WO2012165493A1 - Power source device for supplying power and vehicle provided with power source device - Google Patents
Power source device for supplying power and vehicle provided with power source device Download PDFInfo
- Publication number
- WO2012165493A1 WO2012165493A1 PCT/JP2012/063968 JP2012063968W WO2012165493A1 WO 2012165493 A1 WO2012165493 A1 WO 2012165493A1 JP 2012063968 W JP2012063968 W JP 2012063968W WO 2012165493 A1 WO2012165493 A1 WO 2012165493A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- power supply
- battery
- supply device
- cooling
- potting
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/20—Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
- H01M50/249—Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders specially adapted for aircraft or vehicles, e.g. cars or trains
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60K—ARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
- B60K1/00—Arrangement or mounting of electrical propulsion units
- B60K1/04—Arrangement or mounting of electrical propulsion units of the electric storage means for propulsion
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L50/00—Electric propulsion with power supplied within the vehicle
- B60L50/50—Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
- B60L50/51—Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells characterised by AC-motors
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/60—Heating or cooling; Temperature control
- H01M10/61—Types of temperature control
- H01M10/613—Cooling or keeping cold
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/60—Heating or cooling; Temperature control
- H01M10/62—Heating or cooling; Temperature control specially adapted for specific applications
- H01M10/625—Vehicles
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/60—Heating or cooling; Temperature control
- H01M10/64—Heating or cooling; Temperature control characterised by the shape of the cells
- H01M10/647—Prismatic or flat cells, e.g. pouch cells
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/60—Heating or cooling; Temperature control
- H01M10/65—Means for temperature control structurally associated with the cells
- H01M10/655—Solid structures for heat exchange or heat conduction
- H01M10/6554—Rods or plates
- H01M10/6555—Rods or plates arranged between the cells
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/60—Heating or cooling; Temperature control
- H01M10/65—Means for temperature control structurally associated with the cells
- H01M10/655—Solid structures for heat exchange or heat conduction
- H01M10/6556—Solid parts with flow channel passages or pipes for heat exchange
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/60—Heating or cooling; Temperature control
- H01M10/65—Means for temperature control structurally associated with the cells
- H01M10/656—Means for temperature control structurally associated with the cells characterised by the type of heat-exchange fluid
- H01M10/6567—Liquids
- H01M10/6568—Liquids characterised by flow circuits, e.g. loops, located externally to the cells or cell casings
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/20—Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
- H01M50/204—Racks, modules or packs for multiple batteries or multiple cells
- H01M50/207—Racks, modules or packs for multiple batteries or multiple cells characterised by their shape
- H01M50/209—Racks, modules or packs for multiple batteries or multiple cells characterised by their shape adapted for prismatic or rectangular cells
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/20—Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
- H01M50/218—Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by the material
- H01M50/22—Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by the material of the casings or racks
- H01M50/227—Organic material
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/20—Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
- H01M50/233—Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by physical properties of casings or racks, e.g. dimensions
- H01M50/24—Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by physical properties of casings or racks, e.g. dimensions adapted for protecting batteries from their environment, e.g. from corrosion
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60K—ARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
- B60K1/00—Arrangement or mounting of electrical propulsion units
- B60K2001/003—Arrangement or mounting of electrical propulsion units with means for cooling the electrical propulsion units
- B60K2001/005—Arrangement or mounting of electrical propulsion units with means for cooling the electrical propulsion units the electric storage means
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60K—ARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
- B60K1/00—Arrangement or mounting of electrical propulsion units
- B60K1/04—Arrangement or mounting of electrical propulsion units of the electric storage means for propulsion
- B60K2001/0405—Arrangement or mounting of electrical propulsion units of the electric storage means for propulsion characterised by their position
- B60K2001/0416—Arrangement in the rear part of the vehicle
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M2220/00—Batteries for particular applications
- H01M2220/20—Batteries in motive systems, e.g. vehicle, ship, plane
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/70—Energy storage systems for electromobility, e.g. batteries
Definitions
- the present invention is mainly used for a power source of a motor for driving a vehicle such as a hybrid vehicle, a fuel cell vehicle, and an electric vehicle, or used as a power source for storing power of a solar cell, and such a power source device. It relates to a vehicle provided.
- a power supply device that drives a motor that drives an automobile or a power supply device that is charged by a solar cell and supplies power at night, or that supplies power when there is a large demand for power in the daytime, requires a large output.
- a plurality of batteries are connected in series to increase the output voltage.
- a power supply device used for this type of application, a power supply device has been developed in which a plurality of thin laminated batteries are housed in a case and a space in the case is filled with potting resin. (See Patent Document 1)
- This power supply can improve vibration resistance and impact resistance by embedding a thin laminated battery in potting resin.
- this power supply device has a drawback that the heat generated by the thin laminated battery cannot be quickly dissipated. This is because the heat generated by the thin laminate battery is radiated to the outside through the potting resin.
- Power supply devices for electric power generate a large amount of heat when charging / discharging current is large, and if the temperature of the battery rises in this state, the battery deteriorates rapidly, and safety can not be secured. It becomes.
- a power supply device that supplies power to a motor of a vehicle is discharged with a very large current when the vehicle is suddenly accelerated, or is charged with a large current during regenerative braking of a sudden brake, and goes down while braking a longer slope. Sometimes it is continuously charged and the amount of heat generation becomes extremely large. A battery that cannot efficiently dissipate heat in this state has an abnormally high temperature and is highly deteriorated.
- This power supply cools the cooling plate with the heat of vaporization of the refrigerant to cool the cooling plate to a low temperature.
- the cooling plate cooled to a low temperature is brought into contact with the battery to cool the battery from the bottom surface. Since the power supply device directly cools the battery with the low-temperature cooling plate, the battery having a large calorific value can be quickly and efficiently cooled.
- this power supply device a large number of rectangular batteries are stacked and sandwiched and fixed from both ends by end plates to form a battery block. Therefore, it is difficult to stack a large number of large rectangular batteries and firmly fix them.
- the present invention was developed for the purpose of solving the above-described drawbacks.
- An important object of the present invention is to stably and reliably each prismatic battery while quickly and efficiently cooling the prismatic battery.
- An object of the present invention is to provide a power supply device for electric power that can be fixed and a vehicle including the power supply device.
- the power supply device for electric power includes a battery block 3 in which a plurality of rectangular batteries 1 are arranged in a stacked state, and is disposed on the surface of the battery block 3 and is thermally coupled to each rectangular battery 1.
- a cooling plate 21 that forcibly cools each rectangular battery 1 from the bottom surface and a cooling mechanism 20 that cools the cooling plate 21 are provided.
- the power supply device connects the cooling plate 21 to the cooling surface 1X that is the bottom surface or the side surface of the prismatic battery 1 in a thermally coupled state, and the potting resin layer 9 is provided on the outer peripheral surface of the battery block 3, and the potting resin The layer 9 has an exposed portion 9X that exposes the cooling surface 1X of the prismatic battery 1, and the cooling surface 1X of the prismatic battery 1 is connected to the cooling plate 21 in a thermally coupled state at the exposed portion 9X.
- the power supply apparatus for power described above is characterized in that the prismatic battery constituting the battery block can be efficiently and quickly cooled while firmly fixing the prismatic battery in place with a potting resin layer provided on the surface of the battery block. .
- a potting resin layer is provided on the surface of the battery block to fix the square battery, and this potting resin layer has an exposed portion, and the cooling surface of the square battery is thermally coupled to the cooling plate by this exposed portion. This is because they are connected.
- the power supply device for electric power of the present invention can coat the both sides of the prismatic battery 1 with the potting resin layer 9 with the cooling surface 1X of the prismatic battery 1 as the bottom surface of the battery block 3. Since the battery block is arranged on the cooling plate in the above power supply device, the cooling surface of the rectangular battery can be brought into close contact with the cooling plate by its own weight. For this reason, the cooling surface of the prismatic battery is stably and reliably connected to the cooling plate in a thermally coupled state. In particular, the cooling surface of the prismatic battery is brought into close contact with the cooling plate by its own weight, so that the cooling surface of the prismatic battery can be held in a thermally coupled state with the cooling plate for a long period of time. For this reason, there is a feature that the prismatic battery is quickly and efficiently cooled, and this state is stably maintained for a long time.
- a plurality of rectangular batteries 1 in which battery blocks 3 are stacked on each other are sandwiched by a pair of end plates 5 from both sides in the stacking direction.
- a bind bar 6 is connected by a bind bar 6, and a plurality of prismatic batteries 1 can be fixed in a stacked state by a pair of end plates 5.
- the power supply device for electric power includes potting cases 4, 34, 44 that cover both sides of the battery block 3, and a potting resin is filled between the potting cases 4, 34, 44 and the battery block 3.
- a potting resin layer 9 can be provided.
- potting resin is filled between the potting case and the battery block, and the battery block is fixed by the potting resin layer and the potting case, so that the square battery can be fixed more firmly in place.
- the potting cases 4 and 34 have openings 4X and 34X that expose the cooling surface 1X of the prismatic battery 1 to the outside, and the prismatic battery 1 is cooled in the openings 4X and 34X.
- the surface 1X can be connected to the cooling plate 21 in a thermally coupled state.
- the opening of the potting case is provided in the exposed portion of the potting resin layer, and the cooling plate is disposed here, so that the battery block is securely held in place by the potting case and the potting resin layer.
- the cooling plate can cool the battery quickly and efficiently.
- the power supply device for electric power seals the potting cases 4, 34 and the battery block 3 with the sealing material 11 at the periphery of the openings 4 X, 34 X of the potting cases 4, 34, and the potting resin layer 9. Can be provided on the surface of the battery block 3 in a watertight structure.
- the above power supply device can prevent condensation on the surface of the rectangular battery by sealing the potting resin layer.
- the potting case 4 is made of plastic, and the bind bar 6 can be insert-molded into the potting case 4 and fixed to an integral structure.
- the bind bar and the potting case have an integral structure, so that the assembly efficiency can be improved at each stage and the battery block can be firmly fixed.
- the power supply apparatus for electric power includes a connector 8 that fixes the cooling plate 21 to the battery block 3, and can connect the connector 8 to the bind bar 6.
- the cooling plate is fixed to the battery block by the connecting tool connected to the bind bar, so that the cooling plate and the battery block can be reliably fixed while being held in a thermally coupled state.
- a heat conductive sheet 22 is disposed between the battery block 3 and the cooling plate 21, and the rectangular battery 1 of the battery block 3 is heated to the cooling plate 21 via the heat conductive sheet 22. It can be linked to a combined state.
- the cooling plate can be connected to the cooling surface of each prismatic battery in an ideally coupled state via the heat conductive sheet.
- the heat conductive sheet 22 can be a sheet that is compressed and deformed.
- the above power supply apparatus can connect each square battery to the cooling plate in a thermally coupled state reliably and stably through the heat conductive sheet. For this reason, each square battery can be cooled reliably so as to reduce the temperature difference.
- the power supply device for electric power of the present invention can be a power supply device that supplies electric power to a motor that drives a vehicle.
- the power supply apparatus described above can be used with a large number of prismatic batteries securely fixed in place while having a structure in which the output is increased to supply a large amount of power to the motor.
- a large number of prismatic batteries can be fixed in place over a long period of time and can be used stably while preventing displacement of the prismatic batteries and insulating separator due to vehicle vibrations.
- the power supply device for electric power of the present invention can be a power supply device that is charged with the electric power of the solar cell and stores the generated electric power of the solar cell.
- the above power supply device can be used with a large number of prismatic batteries securely fixed in place while having a structure capable of increasing the output and charging the large output of the solar cell. Furthermore, there is a feature that a large number of prismatic batteries can be used stably in a fixed position over a long period of time.
- the vehicle of the present invention can include the power supply device described above.
- FIG. 5 is an exploded cross-sectional view of the power supply device for power shown in FIG. 4.
- FIG. 5 is an exploded cross-sectional view of the power supply device for power shown in FIG. 4.
- FIG. 5 is an exploded cross-sectional view of the power supply device for power shown in FIG. 4.
- FIG. 5 is an exploded cross-sectional view of the power supply device for power shown in FIG. 4.
- FIG. 5 is an exploded cross-sectional view of the power supply device for power shown in FIG. 4.
- FIG. 4 is an exploded cross-sectional view of the power supply device for power shown in FIG. 4.
- FIG. 4 is an exploded cross-sectional view of the power supply device for power shown in FIG. 4.
- FIG. 4 is an exploded cross-sectional view of the power supply device for power shown in FIG. 4.
- FIG. 4 is an exploded cross-sectional view of the power supply device for power shown in FIG. 4.
- FIG. 4 is an exploded cross-sectional view of the power supply device for power shown
- FIG. It is a schematic sectional drawing of the power supply device for electric power shown in FIG. It is a disassembled perspective view which shows the manufacturing process of the potting resin layer of the power supply device shown in FIG. It is a schematic sectional drawing of the potting resin layer provided at the process shown in FIG. It is a schematic sectional drawing of the power supply device for electric power concerning the other Example of this invention. It is a disassembled perspective view which shows the manufacturing process of the potting resin layer of the power supply device shown in FIG. It is a schematic sectional drawing which shows the manufacturing process of the potting resin layer of the power supply device shown in FIG. It is a block diagram which shows the example which mounts a power supply device in the hybrid vehicle which drive
- the power supply device for electric power is mainly used in a power supply device that is mounted on an electric vehicle such as a hybrid car or an electric vehicle, supplies electric power to a traveling motor of the vehicle, and travels the vehicle, or a solar battery. It is used for a power supply device that stores the electric power and outputs it at night or during daytime peak power.
- 1 to 5 includes a battery block 3 in which a plurality of rectangular batteries 1 whose surface of an outer can 1A has conductivity are insulated by insulating separators 2 and arranged in a laminated state.
- a potting case 4 that covers both side surfaces of the battery block 3, a cooling plate 21 that cools the rectangular battery 1 of the battery block 3 from the bottom surface, and a cooling mechanism 20 that cools the cooling plate 21 are provided.
- the stacked rectangular batteries 1 are sandwiched by end plates 5 from both ends, and the end plates 5 are connected by bind bars 6. Further, the battery block 3 has a top cover 7 disposed on the upper surface, and the top cover 7 is fixed to the battery block 3 with a bind bar 6.
- the square battery 1 is a lithium ion secondary battery.
- the prismatic battery is not specified as a lithium ion secondary battery, and any battery that can be charged, such as a nickel metal hydride battery, can also be used.
- an electrode body in which positive and negative electrode plates are stacked is housed in an outer can 1A, filled with an electrolytic solution, and hermetically sealed.
- the outer can 1 ⁇ / b> A has a predetermined thickness in which an upper surface, both side surfaces, and a bottom surface are square, and an opening on the upper surface is airtightly closed with a sealing plate 1 ⁇ / b> B.
- the outer can 1A is obtained by deep-drawing a metal plate such as aluminum or an aluminum alloy, and has a conductive surface.
- This outer can is in the shape of a cylinder that is thinner than the width and has a rectangular shape on both sides facing each other, and closes the bottom surface.
- the sealing plate 1B is also made of a metal plate such as aluminum or aluminum alloy.
- positive and negative electrode terminals 15 are fixed to both ends via an insulating material 16.
- the positive and negative electrode terminals 15 are connected to built-in positive and negative electrode plates.
- the lithium ion secondary battery does not connect the outer can 1A to the electrode. However, since the outer can 1A is connected to the electrode plate via the electrolytic solution, it has an intermediate potential between the positive and negative electrode plates.
- the square battery 1 can also connect one electrode terminal 15 to an armored can with a lead wire.
- the rectangular battery 1 can be fixed to the sealing plate without insulating the electrode terminal 15 connected to the outer can.
- the sealing plate 1B is provided with an opening 18 of the safety valve 17.
- the safety valve 17 opens when the internal pressure of the outer can 1A becomes higher than a set value, and prevents the outer can 1A from being damaged.
- the safety valve 17 is opened, the internal gas is discharged to the outside from the opening 18 of the sealing plate 1B.
- the opening 18 of the safety valve 17 is provided in the sealing plate 1B. This outer can 1A can discharge gas from the opening 18 of the safety valve 17 to be opened.
- the prismatic battery can also be provided with a safety valve opening at the bottom or side of the outer can. However, in this rectangular battery, the electrolyte is discharged when the safety valve opens.
- the electrolytic solution is a conductive liquid, and if it is discharged, the contact portion may be short-circuited.
- the prismatic battery 1 in which the safety valve 17 is provided on the sealing plate 1B of the outer can 1A can discharge the gas from the safety valve 17 that is opened to reduce the internal pressure. For this reason, when the safety valve 17 is opened, the discharge of the electrolytic solution is restricted, and the adverse effects caused by the electrolytic solution can be reduced.
- the stacked rectangular batteries 1 are connected in series or in parallel with each other by connecting adjacent electrode terminals 15.
- the square batteries 1 connected in parallel do not generate a potential difference in the outer can.
- the power supply device that increases the output increases the output voltage by connecting all the rectangular batteries 1 in series without connecting them in parallel.
- the square battery 1 connected in series generates a potential difference between the outer can of the adjacent square battery 1. Therefore, the power supply device stacks the adjacent rectangular batteries 1 in an insulated state by sandwiching the insulating separator 2 between the outer cans of the adjacent rectangular batteries 1. Further, the insulating separator 2 sandwiched between the respective square batteries 1 is formed by thermally blocking and stacking the adjacent square batteries 1 so that the temperature of any one of the square batteries 1 becomes abnormally high and the thermal runaway occurs.
- the battery block 3 in which the insulating separator 2 is disposed also between the rectangular batteries 1 connected in parallel can prevent thermal runaway and improve safety.
- the end plate 5 is made of hard plastic or made of metal such as aluminum or its alloy.
- the end plate 5 has the same outer shape as the square battery 1 in order to sandwich the square battery 1 with a large area.
- the square end plate 5 is the same size as the rectangular battery 1 or slightly larger than the rectangular battery 1.
- the end plate 5 can be connected to the prismatic battery 1 so as not to be misaligned by forming a laminated surface with the prismatic battery 1 into a fitting structure.
- the end plate does not necessarily have a fitting structure with the prismatic battery, and any structure that can connect the prismatic battery and the end plate so as not to be displaced can be employed.
- the end of the bind bar 6 made of a metal plate is connected to the end plate 5. Both ends of the bind bar 6 are connected to the end plate 5 via set screws 19.
- the end plate 5 that connects the bind bar 6 with the set screw 19 is provided with a female screw hole 5 a into which the set screw 19 is screwed.
- the female screw hole 5 a is provided on the outer surface of the end plate 5, and connects the bind bar 6 by screwing a set screw 19 that passes through the bent portion 6 ⁇ / b> A of the bind bar 6.
- the bind bar 6 shown in the figure is fixed to the end plate 5 with a set screw 19, but the end of the bind bar is bent inward and connected to the end plate, or the end is crimped to the end plate. It can also be linked.
- the bind bar 6 in FIG. 1 has an up and down width that is substantially equal to the up and down width of the rectangular battery 1 and is lightened by notching the inside.
- the bind bar 6 is connected to the end plate 5 at the upper and lower ends.
- the end plate 5 is provided with female screw holes 5a above and below both sides of the outer surface. In this power supply device, the upper and lower ends of both ends of the bind bar 6 are fixed to the end plate 5.
- the end plate 5 that fixes the end portion of the bind bar 6 with the set screw 6 has a female screw hole 5 a at the connection position of the bind bar 6.
- the bind bar 6 is manufactured by processing a metal plate having a predetermined thickness into a predetermined width.
- the bind bar 6 fixes both ends to the end plate 5 and connects the pair of end plates 5 to hold the prismatic battery 1 in a compressed state.
- the bind bar 6 fixes the pair of end plates 5 to a predetermined size, and fixes the prismatic battery 1 stacked therebetween to a predetermined compressed state.
- the bind bar 6 is manufactured by processing a metal plate having a strength that does not extend due to the expansion pressure of the rectangular battery 1, for example, a stainless steel plate such as SUS304 or a metal plate such as a steel plate into a width and thickness having sufficient strength.
- the bind bar 6 is provided with a bent portion 6A at the end, and the bent portion 6A is fixed to the end plate 5.
- the bent portion 6A is provided with a through hole of a set screw 19 and is fixed to the end plate 5 via a set screw 19 inserted therein.
- the bind bar 6 is insert-molded into a plastic potting case 4 so that the potting case 4 and the bind bar 6 are integrated.
- the potting case 4 has an L-shaped cross-section and is divided into left and right parts, and covers both surfaces of the battery block 3 with each potting case 4.
- the potting case 4 is connected to each other by connecting the bind bar 6 formed by insert molding to the end plate 5, and further connected to each other via a connector 8 for fixing the cooling plate 21.
- the potting case 4 having an L-shaped cross section covers the side surface of the battery block 3 and the side portion of the bottom surface.
- the L-shaped potting case 4 has a shape in which a vertical portion 4A and a horizontal portion 4B are connected at a right angle, the vertical portion 4A covers the side surface of the battery block 3, and the horizontal portion 4B is a side portion on the bottom surface of the battery block 3.
- a vertical gap 4 ⁇ / b> A of the potting case 4 is provided with a filling gap 10 for filling the potting resin between the side surfaces of the battery block 3.
- the filling gap 10 is filled with potting resin, and a potting resin layer 9 is provided between the battery block 3 and the vertical portion 4 ⁇ / b> A of the potting case 4.
- the horizontal portion 4 ⁇ / b> B of the potting case 4 is in close contact with the bottom surface of the battery block 3 via the seal material 11 to prevent leakage of potting resin filled in the filling gap 10.
- the pair of potting cases 4 are connected to each other, the cooling surface 1X of the prismatic battery 1 is exposed between the horizontal portions 4B, and the cooling plate 21 is connected to the cooling surface 1X of the prismatic battery 1 in a thermally coupled state.
- An opening 4X is provided. 4 and 5, the heat conductive sheet 22 is disposed in the opening 4 ⁇ / b> X of the potting case 4, and the cooling plate 21 is fixed to the outer bottom surface of the horizontal portion 4 ⁇ / b> B of the potting case 4.
- the power supply device having this structure connects the cooling plate 21 to the cooling surface 1 ⁇ / b> X of the prismatic battery 1 in a thermally coupled state via the heat conductive sheet 22.
- the heat conductive sheet 22 is compressed and deformed between the prismatic battery 1 and the cooling plate 21, and is in close contact with the bottom surface of the prismatic battery 1 and the surface of the cooling plate 21 in a surface contact state.
- the thickness of the heat conductive sheet 22 in the uncompressed state is made slightly thicker than the thickness of the horizontal portion 4B of the potting case 4 so that the surface of the heat conductive sheet 22 is the cooling surface of the square battery 1. 1X and the surface of the cooling plate 21 can be adhered.
- the heat conductive sheet 22 is coated with an insulating heat conductive paste such as silicon oil on the surface thereof, so that the surface of the prismatic battery 1 and the surface of the cooling plate 21 are reliably and closely adhered to the surface contact state.
- a heat conductive paste is filled between the cooling surface of the prismatic battery and the surface of the cooling plate, and the cooling surface of the prismatic battery is connected to the cooling plate in a thermally coupled state via the heat conductive paste.
- the square battery can be connected to the surface of the cooling plate in a heat conductive state only with the heat conductive paste without necessarily using a heat conductive sheet.
- the above power supply device reliably and stably connects the cooling surface 1X of each rectangular battery 1 to the cooling plate 21 via the heat conductive sheet 22 or the heat conductive paste, so that each square battery 1 Cooling can be performed efficiently while reducing the temperature difference.
- the potting case 4 has a bind bar 6 fixed by insert molding protruding upward and downward.
- a part of the bind bar 6 that protrudes upward from the potting case 4 is a locking portion 6B that is bent in an L shape and locks the top cover 7, and is one of the bind bars 6 that protrude downward from the potting case 4.
- the part is a connecting piece 6 ⁇ / b> C that fixes the cooling plate 21.
- the L-shaped locking portion 6B bends the tip edge further downward and guides the tip edge to the guide groove 7B of the top cover 7.
- Sealing materials 12 and 13 are arranged between the top cover 7 and the locking portion 6B and between the top cover 7 and the battery block 3 to close the filling gap 10 filled with the potting resin.
- the sealing material 12 between the top cover 7 and the locking portion 6B is disposed between both side surfaces of the top cover 7 and the inside of the locking portion 6B, and the sealing material 13 between the top cover 7 and the battery block 3 is disposed.
- the power supply device that seals the filling gap 10 with the sealing materials 11, 12, 13 can prevent condensation on the surface of the battery block 3 by using the potting resin layer 9 as a close contact structure.
- the top cover 7 includes a circuit board (not shown) on which electronic components for realizing a protection circuit for the prismatic battery 1 are mounted.
- the top cover 7 connects the electrode terminals 15 of each rectangular battery 1 to a protection circuit via lead wires (not shown).
- the battery protection circuit detects the voltage of the battery via the lead wire, and controls the charge / discharge current so as to prevent the battery from being overcharged or overdischarged or to prevent the battery temperature from rising.
- the connecting piece 6C of the bind bar 6 protruding downward from the potting case 4 connects the connecting tool 8 bent at both ends upward, and the connecting plate 8 fixes the cooling plate 21 to the bottom surface of the battery block 3.
- the connection tool 8 is provided with a connection hole 8D in a bent portion 8C that is bent upward.
- the connecting piece 6C has a locking hook 6D that guides the connecting hole 8D and locks it so as not to come out of the connecting hole 8D.
- the connector 8 having this structure connects the bent portion 8C to the connecting piece 6C and fixes the cooling plate 21.
- the connecting tool 8 and the connecting piece 6 ⁇ / b> C have shapes and dimensions that allow the cooling plate 21 to be in close contact with the bottom surface of the potting case 4.
- This structure can be fixed in place so that the cooling plate 21 is not easily detached.
- you can fix the cooling plate to a fixed position by screwing the connector to the potting case or bind bar, and fix the cooling plate to the potting case or bind bar with a set screw. You can also
- a potting case 4 is provided outside the potting resin layer 9, and a cooling plate 21 is disposed outside the potting case 4. The exposed portion 9X for exposing the cooling surface 1X of the prismatic battery 1 to the potting resin layer 9 so that the cooling plate 21 arranged outside the potting case 4 is connected to the cooling surface 1X of the prismatic battery 1 in a thermally coupled state.
- the potting case 4 is provided with an opening 4X that exposes the cooling surface 1X of the prismatic battery 1.
- the cooling plate 21 disposed outside the potting case 4 is placed on the cooling surface 1X of the prismatic battery 1 through the opening 4X of the potting case 4 and the heat conductive sheet 22 disposed in the exposed portion 9X of the potting resin layer 9. It is connected to the thermal bond state.
- the above power supply device can cool the battery quickly and efficiently by the cooling plate 21 while securely holding the battery block 3 in place by both the potting case 4 and the potting resin layer 9.
- the potting resin layer 9 is provided by filling the filling gap 10 between the inner surface of the potting case 4 and the side surface of the battery block 3 with the potting resin.
- the thickness of the potting resin layer 9 is 0.5 mm to 10 mm.
- the potting resin is pasty or liquid in an uncured state, is filled in the filling gap 10, is cured here, and is fixed to the outer peripheral surface of the battery block 3.
- the potting resin can be filled into the filling gap 10 in an uncured state, and an insulating resin such as polyurethane, polyvinyl acetate, butyl rubber or the like can be used.
- the potting resin can be filled with heat conductive powder or heat conductive fiber having excellent heat conduction characteristics to improve the heat dissipation characteristics of the battery.
- alumina, glass beads, zinc oxide particles or the like can be used as the heat conductive powder, and glass fibers or the like can be used as the heat conductive fiber.
- the potting resin layer 9 does not cover the entire outer peripheral surface of the battery block 3.
- the potting resin layer 9 is provided with an exposed portion 9X that exposes the cooling surface 1X of the prismatic battery 1.
- a heat conductive sheet 22 is disposed in the exposed portion 9X, and the cooling surface 1X of the prismatic battery 1 is connected to the cooling plate 21 in a thermally coupled state in the exposed portion 9X.
- 1 to 5 has a cooling surface 1X of the prismatic battery 1 as a bottom surface.
- the cooling surface of the prismatic battery can be used as a side surface, and a cooling plate can be connected to the side surface in a thermally coupled state.
- the cooling plate 21 is provided with a refrigerant path 23 for circulating the refrigerant therein.
- the refrigerant path 23 is supplied with a refrigerant such as Freon or carbon dioxide in a liquid state, vaporizes the refrigerant therein, and cools the cooling plate 21 with heat of vaporization.
- the cooling plate 21 connects the refrigerant path 23 to the cooling mechanism 20.
- the cooling mechanism 20 includes a compressor 26 that pressurizes the gaseous refrigerant vaporized in the refrigerant path 23, a cooling heat exchanger 27 that cools and liquefies the refrigerant compressed by the compressor 26, and the cooling heat exchanger 27. And an expansion valve 28 for supplying the refrigerant liquefied in the refrigerant path 23.
- the liquid refrigerant supplied through the expansion valve 28 is vaporized in the refrigerant path 23 in the cooling plate 21, cools the cooling plate 21 with heat of vaporization, and is discharged to the cooling mechanism 20. Therefore, the refrigerant circulates through the refrigerant path 23 of the cooling plate 21 and the cooling mechanism 20 to cool the cooling plate 21.
- the cooling mechanism 20 cools the cooling plate 21 to a low temperature with the heat of vaporization of the refrigerant, but the cooling plate can also be cooled regardless of the heat of vaporization.
- the cooling plate supplies a refrigerant such as brine cooled to a low temperature to the refrigerant path, and cools the cooling plate directly with the low-temperature refrigerant instead of the heat of vaporization of the refrigerant.
- the cooling mechanism 20 controls the cooling state of the cooling plate 21 with a temperature sensor (not shown) that detects the temperature of the prismatic battery 1. That is, when the temperature of the prismatic battery 1 becomes higher than the preset cooling start temperature, the coolant is supplied to the cooling plate 21 for cooling, and when the prismatic battery 1 becomes lower than the cooling stop temperature, The supply of the refrigerant is stopped, and the rectangular battery 1 is controlled to a preset temperature range.
- the above power supply apparatus is assembled in the following steps. (1) A plurality of rectangular batteries 1 and insulating separators 2 are alternately stacked to form a battery block 3. A top cover 7 is arranged on the upper surface of the battery block 3 in which a plurality of prismatic batteries 1 are stacked, and a circuit board (not shown) mounted on the top cover 7 is respectively connected via a lead wire (not shown). Connected to the electrode terminal 15 of the rectangular battery 1.
- the end plates 5 are arranged at both ends of the battery block 3, the pair of end plates 5 are connected to the potting case 4 by a bind bar 6 that is insert-molded, and the top cover 7 is attached to the upper surface of the battery block 3. Secure with the bind bar 6.
- the seal material 13 is disposed between the top cover 7 and the upper surface of the battery block 3
- the seal material 12 is disposed between the top cover 7 and the bind bar 6.
- a sealing material 11 is also disposed between both sides of the bottom surface of the battery block 3 and the bottom surface inside the potting case 4 to seal the filling gap 10 provided between the top cover 7 and the battery block 3.
- the sealed filling gap 10 is provided so that a filling opening (not shown) for filling the potting resin is connected to the upper surface of the filling gap 10. The filling opening is closed after filling with the potting resin.
- the filling gap 10 is filled with uncured liquid or pasty potting resin from the filling opening.
- the potting resin is filled between the potting case 4 and the battery block 3 without any gap and cured.
- the potting resin to be cured becomes a potting resin layer 9 and is in close contact with each square battery 1 and further in close contact with the inner surface of the potting case 4 to fix each square battery 1 to the potting case 4.
- the heat conductive sheet 22 is disposed in the opening 4 ⁇ / b> X of the potting case 4.
- the cooling plate 21 is disposed on the bottom surface of the horizontal portion 4B of the potting case 4 so that the heat conductive sheet 22 is sandwiched between the bottom surface which is the cooling surface 1X of the rectangular battery 1 and the cooling plate 21.
- the connecting tool 8 is arranged on the lower surface of the cooling plate 21, and the bent portions 8C at both ends of the connecting tool 8 are connected to the connecting pieces 6C of the bind bar 6, The cooling plate 21 is fixed by the connector 8.
- the bind bar 6 is disposed outside the potting case 34 without insert-molding the bind bar 6 into the potting case.
- the bind bar 6 is provided with a locking portion 6B for locking the top cover 7 at the upper end in the same manner as the bind bar 6 of the power supply device shown in FIGS.
- a connecting piece 6C for fixing the plate 21 is provided at the lower end.
- the potting case 34 is provided with a notch 34a for providing an opening 34X on the bottom surface after filling the potting resin with the battery block 3 and curing it. .
- the cuts 34 a are provided in two rows along both sides of the bottom surface of the prismatic battery 1.
- the potting case 34 is a groove type that opens at both ends, and the inner shape of the groove type can be inserted into the battery block 3, and the potting resin is placed between the battery block 3 and the battery block 3. The shape is such that a filling gap 10 is formed.
- the potting resin layer 9 is provided on both sides of the battery block 3, and then the notch 34a of the potting case 34 is cut off as shown by the arrows in FIG. A portion 34X is provided, the heat conductive sheet 22 is disposed in the opening 34X, and the cooling plate 21 is fixed so as to sandwich the heat conductive sheet 22 outside.
- the cooling plate 21 is connected to the cooling surface 1X on the bottom surface of the rectangular battery 1 in a thermally coupled state, and the potting resin layers 9 are provided on both side surfaces which are part of the outer peripheral surface of the battery block 3.
- the potting resin layer 9 has an exposed portion 9X that exposes the cooling surface 1X of the prismatic battery 1, and a heat conductive sheet 22 is disposed on the exposed portion 9X so that the cooling surface 1X of the prismatic battery 1 is heated to the cooling plate 21. Linked to a combined state.
- This power supply device is assembled as follows. (1) A plurality of rectangular batteries 1 and insulating separators 2 are alternately stacked to form a battery block 3. A top cover 7 is arranged on the upper surface of the battery block 3 in which a plurality of prismatic batteries 1 are stacked, and a circuit board (not shown) mounted on the top cover 7 is respectively connected via a lead wire (not shown). Connected to the electrode terminal 15 of the rectangular battery 1.
- the battery block 3 is put in a potting case 34, end plates 5 are arranged at both ends of the potting case 34, the pair of end plates 5 are connected by a bind bar 6, and the top cover 7 Is fixed to the upper surface with the bind bar 6.
- the sealing material 11 is arranged between the inside of the bottom surface of the potting case 34 and both sides of the bottom surface of the battery block 3.
- the sealing material 13 is also disposed between the top cover 7 and the battery block 3, and the upper and lower portions of the filling gap 10 are sealed with the sealing materials 11 and 13.
- the sealed filling gap 10 is provided so that a filling opening (not shown) for filling the potting resin is connected to the upper surface of the filling gap 10. The filling opening is closed after filling with the potting resin.
- the filling gap 10 is filled with uncured liquid or pasty potting resin from the filling opening.
- the potting resin is filled between the potting case 34 and the battery block 3 without a gap and is cured.
- the potting resin to be cured becomes the potting resin layer 9 and is in close contact with each square battery 1 and is also in close contact with the inner surface of the potting case 34 to fix each square battery 1 to the potting case 34.
- the notch 34 a provided on the bottom surface of the potting case 34 is cut with a jig to remove the center portion 34 ⁇ / b> C of the bottom surface, and an opening 34 ⁇ / b> X is provided on the bottom surface of the potting case 34. .
- the heat conductive sheet 22 is disposed in the opening 4 ⁇ / b> X of the potting case 34.
- the cooling plate 21 is disposed outside the horizontal portion 34B of the potting case 34 so that the heat conductive sheet 22 is sandwiched between the cooling plate 1 and the bottom surface which is the cooling surface 1X of the square battery 1.
- the connecting tool 8 is arranged on the lower surface of the cooling plate 21, and the bent portions 8 ⁇ / b> C at both ends of the connecting tool 8 are connected to the connecting pieces 6 ⁇ / b> C of the bind bar 6.
- the cooling plate 21 is fixed with the tool 8.
- the power supply device shown in FIG. 12 uses the potting case 44 only for providing the potting resin layer 9, and after the potting resin layer 9 is provided, the potting case 44 is removed from the battery block 3 and the battery is bound by the bind bar 6. Block 3 is fixed.
- the bind bar 6 is also provided with a locking portion 6B for locking the top cover 7 at the upper end in the same manner as the bind bar 6 of the power supply device shown in FIGS.
- a connecting piece 6C for fixing the plate 21 is provided at the lower end.
- the potting case 44 is a groove type that opens at both ends.
- the inner shape of the groove type can be inserted into the battery block 3, and the battery block 3 is inserted into the battery block 3.
- the filling gap 10 for the potting resin is formed between both side surfaces. Openings at both ends of the potting case 44 are closed by the end plate 5. Accordingly, the outer shape of the end plate 5 is equal to the inner shape of the potting case 44, and the end plate 5 is disposed in the opening portions at both ends of the potting case 44 to close both ends of the potting case 44.
- This power supply device is assembled as follows. (1) As shown in FIG. 13 and FIG. 14, a heat conductive sheet 22 is laid on the bottom surface of a potting case 44 with a release agent 40 applied to the inner surface, and a plurality of rectangular batteries 1 are placed on the heat conductive sheet 22. The battery block 3 in which the separators 2 and the insulating separators 2 are alternately stacked is placed on the inside of the potting case 44. The end plates 5 are disposed at both ends of the potting case 44, and the end plates 5 are compressed from the outside by a press mechanism (not shown) to a predetermined size.
- the battery block 3 is held in a compressed state, and a circuit board (not shown) of the top cover 7 is connected to the electrode terminal 15 of each rectangular battery 1 via a lead wire (not shown).
- a top cover 7 is set on the upper surface of the battery block 3.
- the sealing material 11 is sandwiched between both sides of the lower surface of the top cover 7 and both sides of the upper surface of the battery block 3.
- the sealing material 11 closes the upper surface of the filling gap 10 provided between the potting case 4 and the battery block 3.
- the top-filled filling gap 10 is provided so that a filling opening (not shown) for filling the potting resin is connected to the top face of the filling gap 10. The filling opening is closed after filling with the potting resin.
- the filling gap 10 is filled with uncured liquid or pasty potting resin from the filling opening.
- the potting resin is filled between the potting case 44 and the battery block 3 without any gap and is cured.
- the potting resin to be cured becomes the potting resin layer 9 and is in close contact with each square battery 1. Since the release agent 40 is applied to the inner surface of the potting case 44, the cured potting resin layer 9 is not in close contact with the potting case 44.
- the battery block 3 is held in a compressed state by the end plate 5 and the potting case 44 is removed.
- the potting resin layer 9 is provided on both sides of the battery block 3, and the bottom surface of the battery block 3 is in a state where the heat conductive sheet 22 is in close contact with the exposed portion 9 ⁇ / b> X of the potting resin layer 9.
- both ends of the bind bar 6 are fixed to the pair of end plates 5. Further, the cooling plate 21 is fixed so as to be in close contact with the heat conductive sheet 22 in close contact with the bottom surface of the battery block 3, that is, the bottom surface that is the cooling surface 1 ⁇ / b> X of the rectangular battery 1.
- the cooling plate 21 is fixed to the bind bar 6 via the connector 8.
- the connector 8 is on the lower surface of the cooling plate 21, and both ends thereof are connected to the bind bar 6 to fix the cooling plate 21. Thereafter, the press mechanism (not shown) that has pressed the end plate 5 is removed.
- the above power supply device has a feature that it is light and compact because the outer surface of the battery block 3 is covered with the potting resin layer 9 and the potting case 4 is not provided.
- the above power supply devices can be used as in-vehicle power supplies.
- a vehicle equipped with a power supply device an electric vehicle such as a hybrid vehicle or a plug-in hybrid vehicle that runs with both an engine and a motor, or an electric vehicle that runs only with a motor can be used, and is used as a power source for these vehicles. .
- FIG. 15 shows an example in which a power supply device is mounted on a hybrid vehicle that runs with both an engine and a motor.
- a vehicle HV equipped with the power supply device 90 shown in this figure includes an engine 96 for traveling the vehicle HV and a motor 93 for traveling, a power supply device 90 for supplying power to the motor 93, and power generation for charging a battery of the power supply device 90.
- the power supply device 90 is connected to the motor 93 and the generator 94 via the DC / AC inverter 95.
- the vehicle HV travels by both the motor 93 and the engine 96 while charging / discharging the battery of the power supply device 90.
- the motor 93 is driven to drive the vehicle when the engine efficiency is low, for example, during acceleration or low-speed driving.
- the motor 93 is driven by power supplied from the power supply device 90.
- the generator 94 is driven by the engine 96 or is driven by regenerative braking when the vehicle is braked, and charges the battery of the power supply device 90.
- FIG. 16 shows an example in which a power supply device is mounted on an electric vehicle that runs only with a motor.
- a vehicle EV equipped with the power supply device 90 shown in this figure includes a motor 93 for traveling the vehicle EV, a power supply device 90 that supplies power to the motor 93, and a generator that charges the battery of the power supply device 90. 94.
- the power supply device 90 is connected to the motor 93 and the generator 94 via the DC / AC inverter 95.
- the motor 93 is driven by power supplied from the power supply device 90.
- the generator 94 is driven by energy when regeneratively braking the vehicle EV, and charges the battery of the power supply device 90.
- this power supply apparatus can be used not only as a power source for a moving body but also as a stationary power storage facility.
- a power source for home and factory use a power supply system that is charged with sunlight or midnight power and discharged when necessary, or a streetlight power supply that charges sunlight during the day and discharges at night, or during a power outage It can also be used as a backup power source for driving signals.
- FIG. The power supply device 80 shown in this figure forms a battery unit 82 by connecting a plurality of battery packs 81 in a unit shape. In each battery pack 81, a plurality of rectangular batteries 1 are connected in series and / or in parallel.
- Each battery pack 81 is controlled by a power controller 84.
- the power supply device 80 drives the load LD after charging the battery unit 82 with the charging power supply CP. For this reason, the power supply device 80 has a charge mode and a discharge mode.
- the load LD and the charging power source CP are connected to the power supply device 80 via the discharging switch DS and the charging switch CS, respectively.
- ON / OFF of the discharge switch DS and the charge switch CS is switched by the power supply controller 84 of the power supply device 80.
- the power controller 84 switches the charging switch CS to ON and the discharging switch DS to OFF to permit charging from the charging power supply CP to the power supply device 80.
- the power controller 84 turns off the charging switch CS and turns on the discharging switch DS to discharge.
- the mode is switched to permit discharge from the power supply device 80 to the load LD.
- the charge switch CS can be turned on and the discharge switch DS can be turned on to supply power to the load LD and charge the power supply device 80 at the same time.
- the load LD driven by the power supply device 80 is connected to the power supply device 80 via the discharge switch DS.
- the power supply controller 84 switches the discharge switch DS to ON, connects to the load LD, and drives the load LD with the power from the power supply device 80.
- the discharge switch DS a switching element such as an FET can be used. ON / OFF of the discharge switch DS is controlled by the power supply controller 84 of the power supply device 80.
- the power controller 84 also includes a communication interface for communicating with external devices. In the example of FIG. 17, it is connected to the host device HT according to an existing communication protocol such as UART or RS-232C. Further, if necessary, a user interface for the user to operate the power supply system can be provided.
- Each battery pack 81 includes a signal terminal and a power supply terminal.
- the signal terminals include a pack input / output terminal DI, a pack abnormality output terminal DA, and a pack connection terminal DO.
- the pack input / output terminal DI is a terminal for inputting / outputting signals from other pack batteries and the power supply controller 84
- the pack connection terminal DO is for inputting / outputting signals to / from other pack batteries which are child packs.
- the pack abnormality output terminal DA is a terminal for outputting the abnormality of the battery pack to the outside.
- the power supply terminal is a terminal for connecting the battery packs 81 in series and in parallel.
- the battery units 82 are connected to the output line OL via the parallel connection switch 85 and are connected in parallel to each other.
- the power supply device can be suitably used as a power supply device for a plug-in hybrid electric vehicle, a hybrid electric vehicle, an electric vehicle or the like that can switch between the EV traveling mode and the HEV traveling mode.
- a backup power supply device that can be mounted on a rack of a computer server, a backup power supply device for a wireless base station such as a mobile phone, a power storage device for home use and a factory, a power supply for a street light, etc.
- it can be used as appropriate for applications such as a backup power source such as a traffic light.
- Electrode terminal 16 ... Insulating material 17 ... Safety valve 18 ... Opening 19 ... Set screw 20 ... Cooling mechanism 21 ... Cooling plate 22 ... Heat Conductive sheet 23 ... Refrigerant path 26 ... Compressor 27 ... Cooling heat exchanger 28 ... Expansion valve 34 ... Potting case 34a ... Notch 34B ... Horizontal part 34C ... Central part 34X ... Opening part 40 ... Release agent 44 ... Potting case 80 ... Power supply Device 81 ... Battery pack 82 ... Battery unit 84 ... Power supply controller 85 ... Parallel connection switch 90 ... Power supply device 93 ... Motor 94 ... Generator 95 ... DC / AC inverter 96 ... Engine EV, HV ... Vehicle LD ...
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Mechanical Engineering (AREA)
- Transportation (AREA)
- Aviation & Aerospace Engineering (AREA)
- Life Sciences & Earth Sciences (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Power Engineering (AREA)
- Combustion & Propulsion (AREA)
- Secondary Cells (AREA)
- Battery Mounting, Suspending (AREA)
Abstract
[Problem] To reliably fix respective rectangular-shaped batteries in stable fashion while cooling the rectangular-shaped batteries rapidly and efficiently. [Means for solution] A power source device for supplying power comprises: a battery block (3) in which a plurality of rectangular-shaped batteries (1) are arranged in stacked fashion; a cooling plate (21) at the surface of this battery block (3), arranged in a condition thermally coupled with the respective rectangular-shaped batteries (1) and that forcibly cools each of these rectangular batteries (1) from the bottom face thereof; and a cooling mechanism (20) that cools this cooling plate (21). In this power source device, the cooling plate (21) is linked in a thermally coupled condition with cooling faces (1X) constituting bottom faces or side faces of the rectangular-shaped batteries (1) and a potting resin layer (9) is provided at the outer circumferential face of the battery block (3); in addition, this potting resin layer (9) has an exposed section (9X) whereby the cooling faces (1X) of the rectangular-shaped batteries (1) are exposed and the cooling faces (1X) of the rectangular-shaped batteries (1) are connected in thermally coupled fashion with the cooling plate (21) at this exposed section (9X).
Description
本発明は、主として、ハイブリッド自動車、燃料電池自動車、電気自動車等の自動車を駆動するモータの電源用に使用され、あるいは太陽電池の電力を蓄える電源として使用される電源装置及びこのような電源装置を備える車両に関する。
The present invention is mainly used for a power source of a motor for driving a vehicle such as a hybrid vehicle, a fuel cell vehicle, and an electric vehicle, or used as a power source for storing power of a solar cell, and such a power source device. It relates to a vehicle provided.
自動車を走行させるモータを駆動する電源装置や太陽電池で充電されて夜間に電力を供給し、あるいは昼間の電力需要の大きいときに電力を供給する電源装置は、大きな出力が要求される。この電源装置は、複数の電池を直列に接続して出力電圧を高くしている。この種の用途に使用される電源装置として、複数の薄型ラミネート電池をケースに収納して、ケース内の空間にポッティング樹脂を充填している電源装置が開発されている。(特許文献1参照)
A power supply device that drives a motor that drives an automobile or a power supply device that is charged by a solar cell and supplies power at night, or that supplies power when there is a large demand for power in the daytime, requires a large output. In this power supply device, a plurality of batteries are connected in series to increase the output voltage. As a power supply device used for this type of application, a power supply device has been developed in which a plurality of thin laminated batteries are housed in a case and a space in the case is filled with potting resin. (See Patent Document 1)
この電源装置は、薄型ラミネート電池をポッティング樹脂に埋設することで、耐振動性や耐衝撃性を向上できる。しかしながら、この電源装置は、薄型ラミネート電池の発熱を速やかに放熱できない欠点がある。薄型ラミネート電池の発熱がポッティング樹脂を介して外部に放熱されるからである。電力用の電源装置は、充放電の電流が大きい状態での発熱量が大きく、この状態で電池の温度が上昇すると電池が急激に劣化したり、安全性が確保できない等、種々の弊害の原因となる。とくに、車両のモータに電力を供給する電源装置は、車を急加速するときに極めて大きな電流で放電され、あるいは急ブレーキの回生制動時には大きな電流で充電され、さらに長い坂道をブレーキをかけながら下るときには、連続して充電されて、発熱量が極めて大きくなる。この状態で効率よく放熱できない電池は、温度が異常に高くなって劣化が甚だしく、さらに安全に使用できなくなる弊害も発生する。
This power supply can improve vibration resistance and impact resistance by embedding a thin laminated battery in potting resin. However, this power supply device has a drawback that the heat generated by the thin laminated battery cannot be quickly dissipated. This is because the heat generated by the thin laminate battery is radiated to the outside through the potting resin. Power supply devices for electric power generate a large amount of heat when charging / discharging current is large, and if the temperature of the battery rises in this state, the battery deteriorates rapidly, and safety can not be secured. It becomes. In particular, a power supply device that supplies power to a motor of a vehicle is discharged with a very large current when the vehicle is suddenly accelerated, or is charged with a large current during regenerative braking of a sudden brake, and goes down while braking a longer slope. Sometimes it is continuously charged and the amount of heat generation becomes extremely large. A battery that cannot efficiently dissipate heat in this state has an abnormally high temperature and is highly deteriorated.
この弊害を防止できる電源装置として、金属外装缶の角形電池を積層して電池ブロックとし、この電池ブロックの底面に冷却プレートを熱結合して冷却する構造が開発されている。(特許文献2参照)
As a power supply device that can prevent this harmful effect, a structure has been developed in which a rectangular battery of metal outer cans is laminated to form a battery block, and a cooling plate is thermally coupled to the bottom of the battery block to cool it. (See Patent Document 2)
この電源装置は、冷媒の気化熱で冷却プレートを冷却して、冷却プレートを低い温度に冷却する。低温に冷却された冷却プレートは電池に接触されて、電池を底面から冷却する。この電源装置は、低温の冷却プレートで電池を直接に冷却するので、発熱量の大きい電池を速やかに効率よく冷却できる。この電源装置は、多数の角形電池を積層して、その両端からエンドプレートで挟着して固定して電池ブロックとするので、大きな角形電池を多数に積層して強固に固定するのが難しい。また、角形電池を多数に積層する場合、電池の位置ズレが発生して冷却プレートとの接触状態にバラツキが発生しやすいため、冷却性能が悪くなる欠点がある。これらの欠点は、特許文献1に記載されるように、電池ブロックをケースに収納して、ケースと電池ブロックとの間にポッティング樹脂を充填することで解消できる。この電源装置は、電池を冷却するためにケースの外側に冷却プレートを連結する。ところが、この構造の電源装置は、冷却プレートがケースとポッティング樹脂とを介して電池を冷却するので、発熱量の大きい電池を速やかに効率よく冷却できない欠点がある。
This power supply cools the cooling plate with the heat of vaporization of the refrigerant to cool the cooling plate to a low temperature. The cooling plate cooled to a low temperature is brought into contact with the battery to cool the battery from the bottom surface. Since the power supply device directly cools the battery with the low-temperature cooling plate, the battery having a large calorific value can be quickly and efficiently cooled. In this power supply device, a large number of rectangular batteries are stacked and sandwiched and fixed from both ends by end plates to form a battery block. Therefore, it is difficult to stack a large number of large rectangular batteries and firmly fix them. Further, when a large number of prismatic batteries are stacked, there is a drawback that the cooling performance is deteriorated because the positional deviation of the batteries occurs and the contact state with the cooling plate is likely to occur. These disadvantages can be solved by storing the battery block in a case and filling a potting resin between the case and the battery block, as described in Patent Document 1. This power supply device connects a cooling plate to the outside of the case in order to cool the battery. However, the power supply device with this structure has a drawback that a battery with a large amount of heat cannot be quickly and efficiently cooled because the cooling plate cools the battery via the case and the potting resin.
本発明は、さらに以上の欠点を解決することを目的に開発されたもので、本発明の重要な目的は、角形電池を速やかに効率よく冷却しながら、各々の角形電池を安定して確実に固定できる電力用の電源装置及びこの電源装置を備える車両を提供することにある。
The present invention was developed for the purpose of solving the above-described drawbacks. An important object of the present invention is to stably and reliably each prismatic battery while quickly and efficiently cooling the prismatic battery. An object of the present invention is to provide a power supply device for electric power that can be fixed and a vehicle including the power supply device.
本発明の電力用の電源装置は、複数の角形電池1を積層状態で配置してなる電池ブロック3と、この電池ブロック3の表面にあって、各々の角形電池1に熱結合状態に配置されて、各角形電池1を底面から強制的に冷却する冷却プレート21と、この冷却プレート21を冷却する冷却機構20とを備えている。電源装置は、冷却プレート21を、角形電池1の底面又は側面である冷却面1Xに熱結合状態に連結すると共に、電池ブロック3の外周面にはポッティング樹脂層9を設けており、さらにポッティング樹脂層9は、角形電池1の冷却面1Xを露出させる露出部9Xを有し、この露出部9Xにおいて角形電池1の冷却面1Xを冷却プレート21に熱結合状態に連結している。
The power supply device for electric power according to the present invention includes a battery block 3 in which a plurality of rectangular batteries 1 are arranged in a stacked state, and is disposed on the surface of the battery block 3 and is thermally coupled to each rectangular battery 1. In addition, a cooling plate 21 that forcibly cools each rectangular battery 1 from the bottom surface and a cooling mechanism 20 that cools the cooling plate 21 are provided. The power supply device connects the cooling plate 21 to the cooling surface 1X that is the bottom surface or the side surface of the prismatic battery 1 in a thermally coupled state, and the potting resin layer 9 is provided on the outer peripheral surface of the battery block 3, and the potting resin The layer 9 has an exposed portion 9X that exposes the cooling surface 1X of the prismatic battery 1, and the cooling surface 1X of the prismatic battery 1 is connected to the cooling plate 21 in a thermally coupled state at the exposed portion 9X.
以上の電力用の電源装置は、電池ブロックの表面に設けているポッティング樹脂層で角形電池を定位置に強固に固定しながら、電池ブロックを構成する角形電池を効率よく速やかに冷却できる特徴がある。それは、電池ブロックの表面にポッティング樹脂層を設けて角形電池を固定するが、このポッティング樹脂層には露出部を設けており、この露出部で角形電池の冷却面を冷却プレートに熱結合状態に連結しているからである。
The power supply apparatus for power described above is characterized in that the prismatic battery constituting the battery block can be efficiently and quickly cooled while firmly fixing the prismatic battery in place with a potting resin layer provided on the surface of the battery block. . This is because a potting resin layer is provided on the surface of the battery block to fix the square battery, and this potting resin layer has an exposed portion, and the cooling surface of the square battery is thermally coupled to the cooling plate by this exposed portion. This is because they are connected.
本発明の電力用の電源装置は、角形電池1の冷却面1Xを電池ブロック3の底面として、角形電池1の両側面をポッティング樹脂層9でコーティングすることができる。
以上の電源装置は、冷却プレートの上に電池ブロックが配置されるので、電池ブロックの自重で角形電池の冷却面を冷却プレートに密着できる。このため、角形電池の冷却面が安定して確実に冷却プレートに熱結合状態に連結される。とくに、自重で角形電池の冷却面が冷却プレートに押圧状態で密着されるので、長期間にわたって角形電池の冷却面を冷却プレートに熱結合状態に保持できる。このため、角形電池が速やかに効率よく冷却され、しかもこの状態が安定して長期間保持される特徴がある。 The power supply device for electric power of the present invention can coat the both sides of theprismatic battery 1 with the potting resin layer 9 with the cooling surface 1X of the prismatic battery 1 as the bottom surface of the battery block 3.
Since the battery block is arranged on the cooling plate in the above power supply device, the cooling surface of the rectangular battery can be brought into close contact with the cooling plate by its own weight. For this reason, the cooling surface of the prismatic battery is stably and reliably connected to the cooling plate in a thermally coupled state. In particular, the cooling surface of the prismatic battery is brought into close contact with the cooling plate by its own weight, so that the cooling surface of the prismatic battery can be held in a thermally coupled state with the cooling plate for a long period of time. For this reason, there is a feature that the prismatic battery is quickly and efficiently cooled, and this state is stably maintained for a long time.
以上の電源装置は、冷却プレートの上に電池ブロックが配置されるので、電池ブロックの自重で角形電池の冷却面を冷却プレートに密着できる。このため、角形電池の冷却面が安定して確実に冷却プレートに熱結合状態に連結される。とくに、自重で角形電池の冷却面が冷却プレートに押圧状態で密着されるので、長期間にわたって角形電池の冷却面を冷却プレートに熱結合状態に保持できる。このため、角形電池が速やかに効率よく冷却され、しかもこの状態が安定して長期間保持される特徴がある。 The power supply device for electric power of the present invention can coat the both sides of the
Since the battery block is arranged on the cooling plate in the above power supply device, the cooling surface of the rectangular battery can be brought into close contact with the cooling plate by its own weight. For this reason, the cooling surface of the prismatic battery is stably and reliably connected to the cooling plate in a thermally coupled state. In particular, the cooling surface of the prismatic battery is brought into close contact with the cooling plate by its own weight, so that the cooling surface of the prismatic battery can be held in a thermally coupled state with the cooling plate for a long period of time. For this reason, there is a feature that the prismatic battery is quickly and efficiently cooled, and this state is stably maintained for a long time.
本発明の電力用の電源装置は、電池ブロック3が、互いに積層してなる複数の角形電池1を両側から一対のエンドプレート5で積層方向に挟着しており、さらに、一対のエンドプレート5をバインドバー6で連結して、一対のエンドプレート5でもって複数の角形電池1を積層状態に固定することができる。
In the power supply apparatus for electric power according to the present invention, a plurality of rectangular batteries 1 in which battery blocks 3 are stacked on each other are sandwiched by a pair of end plates 5 from both sides in the stacking direction. Are connected by a bind bar 6, and a plurality of prismatic batteries 1 can be fixed in a stacked state by a pair of end plates 5.
本発明の電力用の電源装置は、電池ブロック3の両側をカバーするポッティングケース4、34、44を備え、このポッティングケース4、34、44と電池ブロック3との間にポッティング樹脂を充填してポッティング樹脂層9を設けることができる。
以上の電源装置は、ポッティングケースと電池ブロックとの間にポッティング樹脂を充填して、電池ブロックをポッティング樹脂層とポッティングケースとで固定するので、より強固に角形電池を定位置に固定できる。 The power supply device for electric power according to the present invention includes potting cases 4, 34, 44 that cover both sides of the battery block 3, and a potting resin is filled between the potting cases 4, 34, 44 and the battery block 3. A potting resin layer 9 can be provided.
In the above power supply device, potting resin is filled between the potting case and the battery block, and the battery block is fixed by the potting resin layer and the potting case, so that the square battery can be fixed more firmly in place.
以上の電源装置は、ポッティングケースと電池ブロックとの間にポッティング樹脂を充填して、電池ブロックをポッティング樹脂層とポッティングケースとで固定するので、より強固に角形電池を定位置に固定できる。 The power supply device for electric power according to the present invention includes
In the above power supply device, potting resin is filled between the potting case and the battery block, and the battery block is fixed by the potting resin layer and the potting case, so that the square battery can be fixed more firmly in place.
本発明の電力用の電源装置は、ポッティングケース4、34が、角形電池1の冷却面1Xを外部に露出させる開口部4X、34Xを有し、この開口部4X、34Xにおいて角形電池1の冷却面1Xを冷却プレート21に熱結合状態に連結することができる。
以上の電源装置は、ポッティング樹脂層の露出部にポッティングケースの開口部を設けて、ここに冷却プレートを配置するので、電池ブロックをポッティングケースとポッティング樹脂層で定位置に確実に保持しながら、冷却プレートで電池を速やかに効率よく冷却できる。 In the power supply apparatus for electric power of the present invention, the potting cases 4 and 34 have openings 4X and 34X that expose the cooling surface 1X of the prismatic battery 1 to the outside, and the prismatic battery 1 is cooled in the openings 4X and 34X. The surface 1X can be connected to the cooling plate 21 in a thermally coupled state.
In the above power supply device, the opening of the potting case is provided in the exposed portion of the potting resin layer, and the cooling plate is disposed here, so that the battery block is securely held in place by the potting case and the potting resin layer. The cooling plate can cool the battery quickly and efficiently.
以上の電源装置は、ポッティング樹脂層の露出部にポッティングケースの開口部を設けて、ここに冷却プレートを配置するので、電池ブロックをポッティングケースとポッティング樹脂層で定位置に確実に保持しながら、冷却プレートで電池を速やかに効率よく冷却できる。 In the power supply apparatus for electric power of the present invention, the
In the above power supply device, the opening of the potting case is provided in the exposed portion of the potting resin layer, and the cooling plate is disposed here, so that the battery block is securely held in place by the potting case and the potting resin layer. The cooling plate can cool the battery quickly and efficiently.
本発明の電力用の電源装置は、ポッティングケース4、34の開口部4X、34Xの周縁において、ポッティングケース4、34と電池ブロック3との間をシール材11で密閉して、ポッティング樹脂層9を水密構造で電池ブロック3の表面に設けることができる。
以上の電源装置は、ポッティング樹脂層をシールすることで、ポッティング樹脂層で角形電池表面の結露を防止できる。 The power supply device for electric power according to the present invention seals the potting cases 4, 34 and the battery block 3 with the sealing material 11 at the periphery of the openings 4 X, 34 X of the potting cases 4, 34, and the potting resin layer 9. Can be provided on the surface of the battery block 3 in a watertight structure.
The above power supply device can prevent condensation on the surface of the rectangular battery by sealing the potting resin layer.
以上の電源装置は、ポッティング樹脂層をシールすることで、ポッティング樹脂層で角形電池表面の結露を防止できる。 The power supply device for electric power according to the present invention seals the
The above power supply device can prevent condensation on the surface of the rectangular battery by sealing the potting resin layer.
本発明の電力用の電源装置は、ポッティングケース4をプラスチック製として、バインドバー6をポッティングケース4にインサート成形して一体構造に固定することができる。
以上の電源装置は、バインドバーとポッティングケースとを一体構造とするので、組み立て効率を各段に向上して、電池ブロックを強固に固定できる。 In the power supply apparatus for electric power according to the present invention, thepotting case 4 is made of plastic, and the bind bar 6 can be insert-molded into the potting case 4 and fixed to an integral structure.
In the above power supply device, the bind bar and the potting case have an integral structure, so that the assembly efficiency can be improved at each stage and the battery block can be firmly fixed.
以上の電源装置は、バインドバーとポッティングケースとを一体構造とするので、組み立て効率を各段に向上して、電池ブロックを強固に固定できる。 In the power supply apparatus for electric power according to the present invention, the
In the above power supply device, the bind bar and the potting case have an integral structure, so that the assembly efficiency can be improved at each stage and the battery block can be firmly fixed.
本発明の電力用の電源装置は、冷却プレート21を電池ブロック3に固定する連結具8を備えて、この連結具8をバインドバー6に連結することができる。
以上の電源装置は、バインドバーに連結する連結具で冷却プレートを電池ブロックに固定するので、冷却プレートと電池ブロックとを熱結合状態に保持しながら確実に固定できる。 The power supply apparatus for electric power according to the present invention includes aconnector 8 that fixes the cooling plate 21 to the battery block 3, and can connect the connector 8 to the bind bar 6.
In the power supply device described above, the cooling plate is fixed to the battery block by the connecting tool connected to the bind bar, so that the cooling plate and the battery block can be reliably fixed while being held in a thermally coupled state.
以上の電源装置は、バインドバーに連結する連結具で冷却プレートを電池ブロックに固定するので、冷却プレートと電池ブロックとを熱結合状態に保持しながら確実に固定できる。 The power supply apparatus for electric power according to the present invention includes a
In the power supply device described above, the cooling plate is fixed to the battery block by the connecting tool connected to the bind bar, so that the cooling plate and the battery block can be reliably fixed while being held in a thermally coupled state.
本発明の電力用の電源装置は、電池ブロック3と冷却プレート21との間に熱伝導シート22を配置して、電池ブロック3の角形電池1を熱伝導シート22を介して冷却プレート21に熱結合状態に連結することができる。
以上の電源装置は、熱伝導シートを介して冷却プレートを各々の角形電池の冷却面に理想的な状態で熱結合状態に連結できる。 In the power supply device for electric power of the present invention, a heatconductive sheet 22 is disposed between the battery block 3 and the cooling plate 21, and the rectangular battery 1 of the battery block 3 is heated to the cooling plate 21 via the heat conductive sheet 22. It can be linked to a combined state.
In the above power supply device, the cooling plate can be connected to the cooling surface of each prismatic battery in an ideally coupled state via the heat conductive sheet.
以上の電源装置は、熱伝導シートを介して冷却プレートを各々の角形電池の冷却面に理想的な状態で熱結合状態に連結できる。 In the power supply device for electric power of the present invention, a heat
In the above power supply device, the cooling plate can be connected to the cooling surface of each prismatic battery in an ideally coupled state via the heat conductive sheet.
本発明の電力用の電源装置は、熱伝導シート22を圧縮されて変形するシートとすることができる。
以上の電源装置は、熱伝導シートを介して各々の角形電池を確実に安定して冷却プレートに熱結合状態に連結できる。このため、各々の角形電池を確実に温度差が少なくなるように冷却できる。 In the power supply device for electric power of the present invention, the heatconductive sheet 22 can be a sheet that is compressed and deformed.
The above power supply apparatus can connect each square battery to the cooling plate in a thermally coupled state reliably and stably through the heat conductive sheet. For this reason, each square battery can be cooled reliably so as to reduce the temperature difference.
以上の電源装置は、熱伝導シートを介して各々の角形電池を確実に安定して冷却プレートに熱結合状態に連結できる。このため、各々の角形電池を確実に温度差が少なくなるように冷却できる。 In the power supply device for electric power of the present invention, the heat
The above power supply apparatus can connect each square battery to the cooling plate in a thermally coupled state reliably and stably through the heat conductive sheet. For this reason, each square battery can be cooled reliably so as to reduce the temperature difference.
本発明の電力用の電源装置は、車両を走行させるモータに電力を供給する電源装置とすることができる。
以上の電源装置は、出力を大きくしてモータに大電力を供給する構造としながら、多数の角形電池を定位置に確実に固定して使用できる。とくに、車両の振動などによる角形電池や絶縁セパレータの位置ずれを防止しながら、長期間にわたって多数の角形電池を定位置に固定し、安定に使用できる特徴がある。 The power supply device for electric power of the present invention can be a power supply device that supplies electric power to a motor that drives a vehicle.
The power supply apparatus described above can be used with a large number of prismatic batteries securely fixed in place while having a structure in which the output is increased to supply a large amount of power to the motor. In particular, there is a feature that a large number of prismatic batteries can be fixed in place over a long period of time and can be used stably while preventing displacement of the prismatic batteries and insulating separator due to vehicle vibrations.
以上の電源装置は、出力を大きくしてモータに大電力を供給する構造としながら、多数の角形電池を定位置に確実に固定して使用できる。とくに、車両の振動などによる角形電池や絶縁セパレータの位置ずれを防止しながら、長期間にわたって多数の角形電池を定位置に固定し、安定に使用できる特徴がある。 The power supply device for electric power of the present invention can be a power supply device that supplies electric power to a motor that drives a vehicle.
The power supply apparatus described above can be used with a large number of prismatic batteries securely fixed in place while having a structure in which the output is increased to supply a large amount of power to the motor. In particular, there is a feature that a large number of prismatic batteries can be fixed in place over a long period of time and can be used stably while preventing displacement of the prismatic batteries and insulating separator due to vehicle vibrations.
本発明の電力用の電源装置は、太陽電池の電力で充電されて、太陽電池の発電電力を蓄える電源装置とすることができる。
以上の電源装置は、出力を大きくして太陽電池の大きな出力を充電できる構造としながら、多数の角形電池を定位置に確実に固定して使用できる。さらに、長期間にわたって多数の角形電池を安定して定位置に固定して使用できる特徴がある。 The power supply device for electric power of the present invention can be a power supply device that is charged with the electric power of the solar cell and stores the generated electric power of the solar cell.
The above power supply device can be used with a large number of prismatic batteries securely fixed in place while having a structure capable of increasing the output and charging the large output of the solar cell. Furthermore, there is a feature that a large number of prismatic batteries can be used stably in a fixed position over a long period of time.
以上の電源装置は、出力を大きくして太陽電池の大きな出力を充電できる構造としながら、多数の角形電池を定位置に確実に固定して使用できる。さらに、長期間にわたって多数の角形電池を安定して定位置に固定して使用できる特徴がある。 The power supply device for electric power of the present invention can be a power supply device that is charged with the electric power of the solar cell and stores the generated electric power of the solar cell.
The above power supply device can be used with a large number of prismatic batteries securely fixed in place while having a structure capable of increasing the output and charging the large output of the solar cell. Furthermore, there is a feature that a large number of prismatic batteries can be used stably in a fixed position over a long period of time.
本発明の車両は、以上のいずれかに記載の電源装置を備えることができる。
The vehicle of the present invention can include the power supply device described above.
以下、本発明の実施例を図面に基づいて説明する。ただし、以下に示す実施例は、本発明の技術思想を具体化するための電力用の電源装置及び電源装置を備える車両を例示するものであって、本発明は電源装置及び車両を以下のものに特定しない。さらに、この明細書は、特許請求の範囲を理解しやすいように、実施例に示される部材に対応する番号を、「特許請求の範囲」および「課題を解決するための手段の欄」に示される部材に付記している。ただ、特許請求の範囲に示される部材を、実施例の部材に特定するものでは決してない。
Hereinafter, embodiments of the present invention will be described with reference to the drawings. However, the embodiment described below exemplifies a power supply device for electric power and a vehicle including the power supply device for embodying the technical idea of the present invention, and the present invention includes the following power supply device and vehicle. Not specified. Further, in this specification, in order to facilitate understanding of the scope of claims, numbers corresponding to the members shown in the examples are indicated in the “claims” and “means for solving problems” sections. It is added to the members. However, the members shown in the claims are not limited to the members in the embodiments.
本発明の電力用の電源装置は、主として、ハイブリッドカーや電気自動車などの電動車両に搭載されて、車両の走行モータに電力を供給して、車両を走行させる電源装置に使用され、あるいは太陽電池の電力を蓄えて夜間や昼間のピーク電力時に出力する電源装置に使用される。
The power supply device for electric power according to the present invention is mainly used in a power supply device that is mounted on an electric vehicle such as a hybrid car or an electric vehicle, supplies electric power to a traveling motor of the vehicle, and travels the vehicle, or a solar battery. It is used for a power supply device that stores the electric power and outputs it at night or during daytime peak power.
図1ないし図5に示す電力用の電源装置は、外装缶1Aの表面が導電性を有する複数の角形電池1を絶縁セパレータ2で絶縁して積層状態で配置している電池ブロック3と、この電池ブロック3の両側面をカバーするポッティングケース4と、電池ブロック3の角形電池1を底面から冷却する冷却プレート21と、この冷却プレート21を冷却する冷却機構20とを備えている。
1 to 5 includes a battery block 3 in which a plurality of rectangular batteries 1 whose surface of an outer can 1A has conductivity are insulated by insulating separators 2 and arranged in a laminated state. A potting case 4 that covers both side surfaces of the battery block 3, a cooling plate 21 that cools the rectangular battery 1 of the battery block 3 from the bottom surface, and a cooling mechanism 20 that cools the cooling plate 21 are provided.
電池ブロック3は、積層している角形電池1を両端からエンドプレート5で挟着して、このエンドプレート5をバインドバー6で連結している。さらに、電池ブロック3は、上面にトップカバー7を配置して、トップカバー7をバインドバー6で電池ブロック3に固定している。
In the battery block 3, the stacked rectangular batteries 1 are sandwiched by end plates 5 from both ends, and the end plates 5 are connected by bind bars 6. Further, the battery block 3 has a top cover 7 disposed on the upper surface, and the top cover 7 is fixed to the battery block 3 with a bind bar 6.
角形電池1はリチウムイオン二次電池である。ただし、角形電池はリチウムイオン二次電池には特定されず、充電できる全ての電池、たとえばニッケル水素電池なども使用できる。角形電池1は、正負の電極板を積層している電極体を外装缶1Aに収納して電解液を充填して気密に密閉したものである。外装缶1Aは、図6に示すように、上面と両側面と底面とを四角形とする所定の厚さのもので、上面の開口部を封口板1Bで気密に閉塞している。外装缶1Aは、アルミニウムやアルミニウム合金などの金属板を深絞り加工したもので、表面が導電性を有する。この外装缶は、横幅よりも薄くて対向する両面を四角形とする筒状で、底面を閉塞している。封口板1Bもアルミニウムやアルミニウム合金などの金属板で製作される。この封口板1Bは、正負の電極端子15を両端部に、絶縁材16を介して固定している。正負の電極端子15は内蔵する正負の電極板に接続される。リチウムイオン二次電池は、外装缶1Aを電極に接続しない。ただ、外装缶1Aは電解液を介して電極板に接続されることから、正負の電極板の中間電位となる。ただし、角形電池1は、一方の電極端子15をリード線で外装缶に接続することもできる。この角形電池1は、外装缶に接続される電極端子15を絶縁することなく封口板に固定できる。さらに、封口板1Bは、安全弁17の開口部18を設けている。安全弁17は、外装缶1Aの内圧が設定値よりも高くなると開弁して、外装缶1Aが破損するのを防止する。安全弁17が開弁すると内部のガスが封口板1Bの開口部18から外部に排出される。図6の角形電池1は、封口板1Bに安全弁17の開口部18を設けている。この外装缶1Aは、開弁する安全弁17の開口部18からガスを排出できる。それは、外装缶1Aの内部にはガスが溜まっているからである。角形電池は、外装缶の底部や側部に安全弁の開口部を設けることもできる。ただ、この角形電池は、安全弁が開口するときに電解液が排出される。電解液は導電性の液体で、これが排出されると、接触部をショートさせることがある。外装缶1Aの封口板1Bに安全弁17を設ける角形電池1は、開口する安全弁17からガスを排出して内圧を低下できる。このため、安全弁17が開口するときに、電解液の排出を制限して、電解液による弊害を少なくできる。
The square battery 1 is a lithium ion secondary battery. However, the prismatic battery is not specified as a lithium ion secondary battery, and any battery that can be charged, such as a nickel metal hydride battery, can also be used. In the rectangular battery 1, an electrode body in which positive and negative electrode plates are stacked is housed in an outer can 1A, filled with an electrolytic solution, and hermetically sealed. As shown in FIG. 6, the outer can 1 </ b> A has a predetermined thickness in which an upper surface, both side surfaces, and a bottom surface are square, and an opening on the upper surface is airtightly closed with a sealing plate 1 </ b> B. The outer can 1A is obtained by deep-drawing a metal plate such as aluminum or an aluminum alloy, and has a conductive surface. This outer can is in the shape of a cylinder that is thinner than the width and has a rectangular shape on both sides facing each other, and closes the bottom surface. The sealing plate 1B is also made of a metal plate such as aluminum or aluminum alloy. In this sealing plate 1B, positive and negative electrode terminals 15 are fixed to both ends via an insulating material 16. The positive and negative electrode terminals 15 are connected to built-in positive and negative electrode plates. The lithium ion secondary battery does not connect the outer can 1A to the electrode. However, since the outer can 1A is connected to the electrode plate via the electrolytic solution, it has an intermediate potential between the positive and negative electrode plates. However, the square battery 1 can also connect one electrode terminal 15 to an armored can with a lead wire. The rectangular battery 1 can be fixed to the sealing plate without insulating the electrode terminal 15 connected to the outer can. Further, the sealing plate 1B is provided with an opening 18 of the safety valve 17. The safety valve 17 opens when the internal pressure of the outer can 1A becomes higher than a set value, and prevents the outer can 1A from being damaged. When the safety valve 17 is opened, the internal gas is discharged to the outside from the opening 18 of the sealing plate 1B. In the prismatic battery 1 of FIG. 6, the opening 18 of the safety valve 17 is provided in the sealing plate 1B. This outer can 1A can discharge gas from the opening 18 of the safety valve 17 to be opened. This is because gas is accumulated inside the outer can 1A. The prismatic battery can also be provided with a safety valve opening at the bottom or side of the outer can. However, in this rectangular battery, the electrolyte is discharged when the safety valve opens. The electrolytic solution is a conductive liquid, and if it is discharged, the contact portion may be short-circuited. The prismatic battery 1 in which the safety valve 17 is provided on the sealing plate 1B of the outer can 1A can discharge the gas from the safety valve 17 that is opened to reduce the internal pressure. For this reason, when the safety valve 17 is opened, the discharge of the electrolytic solution is restricted, and the adverse effects caused by the electrolytic solution can be reduced.
積層される角形電池1は、隣接する電極端子15を接続して、互いに直列又は並列に接続される。並列に接続される角形電池1は外装缶に電位差が発生しない。ただ、出力を大きくする電源装置は、全ての角形電池1を並列に接続することなく、直列に接続して出力電圧を高くしている。直列に接続される角形電池1は、隣の角形電池1の外装缶との間に電位差が発生する。したがって、電源装置は、隣の角形電池1の外装缶の間に絶縁セパレータ2を挟んで、隣の角形電池1を絶縁状態で積層している。さらに、各々の角形電池1の間に挟まれる絶縁セパレータ2は、隣の角形電池1を熱的に遮断して積層することで、いずれかの角形電池1の温度が異常に高くなって熱暴走する状態となっても、熱暴走が隣の角形電池1の熱暴走を誘発するのを防止する作用もある。したがって、並列に接続している角形電池1の間にも絶縁セパレータ2を配置している電池ブロック3は、熱暴走の誘発を防止して、安全性を向上できる。
The stacked rectangular batteries 1 are connected in series or in parallel with each other by connecting adjacent electrode terminals 15. The square batteries 1 connected in parallel do not generate a potential difference in the outer can. However, the power supply device that increases the output increases the output voltage by connecting all the rectangular batteries 1 in series without connecting them in parallel. The square battery 1 connected in series generates a potential difference between the outer can of the adjacent square battery 1. Therefore, the power supply device stacks the adjacent rectangular batteries 1 in an insulated state by sandwiching the insulating separator 2 between the outer cans of the adjacent rectangular batteries 1. Further, the insulating separator 2 sandwiched between the respective square batteries 1 is formed by thermally blocking and stacking the adjacent square batteries 1 so that the temperature of any one of the square batteries 1 becomes abnormally high and the thermal runaway occurs. Even if it becomes the state to be, it has the effect | action which prevents that a thermal runaway induces the thermal runaway of the adjacent square battery 1. FIG. Therefore, the battery block 3 in which the insulating separator 2 is disposed also between the rectangular batteries 1 connected in parallel can prevent thermal runaway and improve safety.
エンドプレート5は、硬質のプラスチックで成形され、あるいはアルミニウムやその合金などの金属で製作される。エンドプレート5は、広い面積で角形電池1を挟着するために、その外形を角形電池1と同じ四角形としている。四角形のエンドプレート5は、角形電池1と同じ大きさに、あるいは角形電池1よりもわずかに大きくしている。さらに、エンドプレート5は、角形電池1との積層面を嵌合構造とすることで、角形電池1と位置ずれしないように連結できる。ただし、エンドプレートは、必ずしも角形電池と嵌合構造とする必要はなく、角形電池とエンドプレートとを位置ずれしないように連結できる全ての構造が採用できる。
The end plate 5 is made of hard plastic or made of metal such as aluminum or its alloy. The end plate 5 has the same outer shape as the square battery 1 in order to sandwich the square battery 1 with a large area. The square end plate 5 is the same size as the rectangular battery 1 or slightly larger than the rectangular battery 1. Further, the end plate 5 can be connected to the prismatic battery 1 so as not to be misaligned by forming a laminated surface with the prismatic battery 1 into a fitting structure. However, the end plate does not necessarily have a fitting structure with the prismatic battery, and any structure that can connect the prismatic battery and the end plate so as not to be displaced can be employed.
エンドプレート5には、金属板からなるバインドバー6の端部が連結される。バインドバー6は、止ネジ19を介してその両端をエンドプレート5に連結している。止ネジ19でバインドバー6を連結するエンドプレート5は、止ネジ19をねじ込む雌ネジ孔5aを設けている。雌ネジ孔5aは、エンドプレート5の外側表面に設けられて、バインドバー6の折曲部6Aを貫通する止ネジ19をねじ込んでバインドバー6を連結する。図のバインドバー6は、止ネジ19でエンドプレート5に固定しているが、バインドバーの端部を内側に折曲してエンドプレートに連結し、あるいはまた、端部をカシメてエンドプレートに連結することもできる。
The end of the bind bar 6 made of a metal plate is connected to the end plate 5. Both ends of the bind bar 6 are connected to the end plate 5 via set screws 19. The end plate 5 that connects the bind bar 6 with the set screw 19 is provided with a female screw hole 5 a into which the set screw 19 is screwed. The female screw hole 5 a is provided on the outer surface of the end plate 5, and connects the bind bar 6 by screwing a set screw 19 that passes through the bent portion 6 </ b> A of the bind bar 6. The bind bar 6 shown in the figure is fixed to the end plate 5 with a set screw 19, but the end of the bind bar is bent inward and connected to the end plate, or the end is crimped to the end plate. It can also be linked.
図1のバインドバー6は、上下幅を角形電池1の上下幅にほぼ等しく、内側を切欠して軽くしている。バインドバー6は、両端の上下をエンドプレート5に連結している。エンドプレート5は、外側表面の両側部の上下に雌ネジ孔5aを設けている。この電源装置は、バインドバー6の両端の上下をエンドプレート5に固定している。バインドバー6の端部を止ネジ6で固定するエンドプレート5は、雌ネジ孔5aをバインドバー6の連結位置に設けている。
The bind bar 6 in FIG. 1 has an up and down width that is substantially equal to the up and down width of the rectangular battery 1 and is lightened by notching the inside. The bind bar 6 is connected to the end plate 5 at the upper and lower ends. The end plate 5 is provided with female screw holes 5a above and below both sides of the outer surface. In this power supply device, the upper and lower ends of both ends of the bind bar 6 are fixed to the end plate 5. The end plate 5 that fixes the end portion of the bind bar 6 with the set screw 6 has a female screw hole 5 a at the connection position of the bind bar 6.
バインドバー6は、所定の厚さの金属板を所定の幅に加工して製作される。バインドバー6は、両端部をエンドプレート5に固定して、一対のエンドプレート5を連結して、角形電池1を圧縮状態に保持する。バインドバー6は、一対のエンドプレート5を所定の寸法に固定して、その間に積層される角形電池1を所定の圧縮状態に固定する。角形電池1の膨張圧力でバインドバー6が伸びると、角形電池1の膨張を阻止できない。したがって、バインドバー6には、角形電池1の膨張圧で伸びない強度の金属板、たとえばSUS304等のステンレス板や鋼板等の金属板を十分な強度を有する幅と厚さに加工して製作される。
The bind bar 6 is manufactured by processing a metal plate having a predetermined thickness into a predetermined width. The bind bar 6 fixes both ends to the end plate 5 and connects the pair of end plates 5 to hold the prismatic battery 1 in a compressed state. The bind bar 6 fixes the pair of end plates 5 to a predetermined size, and fixes the prismatic battery 1 stacked therebetween to a predetermined compressed state. When the binding bar 6 is extended by the expansion pressure of the prismatic battery 1, the expansion of the prismatic battery 1 cannot be prevented. Therefore, the bind bar 6 is manufactured by processing a metal plate having a strength that does not extend due to the expansion pressure of the rectangular battery 1, for example, a stainless steel plate such as SUS304 or a metal plate such as a steel plate into a width and thickness having sufficient strength. The
バインドバー6は、端部に折曲部6Aを設けて、折曲部6Aをエンドプレート5に固定する。折曲部6Aは、止ネジ19の貫通孔を設けて、ここに挿入される止ネジ19を介してエンドプレート5に固定される。
The bind bar 6 is provided with a bent portion 6A at the end, and the bent portion 6A is fixed to the end plate 5. The bent portion 6A is provided with a through hole of a set screw 19 and is fixed to the end plate 5 via a set screw 19 inserted therein.
図1、図4、及び図5の電源装置は、プラスチック製のポッティングケース4にバインドバー6をインサート成形して、ポッティングケース4とバインドバー6とを一体構造としている。ポッティングケース4は、断面形状をL字状として、左右に分割して製作されて、各々のポッティングケース4で電池ブロック3の両面をカバーする。このポッティングケース4は、インサート成形しているバインドバー6をエンドプレート5に連結して、互いに連結され、さらに、冷却プレート21を固定するための連結具8を介して互いに連結される。
1, 4, and 5, the bind bar 6 is insert-molded into a plastic potting case 4 so that the potting case 4 and the bind bar 6 are integrated. The potting case 4 has an L-shaped cross-section and is divided into left and right parts, and covers both surfaces of the battery block 3 with each potting case 4. The potting case 4 is connected to each other by connecting the bind bar 6 formed by insert molding to the end plate 5, and further connected to each other via a connector 8 for fixing the cooling plate 21.
断面形状をL字状とするポッティングケース4は、電池ブロック3の側面と、底面の側部をカバーする。L字状のポッティングケース4は、垂直部4Aと水平部4Bとを直角に連結した形状で、垂直部4Aは電池ブロック3の側面をカバーし、水平部4Bは電池ブロック3の底面の側部をカバーする。ポッティングケース4の垂直部4Aは、電池ブロック3の側面との間に、ポッティング樹脂を充填する充填隙間10を設けている。この充填隙間10にポッティング樹脂が充填されて、電池ブロック3とポッティングケース4の垂直部4Aとの間にポッティング樹脂層9を設けている。ポッティングケース4の水平部4Bは、電池ブロック3の底面に、シール材11を介して密着されて、充填隙間10に充填されるポッティング樹脂の漏れを防止している。
The potting case 4 having an L-shaped cross section covers the side surface of the battery block 3 and the side portion of the bottom surface. The L-shaped potting case 4 has a shape in which a vertical portion 4A and a horizontal portion 4B are connected at a right angle, the vertical portion 4A covers the side surface of the battery block 3, and the horizontal portion 4B is a side portion on the bottom surface of the battery block 3. To cover. A vertical gap 4 </ b> A of the potting case 4 is provided with a filling gap 10 for filling the potting resin between the side surfaces of the battery block 3. The filling gap 10 is filled with potting resin, and a potting resin layer 9 is provided between the battery block 3 and the vertical portion 4 </ b> A of the potting case 4. The horizontal portion 4 </ b> B of the potting case 4 is in close contact with the bottom surface of the battery block 3 via the seal material 11 to prevent leakage of potting resin filled in the filling gap 10.
一対のポッティングケース4は、互いに連結される状態で、水平部4Bの間に、角形電池1の冷却面1Xを露出させて、冷却プレート21を角形電池1の冷却面1Xに熱結合状態に連結するための開口部4Xを設ける。図4と図5の電源装置は、ポッティングケース4の開口部4Xに熱伝導シート22を配置して、ポッティングケース4の水平部4Bの外側底面に冷却プレート21を固定している。この構造の電源装置は、熱伝導シート22を介して冷却プレート21を角形電池1の冷却面1Xに熱結合状態に連結する。
The pair of potting cases 4 are connected to each other, the cooling surface 1X of the prismatic battery 1 is exposed between the horizontal portions 4B, and the cooling plate 21 is connected to the cooling surface 1X of the prismatic battery 1 in a thermally coupled state. An opening 4X is provided. 4 and 5, the heat conductive sheet 22 is disposed in the opening 4 </ b> X of the potting case 4, and the cooling plate 21 is fixed to the outer bottom surface of the horizontal portion 4 </ b> B of the potting case 4. The power supply device having this structure connects the cooling plate 21 to the cooling surface 1 </ b> X of the prismatic battery 1 in a thermally coupled state via the heat conductive sheet 22.
熱伝導シート22は、角形電池1と冷却プレート21の間で圧縮されて変形して、角形電池1の底面と冷却プレート21の表面に面接触状態で密着する。この構造の電源装置は、圧縮されない状態における熱伝導シート22の厚さを、ポッティングケース4の水平部4Bの厚さよりもわずかに厚くして、熱伝導シート22の表面を角形電池1の冷却面1Xと冷却プレート21の表面とに密着できる。さらに、熱伝導シート22は、その表面にシリコンオイル等の絶縁性の熱伝導ペーストを塗布することで、角形電池1の底面と冷却プレート21との表面により確実に安定して面接触状態に密着させることもできる。また、図示しないが、角形電池の冷却面と冷却プレートの表面との間に熱伝導ペーストを充填して、熱伝導ペーストを介して角形電池の冷却面を冷却プレートに熱結合状態に連結することもできる。この構造は、必ずしも熱伝導シートを使用することなく、熱伝導ペーストのみで角形電池を冷却プレートの表面に熱伝導状態に連結できる。
The heat conductive sheet 22 is compressed and deformed between the prismatic battery 1 and the cooling plate 21, and is in close contact with the bottom surface of the prismatic battery 1 and the surface of the cooling plate 21 in a surface contact state. In the power supply device of this structure, the thickness of the heat conductive sheet 22 in the uncompressed state is made slightly thicker than the thickness of the horizontal portion 4B of the potting case 4 so that the surface of the heat conductive sheet 22 is the cooling surface of the square battery 1. 1X and the surface of the cooling plate 21 can be adhered. Furthermore, the heat conductive sheet 22 is coated with an insulating heat conductive paste such as silicon oil on the surface thereof, so that the surface of the prismatic battery 1 and the surface of the cooling plate 21 are reliably and closely adhered to the surface contact state. It can also be made. In addition, although not shown in the figure, a heat conductive paste is filled between the cooling surface of the prismatic battery and the surface of the cooling plate, and the cooling surface of the prismatic battery is connected to the cooling plate in a thermally coupled state via the heat conductive paste. You can also. In this structure, the square battery can be connected to the surface of the cooling plate in a heat conductive state only with the heat conductive paste without necessarily using a heat conductive sheet.
以上の電源装置は、熱伝導シート22や熱伝導ペーストを介して各々の角形電池1の冷却面1Xを確実に安定して冷却プレート21に熱結合状態に連結して、各々の角形電池1の温度差を少なくしながら効率よく冷却できる。
The above power supply device reliably and stably connects the cooling surface 1X of each rectangular battery 1 to the cooling plate 21 via the heat conductive sheet 22 or the heat conductive paste, so that each square battery 1 Cooling can be performed efficiently while reducing the temperature difference.
さらに、ポッティングケース4は、インサート成形して固定しているバインドバー6を、上方と下方とに突出させている。ポッティングケース4から上方に突出するバインドバー6の一部は、L字状に折曲されてトップカバー7を係止する係止部6Bで、ポッティングケース4から下方に突出するバインドバー6の一部は、冷却プレート21を固定する連結片6Cである。
Furthermore, the potting case 4 has a bind bar 6 fixed by insert molding protruding upward and downward. A part of the bind bar 6 that protrudes upward from the potting case 4 is a locking portion 6B that is bent in an L shape and locks the top cover 7, and is one of the bind bars 6 that protrude downward from the potting case 4. The part is a connecting piece 6 </ b> C that fixes the cooling plate 21.
L字状の係止部6Bは、先端縁をさらに下方に折曲して、先端縁をトップカバー7のガイド溝7Bに案内している。トップカバー7と係止部6Bとの間、およびトップカバー7と電池ブロック3との間にはシール材12、13が配置されて、ポッティング樹脂が充填される充填隙間10を閉塞している。トップカバー7と係止部6Bとのシール材12は、トップカバー7の両側面と、係止部6Bの内側との間に配置され、トップカバー7と電池ブロック3との間のシール材13は、電池ブロック3の両側縁の上面に配置される。充填隙間10をシール材11、12、13で密閉する電源装置は、ポッティング樹脂層9を密着構造として、電池ブロック3表面の結露を防止できる。
The L-shaped locking portion 6B bends the tip edge further downward and guides the tip edge to the guide groove 7B of the top cover 7. Sealing materials 12 and 13 are arranged between the top cover 7 and the locking portion 6B and between the top cover 7 and the battery block 3 to close the filling gap 10 filled with the potting resin. The sealing material 12 between the top cover 7 and the locking portion 6B is disposed between both side surfaces of the top cover 7 and the inside of the locking portion 6B, and the sealing material 13 between the top cover 7 and the battery block 3 is disposed. Are arranged on the upper surface of both side edges of the battery block 3. The power supply device that seals the filling gap 10 with the sealing materials 11, 12, 13 can prevent condensation on the surface of the battery block 3 by using the potting resin layer 9 as a close contact structure.
トップカバー7は、角形電池1の保護回路を実現する電子部品を実装する回路基板(図示せず)を備える。このトップカバー7は、各々の角形電池1の電極端子15をリード線(図示せず)を介して保護回路に接続している。電池の保護回路は、リード線を介して電池の電圧を検出して、電池の過充電や過放電を防止し、あるいは電池の温度上昇を防止するように、充放電の電流をコントロールする。
The top cover 7 includes a circuit board (not shown) on which electronic components for realizing a protection circuit for the prismatic battery 1 are mounted. The top cover 7 connects the electrode terminals 15 of each rectangular battery 1 to a protection circuit via lead wires (not shown). The battery protection circuit detects the voltage of the battery via the lead wire, and controls the charge / discharge current so as to prevent the battery from being overcharged or overdischarged or to prevent the battery temperature from rising.
ポッティングケース4から下方に突出するバインドバー6の連結片6Cは、両端を上方に折曲している連結具8を連結して、連結具8で冷却プレート21を電池ブロック3の底面に固定する。連結具8は、上方に折曲している折曲部8Cに連結穴8Dを設けている。連結片6Cは、連結穴8Dを案内して、これに抜けないように係止する係止フック6Dを外側表面に突出させている。この構造の連結具8は、折曲部8Cを連結片6Cに連結して、冷却プレート21を固定する。連結具8と連結片6Cは、冷却プレート21をポッティングケース4の底面に密着できる形状と寸法としている。この構造は、冷却プレート21を簡単に外れないように、しかも定位置に固定できる。ただ、図示しないが、連結具をネジ止めしてポッティングケースやバインドバーに固定して、冷却プレートを定位置に固定することもでき、また、冷却プレートを止ネジでポッティングケースやバインドバーに固定することもできる。
The connecting piece 6C of the bind bar 6 protruding downward from the potting case 4 connects the connecting tool 8 bent at both ends upward, and the connecting plate 8 fixes the cooling plate 21 to the bottom surface of the battery block 3. . The connection tool 8 is provided with a connection hole 8D in a bent portion 8C that is bent upward. The connecting piece 6C has a locking hook 6D that guides the connecting hole 8D and locks it so as not to come out of the connecting hole 8D. The connector 8 having this structure connects the bent portion 8C to the connecting piece 6C and fixes the cooling plate 21. The connecting tool 8 and the connecting piece 6 </ b> C have shapes and dimensions that allow the cooling plate 21 to be in close contact with the bottom surface of the potting case 4. This structure can be fixed in place so that the cooling plate 21 is not easily detached. However, although not shown, you can fix the cooling plate to a fixed position by screwing the connector to the potting case or bind bar, and fix the cooling plate to the potting case or bind bar with a set screw. You can also
図4の電源装置は、角形電池1の底面を冷却面1Xとするので、電池ブロック3の両側面にポッティング樹脂層9を設けて、角形電池1の冷却面1Xである底面を露出させる露出部9Xをポッティング樹脂層9に設けている。図の電源装置は、ポッティング樹脂層9の外側にポッティングケース4を設けて、ポッティングケース4の外側に冷却プレート21を配置する。ポッティングケース4の外側に配置される冷却プレート21が角形電池1の冷却面1Xに熱結合状態に連結されるように、角形電池1の冷却面1Xを露出させる露出部9Xをポッティング樹脂層9に設けると共に、角形電池1の冷却面1Xを露出させる開口部4Xをポッティングケース4に設けている。ポッティングケース4の外側に配置される冷却プレート21は、ポッティングケース4の開口部4Xと、ポッティング樹脂層9の露出部9Xに配置される熱伝導シート22を介して角形電池1の冷却面1Xに熱結合状態に連結される。以上の電源装置は、電池ブロック3をポッティングケース4とポッティング樹脂層9の両方で定位置に確実に保持しながら、冷却プレート21で電池を速やかに効率よく冷却できる。
4 has the bottom surface of the prismatic battery 1 as the cooling surface 1X, and therefore, an exposed portion that exposes the bottom surface that is the cooling surface 1X of the prismatic battery 1 by providing the potting resin layers 9 on both side surfaces of the battery block 3. 9X is provided in the potting resin layer 9. In the illustrated power supply apparatus, a potting case 4 is provided outside the potting resin layer 9, and a cooling plate 21 is disposed outside the potting case 4. The exposed portion 9X for exposing the cooling surface 1X of the prismatic battery 1 to the potting resin layer 9 so that the cooling plate 21 arranged outside the potting case 4 is connected to the cooling surface 1X of the prismatic battery 1 in a thermally coupled state. In addition, the potting case 4 is provided with an opening 4X that exposes the cooling surface 1X of the prismatic battery 1. The cooling plate 21 disposed outside the potting case 4 is placed on the cooling surface 1X of the prismatic battery 1 through the opening 4X of the potting case 4 and the heat conductive sheet 22 disposed in the exposed portion 9X of the potting resin layer 9. It is connected to the thermal bond state. The above power supply device can cool the battery quickly and efficiently by the cooling plate 21 while securely holding the battery block 3 in place by both the potting case 4 and the potting resin layer 9.
ポッティング樹脂層9は、ポッティングケース4の内面と電池ブロック3の側面との間の充填隙間10にポッティング樹脂を充填して設けられる。ポッティング樹脂層9の厚さは、0.5mm~10mmとする。ポッティング樹脂層9を厚くして、電池ブロック3の保護作用、たとえば、耐振動特性や結露防止効果を向上できる。ただ、ポッティング樹脂層が厚いと、電源装置全体が大きくて重くなり、またポッティング樹脂のコストも高くなるので、これらの特性を考慮して、前述の範囲とし、最適には1mm~5mmとする。
The potting resin layer 9 is provided by filling the filling gap 10 between the inner surface of the potting case 4 and the side surface of the battery block 3 with the potting resin. The thickness of the potting resin layer 9 is 0.5 mm to 10 mm. By increasing the thickness of the potting resin layer 9, it is possible to improve the protective action of the battery block 3, for example, the vibration resistance characteristic and the dew condensation prevention effect. However, if the potting resin layer is thick, the entire power supply device becomes large and heavy, and the cost of the potting resin increases. Therefore, considering these characteristics, the above-mentioned range is set, and the optimum range is 1 mm to 5 mm.
ポッティング樹脂は、未硬化な状態でペースト状ないし液状で、充填隙間10に充填されて、ここで硬化して、電池ブロック3の外周面に固定される。ポッティング樹脂は、未硬化な状態で充填隙間10に充填でき、かつ絶縁性がある樹脂、たとえばポリウレタン、ポリ酢酸ビニル、ブチルゴム等が使用できる。ポッティング樹脂は、熱伝導特性に優れた熱伝導粉末や熱伝導繊維を充填して、電池の放熱特性を向上することができる。熱伝導粉末としては例えばアルミナ、ガラスビーズ、酸化亜鉛粒子などが使用でき、熱伝導繊維としてはガラス繊維などが使用できる。
The potting resin is pasty or liquid in an uncured state, is filled in the filling gap 10, is cured here, and is fixed to the outer peripheral surface of the battery block 3. The potting resin can be filled into the filling gap 10 in an uncured state, and an insulating resin such as polyurethane, polyvinyl acetate, butyl rubber or the like can be used. The potting resin can be filled with heat conductive powder or heat conductive fiber having excellent heat conduction characteristics to improve the heat dissipation characteristics of the battery. For example, alumina, glass beads, zinc oxide particles or the like can be used as the heat conductive powder, and glass fibers or the like can be used as the heat conductive fiber.
ポッティング樹脂層9は、電池ブロック3の全外周面をカバーしない。ポッティング樹脂層9は、角形電池1の冷却面1Xを露出させる露出部9Xを設けている。露出部9Xには、熱伝導シート22が配置され、露出部9Xにおいて角形電池1の冷却面1Xを冷却プレート21に熱結合状態に連結している。図1ないし図5の電源装置は、角形電池1の冷却面1Xを底面としている。ただ、本発明の電源装置は、図示しないが、角形電池の冷却面を側面として、側面に冷却プレートを熱結合状態に連結することもできる。
The potting resin layer 9 does not cover the entire outer peripheral surface of the battery block 3. The potting resin layer 9 is provided with an exposed portion 9X that exposes the cooling surface 1X of the prismatic battery 1. A heat conductive sheet 22 is disposed in the exposed portion 9X, and the cooling surface 1X of the prismatic battery 1 is connected to the cooling plate 21 in a thermally coupled state in the exposed portion 9X. 1 to 5 has a cooling surface 1X of the prismatic battery 1 as a bottom surface. However, although the power supply device of the present invention is not illustrated, the cooling surface of the prismatic battery can be used as a side surface, and a cooling plate can be connected to the side surface in a thermally coupled state.
冷却プレート21は、内部に冷媒を循環させる冷媒路23を設けている。冷媒路23は、フレオンや炭酸ガスなどの冷媒が液状で供給され、内部で冷媒を気化させて気化熱で冷却プレート21を冷却する。この冷却プレート21は、冷媒路23を冷却機構20に連結している。
The cooling plate 21 is provided with a refrigerant path 23 for circulating the refrigerant therein. The refrigerant path 23 is supplied with a refrigerant such as Freon or carbon dioxide in a liquid state, vaporizes the refrigerant therein, and cools the cooling plate 21 with heat of vaporization. The cooling plate 21 connects the refrigerant path 23 to the cooling mechanism 20.
冷却機構20は、冷媒路23で気化された気体状の冷媒を加圧するコンプレッサ26と、このコンプレッサ26で圧縮された冷媒を冷却して液化させる冷却熱交換器27と、この冷却熱交換器27で液化された冷媒を冷媒路23に供給する膨張弁28とを備える。膨張弁28を介して供給される液状の冷媒は、冷却プレート21内の冷媒路23で気化され、気化熱で冷却プレート21を冷却して冷却機構20に排出される。したがって、冷媒は冷却プレート21の冷媒路23と冷却機構20とに循環して、冷却プレート21を冷却する。この冷却機構20は、冷媒の気化熱で冷却プレート21を低温に冷却するが、冷却プレートは、気化熱によらず冷却することもできる。この冷却プレートは、冷媒路に、低温に冷却されたブラインなどの冷媒を供給して、冷媒の気化熱でなくて、低温の冷媒で直接に冷却プレートを冷却する。
The cooling mechanism 20 includes a compressor 26 that pressurizes the gaseous refrigerant vaporized in the refrigerant path 23, a cooling heat exchanger 27 that cools and liquefies the refrigerant compressed by the compressor 26, and the cooling heat exchanger 27. And an expansion valve 28 for supplying the refrigerant liquefied in the refrigerant path 23. The liquid refrigerant supplied through the expansion valve 28 is vaporized in the refrigerant path 23 in the cooling plate 21, cools the cooling plate 21 with heat of vaporization, and is discharged to the cooling mechanism 20. Therefore, the refrigerant circulates through the refrigerant path 23 of the cooling plate 21 and the cooling mechanism 20 to cool the cooling plate 21. The cooling mechanism 20 cools the cooling plate 21 to a low temperature with the heat of vaporization of the refrigerant, but the cooling plate can also be cooled regardless of the heat of vaporization. The cooling plate supplies a refrigerant such as brine cooled to a low temperature to the refrigerant path, and cools the cooling plate directly with the low-temperature refrigerant instead of the heat of vaporization of the refrigerant.
冷却機構20は、角形電池1の温度を検出する温度センサ(図示せず)で冷却プレート21の冷却状態をコントロールする。すなわち、角形電池1の温度があらかじめ設定している冷却開始温度よりも高くなると、冷却プレート21に冷媒を供給して冷却し、角形電池1が冷却停止温度よりも低くなると、冷却プレート21への冷媒の供給を停止して、角形電池1をあらかじめ設定している温度範囲にコントロールする。
The cooling mechanism 20 controls the cooling state of the cooling plate 21 with a temperature sensor (not shown) that detects the temperature of the prismatic battery 1. That is, when the temperature of the prismatic battery 1 becomes higher than the preset cooling start temperature, the coolant is supplied to the cooling plate 21 for cooling, and when the prismatic battery 1 becomes lower than the cooling stop temperature, The supply of the refrigerant is stopped, and the rectangular battery 1 is controlled to a preset temperature range.
以上の電源装置は、以下の工程で組み立てられる。
(1)複数の角形電池1と絶縁セパレータ2とを交互に積層して電池ブロック3とする。複数の角形電池1が積層された電池ブロック3の上面にトップカバー7を配置して、トップカバー7に実装している回路基板(図示せず)をリード線(図示せず)を介して各々の角形電池1の電極端子15に接続する。 The above power supply apparatus is assembled in the following steps.
(1) A plurality ofrectangular batteries 1 and insulating separators 2 are alternately stacked to form a battery block 3. A top cover 7 is arranged on the upper surface of the battery block 3 in which a plurality of prismatic batteries 1 are stacked, and a circuit board (not shown) mounted on the top cover 7 is respectively connected via a lead wire (not shown). Connected to the electrode terminal 15 of the rectangular battery 1.
(1)複数の角形電池1と絶縁セパレータ2とを交互に積層して電池ブロック3とする。複数の角形電池1が積層された電池ブロック3の上面にトップカバー7を配置して、トップカバー7に実装している回路基板(図示せず)をリード線(図示せず)を介して各々の角形電池1の電極端子15に接続する。 The above power supply apparatus is assembled in the following steps.
(1) A plurality of
(2)電池ブロック3の両端にエンドプレート5を配置し、一対のエンドプレート5を、ポッティングケース4にインサート成形しているバインドバー6で連結すると共に、電池ブロック3の上面にトップカバー7をバインドバー6で固定する。この状態で、図5に示すように、トップカバー7と電池ブロック3の上面との間にシール材13を配置すると共に、トップカバー7とバインドバー6との間にシール材12を配置し、さらに、電池ブロック3の底面の両側とポッティングケース4の底面内側との間にもシール材11を配置して、トップカバー7と電池ブロック3との間に設けている充填隙間10を密閉する。密閉された充填隙間10は、ポッティング樹脂を充填する充填開口(図示せず)を充填隙間10の上面に連結するように設けている。充填開口は、ポッティング樹脂を充填した後、閉塞される。
(2) The end plates 5 are arranged at both ends of the battery block 3, the pair of end plates 5 are connected to the potting case 4 by a bind bar 6 that is insert-molded, and the top cover 7 is attached to the upper surface of the battery block 3. Secure with the bind bar 6. In this state, as shown in FIG. 5, the seal material 13 is disposed between the top cover 7 and the upper surface of the battery block 3, and the seal material 12 is disposed between the top cover 7 and the bind bar 6. Furthermore, a sealing material 11 is also disposed between both sides of the bottom surface of the battery block 3 and the bottom surface inside the potting case 4 to seal the filling gap 10 provided between the top cover 7 and the battery block 3. The sealed filling gap 10 is provided so that a filling opening (not shown) for filling the potting resin is connected to the upper surface of the filling gap 10. The filling opening is closed after filling with the potting resin.
(3)充填開口から充填隙間10に未硬化で液状ないしペースト状のポッティング樹脂を充填する。ポッティング樹脂は、ポッティングケース4と電池ブロック3との間に隙間なく充填されて硬化する。硬化するポッティング樹脂は、ポッティング樹脂層9となって、各々の角形電池1に密着し、さらにポッティングケース4の内面にも密着して、各々の角形電池1をポッティングケース4に固定する。
(4)図2と図5に示すように、ポッティングケース4の開口部4Xに熱伝導シート22を配置する。この熱伝導シート22が、角形電池1の冷却面1Xである底面と、冷却プレート21で挟着されるように、ポッティングケース4の水平部4Bの外側底面に冷却プレート21を配置する。この冷却プレート21を定位置に固定するために、冷却プレート21の下面に連結具8を配置し、連結具8の両端の折曲部8Cを、バインドバー6の連結片6Cに連結して、連結具8で冷却プレート21を固定する。 (3) The fillinggap 10 is filled with uncured liquid or pasty potting resin from the filling opening. The potting resin is filled between the potting case 4 and the battery block 3 without any gap and cured. The potting resin to be cured becomes a potting resin layer 9 and is in close contact with each square battery 1 and further in close contact with the inner surface of the potting case 4 to fix each square battery 1 to the potting case 4.
(4) As shown in FIGS. 2 and 5, the heatconductive sheet 22 is disposed in the opening 4 </ b> X of the potting case 4. The cooling plate 21 is disposed on the bottom surface of the horizontal portion 4B of the potting case 4 so that the heat conductive sheet 22 is sandwiched between the bottom surface which is the cooling surface 1X of the rectangular battery 1 and the cooling plate 21. In order to fix the cooling plate 21 at a fixed position, the connecting tool 8 is arranged on the lower surface of the cooling plate 21, and the bent portions 8C at both ends of the connecting tool 8 are connected to the connecting pieces 6C of the bind bar 6, The cooling plate 21 is fixed by the connector 8.
(4)図2と図5に示すように、ポッティングケース4の開口部4Xに熱伝導シート22を配置する。この熱伝導シート22が、角形電池1の冷却面1Xである底面と、冷却プレート21で挟着されるように、ポッティングケース4の水平部4Bの外側底面に冷却プレート21を配置する。この冷却プレート21を定位置に固定するために、冷却プレート21の下面に連結具8を配置し、連結具8の両端の折曲部8Cを、バインドバー6の連結片6Cに連結して、連結具8で冷却プレート21を固定する。 (3) The filling
(4) As shown in FIGS. 2 and 5, the heat
さらに、図7ないし図9に示す電源装置は、バインドバー6をポッティングケースにインサート成形することなく、ポッティングケース34の外側にバインドバー6を配置している。バインドバー6は、ポッティングケース34にインサート成形されない以外、図1ないし図5に示す電源装置のバインドバー6と同じように、トップカバー7を係止する係止部6Bを上端に設けて、冷却プレート21を固定する連結片6Cを下端に設けている。
Further, in the power supply device shown in FIGS. 7 to 9, the bind bar 6 is disposed outside the potting case 34 without insert-molding the bind bar 6 into the potting case. The bind bar 6 is provided with a locking portion 6B for locking the top cover 7 at the upper end in the same manner as the bind bar 6 of the power supply device shown in FIGS. A connecting piece 6C for fixing the plate 21 is provided at the lower end.
ポッティングケース34は、図10と図11に示すように、電池ブロック3との間にポッティング樹脂を充填して硬化させた後、底面に開口部34Xを設けるための切り込み34aを底面に設けている。切り込み34aは、角形電池1の底面の両側に沿って2列に設けられる。さらに、ポッティングケース34は、両端を開口する溝型で、溝型の内形を、電池ブロック3を入れることができ、かつ、電池ブロック3を入れる状態で、電池ブロック3との間にポッティング樹脂の充填隙間10ができる形状としている。
As shown in FIGS. 10 and 11, the potting case 34 is provided with a notch 34a for providing an opening 34X on the bottom surface after filling the potting resin with the battery block 3 and curing it. . The cuts 34 a are provided in two rows along both sides of the bottom surface of the prismatic battery 1. Further, the potting case 34 is a groove type that opens at both ends, and the inner shape of the groove type can be inserted into the battery block 3, and the potting resin is placed between the battery block 3 and the battery block 3. The shape is such that a filling gap 10 is formed.
以上の電源装置は、電池ブロック3の両側にポッティング樹脂層9を設けた後、図11の矢印で示すように、ポッティングケース34の切り込み34aを切り離して、底面の中央部34Cを除去して開口部34Xを設け、この開口部34Xに熱伝導シート22を配置し、その外側に熱伝導シート22を挟むように冷却プレート21を固定している。この電源装置は、角形電池1の底面の冷却面1Xに冷却プレート21を熱結合状態に連結して、電池ブロック3の外周面の一部である両側面にポッティング樹脂層9を設けている。ポッティング樹脂層9は、角形電池1の冷却面1Xを露出させる露出部9Xを有し、この露出部9Xに熱伝導シート22を配置して、角形電池1の冷却面1Xを冷却プレート21に熱結合状態に連結している。
In the power supply device described above, the potting resin layer 9 is provided on both sides of the battery block 3, and then the notch 34a of the potting case 34 is cut off as shown by the arrows in FIG. A portion 34X is provided, the heat conductive sheet 22 is disposed in the opening 34X, and the cooling plate 21 is fixed so as to sandwich the heat conductive sheet 22 outside. In this power supply device, the cooling plate 21 is connected to the cooling surface 1X on the bottom surface of the rectangular battery 1 in a thermally coupled state, and the potting resin layers 9 are provided on both side surfaces which are part of the outer peripheral surface of the battery block 3. The potting resin layer 9 has an exposed portion 9X that exposes the cooling surface 1X of the prismatic battery 1, and a heat conductive sheet 22 is disposed on the exposed portion 9X so that the cooling surface 1X of the prismatic battery 1 is heated to the cooling plate 21. Linked to a combined state.
この電源装置は、以下のようにして組み立てられる。
(1)複数の角形電池1と絶縁セパレータ2とを交互に積層して電池ブロック3とする。複数の角形電池1が積層された電池ブロック3の上面にトップカバー7を配置して、トップカバー7に実装している回路基板(図示せず)をリード線(図示せず)を介して各々の角形電池1の電極端子15に接続する。 This power supply device is assembled as follows.
(1) A plurality ofrectangular batteries 1 and insulating separators 2 are alternately stacked to form a battery block 3. A top cover 7 is arranged on the upper surface of the battery block 3 in which a plurality of prismatic batteries 1 are stacked, and a circuit board (not shown) mounted on the top cover 7 is respectively connected via a lead wire (not shown). Connected to the electrode terminal 15 of the rectangular battery 1.
(1)複数の角形電池1と絶縁セパレータ2とを交互に積層して電池ブロック3とする。複数の角形電池1が積層された電池ブロック3の上面にトップカバー7を配置して、トップカバー7に実装している回路基板(図示せず)をリード線(図示せず)を介して各々の角形電池1の電極端子15に接続する。 This power supply device is assembled as follows.
(1) A plurality of
(2)図10に示すように、電池ブロック3をポッティングケース34に入れ、ポッティングケース34の両端にエンドプレート5を配置し、一対のエンドプレート5をバインドバー6で連結すると共に、トップカバー7をバインドバー6で上面に固定する。ポッティングケース34に電池ブロック3を入れるのに先立って、図9と図11に示すように、ポッティングケース34の底面内側と電池ブロック3の底面の両側との間にシール材11を配置する。さらに、電池ブロック3をポッティングケース34に入れた状態で、トップカバー7と電池ブロック3との間にもシール材13を配置して、シール材11、13で充填隙間10の上下を密閉する。密閉された充填隙間10は、ポッティング樹脂を充填する充填開口(図示せず)を充填隙間10の上面に連結するように設けている。充填開口は、ポッティング樹脂を充填した後、閉塞される。
(2) As shown in FIG. 10, the battery block 3 is put in a potting case 34, end plates 5 are arranged at both ends of the potting case 34, the pair of end plates 5 are connected by a bind bar 6, and the top cover 7 Is fixed to the upper surface with the bind bar 6. Prior to putting the battery block 3 into the potting case 34, as shown in FIGS. 9 and 11, the sealing material 11 is arranged between the inside of the bottom surface of the potting case 34 and both sides of the bottom surface of the battery block 3. Further, with the battery block 3 in the potting case 34, the sealing material 13 is also disposed between the top cover 7 and the battery block 3, and the upper and lower portions of the filling gap 10 are sealed with the sealing materials 11 and 13. The sealed filling gap 10 is provided so that a filling opening (not shown) for filling the potting resin is connected to the upper surface of the filling gap 10. The filling opening is closed after filling with the potting resin.
(3)充填開口から充填隙間10に未硬化で液状ないしペースト状のポッティング樹脂を充填する。ポッティング樹脂は、ポッティングケース34と電池ブロック3との間に隙間なく充填されて硬化する。硬化するポッティング樹脂は、ポッティング樹脂層9となって、各々の角形電池1に密着し、さらにポッティングケース34の内面にも密着して、各々の角形電池1をポッティングケース34に固定する。
(3) The filling gap 10 is filled with uncured liquid or pasty potting resin from the filling opening. The potting resin is filled between the potting case 34 and the battery block 3 without a gap and is cured. The potting resin to be cured becomes the potting resin layer 9 and is in close contact with each square battery 1 and is also in close contact with the inner surface of the potting case 34 to fix each square battery 1 to the potting case 34.
(4)その後、図11に示すように、ポッティングケース34の底面に設けている切り込み34aを治具で切断して底面の中央部34Cを除去し、ポッティングケース34の底面に開口部34Xを設ける。この状態で、図11に示すように、ポッティングケース34の開口部4Xに熱伝導シート22を配置する。この熱伝導シート22が、角形電池1の冷却面1Xである底面と、冷却プレート21で挟着されるように、ポッティングケース34の水平部34Bの外側に冷却プレート21を配置する。この冷却プレート21を定位置に固定するために、冷却プレート21の下面に連結具8を配置し、連結具8両端の折曲部8Cを、バインドバー6の連結片6Cに連結して、連結具8で冷却プレート21を固定する。
(4) Thereafter, as shown in FIG. 11, the notch 34 a provided on the bottom surface of the potting case 34 is cut with a jig to remove the center portion 34 </ b> C of the bottom surface, and an opening 34 </ b> X is provided on the bottom surface of the potting case 34. . In this state, as shown in FIG. 11, the heat conductive sheet 22 is disposed in the opening 4 </ b> X of the potting case 34. The cooling plate 21 is disposed outside the horizontal portion 34B of the potting case 34 so that the heat conductive sheet 22 is sandwiched between the cooling plate 1 and the bottom surface which is the cooling surface 1X of the square battery 1. In order to fix the cooling plate 21 at a fixed position, the connecting tool 8 is arranged on the lower surface of the cooling plate 21, and the bent portions 8 </ b> C at both ends of the connecting tool 8 are connected to the connecting pieces 6 </ b> C of the bind bar 6. The cooling plate 21 is fixed with the tool 8.
さらに、図12に示す電源装置は、ポッティング樹脂層9を設けるためにのみポッティングケース44を使用し、ポッティング樹脂層9を設けた後に、ポッティングケース44を電池ブロック3から外してバインドバー6で電池ブロック3を固定している。このバインドバー6も、ポッティングケースにインサート成形されない以外、図1ないし図5に示す電源装置のバインドバー6と同じように、トップカバー7を係止する係止部6Bを上端に設けて、冷却プレート21を固定する連結片6Cを下端に設けている。
Furthermore, the power supply device shown in FIG. 12 uses the potting case 44 only for providing the potting resin layer 9, and after the potting resin layer 9 is provided, the potting case 44 is removed from the battery block 3 and the battery is bound by the bind bar 6. Block 3 is fixed. The bind bar 6 is also provided with a locking portion 6B for locking the top cover 7 at the upper end in the same manner as the bind bar 6 of the power supply device shown in FIGS. A connecting piece 6C for fixing the plate 21 is provided at the lower end.
ポッティングケース44は、図13に示すように、両端を開口する溝型で、溝型の内形を、電池ブロック3を入れることができ、かつ、電池ブロック3を入れる状態で、電池ブロック3の両側面との間にポッティング樹脂の充填隙間10ができる形状としている。ポッティングケース44の両端開口部は、エンドプレート5で閉塞される。したがって、エンドプレート5の外形はポッティングケース44の内形に等しく、エンドプレート5をポッティングケース44の両端開口部に配置して、ポッティングケース44の両端を閉塞する。
As shown in FIG. 13, the potting case 44 is a groove type that opens at both ends. The inner shape of the groove type can be inserted into the battery block 3, and the battery block 3 is inserted into the battery block 3. The filling gap 10 for the potting resin is formed between both side surfaces. Openings at both ends of the potting case 44 are closed by the end plate 5. Accordingly, the outer shape of the end plate 5 is equal to the inner shape of the potting case 44, and the end plate 5 is disposed in the opening portions at both ends of the potting case 44 to close both ends of the potting case 44.
この電源装置は、以下のようにして組み立てられる。
(1)図13と図14に示すように、内面に離型剤40を塗布しているポッティングケース44の底面に熱伝導シート22を敷き、熱伝導シート22の上に、複数の角形電池1と絶縁セパレータ2とを交互に積層した電池ブロック3を載せてポッティングケース44の内部に配置する。ポッティングケース44の両端にエンドプレート5を配置し、エンドプレート5を外部からプレス機構(図示せず)で圧縮して所定の寸法とする。 This power supply device is assembled as follows.
(1) As shown in FIG. 13 and FIG. 14, a heatconductive sheet 22 is laid on the bottom surface of a potting case 44 with a release agent 40 applied to the inner surface, and a plurality of rectangular batteries 1 are placed on the heat conductive sheet 22. The battery block 3 in which the separators 2 and the insulating separators 2 are alternately stacked is placed on the inside of the potting case 44. The end plates 5 are disposed at both ends of the potting case 44, and the end plates 5 are compressed from the outside by a press mechanism (not shown) to a predetermined size.
(1)図13と図14に示すように、内面に離型剤40を塗布しているポッティングケース44の底面に熱伝導シート22を敷き、熱伝導シート22の上に、複数の角形電池1と絶縁セパレータ2とを交互に積層した電池ブロック3を載せてポッティングケース44の内部に配置する。ポッティングケース44の両端にエンドプレート5を配置し、エンドプレート5を外部からプレス機構(図示せず)で圧縮して所定の寸法とする。 This power supply device is assembled as follows.
(1) As shown in FIG. 13 and FIG. 14, a heat
(2)電池ブロック3が圧縮状態に保持されて、トップカバー7の回路基板(図示せず)がリード線(図示せず)を介して各々の角形電池1の電極端子15に接続される。トップカバー7が電池ブロック3の上面にセットされる。このとき、トップカバー7の下面の両側と電池ブロック3の上面両側との間に、シール材11が挟着される。シール材11は、ポッティングケース4と電池ブロック3との間に設けられる充填隙間10の上面を閉塞する。上面の密閉された充填隙間10は、ポッティング樹脂を充填する充填開口(図示せず)を充填隙間10の上面に連結するように設けている。この充填開口は、ポッティング樹脂を充填した後、閉塞される。
(2) The battery block 3 is held in a compressed state, and a circuit board (not shown) of the top cover 7 is connected to the electrode terminal 15 of each rectangular battery 1 via a lead wire (not shown). A top cover 7 is set on the upper surface of the battery block 3. At this time, the sealing material 11 is sandwiched between both sides of the lower surface of the top cover 7 and both sides of the upper surface of the battery block 3. The sealing material 11 closes the upper surface of the filling gap 10 provided between the potting case 4 and the battery block 3. The top-filled filling gap 10 is provided so that a filling opening (not shown) for filling the potting resin is connected to the top face of the filling gap 10. The filling opening is closed after filling with the potting resin.
(3)充填開口から充填隙間10に未硬化で液状ないしペースト状のポッティング樹脂を充填する。ポッティング樹脂は、ポッティングケース44と電池ブロック3との間に隙間なく充填されて硬化する。硬化するポッティング樹脂は、ポッティング樹脂層9となって、各々の角形電池1に密着する。ポッティングケース44の内面に離型剤40を塗布しているので、硬化したポッティング樹脂層9は、ポッティングケース44には密着されない。
(3) The filling gap 10 is filled with uncured liquid or pasty potting resin from the filling opening. The potting resin is filled between the potting case 44 and the battery block 3 without any gap and is cured. The potting resin to be cured becomes the potting resin layer 9 and is in close contact with each square battery 1. Since the release agent 40 is applied to the inner surface of the potting case 44, the cured potting resin layer 9 is not in close contact with the potting case 44.
(4)その後、エンドプレート5で電池ブロック3を圧縮状態に保持して、ポッティングケース44が除去される。この状態で、電池ブロック3の両側にポッティング樹脂層9が設けられて、電池ブロック3の底面はポッティング樹脂層9の露出部9Xに熱伝導シート22が密着された状態となる。
(4) Thereafter, the battery block 3 is held in a compressed state by the end plate 5 and the potting case 44 is removed. In this state, the potting resin layer 9 is provided on both sides of the battery block 3, and the bottom surface of the battery block 3 is in a state where the heat conductive sheet 22 is in close contact with the exposed portion 9 </ b> X of the potting resin layer 9.
(5)この状態で、図12に示すように、一対のエンドプレート5にバインドバー6の両端を固定する。さらに、電池ブロック3の底面、すなわち角形電池1の冷却面1Xである底面に密着している熱伝導シート22に密着するように、冷却プレート21を固定する。冷却プレート21は、連結具8を介してバインドバー6に固定される。連結具8は、冷却プレート21の下面にあって、その両端をバインドバー6に連結して、冷却プレート21を固定する。
その後、エンドプレート5をプレスしていたプレス機構(図示せず)を除去する。 (5) In this state, as shown in FIG. 12, both ends of thebind bar 6 are fixed to the pair of end plates 5. Further, the cooling plate 21 is fixed so as to be in close contact with the heat conductive sheet 22 in close contact with the bottom surface of the battery block 3, that is, the bottom surface that is the cooling surface 1 </ b> X of the rectangular battery 1. The cooling plate 21 is fixed to the bind bar 6 via the connector 8. The connector 8 is on the lower surface of the cooling plate 21, and both ends thereof are connected to the bind bar 6 to fix the cooling plate 21.
Thereafter, the press mechanism (not shown) that has pressed theend plate 5 is removed.
その後、エンドプレート5をプレスしていたプレス機構(図示せず)を除去する。 (5) In this state, as shown in FIG. 12, both ends of the
Thereafter, the press mechanism (not shown) that has pressed the
以上の電源装置は、電池ブロック3の外側面をポッティング樹脂層9でカバーし、ポッティングケース4を設けないので、軽くてコンパクトにできる特徴がある。
The above power supply device has a feature that it is light and compact because the outer surface of the battery block 3 is covered with the potting resin layer 9 and the potting case 4 is not provided.
以上の電源装置は、車載用の電源として利用できる。電源装置を搭載する車両としては、エンジンとモータの両方で走行するハイブリッド自動車やプラグインハイブリッド自動車、あるいはモータのみで走行する電気自動車などの電動車両が利用でき、これらの車両の電源として使用される。
The above power supply devices can be used as in-vehicle power supplies. As a vehicle equipped with a power supply device, an electric vehicle such as a hybrid vehicle or a plug-in hybrid vehicle that runs with both an engine and a motor, or an electric vehicle that runs only with a motor can be used, and is used as a power source for these vehicles. .
(ハイブリッド車用電源装置)
図15は、エンジンとモータの両方で走行するハイブリッド自動車に電源装置を搭載する例を示す。この図に示す電源装置90を搭載した車両HVは、車両HVを走行させるエンジン96及び走行用のモータ93と、モータ93に電力を供給する電源装置90と、電源装置90の電池を充電する発電機94とを備えている。電源装置90は、DC/ACインバータ95を介してモータ93と発電機94に接続している。車両HVは、電源装置90の電池を充放電しながらモータ93とエンジン96の両方で走行する。モータ93は、エンジン効率の悪い領域、たとえば加速時や低速走行時に駆動されて車両を走行させる。モータ93は、電源装置90から電力が供給されて駆動する。発電機94は、エンジン96で駆動され、あるいは車両にブレーキをかけるときの回生制動で駆動されて、電源装置90の電池を充電する。 (Power supply for hybrid vehicles)
FIG. 15 shows an example in which a power supply device is mounted on a hybrid vehicle that runs with both an engine and a motor. A vehicle HV equipped with thepower supply device 90 shown in this figure includes an engine 96 for traveling the vehicle HV and a motor 93 for traveling, a power supply device 90 for supplying power to the motor 93, and power generation for charging a battery of the power supply device 90. Machine 94. The power supply device 90 is connected to the motor 93 and the generator 94 via the DC / AC inverter 95. The vehicle HV travels by both the motor 93 and the engine 96 while charging / discharging the battery of the power supply device 90. The motor 93 is driven to drive the vehicle when the engine efficiency is low, for example, during acceleration or low-speed driving. The motor 93 is driven by power supplied from the power supply device 90. The generator 94 is driven by the engine 96 or is driven by regenerative braking when the vehicle is braked, and charges the battery of the power supply device 90.
図15は、エンジンとモータの両方で走行するハイブリッド自動車に電源装置を搭載する例を示す。この図に示す電源装置90を搭載した車両HVは、車両HVを走行させるエンジン96及び走行用のモータ93と、モータ93に電力を供給する電源装置90と、電源装置90の電池を充電する発電機94とを備えている。電源装置90は、DC/ACインバータ95を介してモータ93と発電機94に接続している。車両HVは、電源装置90の電池を充放電しながらモータ93とエンジン96の両方で走行する。モータ93は、エンジン効率の悪い領域、たとえば加速時や低速走行時に駆動されて車両を走行させる。モータ93は、電源装置90から電力が供給されて駆動する。発電機94は、エンジン96で駆動され、あるいは車両にブレーキをかけるときの回生制動で駆動されて、電源装置90の電池を充電する。 (Power supply for hybrid vehicles)
FIG. 15 shows an example in which a power supply device is mounted on a hybrid vehicle that runs with both an engine and a motor. A vehicle HV equipped with the
(電気自動車用電源装置)
また、図16は、モータのみで走行する電気自動車に電源装置を搭載する例を示す。この図に示す電源装置90を搭載した車両EVは、車両EVを走行させる走行用のモータ93と、このモータ93に電力を供給する電源装置90と、この電源装置90の電池を充電する発電機94とを備えている。電源装置90は、DC/ACインバータ95を介してモータ93と発電機94に接続している。モータ93は、電源装置90から電力が供給されて駆動する。発電機94は、車両EVを回生制動する時のエネルギーで駆動されて、電源装置90の電池を充電する。 (Power supply for electric vehicles)
FIG. 16 shows an example in which a power supply device is mounted on an electric vehicle that runs only with a motor. A vehicle EV equipped with thepower supply device 90 shown in this figure includes a motor 93 for traveling the vehicle EV, a power supply device 90 that supplies power to the motor 93, and a generator that charges the battery of the power supply device 90. 94. The power supply device 90 is connected to the motor 93 and the generator 94 via the DC / AC inverter 95. The motor 93 is driven by power supplied from the power supply device 90. The generator 94 is driven by energy when regeneratively braking the vehicle EV, and charges the battery of the power supply device 90.
また、図16は、モータのみで走行する電気自動車に電源装置を搭載する例を示す。この図に示す電源装置90を搭載した車両EVは、車両EVを走行させる走行用のモータ93と、このモータ93に電力を供給する電源装置90と、この電源装置90の電池を充電する発電機94とを備えている。電源装置90は、DC/ACインバータ95を介してモータ93と発電機94に接続している。モータ93は、電源装置90から電力が供給されて駆動する。発電機94は、車両EVを回生制動する時のエネルギーで駆動されて、電源装置90の電池を充電する。 (Power supply for electric vehicles)
FIG. 16 shows an example in which a power supply device is mounted on an electric vehicle that runs only with a motor. A vehicle EV equipped with the
(蓄電用電源装置)
さらに、この電源装置は、移動体用の動力源としてのみならず、載置型の蓄電用設備としても利用できる。例えば家庭用、工場用の電源として、太陽光や深夜電力等で充電し、必要時に放電する電源システム、あるいは日中の太陽光を充電して夜間に放電する街路灯用の電源や、停電時に駆動する信号機用のバックアップ電源等にも利用できる。このような例を図17に示す。この図に示す電源装置80は、複数の電池パック81をユニット状に接続して電池ユニット82を構成している。各電池パック81は、複数の角形電池1が直列及び/又は並列に接続されている。各電池パック81は、電源コントローラ84により制御される。この電源装置80は、電池ユニット82を充電用電源CPで充電した後、負荷LDを駆動する。このため電源装置80は、充電モードと放電モードを備える。負荷LDと充電用電源CPはそれぞれ、放電スイッチDS及び充電スイッチCSを介して電源装置80と接続されている。放電スイッチDS及び充電スイッチCSのON/OFFは、電源装置80の電源コントローラ84によって切り替えられる。充電モードにおいては、電源コントローラ84は充電スイッチCSをONに、放電スイッチDSをOFFに切り替えて、充電用電源CPから電源装置80への充電を許可する。また充電が完了し満充電になると、あるいは所定値以上の容量が充電された状態で負荷LDからの要求に応じて、電源コントローラ84は充電スイッチCSをOFFに、放電スイッチDSをONにして放電モードに切り替え、電源装置80から負荷LDへの放電を許可する。また、必要に応じて、充電スイッチCSをONに、放電スイッチDSをONにして、負荷LDの電力供給と、電源装置80への充電を同時に行うこともできる。 (Power storage device for power storage)
Furthermore, this power supply apparatus can be used not only as a power source for a moving body but also as a stationary power storage facility. For example, as a power source for home and factory use, a power supply system that is charged with sunlight or midnight power and discharged when necessary, or a streetlight power supply that charges sunlight during the day and discharges at night, or during a power outage It can also be used as a backup power source for driving signals. Such an example is shown in FIG. Thepower supply device 80 shown in this figure forms a battery unit 82 by connecting a plurality of battery packs 81 in a unit shape. In each battery pack 81, a plurality of rectangular batteries 1 are connected in series and / or in parallel. Each battery pack 81 is controlled by a power controller 84. The power supply device 80 drives the load LD after charging the battery unit 82 with the charging power supply CP. For this reason, the power supply device 80 has a charge mode and a discharge mode. The load LD and the charging power source CP are connected to the power supply device 80 via the discharging switch DS and the charging switch CS, respectively. ON / OFF of the discharge switch DS and the charge switch CS is switched by the power supply controller 84 of the power supply device 80. In the charging mode, the power controller 84 switches the charging switch CS to ON and the discharging switch DS to OFF to permit charging from the charging power supply CP to the power supply device 80. Further, when the charging is completed and the battery is fully charged, or in response to a request from the load LD in a state where a capacity of a predetermined value or more is charged, the power controller 84 turns off the charging switch CS and turns on the discharging switch DS to discharge. The mode is switched to permit discharge from the power supply device 80 to the load LD. Further, if necessary, the charge switch CS can be turned on and the discharge switch DS can be turned on to supply power to the load LD and charge the power supply device 80 at the same time.
さらに、この電源装置は、移動体用の動力源としてのみならず、載置型の蓄電用設備としても利用できる。例えば家庭用、工場用の電源として、太陽光や深夜電力等で充電し、必要時に放電する電源システム、あるいは日中の太陽光を充電して夜間に放電する街路灯用の電源や、停電時に駆動する信号機用のバックアップ電源等にも利用できる。このような例を図17に示す。この図に示す電源装置80は、複数の電池パック81をユニット状に接続して電池ユニット82を構成している。各電池パック81は、複数の角形電池1が直列及び/又は並列に接続されている。各電池パック81は、電源コントローラ84により制御される。この電源装置80は、電池ユニット82を充電用電源CPで充電した後、負荷LDを駆動する。このため電源装置80は、充電モードと放電モードを備える。負荷LDと充電用電源CPはそれぞれ、放電スイッチDS及び充電スイッチCSを介して電源装置80と接続されている。放電スイッチDS及び充電スイッチCSのON/OFFは、電源装置80の電源コントローラ84によって切り替えられる。充電モードにおいては、電源コントローラ84は充電スイッチCSをONに、放電スイッチDSをOFFに切り替えて、充電用電源CPから電源装置80への充電を許可する。また充電が完了し満充電になると、あるいは所定値以上の容量が充電された状態で負荷LDからの要求に応じて、電源コントローラ84は充電スイッチCSをOFFに、放電スイッチDSをONにして放電モードに切り替え、電源装置80から負荷LDへの放電を許可する。また、必要に応じて、充電スイッチCSをONに、放電スイッチDSをONにして、負荷LDの電力供給と、電源装置80への充電を同時に行うこともできる。 (Power storage device for power storage)
Furthermore, this power supply apparatus can be used not only as a power source for a moving body but also as a stationary power storage facility. For example, as a power source for home and factory use, a power supply system that is charged with sunlight or midnight power and discharged when necessary, or a streetlight power supply that charges sunlight during the day and discharges at night, or during a power outage It can also be used as a backup power source for driving signals. Such an example is shown in FIG. The
電源装置80で駆動される負荷LDは、放電スイッチDSを介して電源装置80と接続されている。電源装置80の放電モードにおいては、電源コントローラ84が放電スイッチDSをONに切り替えて、負荷LDに接続し、電源装置80からの電力で負荷LDを駆動する。放電スイッチDSはFET等のスイッチング素子が利用できる。放電スイッチDSのON/OFFは、電源装置80の電源コントローラ84によって制御される。また電源コントローラ84は、外部機器と通信するための通信インターフェースを備えている。図17の例では、UARTやRS-232C等の既存の通信プロトコルに従い、ホスト機器HTと接続されている。また必要に応じて、電源システムに対してユーザが操作を行うためのユーザインターフェースを設けることもできる。
The load LD driven by the power supply device 80 is connected to the power supply device 80 via the discharge switch DS. In the discharge mode of the power supply device 80, the power supply controller 84 switches the discharge switch DS to ON, connects to the load LD, and drives the load LD with the power from the power supply device 80. As the discharge switch DS, a switching element such as an FET can be used. ON / OFF of the discharge switch DS is controlled by the power supply controller 84 of the power supply device 80. The power controller 84 also includes a communication interface for communicating with external devices. In the example of FIG. 17, it is connected to the host device HT according to an existing communication protocol such as UART or RS-232C. Further, if necessary, a user interface for the user to operate the power supply system can be provided.
各電池パック81は、信号端子と電源端子を備える。信号端子は、パック入出力端子DIと、パック異常出力端子DAと、パック接続端子DOとを含む。パック入出力端子DIは、他のパック電池や電源コントローラ84からの信号を入出力するための端子であり、パック接続端子DOは子パックである他のパック電池に対して信号を入出力するための端子である。またパック異常出力端子DAは、パック電池の異常を外部に出力するための端子である。さらに電源端子は、電池パック81同士を直列、並列に接続するための端子である。また電池ユニット82は並列接続スイッチ85を介して出力ラインOLに接続されて互いに並列に接続されている。
Each battery pack 81 includes a signal terminal and a power supply terminal. The signal terminals include a pack input / output terminal DI, a pack abnormality output terminal DA, and a pack connection terminal DO. The pack input / output terminal DI is a terminal for inputting / outputting signals from other pack batteries and the power supply controller 84, and the pack connection terminal DO is for inputting / outputting signals to / from other pack batteries which are child packs. Terminal. The pack abnormality output terminal DA is a terminal for outputting the abnormality of the battery pack to the outside. Furthermore, the power supply terminal is a terminal for connecting the battery packs 81 in series and in parallel. The battery units 82 are connected to the output line OL via the parallel connection switch 85 and are connected in parallel to each other.
本発明に係る電源装置は、EV走行モードとHEV走行モードとを切り替え可能なプラグイン式ハイブリッド電気自動車やハイブリッド式電気自動車、電気自動車等の電源装置として好適に利用できる。またコンピュータサーバのラックに搭載可能なバックアップ電源装置、携帯電話等の無線基地局用のバックアップ電源装置、家庭内用、工場用の蓄電用電源、街路灯の電源等、太陽電池と組み合わせた蓄電装置、信号機等のバックアップ電源用等の用途にも適宜利用できる。
The power supply device according to the present invention can be suitably used as a power supply device for a plug-in hybrid electric vehicle, a hybrid electric vehicle, an electric vehicle or the like that can switch between the EV traveling mode and the HEV traveling mode. Also, a backup power supply device that can be mounted on a rack of a computer server, a backup power supply device for a wireless base station such as a mobile phone, a power storage device for home use and a factory, a power supply for a street light, etc. Also, it can be used as appropriate for applications such as a backup power source such as a traffic light.
1…角形電池 1A…外装缶
1B…封口板
1X…冷却面
2…絶縁セパレータ
3…電池ブロック
4…ポッティングケース 4A…垂直部
4B…水平部
4X…開口部
5…エンドプレート 5a…雌ネジ孔
6…バインドバー 6A…折曲部
6B…係止部
6C…連結片
6D…係止フック
7…トップカバー 7B…ガイド溝
8…連結具 8C…折曲部
8D…連結穴
9…ポッティング樹脂層 9X…露出部
10…充填隙間
11…シール材
12…シール材
13…シール材
15…電極端子
16…絶縁材
17…安全弁
18…開口部
19…止ネジ
20…冷却機構
21…冷却プレート
22…熱伝導シート
23…冷媒路
26…コンプレッサ
27…冷却熱交換器
28…膨張弁
34…ポッティングケース 34a…切り込み
34B…水平部
34C…中央部
34X…開口部
40…離型剤
44…ポッティングケース
80…電源装置
81…電池パック
82…電池ユニット
84…電源コントローラ
85…並列接続スイッチ
90…電源装置
93…モータ
94…発電機
95…DC/ACインバータ
96…エンジン
EV、HV…車両
LD…負荷;CP…充電用電源;DS…放電スイッチ;CS…充電スイッチ
OL…出力ライン;HT…ホスト機器
DI…パック入出力端子;DA…パック異常出力端子;DO…パック接続端子 DESCRIPTION OFSYMBOLS 1 ... Square battery 1A ... Exterior can 1B ... Sealing plate 1X ... Cooling surface 2 ... Insulating separator 3 ... Battery block 4 ... Potting case 4A ... Vertical part 4B ... Horizontal part 4X ... Opening 5 ... End plate 5a ... Female screw hole 6 ... Bind bar 6A ... Bent part 6B ... Locking part 6C ... Connecting piece 6D ... Locking hook 7 ... Top cover 7B ... Guide groove 8 ... Connector 8C ... Bent part 8D ... Connecting hole 9 ... Potting resin layer 9X ... Exposed portion 10 ... Filling gap 11 ... Sealing material 12 ... Sealing material 13 ... Sealing material 15 ... Electrode terminal 16 ... Insulating material 17 ... Safety valve 18 ... Opening 19 ... Set screw 20 ... Cooling mechanism 21 ... Cooling plate 22 ... Heat Conductive sheet 23 ... Refrigerant path 26 ... Compressor 27 ... Cooling heat exchanger 28 ... Expansion valve 34 ... Potting case 34a ... Notch 34B ... Horizontal part 34C ... Central part 34X ... Opening part 40 ... Release agent 44 ... Potting case 80 ... Power supply Device 81 ... Battery pack 82 ... Battery unit 84 ... Power supply controller 85 ... Parallel connection switch 90 ... Power supply device 93 ... Motor 94 ... Generator 95 ... DC / AC inverter 96 ... Engine EV, HV ... Vehicle LD ... Load; CP ... Charging DS ... Discharge switch; CS ... Charge switch OL ... Output line; HT ... Host device DI ... Pack input / output terminal; DA ... Pack abnormal output terminal; DO ... Pack connection terminal
1B…封口板
1X…冷却面
2…絶縁セパレータ
3…電池ブロック
4…ポッティングケース 4A…垂直部
4B…水平部
4X…開口部
5…エンドプレート 5a…雌ネジ孔
6…バインドバー 6A…折曲部
6B…係止部
6C…連結片
6D…係止フック
7…トップカバー 7B…ガイド溝
8…連結具 8C…折曲部
8D…連結穴
9…ポッティング樹脂層 9X…露出部
10…充填隙間
11…シール材
12…シール材
13…シール材
15…電極端子
16…絶縁材
17…安全弁
18…開口部
19…止ネジ
20…冷却機構
21…冷却プレート
22…熱伝導シート
23…冷媒路
26…コンプレッサ
27…冷却熱交換器
28…膨張弁
34…ポッティングケース 34a…切り込み
34B…水平部
34C…中央部
34X…開口部
40…離型剤
44…ポッティングケース
80…電源装置
81…電池パック
82…電池ユニット
84…電源コントローラ
85…並列接続スイッチ
90…電源装置
93…モータ
94…発電機
95…DC/ACインバータ
96…エンジン
EV、HV…車両
LD…負荷;CP…充電用電源;DS…放電スイッチ;CS…充電スイッチ
OL…出力ライン;HT…ホスト機器
DI…パック入出力端子;DA…パック異常出力端子;DO…パック接続端子 DESCRIPTION OF
Claims (13)
- 複数の角形電池(1)を積層状態で配置してなる電池ブロック(3)と、この電池ブロック(3)の表面にあって各々の角形電池(1)に熱結合状態に配置されて、各角形電池(1)を底面から強制的に冷却する冷却プレート(21)と、この冷却プレート(21)を冷却する冷却機構(20)とを備える電力用の電源装置であって、
前記冷却プレート(21)が、前記角形電池(1)の底面又は側面である冷却面(1X)に熱結合状態に連結されると共に、前記電池ブロック(3)の外周面にはポッティング樹脂層(9)を設けており、さらにポッティング樹脂層(9)は、前記角形電池(1)の冷却面(1X)を露出させる露出部(9X)を有し、この露出部(9X)において角形電池(1)の冷却面(1X)を前記冷却プレート(21)に熱結合状態に連結してなる電力用の電源装置。 A battery block (3) in which a plurality of rectangular batteries (1) are arranged in a stacked state, and a battery block (3) on the surface of the battery block (3) and arranged in a thermally coupled state to each of the square batteries (1). A power supply device for power comprising a cooling plate (21) forcibly cooling the prismatic battery (1) from the bottom, and a cooling mechanism (20) for cooling the cooling plate (21),
The cooling plate (21) is connected in a thermally coupled state to a cooling surface (1X) that is a bottom surface or a side surface of the prismatic battery (1), and a potting resin layer ( 9), the potting resin layer (9) further has an exposed portion (9X) that exposes the cooling surface (1X) of the prismatic battery (1), and the exposed portion (9X) has a rectangular battery ( A power supply device for electric power, wherein the cooling surface (1X) of 1) is connected to the cooling plate (21) in a thermally coupled state. - 前記角形電池(1)の冷却面(1X)が電池ブロック(3)の底面で、角形電池(1)の両側面をポッティング樹脂層(9)でコーティングしている請求項1に記載される電力用の電源装置。 The electric power according to claim 1, wherein the cooling surface (1X) of the prismatic battery (1) is the bottom surface of the battery block (3) and both sides of the prismatic battery (1) are coated with a potting resin layer (9). Power supply unit for
- 前記電池ブロック(3)が、互いに積層してなる複数の角形電池(1)を両側から一対のエンドプレート(5)で積層方向に挟着しており、さらに、一対のエンドプレート(5)をバインドバー(6)で連結して、一対のエンドプレート(5)でもって複数の角形電池(1)を積層状態に固定してなる請求項1又は2に記載される電力用の電源装置。 The battery block (3) sandwiches a plurality of prismatic batteries (1) stacked on each other in a stacking direction from both sides with a pair of end plates (5), and further includes a pair of end plates (5). The power supply device for electric power according to claim 1 or 2, wherein a plurality of prismatic batteries (1) are fixed in a laminated state by being connected by a bind bar (6) and a pair of end plates (5).
- 前記電池ブロック(3)の両側をカバーするポッティングケース(4;34;44)を備え、このポッティングケース(4;34;44)と電池ブロック(3)との間にポッティング樹脂を充填してポッティング樹脂層(9)を設けている請求項3に記載される電力用の電源装置。 Potting case (4; 34; 44) covering both sides of the battery block (3), potting resin is filled between the potting case (4; 34; 44) and the battery block (3) The power supply device for electric power according to claim 3 provided with a resin layer (9).
- 前記ポッティングケース(4;34)が、角形電池(1)の冷却面(1X)を外部に露出させる開口部(4X;34X)を有し、この開口部(4X;34X)において角形電池(1)の冷却面(1X)を冷却プレート(21)に熱結合状態に連結してなる請求項4に記載される電力用の電源装置。 The potting case (4; 34) has an opening (4X; 34X) that exposes the cooling surface (1X) of the prismatic battery (1) to the outside, and the rectangular battery (1 The power supply device for electric power according to claim 4, wherein the cooling surface (1X) is connected to the cooling plate (21) in a thermally coupled state.
- 前記ポッティングケース(4;34)の開口部(4X;34X)の周縁において、ポッティングケース(4;34)と電池ブロック(3)との間をシール材(11)で密閉して、ポッティング樹脂層(9)を水密構造で電池ブロック(3)の表面に設けてなる請求項5に記載される電力用の電源装置。 At the periphery of the opening (4X; 34X) of the potting case (4; 34), the potting case (4; 34) and the battery block (3) are sealed with a sealing material (11), and a potting resin layer The power supply device for electric power according to claim 5, wherein (9) is provided on the surface of the battery block (3) with a watertight structure.
- 前記ポッティングケース(4)がプラスチック製で、前記バインドバー(6)がポッティングケース(4)にインサート成形して一体構造に固定されてなる請求項4ないし6のいずれかに記載される電力用の電源装置。 The power pot according to any one of claims 4 to 6, wherein the potting case (4) is made of plastic, and the bind bar (6) is insert-molded to the potting case (4) and fixed to an integral structure. Power supply.
- 前記冷却プレート(21)を前記電池ブロック(3)に固定する連結具(8)を備え、この連結具(8)が前記バインドバー(6)に連結されてなる請求項3ないし7のいずれかに記載される電力用の電源装置。 The connection plate (8) for fixing the cooling plate (21) to the battery block (3) is provided, and the connection device (8) is connected to the bind bar (6). The power supply device for electric power described in 1.
- 前記電池ブロック(3)と冷却プレート(21)との間に熱伝導シート(22)を配置しており、電池ブロック(3)の角形電池(1)が熱伝導シート(22)を介して冷却プレート(21)に熱結合状態に連結されてなる請求項1ないし8のいずれかに記載される電力用の電源装置。 A heat conductive sheet (22) is disposed between the battery block (3) and the cooling plate (21), and the square battery (1) of the battery block (3) is cooled via the heat conductive sheet (22). The power supply device for electric power according to any one of claims 1 to 8, wherein the power supply device is connected to the plate (21) in a thermally coupled state.
- 前記熱伝導シート(22)が圧縮されて変形するシートである請求項9に記載される電力用の電源装置。 The power supply device for electric power according to claim 9, wherein the heat conductive sheet (22) is a sheet that is compressed and deformed.
- 電源装置が車両を走行させるモータに電力を供給する装置である請求項1ないし10のいずれかに記載される電力用の電源装置。 The power supply device for electric power according to any one of claims 1 to 10, wherein the power supply device is a device that supplies electric power to a motor that drives the vehicle.
- 電源装置が太陽電池の電力で充電されて、太陽電池の発電電力を蓄える装置である請求項1ないし10のいずれかに記載される電力用の電源装置。 The power supply device for electric power according to any one of claims 1 to 10, wherein the power supply device is a device that is charged with electric power of the solar cell and stores the generated electric power of the solar cell.
- 請求項1ないし11のいずれか一に記載される電源装置を備える車両。 A vehicle comprising the power supply device according to any one of claims 1 to 11.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011124536 | 2011-06-02 | ||
JP2011-124536 | 2011-06-02 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2012165493A1 true WO2012165493A1 (en) | 2012-12-06 |
Family
ID=47259345
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2012/063968 WO2012165493A1 (en) | 2011-06-02 | 2012-05-30 | Power source device for supplying power and vehicle provided with power source device |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2012165493A1 (en) |
Cited By (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2014050109A1 (en) * | 2012-09-27 | 2014-04-03 | 三洋電機株式会社 | Power source system |
JP2014116193A (en) * | 2012-12-10 | 2014-06-26 | Toyota Industries Corp | Battery module and manufacturing method for the same |
JP2015207541A (en) * | 2014-04-23 | 2015-11-19 | 日立建機株式会社 | Work machine and cooling structure of power storage device mounted to the same |
WO2015197369A1 (en) * | 2014-06-24 | 2015-12-30 | Mahle International Gmbh | Transition apparatus for an energy storage apparatus, and method for producing an energy storage apparatus |
WO2016146840A1 (en) * | 2015-03-19 | 2016-09-22 | Audi Ag | Motor vehicle |
JP2017059299A (en) * | 2015-09-14 | 2017-03-23 | 株式会社豊田自動織機 | Battery pack and battery module |
CN107757327A (en) * | 2016-08-23 | 2018-03-06 | 本特勒尔汽车技术有限公司 | Method for the battery carrier of electric motor vehicle and for equipping simultaneously assembled batteries carrier |
JP2018506831A (en) * | 2015-03-04 | 2018-03-08 | エルジー・ケム・リミテッド | Clamp device and battery module including the same |
CN108389985A (en) * | 2017-02-02 | 2018-08-10 | 罗伯特·博世有限公司 | Module housing for battery module |
CN109478611A (en) * | 2016-07-07 | 2019-03-15 | 三星Sdi株式会社 | Battery submodule carrier, battery submodule, battery system and automobile |
CN109904564A (en) * | 2017-12-08 | 2019-06-18 | 利萨·德雷克塞迈尔有限责任公司 | Cooling equipment, system, vehicle |
JP2020013750A (en) * | 2018-07-20 | 2020-01-23 | 本田技研工業株式会社 | Battery device and manufacturing method of battery device |
CN112424988A (en) * | 2018-07-17 | 2021-02-26 | 本田技研工业株式会社 | Storage battery device and method for manufacturing storage battery device |
US20210242527A1 (en) * | 2020-01-30 | 2021-08-05 | Robert Bosch Gmbh | Battery |
US11139521B2 (en) | 2016-07-07 | 2021-10-05 | Samsung Sdi Co., Ltd. | Battery submodule carrier, battery submodule, battery system and vehicle |
US11685502B2 (en) * | 2020-06-30 | 2023-06-27 | Textron Innovations Inc. | Modular hybrid airframe structure for battery thermal event protection and repair |
CN116666823A (en) * | 2023-06-26 | 2023-08-29 | 欣旺达动力科技股份有限公司 | Battery pack and electric equipment |
JP7454411B2 (en) | 2020-03-04 | 2024-03-22 | 三洋電機株式会社 | battery pack |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004087438A (en) * | 2002-03-04 | 2004-03-18 | Nissan Motor Co Ltd | Battery pack |
JP2009134901A (en) * | 2007-11-28 | 2009-06-18 | Sanyo Electric Co Ltd | Battery system |
JP2009176689A (en) * | 2008-01-28 | 2009-08-06 | Sanyo Electric Co Ltd | Battery pack |
JP2010153141A (en) * | 2008-12-24 | 2010-07-08 | Sanyo Electric Co Ltd | Power source device for vehicle |
-
2012
- 2012-05-30 WO PCT/JP2012/063968 patent/WO2012165493A1/en active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004087438A (en) * | 2002-03-04 | 2004-03-18 | Nissan Motor Co Ltd | Battery pack |
JP2009134901A (en) * | 2007-11-28 | 2009-06-18 | Sanyo Electric Co Ltd | Battery system |
JP2009176689A (en) * | 2008-01-28 | 2009-08-06 | Sanyo Electric Co Ltd | Battery pack |
JP2010153141A (en) * | 2008-12-24 | 2010-07-08 | Sanyo Electric Co Ltd | Power source device for vehicle |
Cited By (31)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2014050109A1 (en) * | 2012-09-27 | 2014-04-03 | 三洋電機株式会社 | Power source system |
JP2014116193A (en) * | 2012-12-10 | 2014-06-26 | Toyota Industries Corp | Battery module and manufacturing method for the same |
US9564668B2 (en) | 2012-12-10 | 2017-02-07 | Kabushiki Kaisha Toyota Jidoshokki | Battery module and method for manufacturing battery module |
JP2015207541A (en) * | 2014-04-23 | 2015-11-19 | 日立建機株式会社 | Work machine and cooling structure of power storage device mounted to the same |
WO2015197369A1 (en) * | 2014-06-24 | 2015-12-30 | Mahle International Gmbh | Transition apparatus for an energy storage apparatus, and method for producing an energy storage apparatus |
CN106463800A (en) * | 2014-06-24 | 2017-02-22 | 马勒国际公司 | Transition apparatus for an energy storage apparatus, and method for producing an energy storage apparatus |
CN106463800B (en) * | 2014-06-24 | 2019-07-23 | 马勒国际公司 | Method for the transmission equipment of energy storage device and for manufacturing energy storage device |
JP2018506831A (en) * | 2015-03-04 | 2018-03-08 | エルジー・ケム・リミテッド | Clamp device and battery module including the same |
WO2016146840A1 (en) * | 2015-03-19 | 2016-09-22 | Audi Ag | Motor vehicle |
US10870340B2 (en) | 2015-03-19 | 2020-12-22 | Audi Ag | Motor vehicle |
JP2017059299A (en) * | 2015-09-14 | 2017-03-23 | 株式会社豊田自動織機 | Battery pack and battery module |
WO2017047211A1 (en) * | 2015-09-14 | 2017-03-23 | 株式会社豊田自動織機 | Battery pack and battery module |
CN109478611A (en) * | 2016-07-07 | 2019-03-15 | 三星Sdi株式会社 | Battery submodule carrier, battery submodule, battery system and automobile |
CN109478611B (en) * | 2016-07-07 | 2021-11-09 | 三星Sdi株式会社 | Battery submodule carrier, battery submodule, battery system and car |
EP3482429A4 (en) * | 2016-07-07 | 2020-03-11 | Samsung SDI Co., Ltd | Battery submodule carrier, battery submodule, battery system and vehicle |
US11139521B2 (en) | 2016-07-07 | 2021-10-05 | Samsung Sdi Co., Ltd. | Battery submodule carrier, battery submodule, battery system and vehicle |
US11075423B2 (en) | 2016-07-07 | 2021-07-27 | Samsung Sdi Co., Ltd. | Battery submodule carrier, battery submodule, battery system and vehicle |
CN107757327A (en) * | 2016-08-23 | 2018-03-06 | 本特勒尔汽车技术有限公司 | Method for the battery carrier of electric motor vehicle and for equipping simultaneously assembled batteries carrier |
CN108389985A (en) * | 2017-02-02 | 2018-08-10 | 罗伯特·博世有限公司 | Module housing for battery module |
CN109904564A (en) * | 2017-12-08 | 2019-06-18 | 利萨·德雷克塞迈尔有限责任公司 | Cooling equipment, system, vehicle |
US20210265681A1 (en) * | 2018-07-17 | 2021-08-26 | Honda Motor Co., Ltd. | Battery device and method for manufacturing battery device |
CN112424988A (en) * | 2018-07-17 | 2021-02-26 | 本田技研工业株式会社 | Storage battery device and method for manufacturing storage battery device |
CN112424988B (en) * | 2018-07-17 | 2023-03-28 | 本田技研工业株式会社 | Storage battery device and method for manufacturing storage battery device |
US11735785B2 (en) * | 2018-07-17 | 2023-08-22 | Honda Motor Co., Ltd. | Battery device including battery cell group configured by a plurality of laminated battery cells in outer packaging and method for manufacturing the battery device |
JP2020013750A (en) * | 2018-07-20 | 2020-01-23 | 本田技研工業株式会社 | Battery device and manufacturing method of battery device |
JP7042181B2 (en) | 2018-07-20 | 2022-03-25 | 本田技研工業株式会社 | Battery device and manufacturing method of battery device |
US20210242527A1 (en) * | 2020-01-30 | 2021-08-05 | Robert Bosch Gmbh | Battery |
US11699828B2 (en) * | 2020-01-30 | 2023-07-11 | Robert Bosch Gmbh | Battery including tensioning band bonded to side walls of battery cells by band bonding material |
JP7454411B2 (en) | 2020-03-04 | 2024-03-22 | 三洋電機株式会社 | battery pack |
US11685502B2 (en) * | 2020-06-30 | 2023-06-27 | Textron Innovations Inc. | Modular hybrid airframe structure for battery thermal event protection and repair |
CN116666823A (en) * | 2023-06-26 | 2023-08-29 | 欣旺达动力科技股份有限公司 | Battery pack and electric equipment |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2012165493A1 (en) | Power source device for supplying power and vehicle provided with power source device | |
KR101307992B1 (en) | Battery module with cooling structure of high efficiency | |
JP7348180B2 (en) | Battery system and electric vehicle and power storage device equipped with the battery system | |
JP5734704B2 (en) | Power supply device and vehicle equipped with power supply device | |
JP2013012441A (en) | Electric power source device and vehicle including the same | |
JP6138688B2 (en) | Power supply device, vehicle including the same, and power storage device | |
KR101547814B1 (en) | Battery Module Having Indirect Air-Cooling Structure | |
WO2013161654A1 (en) | Power-supply device, vehicle provided with power-supply device, and electricity-storage device | |
US20140023906A1 (en) | Power supply apparatus and vehicle having the same | |
WO2014010438A1 (en) | Battery system, and vehicle and power storage device equipped with battery system | |
JP6328842B2 (en) | Power supply device and vehicle equipped with the same | |
WO2013084756A1 (en) | Power source device, vehicle equipped with same and electricity storage device | |
WO2012133710A1 (en) | Power supply and vehicle comprising same | |
JP2012248339A (en) | Power unit for electric power and vehicle with power unit | |
JP2012160347A (en) | Power supply and vehicle with power supply | |
WO2013002090A1 (en) | Power supply device, vehicle including same, and method for manufacturing power supply device | |
WO2012057169A1 (en) | Power-supply device, vehicle using same, battery cell, and battery-cell manufacturing method | |
WO2014024431A1 (en) | Battery system, vehicle provided with battery system, and electricity storage device | |
JP2013171746A (en) | Power supply device, and vehicle and power storage device having the same | |
JP2013025983A (en) | Power-supply unit, and vehicle equipped with the same | |
JP2015133169A (en) | Power supply device, and vehicle and power storage device provided with the same | |
WO2014024450A1 (en) | Power source device, electric vehicle provided with same, and electricity storage device | |
KR20130123901A (en) | Battery module with excellent cooling efficiency and compact structure | |
WO2014024451A1 (en) | Power source device, electric vehicle provided with same, and electricity storage device | |
WO2021065160A1 (en) | Battery module, and electric vehicle and power storage device comprising battery module |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 12793392 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 12793392 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: JP |