 Bayerische Motoren Werke Aktiengesellschaft Battery module
JP2018049803A (en) * 2016-09-23 2018-03-29 トヨタ自動車株式会社 Loading method for battery stack
CN110165101A (en) * 2018-02-16 2019-08-23 丰田材料处理制造瑞典公司 For rechargeable cell to be assembled into the device and battery module of battery module
US11302980B2 (en) * 2018-02-16 2022-04-12 Toyota Material Handling Manufacturing Sweden Ab Arrangement for assembling rechargeable batteries into a battery module and a battery module
JP7315544B2 (en) 2018-10-05 2023-07-26 エルジー エナジー ソリューション リミテッド BATTERY PACK INCLUDING BATTERY PACK FRAME AND PRESSING JIG FOR MANUFACTURING THE SAME
US11909062B2 (en) 2018-10-05 2024-02-20 Lg Energy Solution, Ltd. Battery pack comprising battery pack frame capable of preventing welding defect and pressing jig for preparing the same
JP2021503151A (en) * 2018-10-05 2021-02-04 エルジー・ケム・リミテッド A battery pack including a battery pack frame that can prevent welding defects and a pressing jig for manufacturing the battery pack.
EP3848994A4 (en) * 2018-10-05 2022-03-16 LG Energy Solution Ltd. Battery pack including battery pack frame capable of preventing welding failure, and press jig for manufacturing same
US11437675B2 (en) 2018-12-25 2022-09-06 Honda Motor Co., Ltd. Cell structure of solid state battery
CN111370609A (en) * 2018-12-25 2020-07-03 本田技研工业株式会社 Cell structure of solid-state battery, and method for manufacturing solid-state battery
CN111477779A (en) * 2019-01-23 2020-07-31 丰田自动车株式会社 Battery device
US11456504B2 (en) 2019-02-08 2022-09-27 Sk Innovation Co., Ltd. Battery module including upper cover integrated with side covers fastened to lower cover, and manufacturing method thereof
EP3694019A1 (en) * 2019-02-08 2020-08-12 SK Innovation Co., Ltd. Battery module and manufacturing method thereof
US11335943B2 (en) 2019-08-01 2022-05-17 TeraWatt Technology Inc. Solid state battery variable pressure optimization system
WO2021021823A1 (en) * 2019-08-01 2021-02-04 TeraWatt Technology Inc. Solid state battery variable pressure optimization system
CN112582725A (en) * 2019-09-12 2021-03-30 丰田自动车株式会社 Battery module and battery module manufacturing method
CN112582725B (en) * 2019-09-12 2023-04-07 丰田自动车株式会社 Battery module and battery module manufacturing method
US20210351431A1 (en) * 2019-10-30 2021-11-11 Lg Energy Solution, Ltd. Press jig and method of manufacturing secondary battery using same
US11769899B2 (en) * 2019-10-30 2023-09-26 Lg Energy Solution, Ltd. Press jig and method of manufacturing secondary battery using same
EP3968445A4 (en) * 2019-11-18 2022-11-09 LG Energy Solution, Ltd. Battery module manufacturing device and battery module manufacturing method
CN113875055A (en) * 2019-11-18 2021-12-31 株式会社Lg新能源 Battery module manufacturing apparatus and battery module manufacturing method
JP2022531793A (en) * 2019-11-18 2022-07-11 エルジー エナジー ソリューション リミテッド Battery module manufacturing equipment and battery module manufacturing method
CN113875055B (en) * 2019-11-18 2024-10-01 株式会社Lg新能源 Battery module manufacturing apparatus and battery module manufacturing method
WO2021117336A1 (en) * 2019-12-13 2021-06-17 日東電工株式会社 Battery cover
CN114830416A (en) * 2019-12-13 2022-07-29 日东电工株式会社 Battery cover
JP7445418B2 (en) 2019-12-13 2024-03-07 日東電工株式会社 battery cover
US20220285770A1 (en) * 2021-03-08 2022-09-08 Hyundai Motor Company Battery module and method of manufacturing same
EP4167366A4 (en) * 2021-04-30 2024-07-10 Contemporary Amperex Technology Co Ltd Battery and electric device
US12057547B2 (en) 2021-05-25 2024-08-06 Toyota Jidosha Kabushiki Kaisha Method of manufacturing battery pack

Similar Documents

Publication Publication Date Title
WO2012133711A1 (en) Method for producing power source device, power source device, and vehicle provided with power source device
WO2012133709A1 (en) Power source device, and vehicle provided with power source device
WO2012133707A1 (en) Power source device and vehicle provided with power source device
WO2012133708A1 (en) Power source device and vehicle provided with power source device
US11670814B2 (en) Electricity storage block and electricity storage module
WO2013146561A1 (en) Power supply device, and vehicle and power storage device equipped with same
KR20130004141A (en) Power supply apparatus and vehicle with the same
JP5985255B2 (en) Power supply device, vehicle including this power supply device, and power storage device
JP5137480B2 (en) Power supply for vehicle
JP7348180B2 (en) Battery system and electric vehicle and power storage device equipped with the battery system
JP6138688B2 (en) Power supply device, vehicle including the same, and power storage device
JP2013125617A (en) Power supply device and vehicle having the same, and power storage device
WO2012118015A1 (en) Electrical power supply and vehicle using forced-cooling stacked storage cell
JP5595871B2 (en) Power supply
WO2013161654A1 (en) Power-supply device, vehicle provided with power-supply device, and electricity-storage device
JP2012181972A (en) Power supply device, and vehicle having power supply device
WO2013002090A1 (en) Power supply device, vehicle including same, and method for manufacturing power supply device
US20120301769A1 (en) Power source apparatus to supply electric power and vehicle equipped with the power source apparatus
WO2013031614A1 (en) Power supply device, vehicle provided with same, and power storage device
JP2012033419A (en) Power supply device, vehicle using the same, battery cell, and method of manufacturing the battery cell
KR20110097666A (en) Power supply device and a vehicle comprising the same
JP7463376B2 (en) Power supply device, electric vehicle equipped with the power supply device, and power storage device
WO2013084756A1 (en) Power source device, vehicle equipped with same and electricity storage device
JP2012243689A (en) Power supply device, vehicle including the same, and bus bar
WO2013031612A1 (en) Power supply device, vehicle provided with same, and power storage device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12765812

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12765812

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP