JP2012033419A - Power supply device, vehicle using the same, battery cell, and method of manufacturing the battery cell - Google Patents

Power supply device, vehicle using the same, battery cell, and method of manufacturing the battery cell Download PDF

Info

Publication number
JP2012033419A
JP2012033419A JP2010173217A JP2010173217A JP2012033419A JP 2012033419 A JP2012033419 A JP 2012033419A JP 2010173217 A JP2010173217 A JP 2010173217A JP 2010173217 A JP2010173217 A JP 2010173217A JP 2012033419 A JP2012033419 A JP 2012033419A
Authority
JP
Japan
Prior art keywords
battery cell
battery
insulating tape
insulating
power supply
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010173217A
Other languages
Japanese (ja)
Inventor
Tomokazu Takashina
智一 高品
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2010173217A priority Critical patent/JP2012033419A/en
Publication of JP2012033419A publication Critical patent/JP2012033419A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Landscapes

  • Sealing Battery Cases Or Jackets (AREA)
  • Secondary Cells (AREA)
  • Battery Mounting, Suspending (AREA)
  • Connection Of Batteries Or Terminals (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

PROBLEM TO BE SOLVED: To uniformize a bottom surface of a battery cell to facilitate accordance of bottom surfaces when building up a structure in which battery cells are laminated.SOLUTION: A power supply device has coupling means for coupling a plurality of battery cells 1 in a laminated state. Each battery cell 1 has a square exterior package can 12 consisting of a top surface 24, a bottom surface 23, and respective pairs of principal surfaces 21 and side surfaces 22, a cylindrical insulating coating film 20 for coating the principal surfaces 21 and the side surfaces 22 of the exterior package can 12, and an insulating tape 30 with insulation property that coats the bottom surface 23 of the exterior package can 12. A lower end edge of the coating film 20 locates on the principal surfaces 21 and the side surfaces 22 of the exterior package can 12. The insulating tape 30 is bent from the bottom surface 23 of the exterior package can 12 to the principal surfaces 21 and the side surfaces 22, and is fixed to the principal surfaces 21 and the side surfaces 22 of the exterior package can 12 so as to overlap with at least the lower end edge of the coating film 20. The coupling means couples the battery cells 1 in a laminated state in an attitude that respective bottom surfaces 23 of the plurality of battery cells 1 align on the substantially same plane.

Description

本発明は、主として、ハイブリッド自動車や電気自動車等の自動車を駆動するモータの電源用等に使用される大電流用の電源装置及びこれを用いた車両、電池セル及び電池セルの製造方法に関する。   The present invention mainly relates to a power supply device for a large current used for the power supply of a motor that drives a vehicle such as a hybrid vehicle or an electric vehicle, and a vehicle, a battery cell, and a battery cell manufacturing method using the same.

モータで走行する電気自動車、あるいはモータとエンジンの両方で走行するハイブリッド自動車等の自動車は、電池セルを外装ケースに収納した電源装置を搭載している(例えば特許文献1参照)。この電源装置は、モータで自動車を走行させるための出力を得るために、図21及び図22に示すように、多数の電池セル1Xを直列に接続して出力電圧を高くした電池ブロックとしている。各電池セル1Xは図23に示すように、外観を角形の外装缶12として、上端に正負の電極端子13を設けている。   A vehicle such as an electric vehicle that runs on a motor or a hybrid vehicle that runs on both a motor and an engine is equipped with a power supply device in which a battery cell is housed in an outer case (see, for example, Patent Document 1). This power supply device is a battery block in which a large number of battery cells 1X are connected in series to increase the output voltage, as shown in FIGS. As shown in FIG. 23, each battery cell 1 </ b> X has a square outer can 12 and is provided with positive and negative electrode terminals 13 at the upper end.

電池セル1Xには、高出力のリチウムイオン二次電池が使用されることが多い。リチウムイオン二次電池の外装缶12は、中間電位を有しているため、電池セル1X表面が高電位となり、これを外装ケースのグラウンドから絶縁する必要がある。このため、電池セル1Xの外装缶12を絶縁カバーや絶縁シートで覆う等の絶縁対策が施されている。加えて、電池セル1Xに防水性も持たせている。   A high-power lithium ion secondary battery is often used for the battery cell 1X. Since the outer can 12 of the lithium ion secondary battery has an intermediate potential, the surface of the battery cell 1X has a high potential, and it is necessary to insulate it from the ground of the outer case. For this reason, insulation measures such as covering the outer can 12 of the battery cell 1X with an insulating cover or an insulating sheet are taken. In addition, the battery cell 1X is waterproof.

一般的には、電池セル1Xの上部の電極端子13を露出させるよう、図24に示すように袋状の熱収縮シート20Xで電池セル1Xの天面24を残して被覆する。具体的には、上下を筒状に開口した熱収縮シート20Xを適当な長さで裁断し、図25に示すように一方の開口端から電池セル1Xを挿入し、図26(a)、(b)に示すように熱収縮シート20Xを熱収縮させて、図24に示すように外装缶12の表面に密着させる。この際、電池セル1Xの底面23で熱収縮チューブ同士を熱溶着して開口部分を閉塞し、必要に応じて余白部分を裁断する等して、電池セル1Xの表面に熱収縮チューブを被覆していた。   Generally, as shown in FIG. 24, the top surface 24 of the battery cell 1X is covered with a bag-like heat shrinkable sheet 20X so as to expose the electrode terminal 13 on the upper side of the battery cell 1X. Specifically, the heat-shrinkable sheet 20X having a cylindrical opening at the top and the bottom is cut with an appropriate length, and the battery cell 1X is inserted from one opening end as shown in FIG. As shown in b), the heat-shrinkable sheet 20X is heat-shrinked and brought into close contact with the surface of the outer can 12 as shown in FIG. At this time, the heat shrinkable tubes are thermally welded to each other at the bottom surface 23 of the battery cell 1X to close the opening, and the blank portion is cut as necessary to cover the surface of the battery cell 1X with the heat shrinkable tube. It was.

この方法では、図24(c)の断面図に示すように電池セル1Xの底面23から熱収縮チューブが突出するため、電池セル1Xの底面23が不均一となってしまう。この結果、複数の電池セル1Xを積層してバインドバー等で狭着して電池積層体を構成する際には、電池セル1Xの底面23が同一平面上に並ばなくなる。このため、各電池セル1Xの天面24も必然的に一致しなくなり、電池セル1Xの天面24から突出させた電極端子13同士をバスバー等で固定する際に、複数の電極端子13が同一平面上に揃わないため、バスバーとの接触面が均一とならず、接触状態が一定しないという問題がある。また、電池セルの底面を冷却プレートと接触させて、底面から冷却する、いわゆるダイレクトクーリング方式においても、電池セルの底面が一定しないと、電池セル毎の冷却プレートとの接触状態が一定せず、冷却能力を発揮できなくなる。   In this method, as shown in the sectional view of FIG. 24C, the heat shrinkable tube protrudes from the bottom surface 23 of the battery cell 1X, so that the bottom surface 23 of the battery cell 1X becomes uneven. As a result, when a plurality of battery cells 1X are stacked and tightly attached with a bind bar or the like to form a battery stack, the bottom surfaces 23 of the battery cells 1X do not line up on the same plane. For this reason, the top surface 24 of each battery cell 1X does not necessarily coincide, and when the electrode terminals 13 protruded from the top surface 24 of the battery cell 1X are fixed with a bus bar or the like, the plurality of electrode terminals 13 are the same. Since they do not align on a flat surface, there is a problem that the contact surface with the bus bar is not uniform and the contact state is not constant. In addition, in the so-called direct cooling method in which the bottom surface of the battery cell is brought into contact with the cooling plate and cooled from the bottom surface, if the bottom surface of the battery cell is not constant, the contact state with the cooling plate for each battery cell is not constant, The cooling capacity cannot be demonstrated.

特開2009−170258号公報JP 2009-170258 A

本発明は、従来のこのような問題点を解決するためになされたものであって、その主な目的は、電池セルの底面を均一化して、電池セル同士を積層する構成に際して底面を一致させ易くした電源装置及びこれを用いた車両、電池セル及び電池セルの製造方法を提供することにある。   The present invention has been made in order to solve the conventional problems as described above. The main object of the present invention is to make the bottom surfaces of the battery cells uniform and to make the bottom surfaces coincide with each other. It is an object of the present invention to provide an easy power supply device, a vehicle, a battery cell, and a battery cell manufacturing method using the same.

課題を解決するための手段及び発明の効果Means for Solving the Problems and Effects of the Invention

上記の目的を達成するために、本発明の第1の側面に係る電源装置によれば、外形を、幅よりも厚さを薄くした角形とする複数の電池セル1と、前記複数の電池セル1を積層状態で締結してなる締結手段と、を備える電源装置であって、前記電池セル1はそれぞれ、天面24と底面23と、各一対の主面21と側面22からなる角形の外装缶12と、前記外装缶12の主面21及び側面22を被覆する筒状の絶縁性の被覆フィルム20と、前記外装缶12の底面23を被覆する絶縁性の絶縁テープ30と、を備え、前記被覆フィルム20の下端縁は、前記外装缶12の主面21及び側面22に位置しており、前記絶縁テープ30は、前記外装缶12の底面23から主面21及び側面22にかけて折曲され、少なくとも前記被覆フィルム20の下端縁に重なるように、前記外装缶12の主面21及び側面22に固定されてなり、前記複数の電池セル1の各底面23が略同一平面上に並ぶ姿勢で、前記締結手段により積層状態に締結することができる。これにより、電池セルの表面を絶縁しつつ、底面を略平面状とできるので、電池セル積層時に底面を同一面に揃え易くできる。   In order to achieve the above object, according to the power supply device of the first aspect of the present invention, a plurality of battery cells 1 whose outer shape is a rectangular shape whose thickness is thinner than a width, and the plurality of battery cells The battery cell 1 is a prismatic exterior composed of a top surface 24 and a bottom surface 23, and a pair of main surfaces 21 and side surfaces 22, respectively. A can 12, a cylindrical insulating coating film 20 that covers the main surface 21 and the side surface 22 of the outer can 12, and an insulating insulating tape 30 that covers the bottom surface 23 of the outer can 12, The lower end edge of the covering film 20 is located on the main surface 21 and the side surface 22 of the outer can 12, and the insulating tape 30 is bent from the bottom surface 23 of the outer can 12 to the main surface 21 and the side surface 22. , At least of the covering film 20 It is fixed to the main surface 21 and the side surface 22 of the outer can 12 so as to overlap the edge, and the bottom surfaces 23 of the plurality of battery cells 1 are arranged in a substantially same plane and are stacked by the fastening means. Can be fastened. Thereby, since the bottom surface can be made substantially flat while insulating the surface of the battery cell, the bottom surface can be easily aligned on the same surface when the battery cells are stacked.

また第2の側面に係る電源装置によれば、前記外装缶12の側面22において、前記絶縁テープ30は、折曲によって生じ、主面21及び側面22からはみ出る余白部分を折り返すことができる。これにより、外装缶の厚さ面で折り返すことにより、電池セル同士を積層する主面側には折り返しが生じないので、積層をスムーズに行える利点が得られる。   Further, according to the power supply device according to the second aspect, the insulating tape 30 can be folded at the side surface 22 of the outer can 12, and the main surface 21 and the blank portion protruding from the side surface 22 can be folded back. Thereby, since it does not fold in the main surface side which laminates | stacks battery cells by folding in the thickness surface of an exterior can, the advantage which can laminate | stack smoothly is acquired.

さらに第3の側面に係る電源装置によれば、さらに前記外装缶12の底面23と熱結合状態に配置される、冷媒配管26を配設した冷却プレート7を備えることができる。これにより、電池セルを底面側から冷却でき、特に底面を略同一平面上に位置させることで効率よく且つ均一な電池セルの冷却が図られる。   Furthermore, according to the power supply device which concerns on a 3rd side surface, the cooling plate 7 which arrange | positioned the refrigerant | coolant piping 26 arrange | positioned with the bottom face 23 of the said armored can 12 further, and can be provided. Thereby, the battery cell can be cooled from the bottom surface side, and in particular, the battery cell can be efficiently and uniformly cooled by positioning the bottom surface on substantially the same plane.

さらにまた第4の側面に係る電源装置によれば、前記被覆フィルム20を熱収縮チューブとすることができる。これにより、被覆フィルムを容易に外装缶に付着させることができる。   Furthermore, according to the power supply device which concerns on a 4th side surface, the said coating film 20 can be used as a heat shrinkable tube. Thereby, a coating film can be easily attached to an exterior can.

さらにまた第5の側面に係る電源装置を備える車両によれば、上記の電源装置を備えることができる。   Furthermore, according to the vehicle provided with the power supply device which concerns on a 5th side surface, said power supply device can be provided.

さらにまた第6の側面に係る電池セルによれば、外形を、幅よりも厚さを薄くした角形とする外装缶12と、前記外装缶12の主面21及び側面22を被覆する筒状の絶縁性の被覆フィルム20と、前記外装缶12の底面23を被覆する絶縁性の絶縁テープ30と、を備え、前記被覆フィルム20の下端縁は、前記外装缶12の主面21及び側面22に位置しており、前記絶縁テープ30は、前記外装缶12の底面23から主面21及び側面22にかけて折曲され、少なくとも前記被覆フィルム20の下端縁に重なるように、前記外装缶12の主面21及び側面22に固定させることができる。これにより、電池セルの表面を絶縁しつつ、底面を略平面状とできるので、電池セル積層時に底面を同一面に揃え易くできる。   Furthermore, according to the battery cell according to the sixth aspect, the outer shape of the outer can 12 is a rectangular shape whose thickness is thinner than the width, and the cylindrical shape that covers the main surface 21 and the side surface 22 of the outer can 12. An insulating covering film 20 and an insulating insulating tape 30 covering the bottom surface 23 of the outer can 12, and the lower end edge of the covering film 20 is on the main surface 21 and the side surface 22 of the outer can 12. The insulating tape 30 is bent from the bottom surface 23 to the main surface 21 and the side surface 22 of the outer can 12 and overlaps at least the lower end edge of the covering film 20. 21 and the side 22 can be fixed. Thereby, since the bottom surface can be made substantially flat while insulating the surface of the battery cell, the bottom surface can be easily aligned on the same surface when the battery cells are stacked.

さらにまた第7の側面に係る電池セルの製造方法によれば、外形を、幅よりも厚さを薄くした角形とする外装缶12と、前記外装缶12を被覆する絶縁性の被覆フィルム20と、を備える電池セルの製造方法であって、前記外装缶12を内部に挿入可能な筒状の前記被覆フィルム20に、前記外装缶12を挿入し、前記被覆フィルム20の下端縁が、前記電池セル1の主面21及び側面22に位置するように、前記被覆フィルム20を熱収縮する工程と、前記電池セル1の底面23に、該底面23よりも大きい面積である絶縁性の絶縁テープ30を被覆し、さらに前記絶縁テープ30の余白部分で、前記電池セル1の主面21を覆うように折曲し、かつ前記電池セル1の側面22を覆うように折曲し、これらの折曲によって生じる余白部分を前記電池セル1の側面22に折り返して、前記絶縁テープ30を固定する工程とを含むことができる。これにより、電池セルの表面を絶縁しつつ、底面を略平面状とできるので、電池セル積層時に底面を同一面に揃え易くできる。   Furthermore, according to the method for manufacturing the battery cell according to the seventh aspect, the outer can 12 having a rectangular outer shape whose thickness is thinner than the width, and the insulating coating film 20 that covers the outer can 12, The outer can 12 is inserted into the cylindrical covering film 20 into which the outer can 12 can be inserted, and the lower end edge of the covering film 20 is the battery. The step of heat shrinking the covering film 20 so as to be located on the main surface 21 and the side surface 22 of the cell 1 and the insulating insulating tape 30 having an area larger than the bottom surface 23 on the bottom surface 23 of the battery cell 1. Are further folded so as to cover the main surface 21 of the battery cell 1 and to cover the side surface 22 of the battery cell 1 at the blank portion of the insulating tape 30. The margin produced by Folded on the side surface 22 of the serial battery cell 1 may include a step of fixing the insulating tape 30. Thereby, since the bottom surface can be made substantially flat while insulating the surface of the battery cell, the bottom surface can be easily aligned on the same surface when the battery cells are stacked.

実施例1に係る電源装置の斜視図である。1 is a perspective view of a power supply device according to a first embodiment. 図1から上ケースを外した状態を示す斜視図である。It is a perspective view which shows the state which removed the upper case from FIG. 図2の電池ブロックを示す斜視図である。It is a perspective view which shows the battery block of FIG. 図3の電池ブロックの分解斜視図である。FIG. 4 is an exploded perspective view of the battery block of FIG. 3. 図4の電池セル同士の積層状態を示す分解斜視図である。It is a disassembled perspective view which shows the lamination | stacking state of the battery cells of FIG. 図5の電池セルを示す斜視図である。It is a perspective view which shows the battery cell of FIG. 図6の絶縁テープの折り返し部分を示す拡大図である。It is an enlarged view which shows the return | turnback part of the insulating tape of FIG. 図7の電池セルの底面における絶縁テープの断面図である。It is sectional drawing of the insulating tape in the bottom face of the battery cell of FIG. 図6の電池セルの三面図である。It is a three-plane figure of the battery cell of FIG. 電池セルの底面から被覆フィルムの下端が突出する例を示す模式図である。It is a schematic diagram which shows the example which the lower end of a coating film protrudes from the bottom face of a battery cell. 図6の電池セルの分解斜視図である。It is a disassembled perspective view of the battery cell of FIG. 図11の状態から電池セルの底面に絶縁テープを貼付した状態を示す斜視図である。It is a perspective view which shows the state which stuck the insulating tape on the bottom face of the battery cell from the state of FIG. 図12の状態から絶縁テープの両側を電池セルの主面と沿うように折曲した状態を示す斜視図である。It is a perspective view which shows the state bent from the state of FIG. 12 so that both sides of an insulating tape may be along the main surface of a battery cell. 図13の状態から絶縁テープの端面を折曲して2つの折り返し部分を形成した状態を示す斜視図である。It is a perspective view which shows the state which bent the end surface of the insulating tape from the state of FIG. 13, and formed two folding | turning parts. 図14の状態から絶縁テープの一方の折り返し部分を側面に折り返した状態を示す斜視図である。FIG. 15 is a perspective view showing a state where one folded portion of the insulating tape is folded back to the side surface from the state of FIG. 14. 変形例に係る電池ブロックの冷却構造を示す模式図である。It is a schematic diagram which shows the cooling structure of the battery block which concerns on a modification. 図16に示す電池ブロックの一部拡大垂直縦断面図である。FIG. 17 is a partially enlarged vertical vertical sectional view of the battery block shown in FIG. 16. 図16に示す電池ブロックの垂直横断面図である。FIG. 17 is a vertical cross-sectional view of the battery block shown in FIG. 16. エンジンとモータで走行するハイブリッド自動車にバッテリシステムを搭載する例を示すブロック図である。It is a block diagram which shows the example which mounts a battery system in the hybrid vehicle which drive | works with an engine and a motor. モータのみで走行する電気自動車にバッテリシステムを搭載する例を示すブロック図である。It is a block diagram which shows the example which mounts a battery system in the electric vehicle which drive | works only with a motor. 電池セルを積層した電源装置を示す平面図である。It is a top view which shows the power supply device which laminated | stacked the battery cell. 図21の電源装置の側面図である。It is a side view of the power supply device of FIG. 図21の電池セルの斜視図である。It is a perspective view of the battery cell of FIG. 図23の電池セルを従来の被覆フィルムで被覆した状態を示す三面図である。FIG. 24 is a trihedral view showing a state in which the battery cell of FIG. 23 is covered with a conventional coating film. 図23の電池セルを従来の被覆フィルムで被覆する様子を示す斜視図である。It is a perspective view which shows a mode that the battery cell of FIG. 23 is coat | covered with the conventional coating film. 図25の状態から熱収縮シートを熱収縮させる様子を示す斜視図である。It is a perspective view which shows a mode that a heat-shrink sheet | seat is heat-shrinked from the state of FIG.

以下、本発明の実施の形態を図面に基づいて説明する。ただし、以下に示す実施の形態は、本発明の技術思想を具体化するための電源装置及びこれを用いた車両、電池セル及び電池セルの製造方法を例示するものであって、本発明は電源装置及びこれを用いた車両、電池セル及び電池セルの製造方法を以下のものに特定しない。なお、特許請求の範囲に示される部材を、実施の形態の部材に特定するものでは決してない。特に実施の形態に記載されている構成部材の寸法、材質、形状、その相対的配置等は特に特定的な記載がない限りは、本発明の範囲をそれのみに限定する趣旨ではなく、単なる説明例にすぎない。なお、各図面が示す部材の大きさや位置関係等は、説明を明確にするため誇張していることがある。さらに以下の説明において、同一の名称、符号については同一もしくは同質の部材を示しており、詳細説明を適宜省略する。さらに、本発明を構成する各要素は、複数の要素を同一の部材で構成して一の部材で複数の要素を兼用する態様としてもよいし、逆に一の部材の機能を複数の部材で分担して実現することもできる。また、一部の実施例、実施形態において説明された内容は、他の実施例、実施形態等に利用可能なものもある。
(実施例1)
Hereinafter, embodiments of the present invention will be described with reference to the drawings. However, the embodiment described below exemplifies a power supply apparatus for embodying the technical idea of the present invention, a vehicle using the same, a battery cell, and a method for manufacturing the battery cell. The apparatus, the vehicle using the same, the battery cell, and the battery cell manufacturing method are not specified as follows. In addition, the member shown by the claim is not what specifies the member of embodiment. In particular, the dimensions, materials, shapes, relative arrangements, and the like of the constituent members described in the embodiments are not intended to limit the scope of the present invention only to the description unless otherwise specified. It's just an example. Note that the size, positional relationship, and the like of the members shown in each drawing may be exaggerated for clarity of explanation. Furthermore, in the following description, the same name and symbol indicate the same or the same members, and detailed description thereof will be omitted as appropriate. Furthermore, each element constituting the present invention may be configured such that a plurality of elements are constituted by the same member and the plurality of elements are shared by one member, and conversely, the function of one member is constituted by a plurality of members. It can also be realized by sharing. In addition, the contents described in some examples and embodiments may be used in other examples and embodiments.
Example 1

図1〜図20に、実施例1に係る電源装置及びこれを用いた車両、電池セルを示す。これらの図において、図1はバッテリシステム91の斜視図、図2は図1から上ケース72を外した状態を示す斜視図、図3は図2の電池ブロック50を示す斜視図、図4は図3の電池ブロック50の分解斜視図、図5は図4の電池セル1同士の積層状態を示す分解斜視図、図6は図5の電池セル1を示す斜視図、図7は図6の絶縁テープ30の折り返し部分32を示す拡大図、図8は図7の電池セル1の底面23における絶縁テープ30の断面図、図9は図6の電池セル1の三面図、図10は、電池セル1の底面23から被覆フィルム20の下端が突出する例を示す模式図、図11は図6の電池セル1の分解斜視図、図12は図11の状態から電池セル1の底面23に絶縁テープ30を貼付した状態を示す斜視図、図13は図12の状態から絶縁テープ30の両側を電池セル1の主面21と沿うように折曲した状態を示す斜視図、図14は図13の状態から絶縁テープ30の端面を折曲して2つの折り返し部分32を形成した状態を示す斜視図、図15は図14の状態から絶縁テープ30の一方の折り返し部分32を側面22に折り返した状態を示す斜視図、図16は変形例に係る電池ブロック200の冷却構造を示す模式図、図17は図16に示す電池ブロック200の一部拡大垂直縦断面図、図18は図16に示す電池ブロック200の垂直横断面図、図19はエンジン96とモータ93で走行するハイブリッド自動車にバッテリシステム91、92を搭載する例を示すブロック図、図20はモータ93のみで走行する電気自動車にバッテリシステム91、92を搭載する例を示すブロック図を、それぞれ示している。   1 to 20 show a power supply device according to a first embodiment, a vehicle using the same, and a battery cell. In these drawings, FIG. 1 is a perspective view of the battery system 91, FIG. 2 is a perspective view showing a state where the upper case 72 is removed from FIG. 1, FIG. 3 is a perspective view showing the battery block 50 of FIG. 3 is an exploded perspective view of the battery block 50, FIG. 5 is an exploded perspective view showing a stacked state of the battery cells 1 of FIG. 4, FIG. 6 is a perspective view showing the battery cell 1 of FIG. 5, and FIG. FIG. 8 is a sectional view of the insulating tape 30 on the bottom surface 23 of the battery cell 1 of FIG. 7, FIG. 9 is a three-side view of the battery cell 1 of FIG. 6, and FIG. FIG. 11 is an exploded perspective view of the battery cell 1 of FIG. 6, and FIG. 12 is insulated from the state of FIG. 11 to the bottom surface 23 of the battery cell 1. The perspective view which shows the state which affixed the tape 30, FIG. 13 is the state of FIG. FIG. 14 is a perspective view showing a state in which both sides of the insulating tape 30 are bent along the main surface 21 of the battery cell 1, and FIG. 14 shows the two folded portions 32 by bending the end surface of the insulating tape 30 from the state of FIG. 13. 15 is a perspective view showing the formed state, FIG. 15 is a perspective view showing a state in which one folded portion 32 of the insulating tape 30 is folded back to the side surface 22 from the state of FIG. 14, and FIG. 16 is a cooling structure of the battery block 200 according to the modification. 17 is a partially enlarged vertical longitudinal sectional view of the battery block 200 shown in FIG. 16, FIG. 18 is a vertical transverse sectional view of the battery block 200 shown in FIG. 16, and FIG. FIG. 20 is an example of mounting the battery systems 91 and 92 on an electric vehicle that runs only by the motor 93. The block diagram, respectively.

バッテリシステム91の外観は、図1、図2に示すように、箱形の外装ケース70を二分割して、内部に複数の電池ブロック50を収納している。外装ケース70は、下ケース71と、上ケース72と、これらの下ケース71、上ケース72の両端に連結している端面プレート73とを備えている。上ケース72と下ケース71は、外側に突出する鍔部74を有し、この鍔部74をボルトとナットで固定している。図1、図2の外装ケース70は、鍔部74を外装ケース70の側面に配置している。また図2の例では、下ケース71に電池ブロック50を長手方向に2つ、横方向に2列、計4個収納している。各電池ブロック50は、下ケース71に止ネジ等で固定して、外装ケース70内部の定位置に固定している。端面プレート73は、下ケース71と上ケース72の両端に連結されて、外装ケース70の両端を閉塞している。
(電池ブロック50)
As shown in FIGS. 1 and 2, the external appearance of the battery system 91 is obtained by dividing a box-shaped outer case 70 into two and housing a plurality of battery blocks 50 therein. The exterior case 70 includes a lower case 71, an upper case 72, and end plates 73 connected to both ends of the lower case 71 and the upper case 72. The upper case 72 and the lower case 71 have a flange portion 74 protruding outward, and the flange portion 74 is fixed with a bolt and a nut. In the exterior case 70 of FIGS. 1 and 2, the flange portion 74 is disposed on the side surface of the exterior case 70. In the example of FIG. 2, a total of four battery blocks 50 are stored in the lower case 71, two in the longitudinal direction and two in the horizontal direction. Each battery block 50 is fixed to the lower case 71 with a set screw or the like, and fixed to a fixed position inside the outer case 70. The end surface plate 73 is connected to both ends of the lower case 71 and the upper case 72 and closes both ends of the exterior case 70.
(Battery block 50)

各電池ブロック50は図3に示すように、外観を略箱形とし、電池セル1を多数積層した電池積層体10を、両端面からエンドプレート4で、バインドバー11を介して狭持している。電池積層体10は、図4の分解斜視図に示すように、角形の電池セル1を複数、セパレータ2を介して積層して構成される。図4の電池ブロック50の例では、18個の角形電池セル1を積層している。バインドバー11は電池セル1を締結する締結手段として機能し、この例ではストリップ状の金属板の両端を折曲して折曲片とし、全体をコ字状としている。またエンドプレート4には、バインドバー11の折曲片を受ける位置に窪みを設けている。折曲片及びエンドプレート4にねじ穴を設けることで、バインドバー11をエンドプレート4に螺合して固定される。
(電池セル1)
As shown in FIG. 3, each battery block 50 has a substantially box-shaped appearance, and a battery stack 10 in which a large number of battery cells 1 are stacked is sandwiched by end plates 4 from both end surfaces via bind bars 11. Yes. As shown in the exploded perspective view of FIG. 4, the battery stack 10 is configured by stacking a plurality of prismatic battery cells 1 via separators 2. In the example of the battery block 50 in FIG. 4, 18 rectangular battery cells 1 are stacked. The bind bar 11 functions as a fastening means for fastening the battery cell 1. In this example, both ends of the strip-shaped metal plate are bent into bent pieces, and the whole is formed in a U shape. Further, the end plate 4 is provided with a recess at a position for receiving the bent piece of the bind bar 11. By providing a screw hole in the bent piece and the end plate 4, the bind bar 11 is screwed and fixed to the end plate 4.
(Battery cell 1)

電池セル1は、図5、図6に示すように、外形を、幅よりも厚さを薄くした角形とする外装缶12で構成され、外装缶の天面24、すなわち外装缶12を閉塞する封口板に正負の電極端子13を設けている。電極端子13同士は、図4で示すバスバー17を介して電気的に接続している。なお電池セルの外装缶は、プラスチック等の絶縁材で製作することもできる。この場合は電池セル同士を積層する際に、外装缶を絶縁する必要がないので、セパレータを金属製とすることもできる。
(セパレータ2)
As shown in FIG. 5 and FIG. 6, the battery cell 1 is configured by an outer can 12 having an outer shape that is rectangular with a thickness smaller than the width, and closes the top surface 24 of the outer can, that is, the outer can 12. Positive and negative electrode terminals 13 are provided on the sealing plate. The electrode terminals 13 are electrically connected via a bus bar 17 shown in FIG. The outer can of the battery cell can be made of an insulating material such as plastic. In this case, since it is not necessary to insulate the outer can when the battery cells are stacked, the separator can be made of metal.
(Separator 2)

電池ブロック50は、積層している電池セル1の間にセパレータ2を挟着している。この電池ブロック50は、電池セル1の外装缶12を金属製として、プラスチック製のセパレータ2で絶縁して積層できる。セパレータ2は、両面を電池セル1に嵌着できる形状として、隣接する電池セル1の位置ずれを阻止して積層できる。なお電池ブロックは、電池セルの外装缶をプラスチック等の絶縁材として、セパレータを挟着することなく積層状態に固定することもできる。   The battery block 50 has a separator 2 sandwiched between stacked battery cells 1. The battery block 50 can be laminated with the outer can 12 of the battery cell 1 made of metal and insulated by the plastic separator 2. The separator 2 has a shape that can be fitted to the battery cell 1 on both sides, and can be stacked while preventing the positional deviation of the adjacent battery cells 1. The battery block can also be fixed in a laminated state without sandwiching a separator by using an outer can of the battery cell as an insulating material such as plastic.

またセパレータ2は、図5に示すように、電池セル1を冷却するために、電池セル1との間に、空気等の冷却気体を通過させる冷却隙間53を設けている。これにより電池ブロック50は、複数の電池セル1を冷却隙間53ができる状態で積層している。そしてこの電池ブロック50の電池セル1に冷却気体を強制送風して冷却する冷却機構として、図1に示すように強制送風機構9Bを備えている。電池ブロック50は、図4に示すように、積層している電池セル1の間にセパレータ2を挟着している。このセパレータ2は、図5に示すように、電池セル1との間に冷却隙間53ができる形状としている。さらに、図のセパレータ2は、両面に電池セル1を嵌着構造で連結している。電池セル1に嵌着構造で連結されるセパレータ2を介して、隣接する電池セル1の位置ずれを阻止して積層している。
(電池セル1)
As shown in FIG. 5, the separator 2 is provided with a cooling gap 53 that allows a cooling gas such as air to pass between the battery cell 1 and the battery cell 1 in order to cool the battery cell 1. Thereby, the battery block 50 has laminated | stacked the several battery cell 1 in the state in which the cooling gap 53 is made. As a cooling mechanism for cooling the battery cells 1 of the battery block 50 by forcibly blowing cooling gas, a forced blowing mechanism 9B is provided as shown in FIG. As shown in FIG. 4, the battery block 50 has a separator 2 sandwiched between stacked battery cells 1. As shown in FIG. 5, the separator 2 has a shape in which a cooling gap 53 is formed between the separator 2 and the battery cell 1. Furthermore, the separator 2 of the figure has connected the battery cell 1 with the fitting structure on both surfaces. Through the separator 2 connected to the battery cell 1 with a fitting structure, the adjacent battery cells 1 are stacked while being prevented from being displaced.
(Battery cell 1)

電池セル1は、リチウムイオン二次電池の角形電池である。ただ、電池セルは、ニッケル水素電池やニッケルカドミウム電池等の二次電池とすることもできる。角形電池からなる図6の電池セル1は、所定の厚さを有する四角形で、天面24の両端部には正負の電極端子13を突出して設けており、天面24の中央部には安全弁の開口部を設けている。積層される電池セル1は、隣接する正負の電極端子13をバスバー17で連結して互いに直列に接続している。隣接する電池セル1を互いに直列に接続するバッテリシステムは、出力電圧を高くして出力を大きくできる。ただ、バッテリシステムは、隣接する電池セルを並列に接続することもできる。   The battery cell 1 is a prismatic battery of a lithium ion secondary battery. However, the battery cell may be a secondary battery such as a nickel metal hydride battery or a nickel cadmium battery. The battery cell 1 shown in FIG. 6 made of a square battery is a quadrilateral having a predetermined thickness, and has positive and negative electrode terminals 13 protruding from both ends of the top surface 24, and a safety valve at the center of the top surface 24. The opening is provided. The battery cells 1 to be stacked are connected in series by connecting adjacent positive and negative electrode terminals 13 with a bus bar 17. A battery system in which adjacent battery cells 1 are connected in series can increase the output voltage and increase the output. However, the battery system can also connect adjacent battery cells in parallel.

電池セル1の天面24を除く面は、絶縁処理される。具体的には、電池セル1の天面24及び底面23を除く面を、被覆フィルム20で表面を被覆する。そして底面23は後述する絶縁テープ30で絶縁する。天面24は、電極端子13を電気接続のために表出させる必要があることから絶縁せず、一方でそれ以外の面は意図しない短絡を回避するため、絶縁する。このような絶縁材を被覆することで電池セルに絶縁性を持たせる構成に際しては、電池セル同士を積層した際に、各電池セルの高さ位置が揃うように留意する必要がある。すなわち、電池セル同士を積層して電池積層体とする際に、隣接する電池セル同士の電極端子13は、バスバー17で締結されるが、この際、従来のシュリンクチューブのみにより電池セル表面を絶縁した方式では、電池セルの底面に生じる段差が原因で、隣接する電池セル同士の電極端子の、高さ方向の位置がずれてしまう。その結果、バスバーと電極端子との接触不良等を起こしたり、電極端子に余分な負荷がかかってしまう。この問題を解消するために、本実施例では、被覆フィルムに加えて絶縁テープを併用することで、電池セルの底面23に段差が形成される事態を回避している。以下、説明する。
(被覆フィルム20)
The surfaces of the battery cell 1 other than the top surface 24 are insulated. Specifically, the surface excluding the top surface 24 and the bottom surface 23 of the battery cell 1 is covered with the coating film 20. The bottom surface 23 is insulated with an insulating tape 30 described later. The top surface 24 is not insulated because the electrode terminals 13 need to be exposed for electrical connection, while the other surfaces are insulated to avoid unintended short circuits. In the configuration in which the battery cell is provided with an insulating property by covering with such an insulating material, it is necessary to pay attention so that the height positions of the battery cells are aligned when the battery cells are stacked. That is, when the battery cells are stacked to form a battery stack, the electrode terminals 13 of the adjacent battery cells are fastened by the bus bar 17, and at this time, the surface of the battery cell is insulated only by the conventional shrink tube. In such a method, the position in the height direction of the electrode terminals between adjacent battery cells is shifted due to a step generated on the bottom surface of the battery cell. As a result, a contact failure between the bus bar and the electrode terminal or the like, or an excessive load is applied to the electrode terminal. In order to solve this problem, in this embodiment, a situation in which a step is formed on the bottom surface 23 of the battery cell is avoided by using an insulating tape in addition to the covering film. This will be described below.
(Coating film 20)

電池セル1の主面21は、図6〜図9に示すように、被覆フィルム20で被覆される。被覆フィルム20は熱収縮チューブとして、電池セル1の外面を熱収縮させることで被覆する。このような被覆フィルム20には、好ましくは絶縁性、安定性に優れたPET等の樹脂が利用できる。特にPET樹脂製のシュリンクチューブは、熱収縮チューブとして安価で好ましい。   The main surface 21 of the battery cell 1 is covered with a covering film 20 as shown in FIGS. The covering film 20 is covered as a heat shrinkable tube by heat shrinking the outer surface of the battery cell 1. For such a covering film 20, a resin such as PET preferably having excellent insulating properties and stability can be used. In particular, a shrink tube made of PET resin is inexpensive and preferable as a heat shrinkable tube.

被覆フィルム20は、図8等に示すように、電池セル1の底面23近傍で電池セル1の底面23から突出しないよう、好ましくは電池セル1の側面22と同じ長さか、若しくはこれよりも短くなるように形成する。このようにすることで、電池セル1の底面23側に被覆フィルム20が突出する事態を回避できる。仮に図10に示すように、被覆フィルム20が長く形成され、電池セル1の底面23からtだけ突出するようになると、絶縁テープ30で電池セル1底面23を被覆した状態で、電池セル1の底面23周辺が突出量t又はこれを折曲した分だけ他の部分よりも厚くなる結果、電池セル1の底面23が平坦状とならず、部分的に凹凸が形成されることとなる。このような凹凸は電池セル毎に個体差が生じる可能性があることから、電池セル同士を積層する際に、電池セルの高さ又は突出量を一定に保持できず、電池セルの底面及び天面が揃わずに、電池セルの天面においては電極端子の高さが揃わず、隣接する電極端子同士をバスバーで連結する際、バスバーとの固定状態が電池セル毎にばらついて接触抵抗が大きくなる。また電池セルの底面において冷却プレートと接続する場合は(後述する図16)、冷却プレートと電池セル底面との接触面積に差が生じ、冷却能力にばらつきが生じ、電池セル間の性能の劣化にも個体差が生じることとなって、好ましくない。   As shown in FIG. 8 and the like, the covering film 20 is preferably the same length as or shorter than the side surface 22 of the battery cell 1 so as not to protrude from the bottom surface 23 of the battery cell 1 in the vicinity of the bottom surface 23 of the battery cell 1. It forms so that it may become. By doing in this way, the situation where the coating film 20 protrudes to the bottom face 23 side of the battery cell 1 can be avoided. As shown in FIG. 10, when the covering film 20 is formed long and protrudes by t from the bottom surface 23 of the battery cell 1, the battery cell 1 of the battery cell 1 is covered with the insulating tape 30. As a result that the periphery of the bottom surface 23 becomes thicker than the other portions by the protruding amount t or the amount of bending, the bottom surface 23 of the battery cell 1 does not become flat, and irregularities are partially formed. Since such unevenness may cause individual differences for each battery cell, when stacking battery cells, the height or protruding amount of the battery cells cannot be kept constant, and the bottom surface and the ceiling of the battery cell cannot be maintained. When the surface of the battery cell is not aligned, the height of the electrode terminal is not aligned on the top surface of the battery cell, and when the adjacent electrode terminals are connected by the bus bar, the fixed state with the bus bar varies from battery cell to battery cell, resulting in high contact resistance. Become. Further, when connecting to the cooling plate on the bottom surface of the battery cell (FIG. 16 described later), the contact area between the cooling plate and the battery cell bottom surface is different, the cooling capacity varies, and the performance between the battery cells is deteriorated. This is not preferable because individual differences occur.

そこで、このような凹凸の発生を開扉するため、被覆フィルム20は、電池セルの底面から突出しないように、電池セル1の底面23をほぼ同じ高さとするか、あるいは被覆フィルム20や電池セルの製造公差を考慮して、図8等に示すように、被覆フィルム20の下端が、電池セル1の底面23よりも若干短くなるように設定される。このようにすることで、電池セル1底面23からの被覆フィルム20の突出を回避でき、安定的な電池セルの製造に繋がる。   Therefore, in order to open such unevenness, the covering film 20 has the bottom surface 23 of the battery cell 1 substantially the same height so as not to protrude from the bottom surface of the battery cell, or the covering film 20 or the battery cell. In consideration of the manufacturing tolerance, the lower end of the covering film 20 is set to be slightly shorter than the bottom surface 23 of the battery cell 1 as shown in FIG. By doing in this way, protrusion of the coating film 20 from the battery cell 1 bottom face 23 can be avoided, and it leads to manufacture of a stable battery cell.

なお、電池セルの底面側から被覆フィルムが突出しないとは、被覆フィルムの長さが必ずしも電池セルの高さよりも短いことを意味しない。すなわち、電池セルの底面側から被覆フィルムが突出しなければ足り、逆に電池セルの天面24側において被覆フィルムが若干突出することは、電極端子13の電気接続等が阻害されない限りは許容される。   Note that the fact that the covering film does not protrude from the bottom surface side of the battery cell does not mean that the length of the covering film is necessarily shorter than the height of the battery cell. That is, it is sufficient that the coating film does not protrude from the bottom surface side of the battery cell, and conversely, the coating film slightly protruding on the top surface 24 side of the battery cell is allowed as long as the electrical connection of the electrode terminal 13 is not hindered. .

すなわち天面24側においては、電池セル1同士を積層して電池積層体とする際に、隣接する電池セル1同士の電極端子13の高さ位置のばらつきを抑制でき、バスバーを用いた連結に際しても高低差を低減し、接触状態を均一として不具合なくバスバーを締結でき、電気接続の信頼性を向上できる。   That is, on the top surface 24 side, when the battery cells 1 are stacked to form a battery stack, variation in the height position of the electrode terminals 13 between the adjacent battery cells 1 can be suppressed, and when connecting using the bus bar However, the height difference can be reduced, the contact state can be made uniform and the bus bar can be fastened without any trouble, and the reliability of electrical connection can be improved.

一方で、電池セルの底面に達しないように、いいかえると被覆フィルムを下端において意図的に短くし、電池セルの主面が、底面近傍で露出するようになると、この部分を被覆しないと意図しない導通が発生する。そこで、電池セルの底面23を被覆する絶縁テープ30を折り返して、このような露出部分を被覆することとした。この結果、電池セル1の周囲に沿って、被覆フィルム20と絶縁テープ30が重複する部分を生じさせている。図9の三面図においては、重複部分をOWで示している。   On the other hand, in order to avoid reaching the bottom surface of the battery cell, in other words, when the covering film is intentionally shortened at the lower end and the main surface of the battery cell is exposed near the bottom surface, this portion is not intended unless it is covered. Conduction occurs. Therefore, the insulating tape 30 that covers the bottom surface 23 of the battery cell is folded to cover such an exposed portion. As a result, a portion where the covering film 20 and the insulating tape 30 overlap is generated along the periphery of the battery cell 1. In the three views of FIG. 9, the overlapping portion is indicated by OW.

さらに、平面状の絶縁テープ30で底面23とその周辺領域を被覆する結果、端縁を折り返す処理が必要となるが、このような折り返し部分が電池セル1の主面21側でなく、側面22側に位置するように配置している。このような折り方の例を、図11〜図15、図7に基づいて説明する。まず図11に示すように、外装缶12を内部に挿入可能な筒状の被覆フィルム20に、外装缶12を挿入する。ここで、被覆フィルム20の下端を、電池セル1の主面21及び側面22において下端縁から突出しない位置に位置合わせして、熱溶着する。次に、電池セル1の底面23に、この底面よりも大きい面積である絶縁性の絶縁テープ30を被覆する(図12)。さらに図13に示すように、絶縁テープ30の余白部分で、電池セル1の主面21を覆うように折曲する。このとき、絶縁テープ30の先端が被覆フィルム20と端縁に重なるように重複部分が形成される。さらに絶縁テープ30を、電池セル1の側面22を覆うように折曲する。図14に示すように、これらの折曲によって生じる余白部分を折り返し部分32とする。折り返し部分32は、絶縁テープ30の端縁において左右に2つ、それぞれ直角三角形状に形成される。そして折り返し部分32を電池セル1の側面22に折り返して、絶縁テープ30を接着する(図15、図7)。このとき、折り返し部分32同士の接着は、例えば、接着剤等で行う。ただ、折り返し部分は必ずしも接着を行う必要はなく、単に折曲させるだけでも良い。具体的には、セパレータ2の側面と電池セル1の側面22との間に、折り返し部分32を位置させて狭着する。以上により、電池セルの表面を絶縁しつつ、底面を略平面状とできるので、電池セル積層時に底面を同一面に揃え易くできる。   Furthermore, as a result of covering the bottom surface 23 and its peripheral region with the planar insulating tape 30, it is necessary to fold back the edge. Such a folded portion is not the main surface 21 side of the battery cell 1, but the side surface 22 It is arranged to be located on the side. An example of such folding will be described with reference to FIGS. First, as shown in FIG. 11, the outer can 12 is inserted into a cylindrical covering film 20 into which the outer can 12 can be inserted. Here, the lower end of the coating film 20 is aligned with the main surface 21 and the side surface 22 of the battery cell 1 at a position that does not protrude from the lower end edge, and is thermally welded. Next, an insulating insulating tape 30 having a larger area than the bottom surface is covered on the bottom surface 23 of the battery cell 1 (FIG. 12). Further, as shown in FIG. 13, the insulating tape 30 is bent so as to cover the main surface 21 of the battery cell 1 at the blank portion. At this time, the overlapping portion is formed so that the tip of the insulating tape 30 overlaps the coating film 20 and the edge. Further, the insulating tape 30 is bent so as to cover the side surface 22 of the battery cell 1. As shown in FIG. 14, a blank portion generated by these bends is a folded portion 32. Two folded portions 32 are formed on the edge of the insulating tape 30 on the left and right sides, respectively, in a right triangle shape. Then, the folded portion 32 is folded back to the side surface 22 of the battery cell 1, and the insulating tape 30 is adhered (FIGS. 15 and 7). At this time, the folded portions 32 are bonded to each other with, for example, an adhesive. However, the folded portion does not necessarily have to be bonded, and may simply be bent. Specifically, the folded portion 32 is positioned between the side surface of the separator 2 and the side surface 22 of the battery cell 1 and is closely attached. As described above, since the bottom surface can be made substantially flat while insulating the surface of the battery cell, the bottom surface can be easily aligned on the same surface when the battery cells are stacked.

なお以上の折り方の例は一例であって、他の折り方も適宜利用できることは言うまでもない。例えば、上記の例では絶縁テープ30を主面21側で先に凹状に折曲させ、その後側面22側を折曲しているが、先に側面側を折曲した上で、主面側を折曲するようにしてもよい。この場合も、交差する部分で生じる余白の折り返しは、主面側でなく側面側に位置するようにする。また、以上の絶縁テープの形状や折り返し部分の接着方法も一例であって、他の形状や接着方法を適宜利用できることは言うまでもない。例えば、折り返し部分同士を、接着剤等なしに接着できるように、折り返し部分に接着箇所が残るような絶縁テープの形状にしても良い。さらに、絶縁テープの形状を工夫することにより、折り返し部分の重複箇所を薄くしたり、折り返し部分を折り返した面を均一化したりすることもできる。
(絶縁テープ30)
It should be noted that the above folding method is an example, and other folding methods can be used as appropriate. For example, in the above example, the insulating tape 30 is bent in a concave shape first on the main surface 21 side, and then the side surface 22 side is bent, but after the side surface side is bent first, the main surface side is You may make it bend. Also in this case, the folding of the blank generated at the intersecting portion is positioned not on the main surface side but on the side surface side. Further, the shape of the insulating tape and the method of bonding the folded portion are examples, and it goes without saying that other shapes and bonding methods can be used as appropriate. For example, the shape of the insulating tape may be such that the bonded portions remain in the folded portions so that the folded portions can be bonded together without an adhesive or the like. Furthermore, by devising the shape of the insulating tape, the overlapping portion of the folded portion can be made thin, or the surface where the folded portion is folded can be made uniform.
(Insulating tape 30)

絶縁テープ30は、絶縁性を備える樹脂製で、一面に粘着材を塗布して接着できるようにしている。このような絶縁テープ30としては、ポリイミドテープ(商品名カプトンテープ)が好適に利用できる。あるいはシリコン樹脂シート、熱伝導の優れたフィラーを充填しているプラスチック製シート、マイカ等も使用できる。また、絶縁テープ30の余剰分は、電池セル1の側面22部分で折り返すようにする。このようにすることで、電池セル1の底面23や主面21側に余計な凹凸が生じることなく、これらの面をほぼ平面状に維持でき、複数の電池セル1を積層する際の信頼性を向上できる。   The insulating tape 30 is made of a resin having an insulating property, and an adhesive material is applied to one surface so that it can be bonded. As such an insulating tape 30, a polyimide tape (trade name Kapton tape) can be suitably used. Alternatively, a silicon resin sheet, a plastic sheet filled with a filler having excellent heat conduction, mica, or the like can be used. Further, the surplus portion of the insulating tape 30 is folded back at the side 22 portion of the battery cell 1. By doing in this way, these surfaces can be maintained substantially flat, without generating unnecessary unevenness on the bottom surface 23 or main surface 21 side of the battery cell 1, and reliability when stacking a plurality of battery cells 1 is achieved. Can be improved.

この際、電池セル1の底面23は凹凸を設けず、平面状に維持する。このようにすることで、電池セル1を複数積層する際に底面23をほぼ同一面とするように一致させやすくなり、その結果、電池積層体10の上面においても電極端子13が同一面上に揃い、バスバー17による連結等を安定的に行えるようになり、信頼性の向上に繋がる。   At this time, the bottom surface 23 of the battery cell 1 is not provided with irregularities and is maintained flat. In this way, when stacking a plurality of battery cells 1, it becomes easy to match the bottom surface 23 so as to be substantially the same surface. As a result, the electrode terminals 13 are also on the same surface on the top surface of the battery stack 10. As a result, the connection by the bus bar 17 and the like can be performed stably, leading to an improvement in reliability.

加えて、図16の変形例に示すように、電池セル1の底面23を冷却プレート7に接触させて冷却するダイレクトクーリング方式において、電池セル1と冷却プレート7との接触面を平坦面とすることで熱結合を確実にして、冷却能力を発揮できる。特に、絶縁テープ30の折り返しによる凹凸の形成が底面23に生じないようにすることで、電池セル毎の冷却プレート7との接続状態の個体差やばらつきを低減し、電池セル間での冷却能力のばらつきの発生を抑制できる利点も得られる。また電池セル1の主面21側にも、余分な凹凸を設けないことで、電池セル同士の積層を安定して行えるようになり、バインドバーによる締結を確実に行える利点も得られる。   In addition, as shown in the modification of FIG. 16, in the direct cooling method in which the bottom surface 23 of the battery cell 1 is brought into contact with the cooling plate 7 for cooling, the contact surface between the battery cell 1 and the cooling plate 7 is a flat surface. Therefore, the thermal coupling can be ensured and the cooling capacity can be exhibited. In particular, by preventing the formation of irregularities due to the folding back of the insulating tape 30 from occurring on the bottom surface 23, individual differences and variations in the connection state with the cooling plate 7 for each battery cell are reduced, and the cooling capacity between the battery cells. There is also an advantage that the occurrence of variations in the above can be suppressed. Further, by not providing an extra unevenness on the main surface 21 side of the battery cell 1, it becomes possible to stably stack the battery cells, and there is also an advantage that the fastening by the bind bar can be surely performed.

以上のように、電池セルの側面を被覆する被覆フィルムと、底面を被覆する絶縁テープを併用し、かつ絶縁テープの折り返し面を電池セルの側面に位置させることで、電池セル同士を積層する電池積層体の信頼性を高めることができる。仮に、絶縁テープのみの絶縁では、折り返し部が大きくなってしまい、その処理が面倒となるが、電池セルの主面21及び側面22の大部分を予め被覆フィルムで被覆し、残余の底面23と、底面23に近い一部の主面21、側面22のみを絶縁テープ30で被覆する構成とすることで、折り返し部分32を小さくすることができる。また、絶縁テープのみで全体を被覆する構成に比べ、絶縁テープの使用量を少なくできる結果、部材コスト及び製造コストの削減効果も期待できる。   As described above, a battery in which battery cells are stacked together by using a covering film that covers the side surfaces of the battery cells and an insulating tape that covers the bottom surface and positioning the folded surface of the insulating tape on the side surfaces of the battery cells. The reliability of the laminate can be increased. Temporarily, in the insulation with only the insulating tape, the folded portion becomes large and the processing becomes troublesome. However, most of the main surface 21 and the side surface 22 of the battery cell are covered with a covering film in advance, and the remaining bottom surface 23 and The folded portion 32 can be made smaller by covering only a part of the main surface 21 and the side surface 22 close to the bottom surface 23 with the insulating tape 30. In addition, as compared to a configuration in which the whole is covered only with the insulating tape, the amount of the insulating tape used can be reduced, so that the effect of reducing the member cost and the manufacturing cost can be expected.

なお絶縁テープは、上述したテープ状として貼付する構成とする他、液状とした絶縁材を塗布したり、ガス状の絶縁材を吹き付ける等の方法で、電池セルの底面を絶縁する構成とすることもできる。
(変形例)
In addition to the configuration in which the insulating tape is applied as a tape, the insulating tape is configured to insulate the bottom surface of the battery cell by applying a liquid insulating material or spraying a gaseous insulating material. You can also.
(Modification)

また、以上説明した図1等の例では、冷却風をファンで強制的に送風して電池セル1を冷却する空冷式を採用したが、この構成に限られず、冷媒等を用いて直接冷却する、いわゆるダイレクトクーリング方式を採用する構成としてもよい。このような例を変形例として、図16〜図18に基づいて説明する。   Moreover, in the example of FIG. 1 etc. which were demonstrated above, although the air-cooling type which forcedly ventilates cooling air with a fan and cooled the battery cell 1 was employ | adopted, it is not restricted to this structure, It cools directly using a refrigerant | coolant etc. Alternatively, a so-called direct cooling system may be employed. Such an example will be described as a modification with reference to FIGS.

図16に示すバッテリシステム92を構成する電源装置は、複数の角形電池からなる電池セル1を積層している電池積層体10と、電池積層体10を構成する電池セル1に熱結合状態に配置している冷却プレート7と、この冷却プレート7を冷却する冷却機構9とを備える。この冷却機構9は、電池積層体10を冷却プレート7に接触させて直接、効果的に冷却できる。また、電池積層体のみならず、例えば電池積層体10の端面に配置した各部材等も併せて冷却することもでき、信頼性の面でも優れる。
(冷却プレート7)
The power supply device that constitutes the battery system 92 shown in FIG. 16 is arranged in a thermally coupled state to the battery stack 10 in which the battery cells 1 composed of a plurality of rectangular batteries are stacked, and the battery cells 1 that constitute the battery stack 10. And a cooling mechanism 9 for cooling the cooling plate 7. The cooling mechanism 9 can effectively cool the battery stack 10 directly by bringing the battery stack 10 into contact with the cooling plate 7. Further, not only the battery stack, but also, for example, each member disposed on the end face of the battery stack 10 can be cooled together, which is excellent in terms of reliability.
(Cooling plate 7)

冷却プレート7は、電池セル1の熱を熱伝導して外部に放熱するための放熱体であり、図の例では冷媒配管を配設している。図17の断面図に示すように、冷却プレート7は、内部を閉鎖室とし、この閉鎖室に熱交換器として、冷却液である液化された冷媒を循環させる銅やアルミ等の冷媒配管26の冷却パイプを内蔵している。冷却パイプは、冷却プレート7の上面板に密着するように固定されて上面板を冷却し、底板との間には断熱材を配設して、底板との間を断熱している。また冷却プレート7にはこのような冷媒による冷却機能を付加する他、金属板のみで構成することもできる。例えば放熱フィンを設けた金属体等、放熱、伝熱性に優れた形状とする。または金属製に限らず、絶縁性を有する伝熱シートを利用しても良い。   The cooling plate 7 is a radiator for conducting heat of the battery cell 1 to dissipate it to the outside. In the example shown in the figure, a refrigerant pipe is provided. As shown in the cross-sectional view of FIG. 17, the cooling plate 7 has a closed chamber as an inside, and as a heat exchanger in the closed chamber, a coolant pipe 26 such as copper or aluminum that circulates a liquefied coolant that is a coolant. Built-in cooling pipe. The cooling pipe is fixed so as to be in close contact with the upper surface plate of the cooling plate 7 to cool the upper surface plate, and a heat insulating material is disposed between the cooling plate and the bottom plate to insulate the space from the bottom plate. Further, the cooling plate 7 can be composed of only a metal plate in addition to the cooling function by the refrigerant. For example, it is made into the shape excellent in heat dissipation and heat transfer property, such as a metal body provided with a radiation fin. Or you may utilize not only metal but the heat-transfer sheet | seat which has insulation.

冷却プレート7は、この上面に載置される電池積層体10を冷却する電池冷却手段を構成している。この例では、図17の断面図に示すように冷却プレート7の内部に、冷媒を循環させるための冷媒配管26を設けている。この冷媒配管26に、図16に示す冷却機構9から冷却液が供給されて冷却プレート7は冷却される。冷却プレート7は、冷却機構9から供給される冷却液を、冷媒配管26の内部で気化する気化熱で冷却プレート7を冷却する冷媒として、冷却プレート7をより効率よく冷却できる。   The cooling plate 7 constitutes battery cooling means for cooling the battery stack 10 placed on the upper surface. In this example, as shown in the cross-sectional view of FIG. 17, a refrigerant pipe 26 for circulating the refrigerant is provided inside the cooling plate 7. The coolant is supplied from the cooling mechanism 9 shown in FIG. 16 to the refrigerant pipe 26 to cool the cooling plate 7. The cooling plate 7 can cool the cooling plate 7 more efficiently by using the cooling liquid supplied from the cooling mechanism 9 as a refrigerant that cools the cooling plate 7 with heat of vaporization that evaporates inside the refrigerant pipe 26.

冷却プレート7は、電池セル1を冷却するために、電池ブロック200を構成する各々の電池セル1の外周面である底面23に熱結合状態に固定している。隣接する電池セルを直列に接続しているバッテリシステムは、隣接する電池セルに電位差がある。したがって、金属製の外装缶で構成された電池セルをそのまま冷却プレートに電気接続すると、短絡して大きなショート電流が流れてしまう。これに対して上述の通り外装缶の底面を絶縁テープ30で被覆した電池セル1は、このような短絡を回避し、絶縁状態で冷却プレート7と熱結合できる。また絶縁テープ30は、冷却プレート7と絶縁状態としつつ、熱結合状態とできるよう、熱伝導性に優れた絶縁性部材で構成することが好ましい。このような特性を得る材質としては、上述の通りポリイミドテープ等が適している。また絶縁テープ30と冷却プレート7との間に、シリコンオイル等の熱伝導ペーストを塗布して、より効率よく熱伝導できる構造としてもよい。   In order to cool the battery cell 1, the cooling plate 7 is fixed in a thermally coupled state to the bottom surface 23 that is the outer peripheral surface of each battery cell 1 constituting the battery block 200. In a battery system in which adjacent battery cells are connected in series, there is a potential difference between adjacent battery cells. Therefore, if a battery cell composed of a metal outer can is electrically connected to the cooling plate as it is, a short circuit occurs and a large short current flows. In contrast, the battery cell 1 in which the bottom surface of the outer can is covered with the insulating tape 30 as described above can avoid such a short circuit and can be thermally coupled to the cooling plate 7 in an insulated state. Moreover, it is preferable to comprise the insulating tape 30 by the insulating member excellent in thermal conductivity so that it can be in a thermal coupling state while being in an insulating state with the cooling plate 7. A polyimide tape or the like is suitable as a material for obtaining such characteristics as described above. Further, a heat conductive paste such as silicon oil may be applied between the insulating tape 30 and the cooling plate 7 so as to conduct heat more efficiently.

さらに冷却プレート7は、複数の電池セル1の温度を均等化する均熱化手段としても機能する。すなわち、冷却プレート7が電池セル1から吸収する熱エネルギーを調整して、温度が高くなる電池セル、例えば中央部の電池セルを効率よく冷却して、温度が低くなる領域、例えば両端部の電池セルの冷却を少なくして、電池セルの温度差を少なくする。これによって、電池セルの温度むらを低減して、一部の電池セルの劣化が進み過充電、過放電となる事態を回避できる。   Furthermore, the cooling plate 7 also functions as a soaking means for equalizing the temperatures of the plurality of battery cells 1. That is, the heat energy absorbed by the cooling plate 7 from the battery cell 1 is adjusted to efficiently cool the battery cell whose temperature is increased, for example, the battery cell in the central portion, and the battery where the temperature is decreased, such as the battery at both ends. Reduce the temperature difference between the battery cells by reducing the cooling of the cells. Thereby, the temperature unevenness of the battery cells can be reduced, and a situation in which deterioration of some of the battery cells proceeds and overcharge and overdischarge can be avoided.

なお、図16の例では電池ブロック200の底面23に冷却プレート7を配置した例を示したが、この構成に限られるものでない。例えば冷却プレートを電池セルの側面に配置することもできる。本発明では、絶縁テープの折り返し部分を小さくすることができるので、冷却プレートを電池セルの側面に配置した場合でも、冷却を妨げることがない。また、本発明の実施例では、折り返し部分を外装缶で厚さを構成する面へ折り返しているが、電源装置の構成により適宜変更することができる。例えば、折り返し部分を外装缶で幅を構成する面へ折り返しても良い。
(電源装置を用いた車両)
In the example of FIG. 16, an example in which the cooling plate 7 is disposed on the bottom surface 23 of the battery block 200 is shown, but the configuration is not limited to this. For example, the cooling plate can be disposed on the side surface of the battery cell. In the present invention, since the folded portion of the insulating tape can be reduced, cooling is not hindered even when the cooling plate is disposed on the side surface of the battery cell. Moreover, in the Example of this invention, although the folding | turning part is turned up to the surface which comprises thickness with an exterior can, it can change suitably with the structure of a power supply device. For example, the folded portion may be folded to the surface constituting the width with an outer can.
(Vehicle using power supply)

次に、以上の電池セルを用いた電源装置を搭載した車両を、図19及び図20に基づいて説明する。図19は、車両用のバッテリシステムを搭載する車両であって、エンジンとモータの両方で走行するハイブリッド自動車HVの一例を示している。この図のハイブリッド自動車は、車両を走行させるエンジン96及び走行用のモータ93と、モータ93に電力を供給するバッテリシステム91、92と、バッテリシステム91、92の電池を充電する発電機94とを備えている。バッテリシステム91、92は、DC/ACインバータ95を介してモータ93と発電機94に接続している。ハイブリッド自動車は、バッテリシステム91、92の電池を充放電しながらモータ93とエンジン96の両方で走行する。モータ93は、エンジン効率の悪い領域、たとえば加速時や低速走行時に駆動されて車両を走行させる。モータ93は、バッテリシステム91、92から電力が供給されて駆動する。発電機94は、エンジン96で駆動され、あるいは車両にブレーキをかけるときの回生制動で駆動されて、バッテリシステム91、92の電池を充電する。   Next, a vehicle equipped with a power supply device using the above battery cells will be described with reference to FIGS. FIG. 19 shows an example of a hybrid vehicle HV that is equipped with a battery system for a vehicle and that runs on both the engine and the motor. The hybrid vehicle shown in this figure includes an engine 96 and a running motor 93 for running the vehicle, battery systems 91 and 92 for supplying electric power to the motor 93, and a generator 94 for charging the batteries of the battery systems 91 and 92. I have. The battery systems 91 and 92 are connected to a motor 93 and a generator 94 via a DC / AC inverter 95. The hybrid vehicle runs on both the motor 93 and the engine 96 while charging and discharging the batteries of the battery systems 91 and 92. The motor 93 is driven to drive the vehicle when the engine efficiency is low, for example, during acceleration or low-speed driving. The motor 93 is driven by power supplied from the battery systems 91 and 92. The generator 94 is driven by the engine 96 or is driven by regenerative braking when the vehicle is braked, and charges the batteries of the battery systems 91 and 92.

さらに図20は、車両用のバッテリシステムを搭載する車両であって、モータのみで走行する電気自動車EVの一例を示している。この図に示す電気自動車は、車両を走行させる走行用のモータ93と、このモータ93に電力を供給するバッテリシステム91、92と、このバッテリシステム91、92の電池を充電する発電機94とを備えている。バッテリシステム91、92は、DC/ACインバータ95を介してモータ93と発電機94に接続している。モータ93は、バッテリシステム91、92から電力が供給されて駆動する。発電機94は、車両を回生制動する時のエネルギーで駆動されて、バッテリシステム91、92の電池を充電する。   Furthermore, FIG. 20 shows an example of an electric vehicle EV that is a vehicle equipped with a battery system for a vehicle and runs only by a motor. The electric vehicle shown in this figure includes a traveling motor 93 for traveling the vehicle, battery systems 91 and 92 for supplying electric power to the motor 93, and a generator 94 for charging the batteries of the battery systems 91 and 92. I have. The battery systems 91 and 92 are connected to a motor 93 and a generator 94 via a DC / AC inverter 95. The motor 93 is driven by power supplied from the battery systems 91 and 92. The generator 94 is driven by energy used when regenerative braking of the vehicle, and charges the batteries of the battery systems 91 and 92.

本発明に係る電源装置及びこれを用いた車両、電池セル及び電池セルの製造方法は、EV走行モードとHEV走行モードとを切り替え可能なプラグイン式ハイブリッド電気自動車やハイブリッド式電気自動車、電気自動車等の電源装置として好適に利用できる。   A power supply apparatus according to the present invention, a vehicle using the same, a battery cell, and a battery cell manufacturing method include a plug-in hybrid electric vehicle, a hybrid electric vehicle, an electric vehicle, and the like that can switch between an EV traveling mode and an HEV traveling mode. It can be suitably used as a power supply device.

1、1X…電池セル
2…セパレータ
4…エンドプレート
7…冷却プレート
9…冷却機構
9B…強制送風機構
10…電池積層体
11…バインドバー
12…外装缶
13…電極端子
17…バスバー
20…被覆フィルム
20X…熱収縮シート
21…主面
22…側面
23…底面
24…天面
26…冷媒配管
30…絶縁テープ
32…折り返し部分
50…電池ブロック
53…冷却隙間
70…外装ケース
71…下ケース
72…上ケース
73…端面プレート
74…鍔部
91、92…バッテリシステム
93…モータ
94…発電機
95…インバータ
96…エンジン
200…電池ブロック
HV、EV…車両
OW…重複部分
t…突出量
DESCRIPTION OF SYMBOLS 1, 1X ... Battery cell 2 ... Separator 4 ... End plate 7 ... Cooling plate 9 ... Cooling mechanism 9B ... Forced ventilation mechanism 10 ... Battery laminated body 11 ... Bind bar 12 ... Exterior can 13 ... Electrode terminal 17 ... Bus bar 20 ... Covering film 20X ... heat-shrinkable sheet 21 ... main surface 22 ... side surface 23 ... bottom surface 24 ... top surface 26 ... refrigerant pipe 30 ... insulating tape 32 ... folded portion 50 ... battery block 53 ... cooling gap 70 ... outer case 71 ... lower case 72 ... upper Case 73 ... End face plate 74 ... Eaves 91, 92 ... Battery system 93 ... Motor 94 ... Generator 95 ... Inverter 96 ... Engine 200 ... Battery block HV, EV ... Vehicle OW ... Overlapping portion t ... Projection amount

Claims (7)

外形を、幅よりも厚さを薄くした角形とする複数の電池セル(1)と、
前記複数の電池セル(1)を積層状態で締結してなる締結手段と、
を備える電源装置であって、
前記電池セル(1)はそれぞれ、
天面(24)と底面(23)と、各一対の主面(21)と側面(22)からなる角形の外装缶(12)と、
前記外装缶(12)の主面(21)及び側面(22)を被覆する筒状の絶縁性の被覆フィルム(20)と、
前記外装缶(12)の底面(23)を被覆する絶縁性の絶縁テープ(30)と、
を備え、
前記被覆フィルム(20)の下端縁は、前記外装缶(12)の主面(21)及び側面(22)に位置しており、
前記絶縁テープ(30)は、前記外装缶(12)の底面(23)から主面(21)及び側面(22)にかけて折曲され、少なくとも前記被覆フィルム(20)の下端縁に重なるように、前記外装缶(12)の主面(21)及び側面(22)に固定されてなり、
前記複数の電池セル(1)の各底面(23)が略同一平面上に並ぶ姿勢で、前記締結手段により積層状態に締結されてなることを特徴とする電源装置。
A plurality of battery cells (1) whose outer shape is a square with a thickness smaller than the width,
Fastening means for fastening the plurality of battery cells (1) in a stacked state;
A power supply device comprising:
Each of the battery cells (1) is
A top surface (24) and a bottom surface (23), and a rectangular outer can (12) composed of a pair of main surfaces (21) and side surfaces (22);
A cylindrical insulating covering film (20) covering the main surface (21) and the side surface (22) of the outer can (12);
An insulating insulating tape (30) covering the bottom surface (23) of the outer can (12);
With
The lower end edge of the covering film (20) is located on the main surface (21) and side surface (22) of the outer can (12),
The insulating tape (30) is bent from the bottom surface (23) of the outer can (12) to the main surface (21) and the side surface (22), and overlaps at least the lower end edge of the covering film (20). It is fixed to the main surface (21) and side surface (22) of the outer can (12),
The power supply device, wherein the bottom surfaces (23) of the plurality of battery cells (1) are fastened in a stacked state by the fastening means in a posture in which they are arranged on substantially the same plane.
請求項1に記載の電源装置であって、
前記外装缶(12)の側面(22)において、前記絶縁テープ(30)は、折曲によって生じ、主面(21)及び側面(22)からはみ出る余白部分を折り返してなることを特徴とする電源装置。
The power supply device according to claim 1,
In the side surface (22) of the outer can (12), the insulating tape (30) is generated by bending, and is folded back from the main surface (21) and the blank portion protruding from the side surface (22). apparatus.
請求項1又は2に記載の電源装置であって、さらに、
前記外装缶(12)の底面(23)と熱結合状態に配置される、冷媒配管(26)を配設した冷却プレート(7)を備えることを特徴とする電源装置。
The power supply device according to claim 1, further comprising:
A power supply apparatus comprising: a cooling plate (7) provided with a refrigerant pipe (26) arranged in a thermally coupled state with a bottom surface (23) of the outer can (12).
請求項1から3のいずれか一に記載の電源装置であって、
前記被覆フィルム(20)が熱収縮チューブであることを特徴とする電源装置。
The power supply device according to any one of claims 1 to 3,
The power supply apparatus, wherein the covering film (20) is a heat shrinkable tube.
請求項1から4に記載の電源装置を備える車両。   A vehicle comprising the power supply device according to claim 1. 外形を、幅よりも厚さを薄くした角形とする外装缶(12)と、
前記外装缶(12)の主面(21)及び側面(22)を被覆する筒状の絶縁性の被覆フィルム(20)と、
前記外装缶(12)の底面(23)を被覆する絶縁性の絶縁テープ(30)と、
を備え、
前記被覆フィルム(20)の下端縁は、前記外装缶(12)の主面(21)及び側面(22)に位置しており、
前記絶縁テープ(30)は、前記外装缶(12)の底面(23)から主面(21)及び側面(22)にかけて折曲され、少なくとも前記被覆フィルム(20)の下端縁に重なるように、前記外装缶(12)の主面(21)及び側面(22)に固定されてなることを特徴とする電池セル。
An outer can (12) whose outer shape is a square with a thickness smaller than the width;
A cylindrical insulating covering film (20) covering the main surface (21) and the side surface (22) of the outer can (12);
An insulating insulating tape (30) covering the bottom surface (23) of the outer can (12);
With
The lower end edge of the covering film (20) is located on the main surface (21) and side surface (22) of the outer can (12),
The insulating tape (30) is bent from the bottom surface (23) of the outer can (12) to the main surface (21) and the side surface (22), and overlaps at least the lower end edge of the covering film (20). A battery cell characterized by being fixed to a main surface (21) and a side surface (22) of the outer can (12).
外形を、幅よりも厚さを薄くした角形とする外装缶(12)と、
前記外装缶(12)を被覆する絶縁性の被覆フィルム(20)と、
を備える電池セルの製造方法であって、
前記外装缶(12)を内部に挿入可能な筒状の前記被覆フィルム(20)に、前記外装缶(12)を挿入し、前記被覆フィルム(20)の下端縁が、前記電池セル(1)の主面(21)及び側面(22)に位置するように、前記被覆フィルム(20)を熱収縮する工程と、
前記電池セル(1)の底面(23)に、該底面(23)よりも大きい面積である絶縁性の絶縁テープ(30)を被覆し、さらに前記絶縁テープ(30)の余白部分で、前記電池セル(1)の主面(21)を覆うように折曲し、かつ前記電池セル(1)の側面(22)を覆うように折曲し、これらの折曲によって生じる余白部分を前記電池セル(1)の側面(22)に折り返して、前記絶縁テープ(30)を固定する工程と、
を含むことを特徴とする電池セルの製造方法。
An outer can (12) whose outer shape is a square with a thickness smaller than the width;
An insulating covering film (20) for covering the outer can (12);
A method for producing a battery cell comprising:
The outer can (12) is inserted into the cylindrical covering film (20) into which the outer can (12) can be inserted, and the lower end edge of the covering film (20) is connected to the battery cell (1). Heat shrinking the covering film (20) so as to be located on the main surface (21) and the side surface (22) of
The bottom surface (23) of the battery cell (1) is covered with an insulating insulating tape (30) having an area larger than that of the bottom surface (23), and the battery is covered with a blank portion of the insulating tape (30). Bending to cover the main surface (21) of the cell (1) and to cover the side surface (22) of the battery cell (1) Folding back to the side surface (22) of (1) and fixing the insulating tape (30);
The manufacturing method of the battery cell characterized by including.
JP2010173217A 2010-07-31 2010-07-31 Power supply device, vehicle using the same, battery cell, and method of manufacturing the battery cell Pending JP2012033419A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010173217A JP2012033419A (en) 2010-07-31 2010-07-31 Power supply device, vehicle using the same, battery cell, and method of manufacturing the battery cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010173217A JP2012033419A (en) 2010-07-31 2010-07-31 Power supply device, vehicle using the same, battery cell, and method of manufacturing the battery cell

Publications (1)

Publication Number Publication Date
JP2012033419A true JP2012033419A (en) 2012-02-16

Family

ID=45846605

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010173217A Pending JP2012033419A (en) 2010-07-31 2010-07-31 Power supply device, vehicle using the same, battery cell, and method of manufacturing the battery cell

Country Status (1)

Country Link
JP (1) JP2012033419A (en)

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012181971A (en) * 2011-02-28 2012-09-20 Sanyo Electric Co Ltd Method of manufacturing battery cell, battery cell, power supply device, and vehicle having the power supply device
JP2013187013A (en) * 2012-03-07 2013-09-19 Toyota Industries Corp Terminal cover of power storage device, power storage device, secondary battery, and mobile object
WO2013146561A1 (en) * 2012-03-28 2013-10-03 三洋電機株式会社 Power supply device, and vehicle and power storage device equipped with same
WO2014024449A1 (en) * 2012-08-09 2014-02-13 三洋電機株式会社 Method for producing power source device, power source device, electric vehicle provided with same, and electricity storage device
JP2014049232A (en) * 2012-08-30 2014-03-17 Toshiba Corp Nonaqueous electrolyte secondary battery and battery module using the same
JP2014063685A (en) * 2012-09-24 2014-04-10 Gs Yuasa Corp Battery and electricity storage device
JP2014096357A (en) * 2012-10-12 2014-05-22 Gs Yuasa Corp Power storage element, cover sheet and covering method of container
JP2014143146A (en) * 2013-01-25 2014-08-07 Hitachi Vehicle Energy Ltd Power storage element
JP2014197468A (en) * 2013-03-29 2014-10-16 株式会社Gsユアサ Storage element, power supply module, and method of manufacturing power supply module
JP2015060759A (en) * 2013-09-19 2015-03-30 株式会社Gsユアサ Storage element and power storage module
JP2015144068A (en) * 2014-01-31 2015-08-06 株式会社Gsユアサ Power storage element and power storage module
JP2015162399A (en) * 2014-02-28 2015-09-07 株式会社Gsユアサ power storage device
JP2015207541A (en) * 2014-04-23 2015-11-19 日立建機株式会社 Work machine and cooling structure of power storage device mounted to the same
US9209435B2 (en) 2012-03-29 2015-12-08 Samsung Sdi Co., Ltd. Rechargeable battery
JP2016058260A (en) * 2014-09-10 2016-04-21 株式会社Gsユアサ Power storage device
JP2016512375A (en) * 2013-02-26 2016-04-25 ザ・ボーイング・カンパニーThe Boeing Company Enclosure for rechargeable battery
JP2016512376A (en) * 2013-02-26 2016-04-25 ザ・ボーイング・カンパニーThe Boeing Company Rechargeable battery including battery cell separator
WO2016103943A1 (en) * 2014-12-26 2016-06-30 日立オートモティブシステムズ株式会社 Rectangular secondary battery
US9882188B2 (en) 2013-09-24 2018-01-30 Samsung Sdi Co., Ltd. Rechargeable battery and module thereof
WO2023133788A1 (en) * 2022-01-14 2023-07-20 宁德时代新能源科技股份有限公司 Battery cell, battery, electronic device, and method and apparatus for preparing battery cell
JP7425098B2 (en) 2022-01-27 2024-01-30 プライムプラネットエナジー&ソリューションズ株式会社 Battery cells and battery modules
WO2024021132A1 (en) * 2022-07-29 2024-02-01 宁德时代新能源科技股份有限公司 Battery cell, battery, electric apparatus, and battery cell manufacturing method

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012181971A (en) * 2011-02-28 2012-09-20 Sanyo Electric Co Ltd Method of manufacturing battery cell, battery cell, power supply device, and vehicle having the power supply device
JP2013187013A (en) * 2012-03-07 2013-09-19 Toyota Industries Corp Terminal cover of power storage device, power storage device, secondary battery, and mobile object
WO2013146561A1 (en) * 2012-03-28 2013-10-03 三洋電機株式会社 Power supply device, and vehicle and power storage device equipped with same
US9209435B2 (en) 2012-03-29 2015-12-08 Samsung Sdi Co., Ltd. Rechargeable battery
WO2014024449A1 (en) * 2012-08-09 2014-02-13 三洋電機株式会社 Method for producing power source device, power source device, electric vehicle provided with same, and electricity storage device
JP2014049232A (en) * 2012-08-30 2014-03-17 Toshiba Corp Nonaqueous electrolyte secondary battery and battery module using the same
JP2014063685A (en) * 2012-09-24 2014-04-10 Gs Yuasa Corp Battery and electricity storage device
JP2014096357A (en) * 2012-10-12 2014-05-22 Gs Yuasa Corp Power storage element, cover sheet and covering method of container
JP2014143146A (en) * 2013-01-25 2014-08-07 Hitachi Vehicle Energy Ltd Power storage element
US10535852B2 (en) 2013-02-26 2020-01-14 The Boeing Company Chassis for rechargeable battery
US10044077B2 (en) 2013-02-26 2018-08-07 The Boeing Company Rechargeable battery including battery cell separators
JP2016512375A (en) * 2013-02-26 2016-04-25 ザ・ボーイング・カンパニーThe Boeing Company Enclosure for rechargeable battery
JP2016512376A (en) * 2013-02-26 2016-04-25 ザ・ボーイング・カンパニーThe Boeing Company Rechargeable battery including battery cell separator
JP2014197468A (en) * 2013-03-29 2014-10-16 株式会社Gsユアサ Storage element, power supply module, and method of manufacturing power supply module
JP2015060759A (en) * 2013-09-19 2015-03-30 株式会社Gsユアサ Storage element and power storage module
US9882188B2 (en) 2013-09-24 2018-01-30 Samsung Sdi Co., Ltd. Rechargeable battery and module thereof
JP2015144068A (en) * 2014-01-31 2015-08-06 株式会社Gsユアサ Power storage element and power storage module
JP2015162399A (en) * 2014-02-28 2015-09-07 株式会社Gsユアサ power storage device
JP2015207541A (en) * 2014-04-23 2015-11-19 日立建機株式会社 Work machine and cooling structure of power storage device mounted to the same
JP2016058260A (en) * 2014-09-10 2016-04-21 株式会社Gsユアサ Power storage device
US10340482B2 (en) 2014-09-10 2019-07-02 Gs Yuasa International Ltd. Energy storage apparatus
WO2016103943A1 (en) * 2014-12-26 2016-06-30 日立オートモティブシステムズ株式会社 Rectangular secondary battery
WO2023133788A1 (en) * 2022-01-14 2023-07-20 宁德时代新能源科技股份有限公司 Battery cell, battery, electronic device, and method and apparatus for preparing battery cell
JP7425098B2 (en) 2022-01-27 2024-01-30 プライムプラネットエナジー&ソリューションズ株式会社 Battery cells and battery modules
WO2024021132A1 (en) * 2022-07-29 2024-02-01 宁德时代新能源科技股份有限公司 Battery cell, battery, electric apparatus, and battery cell manufacturing method

Similar Documents

Publication Publication Date Title
JP2012033419A (en) Power supply device, vehicle using the same, battery cell, and method of manufacturing the battery cell
JP6138688B2 (en) Power supply device, vehicle including the same, and power storage device
JP5734704B2 (en) Power supply device and vehicle equipped with power supply device
JP6073583B2 (en) Power supply device, vehicle including this power supply device, and power storage device
WO2012133707A1 (en) Power source device and vehicle provided with power source device
JP5723991B2 (en) Battery pack with compact structure
JP5595871B2 (en) Power supply
JP5743791B2 (en) Power supply device and vehicle equipped with power supply device
JP5535794B2 (en) Assembled battery
WO2013161654A1 (en) Power-supply device, vehicle provided with power-supply device, and electricity-storage device
JP2013012441A (en) Electric power source device and vehicle including the same
JP2013125617A (en) Power supply device and vehicle having the same, and power storage device
US20140023906A1 (en) Power supply apparatus and vehicle having the same
WO2012057169A1 (en) Power-supply device, vehicle using same, battery cell, and battery-cell manufacturing method
JP2011175743A (en) Power source apparatus, and vehicle equipped with the same
WO2012133709A1 (en) Power source device, and vehicle provided with power source device
WO2013146561A1 (en) Power supply device, and vehicle and power storage device equipped with same
WO2013031614A1 (en) Power supply device, vehicle provided with same, and power storage device
US20150118537A1 (en) System and method for battery cell thermal management using carbon-based thermal films
WO2013084756A1 (en) Power source device, vehicle equipped with same and electricity storage device
JP6697332B2 (en) Battery system and electric vehicle including battery system
WO2012165493A1 (en) Power source device for supplying power and vehicle provided with power source device
WO2013002090A1 (en) Power supply device, vehicle including same, and method for manufacturing power supply device
KR20130105596A (en) Power storage module
KR20130123901A (en) Battery module with excellent cooling efficiency and compact structure