WO2017047211A1 - Battery pack and battery module - Google Patents

Battery pack and battery module Download PDF

Info

Publication number
WO2017047211A1
WO2017047211A1 PCT/JP2016/070563 JP2016070563W WO2017047211A1 WO 2017047211 A1 WO2017047211 A1 WO 2017047211A1 JP 2016070563 W JP2016070563 W JP 2016070563W WO 2017047211 A1 WO2017047211 A1 WO 2017047211A1
Authority
WO
WIPO (PCT)
Prior art keywords
partition
housing
battery module
battery
plate
Prior art date
Application number
PCT/JP2016/070563
Other languages
French (fr)
Japanese (ja)
Inventor
祐良 山口
村田 卓也
木下 恭一
Original Assignee
株式会社豊田自動織機
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社豊田自動織機 filed Critical 株式会社豊田自動織機
Publication of WO2017047211A1 publication Critical patent/WO2017047211A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K1/00Arrangement or mounting of electrical propulsion units
    • B60K1/04Arrangement or mounting of electrical propulsion units of the electric storage means for propulsion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K11/00Arrangement in connection with cooling of propulsion units
    • B60K11/02Arrangement in connection with cooling of propulsion units with liquid cooling
    • B60K11/04Arrangement or mounting of radiators, radiator shutters, or radiator blinds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/613Cooling or keeping cold
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/62Heating or cooling; Temperature control specially adapted for specific applications
    • H01M10/625Vehicles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/64Heating or cooling; Temperature control characterised by the shape of the cells
    • H01M10/647Prismatic or flat cells, e.g. pouch cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/653Means for temperature control structurally associated with the cells characterised by electrically insulating or thermally conductive materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/655Solid structures for heat exchange or heat conduction
    • H01M10/6554Rods or plates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/204Racks, modules or packs for multiple batteries or multiple cells
    • H01M50/207Racks, modules or packs for multiple batteries or multiple cells characterised by their shape
    • H01M50/209Racks, modules or packs for multiple batteries or multiple cells characterised by their shape adapted for prismatic or rectangular cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/218Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by the material
    • H01M50/22Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by the material of the casings or racks
    • H01M50/227Organic material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a battery pack and a battery module.
  • a battery module in which a plurality of battery cells such as lithium ion secondary batteries are arranged in one direction is known.
  • a battery pack in which such a battery module is fixed to a casing (case) is provided with a heat dissipation structure for releasing heat generated in the battery cells to the casing.
  • the battery module described in Patent Document 1 has a heat transfer plate joined to a case, and a heat conductive layer is provided on a surface facing the case of the heat transfer plate. In the battery pack having this battery module, heat generated in the battery cells is conducted to the case through the heat transfer plate and the heat conductive layer.
  • the heat conductive layer described in Patent Document 1 is formed by curing a curable liquid heat conductive material (TIM: Thermal Interface Material).
  • TIM Thermal Interface Material
  • the heat conductive material has fluidity until the heat conductive material is cured.
  • a heat conductive material may flow out in the case other than the area
  • screw holes or the like provided around the region in the case may be filled with the heat conductive material, and it may be difficult to attach the battery module to the case.
  • the present invention provides a battery pack and a battery module that can prevent the heat conductive material from flowing to an unintended region even when a liquid heat conductive material is used.
  • a battery pack according to one aspect of the present invention is sandwiched between a battery module having an array formed by arranging a plurality of battery cells in one direction, a casing to which the battery module is fixed, and the array and the casing.
  • a solid heat conductive member formed by curing a liquid heat conductive material, and a first partition wall extending in one direction between the battery module and the housing and sandwiching the heat conductive member And a second partition.
  • the solid heat conduction member is provided in the region defined by the first partition and the second partition.
  • the heat conducting member is formed by curing a liquid heat conducting material. For example, when forming a heat conductive member by applying a liquid heat conductive material to the said area
  • the battery module further includes a first plate and a second plate that sandwich the array body in one direction, and an end surface on the housing side of the first plate and the second plate is more than a facing surface facing the housing of the array body. It may be located on the housing side.
  • a liquid thermosetting material is applied to a region defined by a first partition and a second partition and then the heat conductive material is cured in a state where the battery module is fixed to form a heat conductive member
  • the first A frame surrounding the liquid heat conductive material is formed by the partition wall, the second partition wall, the first plate, and the second plate. That is, since the liquid heat conductive material is surrounded by the first plate and the second plate in addition to the first partition and the second partition, it is further suppressed that the heat conductive material flows out of the region.
  • the battery pack further includes a third partition extending in a direction intersecting with one direction, the battery module includes an elastic member provided between the first plate and the array, and the third partition is You may provide between an elastic member and a housing
  • the heat conduction member can be formed by applying the liquid heat conduction material to the region defined by the first to third partitions. Since the three directions of the region are surrounded by the first to third regions, it is possible to further suppress the liquid heat conductive material from flowing out of the region.
  • the one end of the first partition may be positioned on the opposite side of the array with respect to the first plate, and the other end of the first partition may be positioned on the opposite side of the array with respect to the second plate.
  • the first partition wall exists over at least the first plate and the second plate.
  • the first partition and the second partition may be integrated with the housing.
  • the region where the heat conductive material is formed on the housing is easily determined by the first partition and the second partition.
  • the first partition and the second partition may be integrated with the battery module.
  • a resin holder that holds the battery cells in the battery module, and the first partition and the second partition can be integrally formed.
  • a 1st partition and a 2nd partition can be provided cheaply and easily.
  • the first partition may be integrated with the casing, and the second partition may be integrated with the battery module.
  • the region where the heat conductive material is formed on the housing is easily determined by the first partition.
  • the second partition can be provided inexpensively and easily.
  • the first partition may have a plurality of partitions extending along one direction. In this case, in order for the heat conductive material to exceed the first partition, it is necessary to exceed all of the plurality of partitions. Therefore, it can further suppress that a heat conductive material exceeds a 1st partition.
  • the first partition has a plurality of partitions extending along one direction, a part of the plurality of partitions is integrated with the housing, and the other part of the plurality of partitions is integrated with the battery module. Also good.
  • the heat conductive material in order for the heat conductive material to exceed the first partition, it is necessary to exceed all of the plurality of partitions. Therefore, it can further suppress that a heat conductive material exceeds a 1st partition by the some partition provided in a housing
  • the part of the partition walls can be provided inexpensively and easily.
  • the first partition wall and the second partition wall may be partition members that are separate from the casing and the battery module.
  • the freedom degree of the material etc. which comprise a 1st partition and a 2nd partition improves.
  • the battery module includes a heat transfer plate that contacts a main surface that is a surface intersecting in one direction in the battery cell, and the heat transfer plate includes a first main body portion that contacts the main surface, and a housing side of the first main body portion. A second main body portion extending in a direction intersecting the main surface from the end, and the second main body portion may contact the heat conducting member.
  • the heat generated in the battery cell can be conducted to the heat conducting member via the heat transfer plate, and the heat dissipation of the battery cell can be improved.
  • a battery module is a battery module that is fixed to a housing with a solid heat conductive member formed by curing a liquid heat conductive material, and a plurality of battery cells are arranged in one direction.
  • a heat transfer plate having a second body portion extending in a direction, and a first plate and a second plate sandwiching the array in one direction, the second body portion being a first main surface in contact with the holder
  • the holder has a first partition wall and a second partition wall, the first partition wall and the second partition wall extend in one direction, and 2 It is provided so as to sandwich the main body portion, and is further away from the array body than the second main surface. Projecting direction, the first plate and second plate protrudes in the direction away from the array than the second major surface.
  • the holder has the first partition wall and the second partition wall protruding in a direction away from the array body than the second main surface of the second main body portion, and the first plate and the second plate are the second plate. It protrudes in a direction away from the array rather than the main surface. Accordingly, the first partition, the second partition, the first plate, and the second plate form a frame in which the array protrudes from the surface facing the casing when the battery module is fixed to the casing. For this reason, for example, when fixing a battery module in a housing, after applying a liquid heat conductive material to a predetermined region of the housing, the heat conductive material is cured in a state where the battery module is fixed to the housing.
  • the liquid heat conductive material can be surrounded by the frame, so that the heat conductive material can be prevented from flowing out of the region. Therefore, by fixing the battery module to the casing, it is possible to suppress the liquid heat conductive material on the casing from flowing out to an unintended region.
  • the holder made of resin has the first partition wall and the second partition wall, for example, the holder and the first partition wall and the second partition wall can be integrally formed, so that the first partition wall and the second partition wall can be provided easily and inexpensively. Can do.
  • the present invention even when a liquid heat conductive material is used, it is possible to provide a battery pack and a battery module that can prevent the heat conductive material from flowing out to an unintended region.
  • FIG. 1 is a schematic view of a battery pack including the battery module according to the first embodiment.
  • FIG. 2 is an enlarged view of a part of the housing.
  • FIG. 3 is a perspective view of the battery module fixed to the battery pack.
  • FIG. 4 is a schematic end view taken along line IV-IV in FIG.
  • FIG. 5 is a schematic end view taken along the line VV of FIG.
  • FIG. 6 is an exploded perspective view showing an example of a battery cell, a heat transfer plate, and a cell holder.
  • FIG. 7 is a process diagram for explaining the battery pack manufacturing method according to the first embodiment.
  • FIG. 8 is an enlarged view of a part of the housing of the first modification of the first embodiment.
  • FIG. 9 is an enlarged view of a part of the housing of the second modified example of the first embodiment.
  • FIG. 10 is a schematic end view for explaining a third modification of the first embodiment.
  • FIG. 11 is a schematic end view for explaining a fourth modification of the first embodiment.
  • FIG. 12 is a schematic end view for explaining the battery pack of the second embodiment.
  • FIG. 13 is a schematic end view for explaining the battery pack of the third embodiment.
  • FIG. 14 is a schematic end view for explaining a first modification of the third embodiment.
  • FIG. 15 is a schematic end view for explaining a second modification of the third embodiment.
  • FIG. 16 is a schematic end view for explaining the battery pack according to the fourth embodiment.
  • FIG. 1 is a schematic view of a battery pack including the battery module according to the first embodiment.
  • the battery pack 10 includes a housing 11, a junction box 12, and a plurality of battery modules 20.
  • the housing 11 has a box shape and has a storage space for storing the junction box 12 and the plurality of battery modules 20.
  • the housing 11 includes a square plate-like bottom plate 11a and a top plate 11b provided to face the bottom plate 11a.
  • casing 11 has the plate-shaped front board 11c standing from the periphery of the baseplate 11a, the rear board 11d, and a pair of side plate 11e.
  • the housing 11 When mounted on a vehicle such as a forklift or an automobile, the housing 11 is disposed such that the bottom plate 11a is positioned vertically downward and the top plate 11b is positioned vertically upward.
  • FIG. 1 illustrates a state where one side plate 11e is removed.
  • the other side plate 11e is provided with a plurality of holes 11f, and the junction box 12 and the battery module 20 are attached to the other side plate 11e using these holes 11f.
  • the plurality of holes 11f may be through holes or screw holes. The size of the plurality of holes 11f varies depending on the location of the other side plate 11e.
  • the direction in which the top plate 11b is provided is “up”, the direction in which the bottom plate 11a is provided is “down”, the direction in which the front plate 11c is provided is “front”, and the direction in which the rear plate 11d is provided. Is described as “after”. Further, the direction from the bottom plate 11a to the top plate 11b or the direction from the top plate 11b to the bottom plate 11a is referred to as “direction X being the vertical direction”, and the direction from the front plate 11c to the rear plate 11d or from the rear plate 11d to the front plate 11c.
  • direction Y that is the front-rear direction
  • direction Z that is the lateral direction
  • FIG. 2 is an enlarged view of a part of the housing.
  • the battery pack 10 includes a solid heat conducting member 13 and first and second partition walls 14 and 15 that are spaced apart in parallel in the direction X.
  • the heat conducting member 13, the first partition 14, and the second partition 15 are provided so as to be sandwiched between the battery module 20 and the other side plate 11e.
  • the shapes of the first partition 14 and the second partition 15 are substantially the same.
  • the heat conducting member 13 is a solid layer formed by curing a liquid heat conducting material (TIM). That is, the heat conducting member 13 is a layered cured product of a liquid heat conducting material.
  • a heat conductive material is a material which has high heat conductivity, for example, for example, has a heat conductivity of 1.5 W / m * K or more.
  • the thermal conductivity of the heat conductive material may be 2 W / m ⁇ K or more, 2.5 W / m ⁇ K, or 3.0 W / m ⁇ K or more. Examples of the heat conductive material include polyurethane resin.
  • the solid layer may be a layer having a certain volume and shape, and may be a gel layer.
  • the heat conducting member 13 is flattened, but the heat conducting member 13 may not be flattened.
  • a flattening process such as a doctor blade method may be performed, a predetermined coating apparatus may be used, or the composition of the heat conducting material may be adjusted.
  • the heat conductive member 13 may have adhesiveness.
  • the heat conducting member 13 is provided on a region R defined by the first partition wall 14 and the second partition wall 15 in the other side plate 11 e of the housing 11.
  • region R is an area
  • the length along the direction X of the region R corresponds to the separation distance in the direction X of the first partition wall 14 and the second partition wall 15, and the length along the direction Y of the region R is equal to the first partition wall 14 and the second partition wall 14. This corresponds to the length of the partition 15 along the direction Y.
  • both ends of the region R in the direction X and both ends in the direction Y are defined by the first partition 14 and the second partition 15.
  • the length along the direction Y of the region R may correspond to a separation distance along the direction Y between the first bracket 23 and the second bracket 24 shown in FIGS. 3 and 4 described later (see FIG. 9). . That is, both ends in the direction Y of the region R may be defined by the first bracket 23 and the second bracket 24.
  • the first partition wall 14 and the second partition wall 15 are integrated with the housing 11 and project from the housing 11 toward the battery module 20. Specifically, the first partition 14 and the second partition 15 are provided on the other side plate 11e, and project from the other side plate 11e toward the one side plate 11e.
  • the first partition wall 14 and the second partition wall 15 have a substantially rectangular parallelepiped shape extending along the direction Y.
  • the first partition 14 is located above the heat conducting member 13, and the second partition 15 is located below the heat conducting member 13.
  • a hole 11f used for attaching the junction box 12 is provided above the first partition wall 14, and a second bracket 24 described later is attached to the left side of the heat conducting member 13 and the like.
  • a hole 11f used for the purpose is provided.
  • the thickness of the first partition wall 14 and the second partition wall 15 is larger than the thickness of the heat conducting member 13. Moreover, the length along the direction Y of the 1st partition 14 and the 2nd partition 15 is less than the length along the direction Y of the battery module 20, and it is in the direction Y of the array body 50 (refer FIG. 3) mentioned later. It is more than the length along.
  • the junction box 12 is provided at a corner portion formed by the top plate 11b and the front plate 11c in the accommodation space.
  • the junction box 12 accommodates a terminal block 12a, a relay (not shown), and the like.
  • the terminal block 12a includes a plurality of connecting portions (not shown) to which cable terminals and the like are connected.
  • the junction box 12 is connected to the battery module 20 via cables C1 to C3 and the like.
  • the plurality of battery modules 20 are arranged along the direction X at the rear of the accommodation space, and are arranged along the direction X at the front of the accommodation space.
  • the number of battery modules 20 in the accommodation space is five.
  • the number of battery modules 20 arranged behind the housing space is three, and the number of battery modules 20 arranged forward is two.
  • a junction box 12 is provided above the battery module 20 disposed in front.
  • FIG. 3 is a perspective view of the battery module fixed to the battery pack.
  • FIG. 4 is a schematic end view taken along line IV-IV in FIG.
  • FIG. 5 is a schematic end view taken along the line VV of FIG.
  • the battery module 20 includes an array 50 in which a plurality of battery cells 21 are arranged in the direction Y, a plurality of heat transfer plates 22, and a first bracket (first plate). 23, a second bracket (second plate) 24, an elastic member 25, and a control device 26.
  • the battery module 20 of the first embodiment includes seven battery cells 21, and each battery cell 21 is held by a cell holder (holder) 31. For this reason, the array body 50 is configured by arranging the seven battery cells 21 respectively held in the cell holder 31 along the direction Y.
  • FIG. 6 is an exploded perspective view showing an example of a battery cell, a heat transfer plate, and a cell holder.
  • the battery cell 21 is secondary batteries, such as a lithium ion battery or a nickel hydride storage battery, for example.
  • the battery cell 21 has a substantially rectangular parallelepiped shape, and has a pair of main surfaces 21a that are rectangular surfaces that intersect the direction Y, and four side surfaces 21b that are rectangular surfaces.
  • the battery cell 21 has a first terminal T1 and a second terminal T2 to be connected to an external device or another battery cell 21.
  • the surface facing the housing 11 in the array 50 formed by arranging a plurality of battery cells 21 is referred to as a facing surface 50a.
  • the heat transfer plate 22 is a metal or alloy member that is alternately arranged with the plurality of battery cells 21 in the direction Y and has higher thermal conductivity than the cell holder 31.
  • the heat transfer plate 22 is a plate-shaped member having an L-shaped cross section that contacts the main surface 21 a of the battery cell 21 exposed from the cell holder 31.
  • the heat transfer plate 22 is a member for adjusting the temperature of the battery cell 21 by conducting heat generated in the battery cell 21 to the outside.
  • the heat transfer plate 22 includes a first main body portion 22a that contacts the main surface 21a, and a second main body portion 22b that extends in one direction Y from one end of the first main body portion 22a. As shown in FIG. 4, the first main body portion 22 a contacts both the battery cells 21 adjacent in the direction Y, and is arranged so as to reduce the temperature difference between the battery cells 21.
  • the second main body portion 22 b comes into contact with a side surface portion 33 of the cell holder 31 described later and is exposed from the cell holder 31.
  • the second main body portion 22 b has a first main surface 22 b 1 that contacts the side surface portion 33 and a second main surface 22 b 2 that is a surface opposite to the first main surface 22 b 1.
  • the second main body portion 22b extends along the side surface 21b on the other side plate 11e side in the battery cell 21. Therefore, one end of the first main body portion 22a corresponds to the end on the other side plate 11e side of the first main body portion 22a, and corresponds to the end on the facing surface 50a side of the array 50.
  • the second main body portion 22 b contacts the heat conducting member 13 when the battery module 20 is attached to the housing 11. Specifically, the second main surface 22 b 2 is in contact with the heat conducting member 13. Thereby, the heat generated in the battery cell 21 is transmitted to the housing 11 via the heat transfer plate 22 and the heat conducting member 13.
  • the second main body portions 22b may be in contact with each other or may be separated from each other.
  • the cell holder 31 has a frame shape into which the battery cell 21 is fitted, and is a member that can surround and hold the side surface 21 b of the battery cell 21.
  • the cell holder 31 is composed of a resin molded member.
  • the cell holder 31 has an opening 32 that allows contact between the main surface 21a of the battery cell 21 and the first main body portion 22a of the heat transfer plate 22 when the battery cell 21 is fitted.
  • the cell holder 31 includes side surface portions 33 and 34 that define the opening 32, a bottom surface portion 35, and a partition portion 36.
  • the side surface portion 33 is a portion that faces the second main body portion 22b when the battery cell 21 and the first main body portion 22a of the heat transfer plate 22 come into contact with each other.
  • the side surface portion 34 is a portion facing the side surface portion 33 with the opening 32 interposed therebetween.
  • the bottom surface portion 35 is a portion that connects one end sides of the side surface portions 33 and 34.
  • the partition portion 36 is a portion that connects the other end sides of the side surface portions 33 and 34. At both ends in the direction Z of the bottom surface portion 35, insertion holes 35a into which a connecting member 43 described later is inserted are provided.
  • the partition portion 36 is provided with a terminal accommodating portion 36a that accommodates the first terminal T1 and the second terminal T2 of the battery cell 21, respectively. Further, the partition portion 36 is provided with two insertion holes 36b through which a connecting member 43 described later is inserted.
  • the first bracket 23 and the second bracket 24 are made of a highly rigid material, for example, a metal such as iron.
  • the first bracket 23 and the second bracket 24 attach a restraining load to the array body 50 by sandwiching the array body 50 on both sides in the direction Y.
  • the first bracket 23 and the second bracket 24 also fix the battery module 20 to the housing 11 of the battery pack 10.
  • the first bracket 23 is disposed on one side in the direction Y in the array 50.
  • the second bracket 24 is disposed on the other side in the direction Y in the array 50.
  • Each of the first bracket 23 and the second bracket 24 has a clamping part 41 and an attachment part 42.
  • the clamping part 41 is a substantially rectangular flat plate.
  • the clamping part 41 of the first bracket 23 and the clamping part 41 of the second bracket 24 are connected by a connecting member 43 such as a bolt, for example.
  • the holding portions 41 are connected to each other by a connecting member 43 so that a force is applied so as to approach each other in the direction Y.
  • the clamping parts 41 apply a restraining load in the direction Y to the plurality of battery cells 21.
  • An end of the sandwiching portion 41 on the housing 11 side projects in the direction Z from the second main surface 22b 2 of the second main body portion 22b to the housing 11 side. In other words, the end of the clamping portion 41 projecting in a direction away from the facing surface 50a of the array 50 than the second major surface 22b 2 in the direction Z.
  • the attachment portion 42 is a substantially rectangular flat plate extending from the end on the housing 11 side of the sandwiching portion 41 to the side opposite to the array body 50.
  • a plurality of holes 42 a penetrating along the direction Z are provided in the attachment portion 42.
  • the mounting portion 42 is mounted so as to sandwich the heat conducting member 13 on the other side plate 11e in the direction Y by a bolt 44 inserted through the hole 42a and screwed into the hole 11f.
  • a housing 11 side of the mounting portion 42, the end surface 42b in contact with the casing 11 is located in the housing 11 side of the second main surface 22b 2 of the second body portion 22b.
  • Offset D1 in the direction Z of the second main surface 22b 2 of the end face 42b and second body part 22b is, for example, about 1 mm. Since the end surface 42b is located closer to the housing 11 than the second main body 22b, the end surface 42b is naturally located closer to the housing 11 than the facing surface 50a of the array 50.
  • the elastic member 25 is a plate-like member provided between the first bracket 23 and the array body 50.
  • the elastic member 25 is made of an elastically deformable material such as rubber and resin sponge.
  • the elastic member 25 absorbs the expansion of the battery cell 21 in the battery module 20.
  • the end face 42 b of the attachment portion 42 is located closer to the housing 11 than the elastic member 25.
  • the offset D2 in the direction Z between the end surface 42b and the elastic member 25 is substantially the same as the total thickness of the side surface portion 33 of the cell holder 31, the second main body portion 22b of the heat transfer plate 22, and the heat conducting member 27.
  • the control device 26 is a device that performs various controls (for example, discharge control or temperature control) regarding the battery module 20, and is provided on the battery cell 21 and connected to the battery cell 21.
  • the control device 26 includes a central processing unit (CPU), an electronic control unit (ECU), and the like.
  • FIG. 7 is a process diagram for explaining the battery pack manufacturing method according to the first embodiment.
  • step S 1 the battery cell 21 and the like are assembled (step S1).
  • step S ⁇ b> 1 the battery cell 21 is incorporated into the cell holder 31. Thereby, the battery cell 21 is held by the cell holder 31.
  • step S ⁇ b> 1 the heat transfer plate 22 is brought into contact with the main surface 21 a of the battery cell 21, and the second main body portion 22 b of the heat transfer plate 22 is disposed on the side surface portion 33 of the cell holder 31.
  • step S2 the plurality of battery cells 21 are arranged and restrained (step S2).
  • step S2 the plurality of battery cells 21 incorporated in the cell holder 31 in step S1 are arranged along a direction (one direction) intersecting the main surface 21a.
  • the first main body portion 22 a of the heat transfer plate 22 is sandwiched between the adjacent battery cells 21.
  • the arranged plurality of battery cells 21 are sandwiched in one direction by the first bracket 23 and the second bracket 24.
  • the elastic member 25 is sandwiched between the sandwiching portion 41 of the first bracket 23 and the battery cell 21 located adjacent to the sandwiching portion 41.
  • the 1st bracket 23 and the 2nd bracket 24 are connected using the connection member 43, and the restraint load along one direction is added with respect to the some battery cell 21 arranged.
  • the array body 50 formed by arranging a plurality of battery cells 21 is provided.
  • step S3 the battery cell 21 is self-discharged.
  • step S3 first, the electromotive forces of the constrained battery cells 21 are each measured by a tester. Specifically, the electromotive force of the battery cell 21 is measured by connecting a tester to the first terminal T1 and the second terminal T2 of the battery cell 21.
  • the array body 50 is left as it is.
  • the battery cell 21 spontaneously discharges by allowing the array 50 to stand in an air atmosphere and at normal temperature and pressure for 1 day or more and 5 days or less. In the first embodiment, the array 50 is left for about 2.5 to 3 days.
  • step S4 the control device 26 and the like are attached to the array 50 (step S4).
  • the battery cells 21 are electrically connected to each other by, for example, a bus bar, and the control device 26 is attached to be electrically connected to the battery cells 21.
  • the battery module 20 shown in FIG. 2 is manufactured.
  • a liquid heat conductive material (TIM) is applied on the casing 11 (step S5).
  • a heat conductive material is applied to the region R of the other side plate 11e of the housing 11. At this time, the housing 11 is allowed to stand to suppress the heat conduction material from flowing out of the region R.
  • step S6 the battery module 20 is fixed to the housing 11 (step S6).
  • step S6 as shown in FIG. 5, the second main body portion 22b of the heat transfer plate 22 of the battery module 20 is sandwiched in the direction X by the first partition wall 14 and the second partition wall 15 and applied onto the housing 11.
  • the battery module 20 is fixed to the housing 11 so as to be in contact with the heat conduction material.
  • the battery module 20 is arranged on the housing 11 so that the heat conductive material is sandwiched in the direction Y by the sandwiching portions 41 of the first bracket 23 and the second bracket 24.
  • step S6 the region R is defined by the frame formed by the first partition 14, the second partition 15, the first bracket 23, and the second bracket 24, and the heat conduction material flows out from the region R. Suppress. And by curing the thermally conductive material, the heat conducting member 13 in contact with the second major surface 22b 2 of the second body portion 22b in the region R is formed.
  • step S ⁇ b> 6 the sandwiching portion 41 may be in contact with the heat conducting member 13 or may be separated from the heat conducting member 13.
  • the battery pack 10 shown in FIG. 1 is manufactured by fixing the plurality of battery modules 20 to the housing 11 by the method described above.
  • the solid heat conductive member 13 can be provided in the region R defined by the first partition wall 14 and the second partition wall 15. .
  • the heat conducting member 13 is formed by curing a liquid heat conducting material. Therefore, as described above, when the heat conductive member 13 is formed by applying the liquid heat conductive material to the region R, the liquid heat conductive material is out of the region R, particularly in the direction, by the first partition wall 14 and the second partition wall 15. It is possible to suppress the flow out of the region beyond the first partition 14 and the region beyond the second partition 15 in X.
  • the battery module 20 includes a first bracket 23 and a second bracket 24 that sandwich the array body 50 in the direction Y, and end surfaces 42b of the first bracket 23 and the second bracket 24 are opposed surfaces 50a of the array body 50. It is located closer to the housing 11 side.
  • a liquid thermosetting material is applied to the region R defined by the first partition wall 14 and the second partition wall 15 in the housing 11, the heat conductive material is cured and heated in a state where the battery module 20 is fixed.
  • a frame surrounding the liquid heat conductive material is formed by the first partition 14, the second partition 15, the first bracket 23, and the second bracket 24.
  • the liquid heat conductive material is surrounded by the first bracket 23 and the second bracket 24 in addition to the first partition wall 14 and the second partition wall 15, the region R in the direction Y by the first bracket 23 and the second bracket 24.
  • the heat conduction material is prevented from flowing out. Therefore, it is possible to further suppress the liquid heat conductive material from flowing out to an unintended region.
  • first partition 14 and the second partition 15 are integrated with the housing 11.
  • the region R where the liquid heat conductive material is applied to the housing 11 is easily determined.
  • the battery module 20 includes a heat transfer plate 22 that contacts the main surface 21a of the battery cell 21, and the heat transfer plate 22 includes a first main body portion 22a and a second main body portion 22b, and the second main body.
  • the part 22 b contacts the heat conducting member 13. In this case, the heat generated in the battery cell 21 can be conducted to the heat conducting member 13 via the heat transfer plate 22, and the heat dissipation of the battery cell 21 can be improved.
  • FIG. 8 is an enlarged view of a part of the housing of the first modified example of the first embodiment.
  • the first modification is different from the first embodiment in that the battery pack 10 further includes a third partition wall 61.
  • the third partition wall 61 is provided behind the region R in the other side plate 11e of the housing 11A. Further, the third partition wall 61 is provided between the first partition wall 14 and the second partition wall 15 in the direction X.
  • the third partition wall 61 is provided so as to be positioned between the elastic member 25 and the housing 11A when the battery module 20 is fixed to the housing 11A.
  • the third partition wall 61 is integrated with the housing 11A and has a substantially rectangular parallelepiped shape that protrudes from the housing 11A toward the battery module 20 and extends along the direction X.
  • the thickness of the third partition wall 61 is larger than the thickness of the heat conducting member 13. Further, the thickness of the third partition wall 61 is substantially the same as or larger than the thickness of the first partition wall 14 and the thickness of the second partition wall 15.
  • the length of the third partition wall 61 is, for example, less than the separation distance in the direction X between the first partition wall 14 and the second partition wall 15 and is not less than the length of the heat conducting member 13 in the direction X.
  • the third partition wall 61 may be provided so as to overlap the elastic member 25 when the battery module 20 is attached to the housing 11.
  • a liquid heat conductive material is applied to a region R defined by the first partition wall 14, the second partition wall 15, and the third partition wall 61 on the housing 11 to heat the heat transfer member 13. Can be formed. Since the three directions of the region R are surrounded by the first partition wall 14, the second partition wall 15, and the third partition wall 61, the liquid heat conductive material exceeds the third partition wall 61 outside the region R, particularly on the housing 11. Flowing out to the area can be suppressed. Therefore, it is possible to further suppress the liquid heat conductive material from flowing out to an unintended region.
  • an offset D ⁇ b> 2 is generated between the elastic member 25 and the housing 11.
  • the offset D ⁇ b> 2 can be filled by providing the third partition wall 61 so as to overlap the elastic member 25. Thereby, it can suppress that a liquid heat conductive material flows out to the area
  • FIG. 9 is an enlarged view of a part of the housing of the second modified example of the first embodiment.
  • the second modification is different from the first embodiment in that the lengths of the first partition 14 and the second partition 15 along the direction Y are different.
  • the length along the direction Y of the first partition 14A is larger than the length along the direction Y of the first partition 14 of the first embodiment.
  • the length along the direction Y of the second partition 15A is larger than the length along the direction Y of the second partition 15 of the first embodiment.
  • each of the first partition wall 14 ⁇ / b> A and the second partition wall 15 ⁇ / b> A extends from the front side of the region 63 to the rear side of the region 62.
  • one end of the first partition 14 ⁇ / b> A is positioned on the opposite side of the array 50 with respect to the first bracket 23, and the other end of the first partition 14 ⁇ / b> A is opposite to the array 50 on the second bracket 24. Located on the side.
  • one end of the second partition 15 ⁇ / b> A is positioned on the opposite side of the array 50 with respect to the first bracket 23, and the other end of the second partition 15 ⁇ / b> A is on the opposite side of the array 50 with respect to the second bracket 24. Located in.
  • the same effects as those of the first embodiment are achieved, and the outflow of the liquid heat conductive material in the direction X outside the region R is further suppressed by the first partition wall 14A and the second partition wall 15A.
  • the first partition wall 14A and the second partition wall 15A exist in at least the first bracket 23 and the second bracket 24 in the direction Y, and the direction Y of the first partition wall 14 and the second partition wall 15 in the first embodiment. Longer than the length along. For this reason, in the frame formed by the first partition wall 14A, the second partition wall 15A, the first bracket 23, and the second bracket 24, the gaps at the corners can be reduced. Can be prevented from flowing out.
  • FIG. 10 is a schematic end view for explaining a third modification of the first embodiment.
  • the third modification is different from the first embodiment in that the number of first and second partitions is different.
  • the first partition wall 14 ⁇ / b> B has substantially rectangular parallelepiped partition walls 64 and 65 extending along the direction Y.
  • the partition walls 64 and 65 are integrated with the casing 11 and are separated from each other in the direction X in parallel.
  • the second partition wall 15 ⁇ / b> B includes substantially rectangular parallelepiped partition walls 66 and 67 extending along the direction Y.
  • the partition walls 66 and 67 are integrated with the housing 11 and are separated from each other in parallel in the direction X. Accordingly, in the direction X, gaps are formed between the partition walls 64 and 65 and between the partition walls 66 and 67, respectively.
  • the same effects as those of the first embodiment are achieved.
  • the third modification for example, in order for the heat conductive material applied to the region R to exceed the first partition 14B, it is necessary to exceed both the partitions 64 and 65. Therefore, the plurality of partition walls 64 to 67 provided in the housing 11 can further suppress the heat conductive material applied to the region R from flowing out of the region R beyond the first partition wall 14B and the second partition wall 15B.
  • the number of partition walls constituting the first partition wall 14B and the second partition wall 15B is not limited.
  • the number of the first partition walls 14B and the second partition walls 15B may be three or more.
  • the number of partition walls constituting the first partition 14B and the number of partition walls constituting the second partition 15B may be different from each other. In this case, the number of the partition walls configuring the first partition wall 14B or the number of the partition walls configuring the second partition wall 15B may be one.
  • FIG. 11 is a schematic end view for explaining a fourth modification of the first embodiment.
  • the fourth modification is different from the first embodiment in that the battery pack 10 includes a bag 68 and a heat conductive material 69 instead of the heat conductive member 13.
  • the bag 68 is disposed between the first partition wall 14 and the second partition wall 15 in the direction X and between the battery module 20 and the housing 11 in the direction Z.
  • the bag 68 is sealed, and the bag 68 is filled with a liquid heat conductive material 69.
  • the bag 68 contacts the housing 11 and the second main surface 22b 2 of the second main body portion 22b.
  • the bag 68 may be in contact with the first partition 14 and the second partition 15, or may not be in contact with the first partition 14 and the second partition 15.
  • the bag 68 is made of a material having a high thermal conductivity. Therefore, the heat generated in the battery cell 21 is conducted to the housing 11 through the heat transfer plate 22, the bag 68, and the heat conductive material 69.
  • the same effects as those of the first embodiment are achieved. Further, by filling the bag 68 with the liquid heat conductive material 69, the heat conductive material 69 may not be cured. Thereby, since the period which hardens
  • FIG. 12 is a schematic end view for explaining the battery pack of the second embodiment.
  • the second embodiment is different from the first embodiment in that the battery module 20 ⁇ / b> A has a first partition 71 and a second partition 72.
  • the first partition wall and the second partition wall are not provided in the housing 11 ⁇ / b> B, and the battery module 20 ⁇ / b> A includes a first partition wall 71 and a second partition wall 72.
  • the first partition wall 71 and the second partition wall 72 have a substantially rectangular parallelepiped shape extending along the direction Y, and are integrated with the battery module 20A.
  • the 1st partition 71 and the 2nd partition 72 protrude toward the housing
  • the first partition wall 71 and the second partition wall 72 projecting in a direction away from the array 50 than the second major surface 22b 2 of the second body portion 22b in the direction Z.
  • the thickness of the first partition wall 71 and the second partition wall 72 is larger than the thickness of the heat conducting member 13.
  • the first partition 71 is provided above the heat conducting member 13 and the second main body portion 22b.
  • the second partition wall 72 is provided below the heat conducting member 13 and the second main body portion 22b.
  • the heat conducting member 13 is positioned so as to be sandwiched between the first partition wall 71 and the second partition wall 72 in the direction X. Further, the second main body portion 22 b is located so as to be sandwiched between the first partition wall 71 and the second partition wall 72 in the direction X.
  • Each cell holder 31 ⁇ / b> A has protrusions 33 a and 33 b that are provided apart from each other at the side surface portion 33.
  • the protruding portion 33 a is provided on one end side of the side surface portion 33
  • the protruding portion 33 b is provided on the other end side of the side surface portion 33.
  • These protrusions 33a and 33b are made of the same resin as the cell holder 31A, and are integrally formed with the side surface portion 33 and the like of the cell holder 31A.
  • the 1st partition 71 is comprised combining the protrusion part 33a of each cell holder 31A
  • the 2nd partition 72 is comprised combining the protrusion part 33b of each cell holder 31A.
  • Adjacent protrusions 33a may be connected in the direction Y or may not be connected. When adjacent protrusions 33a are not connected to each other, a gap between the protrusions 33a may be filled with resin or the like. Similarly, when adjacent protrusions 33b are not connected to each other, a gap between the protrusions 33b may be filled with resin or the like.
  • the battery module 20A has the first partition wall 71 and the second partition wall 72, and the end surfaces 42b of the first bracket 23 and the second bracket 24 have the second main body. Situated in the direction away from the array 50 in the direction Z than the second major surface 22b 2 parts 22b. Accordingly, the first partition 71, the second partition 72, the first bracket 23, and the second bracket 24 protrude from the facing surface 50a of the array 50 when the battery module 20A is fixed to the housing 11B. , Forming a frame.
  • the heat conductive material is fixed in the state where the battery module 20A is fixed to the housing 11B. Since the liquid heat conductive material can be surrounded by the frame when forming the heat conductive member by curing the heat conductive material, it is possible to suppress the heat conductive material from flowing out of the region R. Therefore, according to the battery pack of 2nd Embodiment, it can suppress that a liquid heat conductive material flows out to the area
  • the resin cell holder 31 ⁇ / b> A that holds the battery cell 21 in the battery module 20 ⁇ / b> A includes a protrusion 33 a for forming the first partition 71 and a protrusion 33 b for forming the second partition 72.
  • FIG. 13 is a schematic end view for explaining the battery pack of the third embodiment.
  • the third embodiment is different from the first embodiment in that both the housing 11 and the battery module 20 ⁇ / b> A have a first partition and a second partition.
  • the casing 11 of the first embodiment and the battery module 20A of the second embodiment are used.
  • a battery pack using the casing 11 provided with the first partition 14 and the second partition 15 and the battery module 20A provided with the first partition 71 and the second partition 72. 10B is configured.
  • the first partition walls 14 and 71 may be combined as the first partition wall
  • the second partition walls 15 and 72 may be combined as the second partition wall.
  • the top surface 14a of the first partition 14 of the housing 11 is in contact with the top surface 71a of the first partition 71 of the battery module 20A without a gap.
  • the top surface 15a of the second partition 15 of the housing 11 is in contact with the top surface 72a of the second partition 72 of the battery module 20A without a gap.
  • the thickness of the first partition wall 14 and the second partition wall 15 of the housing 11 may be equal to or greater than the thickness of the heat conducting member 13.
  • the length along the direction X of the first partition 14 of the housing 11 may be the same as or different from the length along the direction X of the first partition 71 of the battery module 20A.
  • the length along the direction X of the first partition 14 of the housing 11 may be larger than the length along the direction X of the first partition 71 of the battery module 20A.
  • the length along the direction X of the second partition 15 of the housing 11 may be the same as or different from the length along the direction X of the second partition 72 of the battery module 20A.
  • the length along the direction X of the second partition 15 of the housing 11 may be larger than the length along the direction X of the second partition 72 of the battery module 20A.
  • FIG. 14 is a schematic end view for explaining a first modification of the third embodiment.
  • the first modification of the third embodiment is different from the third embodiment in the top surface 14a of the first partition 14 of the housing 11 and the first partition 71 of the battery module 20A. It differs from the top surface 71a in that it does not contact each other.
  • the top surface 14a of the first partition 14 is in contact with the side surface portion 33 of the cell holder 31A, and the top surface 71a of the first partition 71 is in contact with the other side plate 11e of the housing 11.
  • the side surface 14b of the first partition 14 opposite to the heat conducting member 13 and the side surface 71b of the first partition 71 on the heat conducting member 13 side are in contact with each other.
  • the first partition 14 of the housing 11 is located closer to the heat conducting member 13 than the first partition 71 of the battery module 20A.
  • the top surface 15a of the second partition 15 of the housing 11 and the top surface 72a of the second partition 72 of the battery module 20A do not contact each other.
  • the top surface 15a of the second partition 15 is in contact with the side surface portion 33 of the cell holder 31A, and the top surface 72a of the second partition 72 is in contact with the other side plate 11e of the housing 11.
  • the side surface 15b of the second partition 15 opposite to the heat conducting member 13 and the side surface 72b of the second partition 72 facing the heat conducting member 13 are in contact with each other. That is, the second partition 15 of the housing 11 is located closer to the heat conducting member 13 than the second partition 72 of the battery module 20A.
  • the first partition 71 of the battery module 20A may be located closer to the heat conducting member 13 than the first partition 14 of the housing 11.
  • the second partition wall 72 of the battery module 20 ⁇ / b> A may be located closer to the heat conducting member 13 than the second partition wall 15 of the housing 11.
  • the first partition walls 14 and 71 may be separated from each other, and the second partition walls 15 and 72 may be separated from each other.
  • FIG. 15 is a schematic end view for explaining a second modification of the third embodiment.
  • the second modification of the third embodiment is different from the third embodiment in that a recess is provided in the partition wall of the battery module 20A.
  • the first partition 14 of the housing 11 and the first partition 71 of the battery module 20A are configured to be fitted to each other, and the second partition 15 of the housing 11 and the second partition of the battery module 20A are configured.
  • the partition wall 72 is configured to be fitted to each other. More specifically, a recess 81 is formed on the top surface 71 a of the first partition wall 71, and a recess 82 is formed on the top surface 72 a of the second partition wall 72.
  • the same effect as the third embodiment is achieved.
  • the first partition wall 14 and the second partition wall 15 serve as marks for fitting into the recesses 81 and 82, the battery module 20A can be easily positioned with respect to the housing 11, and the assembly property of the battery module 20A is improved. To do.
  • a recess may be provided on the top surface 14a of the first partition 14.
  • the 1st partition 71 is inserted in the said recessed part.
  • a recess may be provided on the top surface 15 a of the second partition wall 15.
  • the second partition wall 72 is inserted into the recess.
  • the surface of the 1st partition 14 may be in contact with the surface of the recessed part 81, and does not need to contact.
  • the surface of the second partition 15 may be in contact with the surface of the recess 82 or may not be in contact therewith.
  • FIG. 16 is a schematic end view for explaining the battery pack of the fourth embodiment.
  • the fourth embodiment is different from the first embodiment in that the housing 11B and the battery module 20 are not provided with the first partition and the second partition.
  • the battery pack 10 ⁇ / b> C includes a first partition 91 and a second partition 92 that are partition members separate from the housing 11 ⁇ / b> B and the battery module 20.
  • the first partition wall 91 is a member having a substantially rectangular parallelepiped shape extending in the direction Y and positioned between the housing 11B and the battery module 20 in the direction Z.
  • the second partition wall 92 is a member that has a substantially rectangular parallelepiped shape extending in the direction Y and is positioned between the housing 11 ⁇ / b> B and the battery module 20 in the direction Z.
  • the first partition wall 91 and the second partition wall 92 are spaced apart in parallel in the direction X, the first partition wall 91 is disposed above the heat conducting member 13 in the direction X, and the second partition wall 92 is aligned in the direction X. In FIG. 2, it is arranged below the heat conducting member 13.
  • first partition wall 91 and the second partition wall 92 are arranged so as to sandwich the heat conducting member 13 and the second main body portion 22b of the heat transfer plate 22 in the direction X. Further, the length along the direction Y of the first partition 91 and the second partition 92 is less than the length along the direction Y of the battery module 20 and the length along the direction Y of the array 50 (see FIG. 3). That's it.
  • the 1st partition 91 and the 2nd partition 92 are rubber materials comprised from resin.
  • the thickness of the first partition wall 91 and the second partition wall 92 is larger than the thickness of the heat conducting member 13.
  • the first partition 91 and the second partition 92 are fixed to at least one of the housing 11B and the battery module 20 via an adhesive or the like.
  • the same operational effects as those of the first embodiment can be obtained.
  • the first partition 91 and the second partition 92 are separate members from the housing 11B and the battery module 20, the degree of freedom of the materials constituting the first partition 91 and the second partition 92 is improved. .
  • the battery module and battery pack which concern on this invention are not limited to the said embodiment and modification.
  • one of the first partition and the second partition is integrated with the housing, and the other of the first partition and the second partition is integrated with the battery module. It is good also as an integrated partition.
  • the third modification of the first embodiment and the third embodiment in the first partition having a plurality of partitions, a part of the partition is integrated with the housing, and the other part is the battery module. It is good also as a partition integrated with.
  • each of the first to fourth modifications of the first embodiment may be applied to the second to fourth embodiments or other modifications.
  • the 1st bracket 23 and the 2nd bracket 24 have the attaching part 42, it is not restricted to this.
  • the first bracket 23 and the second bracket 24 may have only the clamping part 41.
  • the first bracket 23 and the second bracket 24 may be fixed to the housing 11 using, for example, an L-shaped metal fitting.
  • the end surface on the housing side of the sandwiching portion 41 of the first bracket 23 and the second bracket 24 only needs to be positioned on the housing side with respect to the second main body portion 22 b of the heat transfer plate 22.
  • the battery module has the some heat-transfer plate 22 containing the 1st main-body part 22a and the 2nd main-body part 22b, it is not restricted to this.
  • the battery module may not have the heat transfer plate 22.
  • the battery pack manufacturing method according to the embodiment includes steps S1 to S6, but is not limited thereto.
  • step S5 may be performed before step S3.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Combustion & Propulsion (AREA)
  • Secondary Cells (AREA)
  • Battery Mounting, Suspending (AREA)
  • Cooling, Air Intake And Gas Exhaust, And Fuel Tank Arrangements In Propulsion Units (AREA)
  • Arrangement Or Mounting Of Propulsion Units For Vehicles (AREA)

Abstract

A battery pack 10 is provided with: a battery module 20 which has an array 50 formed of a plurality of battery cells 21 arrayed in one direction; a casing 11 to which the battery module 20 is fixed; a solid heat conduction member 13 which is sandwiched between the array 50 and the casing 11 and which is formed by curing a liquid heat conduction material; and a first partitioning wall 14 and a second partitioning wall 15 which extend in one direction between the battery module 20 and the casing 11 and are positioned so as to sandwich the heat conduction member 13.

Description

電池パック及び電池モジュールBattery pack and battery module
 本発明は、電池パック及び電池モジュールに関する。 The present invention relates to a battery pack and a battery module.
 従来、リチウムイオン二次電池等の複数の電池セルを一方向に配列してなる電池モジュールが知られている。このような電池モジュールを筐体(ケース)に固定してなる電池パックには、電池セルにて発生する熱を筐体に逃がすための放熱構造が設けられる。例えば、特許文献1に記載の電池モジュールはケースに接合される伝熱プレートを有し、当該伝熱プレートのケースと対向する対向面上には熱伝導層が設けられる。この電池モジュールを有する電池パックにおいては、電池セルにて発生する熱は、伝熱プレート及び熱伝導層を介してケースに伝導する。 Conventionally, a battery module in which a plurality of battery cells such as lithium ion secondary batteries are arranged in one direction is known. A battery pack in which such a battery module is fixed to a casing (case) is provided with a heat dissipation structure for releasing heat generated in the battery cells to the casing. For example, the battery module described in Patent Document 1 has a heat transfer plate joined to a case, and a heat conductive layer is provided on a surface facing the case of the heat transfer plate. In the battery pack having this battery module, heat generated in the battery cells is conducted to the case through the heat transfer plate and the heat conductive layer.
特開2014-116193号公報JP 2014-116193 A
 特許文献1に記載の熱伝導層は、硬化性を有する液状の熱伝導材料(TIM:Thermal Interface Material)が硬化することによって形成される。このように液状の熱伝導材料が用いられる場合、当該熱伝導材料が硬化するまで、熱伝導材料は流動性を有している。このため、熱伝導材料は、ケースにおいて上記対向面に対向する領域以外に流れ出ることがある。この場合、例えばケースにおける上記領域の周囲に設けられるねじ穴等が熱伝導材料によって埋まってしまい、電池モジュールがケースに取付けられること等が困難になるおそれがある。 The heat conductive layer described in Patent Document 1 is formed by curing a curable liquid heat conductive material (TIM: Thermal Interface Material). Thus, when a liquid heat conductive material is used, the heat conductive material has fluidity until the heat conductive material is cured. For this reason, a heat conductive material may flow out in the case other than the area | region which opposes the said opposing surface. In this case, for example, screw holes or the like provided around the region in the case may be filled with the heat conductive material, and it may be difficult to attach the battery module to the case.
 本発明は、液状の熱伝導材料を用いた場合であっても、当該熱伝導材料が意図しない領域へ流れ出ることを抑制できる電池パック及び電池モジュールを提供する。 The present invention provides a battery pack and a battery module that can prevent the heat conductive material from flowing to an unintended region even when a liquid heat conductive material is used.
 本発明の一側面に係る電池パックは、複数の電池セルを一方向に配列してなる配列体を有する電池モジュールと、電池モジュールが固定される筐体と、配列体と筐体とによって挟まれ、液状の熱伝導材料が硬化してなる固体状の熱伝導部材と、電池モジュールと筐体との間にて一方向に沿って延在し、熱伝導部材を挟むように位置する第1隔壁及び第2隔壁と、を備える。 A battery pack according to one aspect of the present invention is sandwiched between a battery module having an array formed by arranging a plurality of battery cells in one direction, a casing to which the battery module is fixed, and the array and the casing. A solid heat conductive member formed by curing a liquid heat conductive material, and a first partition wall extending in one direction between the battery module and the housing and sandwiching the heat conductive member And a second partition.
 この電池パックによれば、第1隔壁及び第2隔壁によって画定される領域に固体状の熱伝導部材が設けられる。この熱伝導部材は、液状の熱伝導材料を硬化することにより形成される。例えば、上記領域に液状の熱伝導材料を塗布して熱伝導部材を形成する場合、第1隔壁及び第2隔壁によって液状の熱伝導材料が上記領域外に流れ出ることを抑制できる。したがって、上記電池パックによれば、液状の熱伝導材料が意図しない領域へ流れ出ることを抑制できる。 According to this battery pack, the solid heat conduction member is provided in the region defined by the first partition and the second partition. The heat conducting member is formed by curing a liquid heat conducting material. For example, when forming a heat conductive member by applying a liquid heat conductive material to the said area | region, it can suppress that a liquid heat conductive material flows out of the said area | region by the 1st partition and the 2nd partition. Therefore, according to the said battery pack, it can suppress that a liquid heat conductive material flows out to the area | region which is not intended.
 電池モジュールは、一方向において配列体を挟持する第1プレート及び第2プレートをさらに有し、第1プレート及び第2プレートの筐体側の端面は、配列体の筐体に対向する対向面よりも筐体側に位置してもよい。例えば、第1隔壁及び第2隔壁によって画定される領域に液状の熱硬化材料を塗布した後、電池モジュールを固定した状態にて熱伝導材料を硬化して熱伝導部材を形成する場合、第1隔壁、第2隔壁、第1プレート、及び第2プレートによって液状の熱伝導材料を取り囲む枠が形成される。つまり、第1隔壁及び第2隔壁に加えて、第1プレート及び第2プレートによって液状の熱伝導材料を取り囲むので、上記領域外に該熱伝導材料が流れ出ることがさらに抑制される。 The battery module further includes a first plate and a second plate that sandwich the array body in one direction, and an end surface on the housing side of the first plate and the second plate is more than a facing surface facing the housing of the array body. It may be located on the housing side. For example, when a liquid thermosetting material is applied to a region defined by a first partition and a second partition and then the heat conductive material is cured in a state where the battery module is fixed to form a heat conductive member, the first A frame surrounding the liquid heat conductive material is formed by the partition wall, the second partition wall, the first plate, and the second plate. That is, since the liquid heat conductive material is surrounded by the first plate and the second plate in addition to the first partition and the second partition, it is further suppressed that the heat conductive material flows out of the region.
 上記電池パックは、一方向に対して交差する方向に延在する第3隔壁をさらに備え、電池モジュールは、第1プレートと配列体との間に設けられる弾性部材を有し、第3隔壁は弾性部材と筐体との間に設けられてもよい。この構成では、第1隔壁~第3隔壁によって画定される領域に液状の熱伝導材料を塗布して熱伝導部材を形成できる。上記領域の3方向が第1~第3領域によって囲まれるので、液状の熱伝導材料が上記領域外へ流れ出ることをさらに抑制できる。 The battery pack further includes a third partition extending in a direction intersecting with one direction, the battery module includes an elastic member provided between the first plate and the array, and the third partition is You may provide between an elastic member and a housing | casing. In this configuration, the heat conduction member can be formed by applying the liquid heat conduction material to the region defined by the first to third partitions. Since the three directions of the region are surrounded by the first to third regions, it is possible to further suppress the liquid heat conductive material from flowing out of the region.
 第1隔壁の一端は、第1プレートに対して配列体の反対側に位置し、第1隔壁の他端は、第2プレートに対して配列体の反対側に位置してもよい。この場合、第1隔壁は、少なくとも第1プレート及び第2プレートにわたって存在する。このため、第1隔壁、第2隔壁、第1プレート、及び第2プレートによって形成される枠において、例えば第1隔壁と第1プレートとによって形成される角部の隙間を小さくできる。したがって、熱伝導材料が当該隙間から上記枠によって画定される領域外へ流れ出ることを抑制できる。 The one end of the first partition may be positioned on the opposite side of the array with respect to the first plate, and the other end of the first partition may be positioned on the opposite side of the array with respect to the second plate. In this case, the first partition wall exists over at least the first plate and the second plate. For this reason, in the frame formed by the first partition, the second partition, the first plate, and the second plate, for example, the gap between the corners formed by the first partition and the first plate can be reduced. Therefore, it can suppress that a heat conductive material flows out of the area | region defined by the said frame from the said clearance gap.
 第1隔壁及び第2隔壁は、筐体と一体化されてもよい。この場合、第1隔壁及び第2隔壁によって筐体に熱伝導材料を形成する領域が定まりやすくなる。 The first partition and the second partition may be integrated with the housing. In this case, the region where the heat conductive material is formed on the housing is easily determined by the first partition and the second partition.
 第1隔壁及び第2隔壁は、電池モジュールと一体化されてもよい。この場合、例えば電池モジュールにおいて電池セルを保持する樹脂製のホルダーと、第1隔壁及び第2隔壁とを一体成形することができる。これにより、安価且つ容易に第1隔壁及び第2隔壁を設けることができる。 The first partition and the second partition may be integrated with the battery module. In this case, for example, a resin holder that holds the battery cells in the battery module, and the first partition and the second partition can be integrally formed. Thereby, a 1st partition and a 2nd partition can be provided cheaply and easily.
 第1隔壁は、筐体と一体化され、第2隔壁は、電池モジュールと一体化されてもよい。この場合、第1隔壁によって筐体に熱伝導材料を形成する領域が定まりやすくなる。また、例えば電池モジュールにおいて電池セルを保持する樹脂製のホルダーと第2隔壁とを一体成形することにより、当該第2隔壁を安価且つ容易に設けることができる。 The first partition may be integrated with the casing, and the second partition may be integrated with the battery module. In this case, the region where the heat conductive material is formed on the housing is easily determined by the first partition. Further, for example, by integrally molding a resin holder for holding battery cells and the second partition in the battery module, the second partition can be provided inexpensively and easily.
 第1隔壁は、一方向に沿って延在する複数の隔壁を有してもよい。この場合、熱伝導材料が第1隔壁を越えるためには、複数の隔壁の全てを越える必要がある。したがって、熱伝導材料が第1隔壁を越えることをさらに抑制できる。 The first partition may have a plurality of partitions extending along one direction. In this case, in order for the heat conductive material to exceed the first partition, it is necessary to exceed all of the plurality of partitions. Therefore, it can further suppress that a heat conductive material exceeds a 1st partition.
 第1隔壁は、一方向に沿って延在する複数の隔壁を有し、複数の隔壁の一部は、筐体と一体化され、複数の隔壁の他部は、電池モジュールと一体化されてもよい。この場合、熱伝導材料が第1隔壁を越えるためには、複数の隔壁の全てを越える必要がある。したがって、筐体及び電池モジュールに設けられる複数の隔壁により、熱伝導材料が第1隔壁を越えることをさらに抑制できる。加えて、例えば電池モジュールにおいて電池セルを保持する樹脂製のホルダーと複数の隔壁の一部とを一体成形することにより、当該一部の隔壁を安価且つ容易に設けることができる。 The first partition has a plurality of partitions extending along one direction, a part of the plurality of partitions is integrated with the housing, and the other part of the plurality of partitions is integrated with the battery module. Also good. In this case, in order for the heat conductive material to exceed the first partition, it is necessary to exceed all of the plurality of partitions. Therefore, it can further suppress that a heat conductive material exceeds a 1st partition by the some partition provided in a housing | casing and a battery module. In addition, for example, by integrally molding a resin holder for holding battery cells and a part of the plurality of partition walls in the battery module, the part of the partition walls can be provided inexpensively and easily.
 第1隔壁及び第2隔壁は、筐体及び電池モジュールと別体である隔壁部材であってもよい。この場合、第1隔壁及び第2隔壁を構成する材質等の自由度が向上する。 The first partition wall and the second partition wall may be partition members that are separate from the casing and the battery module. In this case, the freedom degree of the material etc. which comprise a 1st partition and a 2nd partition improves.
 電池モジュールは、電池セルにおいて一方向に交差する面である主面に接触する伝熱プレートを備え、伝熱プレートは、主面に接触する第1本体部と、第1本体部の筐体側の端から主面に交差する方向に延在する第2本体部とを有し、第2本体部は、熱伝導部材に接触してもよい。この場合、電池セルにて発生した熱は、伝熱プレートを介して熱伝導部材に伝導でき、電池セルの放熱性を向上できる。 The battery module includes a heat transfer plate that contacts a main surface that is a surface intersecting in one direction in the battery cell, and the heat transfer plate includes a first main body portion that contacts the main surface, and a housing side of the first main body portion. A second main body portion extending in a direction intersecting the main surface from the end, and the second main body portion may contact the heat conducting member. In this case, the heat generated in the battery cell can be conducted to the heat conducting member via the heat transfer plate, and the heat dissipation of the battery cell can be improved.
 本発明の他の側面に係る電池モジュールは、液状の熱伝導材料が硬化してなる固体状の熱伝導部材を挟んで筐体に固定される電池モジュールであって、複数の電池セルを一方向に配列してなる配列体と、電池セルを保持する樹脂製のホルダーと、電池セルにおいて一方向に交差する面である主面に接触する第1本体部、及び第1本体部の一端から一方向に延在する第2本体部を有する伝熱プレートと、一方向において配列体を挟持する第1プレート及び第2プレートと、を備え、第2本体部は、ホルダーに接する第1主面と、第1主面に対向する第2主面とを有し、ホルダーは、第1隔壁及び第2隔壁を有し、第1隔壁及び第2隔壁は、一方向に沿って延在し、第2本体部を挟むように設けられると共に、第2主面よりも配列体から離間する方向に突出し、第1プレート及び第2プレートは、第2主面よりも配列体から離間する方向に突出する。 A battery module according to another aspect of the present invention is a battery module that is fixed to a housing with a solid heat conductive member formed by curing a liquid heat conductive material, and a plurality of battery cells are arranged in one direction. An array of the battery body, a resin holder for holding the battery cell, a first main body portion that contacts a main surface that is a surface intersecting in one direction in the battery cell, and one end from one end of the first main body portion. A heat transfer plate having a second body portion extending in a direction, and a first plate and a second plate sandwiching the array in one direction, the second body portion being a first main surface in contact with the holder The holder has a first partition wall and a second partition wall, the first partition wall and the second partition wall extend in one direction, and 2 It is provided so as to sandwich the main body portion, and is further away from the array body than the second main surface. Projecting direction, the first plate and second plate protrudes in the direction away from the array than the second major surface.
 この電池モジュールによれば、ホルダーが第2本体部の第2主面よりも配列体から離間する方向に突出する第1隔壁及び第2隔壁を有すると共に、第1プレート及び第2プレートが第2主面よりも配列体から離間する方向に突出する。これにより、第1隔壁、第2隔壁、第1プレート、及び第2プレートは、電池モジュールが筐体に固定される場合に配列体が筐体と対向する面よりも突出した枠を形成する。このため、例えば筐体において電池モジュールを固定する場合において、液状の熱伝導材料を筐体の所定の領域に塗布した後に、上記電池モジュールを筐体に固定した状態にて当該熱伝導材料を硬化して熱伝導材料を形成する際に液状の熱伝導材料を上記枠によって取り囲むことができるので、熱伝導材料が上記領域外へ流れ出ることを抑制できる。したがって、上記電池モジュールを筐体に固定することにより、当該筐体上の液状の熱伝導材料が意図しない領域へ流れ出ることを抑制できる。また、樹脂製のホルダーが第1隔壁及び第2隔壁を有することにより、例えばホルダーと第1隔壁及び第2隔壁とを一体成形できるので、安価且つ容易に第1隔壁及び第2隔壁を設けることができる。 According to this battery module, the holder has the first partition wall and the second partition wall protruding in a direction away from the array body than the second main surface of the second main body portion, and the first plate and the second plate are the second plate. It protrudes in a direction away from the array rather than the main surface. Accordingly, the first partition, the second partition, the first plate, and the second plate form a frame in which the array protrudes from the surface facing the casing when the battery module is fixed to the casing. For this reason, for example, when fixing a battery module in a housing, after applying a liquid heat conductive material to a predetermined region of the housing, the heat conductive material is cured in a state where the battery module is fixed to the housing. Thus, when the heat conductive material is formed, the liquid heat conductive material can be surrounded by the frame, so that the heat conductive material can be prevented from flowing out of the region. Therefore, by fixing the battery module to the casing, it is possible to suppress the liquid heat conductive material on the casing from flowing out to an unintended region. In addition, since the holder made of resin has the first partition wall and the second partition wall, for example, the holder and the first partition wall and the second partition wall can be integrally formed, so that the first partition wall and the second partition wall can be provided easily and inexpensively. Can do.
 本発明によれば、液状の熱伝導材料を用いた場合であっても、当該熱伝導材料が意図しない領域へ流れ出ることを抑制できる電池パック及び電池モジュールを提供できる。 According to the present invention, even when a liquid heat conductive material is used, it is possible to provide a battery pack and a battery module that can prevent the heat conductive material from flowing out to an unintended region.
図1は、第1実施形態に係る電池モジュールを備える電池パックの概略図である。FIG. 1 is a schematic view of a battery pack including the battery module according to the first embodiment. 図2は、筐体の一部を拡大した図である。FIG. 2 is an enlarged view of a part of the housing. 図3は、電池パックに固定される電池モジュールの斜視図である。FIG. 3 is a perspective view of the battery module fixed to the battery pack. 図4は、図1のIV-IV線に沿った模式端面図である。FIG. 4 is a schematic end view taken along line IV-IV in FIG. 図5は、図1のV-V線に沿った模式端面図である。FIG. 5 is a schematic end view taken along the line VV of FIG. 図6は、電池セル、伝熱プレート、及びセルホルダの一例を示す分解斜視図である。FIG. 6 is an exploded perspective view showing an example of a battery cell, a heat transfer plate, and a cell holder. 図7は、第1実施形態に係る電池パックの製造方法を説明するための工程図である。FIG. 7 is a process diagram for explaining the battery pack manufacturing method according to the first embodiment. 図8は、第1実施形態の第1変形例の筐体の一部を拡大した図である。FIG. 8 is an enlarged view of a part of the housing of the first modification of the first embodiment. 図9は、第1実施形態の第2変形例の筐体の一部を拡大した図である。FIG. 9 is an enlarged view of a part of the housing of the second modified example of the first embodiment. 図10は、第1実施形態の第3変形例を説明するための模式端面図である。FIG. 10 is a schematic end view for explaining a third modification of the first embodiment. 図11は、第1実施形態の第4変形例を説明するための模式端面図である。FIG. 11 is a schematic end view for explaining a fourth modification of the first embodiment. 図12は、第2実施形態の電池パックを説明するための模式端面図である。FIG. 12 is a schematic end view for explaining the battery pack of the second embodiment. 図13は、第3実施形態の電池パックを説明するための模式端面図である。FIG. 13 is a schematic end view for explaining the battery pack of the third embodiment. 図14は、第3実施形態の第1変形例を説明するための模式端面図である。FIG. 14 is a schematic end view for explaining a first modification of the third embodiment. 図15は、第3実施形態の第2変形例を説明するための模式端面図である。FIG. 15 is a schematic end view for explaining a second modification of the third embodiment. 図16は、第4実施形態の電池パックを説明するための模式端面図である。FIG. 16 is a schematic end view for explaining the battery pack according to the fourth embodiment.
 以下、添付図面を参照しながら本発明の実施形態を詳細に説明する。図面の説明において、同一又は同等の要素には同一符号を用い、重複する説明を省略する。 Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings. In the description of the drawings, the same reference numerals are used for the same or equivalent elements, and redundant descriptions are omitted.
(第1実施形態)
 図1は、第1実施形態に係る電池モジュールを備える電池パックの概略図である。図1に示されるように、電池パック10は、筐体11と、ジャンクションボックス12と、複数の電池モジュール20と、を備える。
(First embodiment)
FIG. 1 is a schematic view of a battery pack including the battery module according to the first embodiment. As shown in FIG. 1, the battery pack 10 includes a housing 11, a junction box 12, and a plurality of battery modules 20.
 筐体11は、箱型形状を呈し、ジャンクションボックス12及び複数の電池モジュール20を収容するための収容空間を有する。筐体11は、四角板状の底板11aと、底板11aと対向して設けられる天板11bとを備える。また、筐体11は、底板11aの周縁から立設される板状の前板11c、後板11d及び一対の側板11eを有する。筐体11は、例えばフォークリフト又は自動車等の車両に搭載された際に、底板11aが鉛直方向下方に位置し、天板11bが鉛直方向上方に位置するように配置される。図1には、一方の側板11eを除いた状態が図示される。他方の側板11eには複数の孔11fが設けられ、これらの孔11fを用いてジャンクションボックス12及び電池モジュール20が他方の側板11eに取り付けられる。複数の孔11fは、貫通孔でもよく、ねじ穴でもよい。複数の孔11fの大きさは、他方の側板11eの場所等によって変化する。 The housing 11 has a box shape and has a storage space for storing the junction box 12 and the plurality of battery modules 20. The housing 11 includes a square plate-like bottom plate 11a and a top plate 11b provided to face the bottom plate 11a. Moreover, the housing | casing 11 has the plate-shaped front board 11c standing from the periphery of the baseplate 11a, the rear board 11d, and a pair of side plate 11e. When mounted on a vehicle such as a forklift or an automobile, the housing 11 is disposed such that the bottom plate 11a is positioned vertically downward and the top plate 11b is positioned vertically upward. FIG. 1 illustrates a state where one side plate 11e is removed. The other side plate 11e is provided with a plurality of holes 11f, and the junction box 12 and the battery module 20 are attached to the other side plate 11e using these holes 11f. The plurality of holes 11f may be through holes or screw holes. The size of the plurality of holes 11f varies depending on the location of the other side plate 11e.
 以下では、筐体11において、天板11bが設けられる方向を「上」、底板11aが設けられる方向を「下」、前板11cが設けられる方向を「前」、後板11dが設けられる方向を「後」として説明を行う。また、底板11aから天板11bへ向かう方向又は天板11bから底板11aへ向かう方向を「上下方向である方向X」とし、前板11cから後板11dへ向かう方向又は後板11dから前板11cへ向かう方向を「前後方向である方向Y」とし、一方の側板11eから他方の側板11eへ向かう方向又は他方の側板11eから一方の側板11eへ向かう方向を「横方向である方向Z」として説明を行う。 Hereinafter, in the housing 11, the direction in which the top plate 11b is provided is “up”, the direction in which the bottom plate 11a is provided is “down”, the direction in which the front plate 11c is provided is “front”, and the direction in which the rear plate 11d is provided. Is described as “after”. Further, the direction from the bottom plate 11a to the top plate 11b or the direction from the top plate 11b to the bottom plate 11a is referred to as “direction X being the vertical direction”, and the direction from the front plate 11c to the rear plate 11d or from the rear plate 11d to the front plate 11c. The direction toward the front side is referred to as “direction Y that is the front-rear direction”, and the direction from one side plate 11e toward the other side plate 11e or the direction from the other side plate 11e toward one side plate 11e is referred to as “direction Z that is the lateral direction”. I do.
 図2は、筐体の一部を拡大した図である。図2に示されるように、電池パック10は、固体状の熱伝導部材13と、方向Xにおいて互いに並列して離間する第1隔壁14及び第2隔壁15とを備える。熱伝導部材13、第1隔壁14、及び第2隔壁15は、後述する図4及び図5に示されるように、電池モジュール20と他方の側板11eとによって挟まれるように設けられる。第1実施形態では、第1隔壁14及び第2隔壁15の形状は、略同一である。 FIG. 2 is an enlarged view of a part of the housing. As shown in FIG. 2, the battery pack 10 includes a solid heat conducting member 13 and first and second partition walls 14 and 15 that are spaced apart in parallel in the direction X. As shown in FIGS. 4 and 5 to be described later, the heat conducting member 13, the first partition 14, and the second partition 15 are provided so as to be sandwiched between the battery module 20 and the other side plate 11e. In the first embodiment, the shapes of the first partition 14 and the second partition 15 are substantially the same.
 熱伝導部材13は、液状の熱伝導材料(TIM)が硬化してなる固体状の層である。すなわち、熱伝導部材13は、液状の熱伝導材料の層状硬化物である。熱伝導材料は、例えば高い熱伝導率を有する材料であり、例えば1.5W/m・K以上の熱伝導率を有する。熱伝導材料の熱伝導率は、2W/m・K以上でもよく、2.5W/m・Kでもよく、3.0W/m・K以上でもよい。熱伝導材料としては、例えばポリウレタン樹脂が挙げられる。また、固体状の層とは、一定の体積及び形状を有する層であればよく、ゲル状の層でもよい。第1実施形態では熱伝導部材13は平坦化されているが、熱伝導部材13は平坦化されなくてもよい。熱伝導部材13を平坦化するために、例えばドクターブレード法等の平坦化処理を行ってもよいし、所定の塗布装置を用いてもよいし、熱伝導材料の組成を調整してもよい。熱伝導部材13は、接着性を有してもよい。 The heat conducting member 13 is a solid layer formed by curing a liquid heat conducting material (TIM). That is, the heat conducting member 13 is a layered cured product of a liquid heat conducting material. A heat conductive material is a material which has high heat conductivity, for example, for example, has a heat conductivity of 1.5 W / m * K or more. The thermal conductivity of the heat conductive material may be 2 W / m · K or more, 2.5 W / m · K, or 3.0 W / m · K or more. Examples of the heat conductive material include polyurethane resin. The solid layer may be a layer having a certain volume and shape, and may be a gel layer. In the first embodiment, the heat conducting member 13 is flattened, but the heat conducting member 13 may not be flattened. In order to flatten the heat conducting member 13, for example, a flattening process such as a doctor blade method may be performed, a predetermined coating apparatus may be used, or the composition of the heat conducting material may be adjusted. The heat conductive member 13 may have adhesiveness.
 熱伝導部材13は、筐体11の他方の側板11eにおいて第1隔壁14及び第2隔壁15によって画定される領域R上に設けられる。この領域Rは、他方の側板11eにおいて、筐体11に電池モジュール20を取り付けた際に配列体50(図3参照)と対向する領域である。領域Rの方向Xに沿った長さは、第1隔壁14及び第2隔壁15の方向Xにおける離間距離に相当し、領域Rの方向Yに沿った長さは、第1隔壁14及び第2隔壁15の方向Yに沿った長さに相当する。換言すれば、領域Rの方向Xにおける両端と方向Yにおける両端とは、第1隔壁14及び第2隔壁15によって規定される。領域Rの方向Yに沿った長さは、後述する図3,4に示される第1ブラケット23と第2ブラケット24との方向Yに沿った離間距離に相当してもよい(図9参照)。つまり、領域Rの方向Yにおける両端は、第1ブラケット23及び第2ブラケット24によって規定されてもよい。 The heat conducting member 13 is provided on a region R defined by the first partition wall 14 and the second partition wall 15 in the other side plate 11 e of the housing 11. This area | region R is an area | region which opposes the array body 50 (refer FIG. 3) when the battery module 20 is attached to the housing | casing 11 in the other side plate 11e. The length along the direction X of the region R corresponds to the separation distance in the direction X of the first partition wall 14 and the second partition wall 15, and the length along the direction Y of the region R is equal to the first partition wall 14 and the second partition wall 14. This corresponds to the length of the partition 15 along the direction Y. In other words, both ends of the region R in the direction X and both ends in the direction Y are defined by the first partition 14 and the second partition 15. The length along the direction Y of the region R may correspond to a separation distance along the direction Y between the first bracket 23 and the second bracket 24 shown in FIGS. 3 and 4 described later (see FIG. 9). . That is, both ends in the direction Y of the region R may be defined by the first bracket 23 and the second bracket 24.
 第1隔壁14及び第2隔壁15は、筐体11と一体化されると共に、筐体11から電池モジュール20に向かって突出する。具体的には、第1隔壁14及び第2隔壁15は、他方の側板11e上に設けられ、他方の側板11eから一方の側板11eに向かって突出する。第1隔壁14及び第2隔壁15は、方向Yに沿って延在する略直方体形状を有する。第1隔壁14は熱伝導部材13よりも上側に位置し、第2隔壁15は熱伝導部材13よりも下側に位置する。他方の側板11eにおいて、第1隔壁14よりも上側には、ジャンクションボックス12を取り付けるために用いられる孔11fが設けられ、熱伝導部材13等よりも左側には、後述する第2ブラケット24を取り付けるために用いられる孔11fが設けられる。 The first partition wall 14 and the second partition wall 15 are integrated with the housing 11 and project from the housing 11 toward the battery module 20. Specifically, the first partition 14 and the second partition 15 are provided on the other side plate 11e, and project from the other side plate 11e toward the one side plate 11e. The first partition wall 14 and the second partition wall 15 have a substantially rectangular parallelepiped shape extending along the direction Y. The first partition 14 is located above the heat conducting member 13, and the second partition 15 is located below the heat conducting member 13. In the other side plate 11e, a hole 11f used for attaching the junction box 12 is provided above the first partition wall 14, and a second bracket 24 described later is attached to the left side of the heat conducting member 13 and the like. A hole 11f used for the purpose is provided.
 第1隔壁14及び第2隔壁15の厚さは、熱伝導部材13の厚さよりも大きい。また、第1隔壁14及び第2隔壁15の方向Yに沿った長さは、電池モジュール20の方向Yに沿った長さ未満であり、後述する配列体50(図3参照)の方向Yに沿った長さ以上である。 The thickness of the first partition wall 14 and the second partition wall 15 is larger than the thickness of the heat conducting member 13. Moreover, the length along the direction Y of the 1st partition 14 and the 2nd partition 15 is less than the length along the direction Y of the battery module 20, and it is in the direction Y of the array body 50 (refer FIG. 3) mentioned later. It is more than the length along.
 図1に示されるように、ジャンクションボックス12は、収容空間において、天板11bと前板11cとによって成す角部に設けられる。ジャンクションボックス12には、端子台12a及びリレー(不図示)等が収容される。端子台12aは、ケーブルの端子等が接続される複数の接続部(不図示)を含む。ジャンクションボックス12は、ケーブルC1~C3等を介して電池モジュール20に接続される。 As shown in FIG. 1, the junction box 12 is provided at a corner portion formed by the top plate 11b and the front plate 11c in the accommodation space. The junction box 12 accommodates a terminal block 12a, a relay (not shown), and the like. The terminal block 12a includes a plurality of connecting portions (not shown) to which cable terminals and the like are connected. The junction box 12 is connected to the battery module 20 via cables C1 to C3 and the like.
 複数の電池モジュール20は、収容空間の後方において方向Xに沿って配置されると共に、収容空間の前方において方向Xに沿って配置される。第1実施形態では、収容空間内の電池モジュール20の数は5つである。収容空間の後方に配置される電池モジュール20の数は3つであり、前方に配置される電池モジュール20の数は2つである。前方に配置される電池モジュール20よりも上側には、ジャンクションボックス12が設けられる。 The plurality of battery modules 20 are arranged along the direction X at the rear of the accommodation space, and are arranged along the direction X at the front of the accommodation space. In the first embodiment, the number of battery modules 20 in the accommodation space is five. The number of battery modules 20 arranged behind the housing space is three, and the number of battery modules 20 arranged forward is two. A junction box 12 is provided above the battery module 20 disposed in front.
 図3は、電池パックに固定される電池モジュールの斜視図である。図4は、図1のIV-IV線に沿った模式端面図である。図5は、図1のV-V線に沿った模式端面図である。図3~図5に示されるように、電池モジュール20は、複数の電池セル21を方向Yに配列してなる配列体50と、複数の伝熱プレート22と、第1ブラケット(第1プレート)23と、第2ブラケット(第2プレート)24と、弾性部材25と、制御装置26と、を備える。第1実施形態の電池モジュール20は、7つの電池セル21を含んでおり、各電池セル21は、セルホルダ(ホルダー)31に保持される。このため、それぞれセルホルダ31に保持された7つの電池セル21が方向Yに沿って配列されることによって、配列体50が構成される。 FIG. 3 is a perspective view of the battery module fixed to the battery pack. FIG. 4 is a schematic end view taken along line IV-IV in FIG. FIG. 5 is a schematic end view taken along the line VV of FIG. As shown in FIGS. 3 to 5, the battery module 20 includes an array 50 in which a plurality of battery cells 21 are arranged in the direction Y, a plurality of heat transfer plates 22, and a first bracket (first plate). 23, a second bracket (second plate) 24, an elastic member 25, and a control device 26. The battery module 20 of the first embodiment includes seven battery cells 21, and each battery cell 21 is held by a cell holder (holder) 31. For this reason, the array body 50 is configured by arranging the seven battery cells 21 respectively held in the cell holder 31 along the direction Y.
 図6は、電池セル、伝熱プレート、及びセルホルダの一例を示す分解斜視図である。図6に示されるように、電池セル21は、例えば、リチウムイオン電池またはニッケル水素蓄電池などの二次電池である。電池セル21は、略直方体形状を呈しており、方向Yに交差する矩形状の面である一対の主面21aと、矩形状の面である4つの側面21bとを有する。電池セル21は、外部装置又は他の電池セル21に接続されるための第1端子T1及び第2端子T2を有する。なお、以下では複数の電池セル21を配列してなる配列体50において筐体11に対向する面を、対向面50aとする。 FIG. 6 is an exploded perspective view showing an example of a battery cell, a heat transfer plate, and a cell holder. As FIG. 6 shows, the battery cell 21 is secondary batteries, such as a lithium ion battery or a nickel hydride storage battery, for example. The battery cell 21 has a substantially rectangular parallelepiped shape, and has a pair of main surfaces 21a that are rectangular surfaces that intersect the direction Y, and four side surfaces 21b that are rectangular surfaces. The battery cell 21 has a first terminal T1 and a second terminal T2 to be connected to an external device or another battery cell 21. In the following, the surface facing the housing 11 in the array 50 formed by arranging a plurality of battery cells 21 is referred to as a facing surface 50a.
 伝熱プレート22は、図4に示されるように、方向Yにおいて複数の電池セル21と交互に配列されており、セルホルダ31よりも高い熱伝導性を有する金属製又は合金製の部材である。伝熱プレート22は、セルホルダ31から露出した電池セル21の主面21aに接触する断面L字状の板状部材である。伝熱プレート22は、電池セル21にて発生した熱を外部へ伝導することにより、電池セル21の温度を調整するための部材である。伝熱プレート22は、主面21aに接触する第1本体部22aと、第1本体部22aの一端から方向Yに延在する第2本体部22bとを有する。図4に示されるように、第1本体部22aは、方向Yにおいて隣り合う電池セル21の両方に接触し、各電池セル21間の温度差を低減するように配置される。 As shown in FIG. 4, the heat transfer plate 22 is a metal or alloy member that is alternately arranged with the plurality of battery cells 21 in the direction Y and has higher thermal conductivity than the cell holder 31. The heat transfer plate 22 is a plate-shaped member having an L-shaped cross section that contacts the main surface 21 a of the battery cell 21 exposed from the cell holder 31. The heat transfer plate 22 is a member for adjusting the temperature of the battery cell 21 by conducting heat generated in the battery cell 21 to the outside. The heat transfer plate 22 includes a first main body portion 22a that contacts the main surface 21a, and a second main body portion 22b that extends in one direction Y from one end of the first main body portion 22a. As shown in FIG. 4, the first main body portion 22 a contacts both the battery cells 21 adjacent in the direction Y, and is arranged so as to reduce the temperature difference between the battery cells 21.
 図4~図6に示されるように、第2本体部22bは、後述するセルホルダ31の側面部33に接触し、セルホルダ31から露出する。第2本体部22bは、図5に示されるように、側面部33に接する第1主面22bと、第1主面22bの反対側の面である第2主面22bとを有する。第2本体部22bは、電池セル21において他方の側板11e側の側面21bに沿って延在する。したがって、第1本体部22aの一端とは、第1本体部22aの他方の側板11e側の端に相当し、且つ、配列体50の対向面50a側の端に相当する。また、第2本体部22bは、電池モジュール20が筐体11に取り付けられる際に熱伝導部材13に接する。具体的には、第2主面22bが熱伝導部材13に接する。これにより、電池セル21にて発生する熱は、伝熱プレート22及び熱伝導部材13を介して筐体11に伝達される。なお、第2本体部22b同士は、互いに接触してもよいし、互いに離間してもよい。 As shown in FIGS. 4 to 6, the second main body portion 22 b comes into contact with a side surface portion 33 of the cell holder 31 described later and is exposed from the cell holder 31. As shown in FIG. 5, the second main body portion 22 b has a first main surface 22 b 1 that contacts the side surface portion 33 and a second main surface 22 b 2 that is a surface opposite to the first main surface 22 b 1. . The second main body portion 22b extends along the side surface 21b on the other side plate 11e side in the battery cell 21. Therefore, one end of the first main body portion 22a corresponds to the end on the other side plate 11e side of the first main body portion 22a, and corresponds to the end on the facing surface 50a side of the array 50. In addition, the second main body portion 22 b contacts the heat conducting member 13 when the battery module 20 is attached to the housing 11. Specifically, the second main surface 22 b 2 is in contact with the heat conducting member 13. Thereby, the heat generated in the battery cell 21 is transmitted to the housing 11 via the heat transfer plate 22 and the heat conducting member 13. The second main body portions 22b may be in contact with each other or may be separated from each other.
 図5及び図6に示されるように、セルホルダ31は、電池セル21が嵌め込まれる枠形状を有しており、電池セル21の側面21bを囲んで保持可能な部材である。セルホルダ31は、樹脂製の成形部材で構成される。セルホルダ31は、電池セル21が嵌め込まれたときに、電池セル21の主面21aと、伝熱プレート22の第1本体部22aとの接触を許容する開口部32を有する。また、セルホルダ31は、開口部32を画定する側面部33,34、底面部35、及び仕切部36を有する。側面部33は、電池セル21と伝熱プレート22の第1本体部22aとが接触したときに、第2本体部22bと対向する部分である。側面部34は、開口部32を挟んで側面部33と対向する部分である。底面部35は、側面部33,34の一端側をつなぐ部分である。仕切部36は、側面部33,34の他端側をつなぐ部分である。底面部35の方向Zにおける両端には、後述する連結部材43が挿通される挿通孔35aが設けられる。仕切部36には、電池セル21の第1端子T1及び第2端子T2がそれぞれ収容される端子収容部36aが設けられる。また、仕切部36には、後述する連結部材43が挿通される2つの挿通孔36bが設けられる。 As shown in FIGS. 5 and 6, the cell holder 31 has a frame shape into which the battery cell 21 is fitted, and is a member that can surround and hold the side surface 21 b of the battery cell 21. The cell holder 31 is composed of a resin molded member. The cell holder 31 has an opening 32 that allows contact between the main surface 21a of the battery cell 21 and the first main body portion 22a of the heat transfer plate 22 when the battery cell 21 is fitted. Further, the cell holder 31 includes side surface portions 33 and 34 that define the opening 32, a bottom surface portion 35, and a partition portion 36. The side surface portion 33 is a portion that faces the second main body portion 22b when the battery cell 21 and the first main body portion 22a of the heat transfer plate 22 come into contact with each other. The side surface portion 34 is a portion facing the side surface portion 33 with the opening 32 interposed therebetween. The bottom surface portion 35 is a portion that connects one end sides of the side surface portions 33 and 34. The partition portion 36 is a portion that connects the other end sides of the side surface portions 33 and 34. At both ends in the direction Z of the bottom surface portion 35, insertion holes 35a into which a connecting member 43 described later is inserted are provided. The partition portion 36 is provided with a terminal accommodating portion 36a that accommodates the first terminal T1 and the second terminal T2 of the battery cell 21, respectively. Further, the partition portion 36 is provided with two insertion holes 36b through which a connecting member 43 described later is inserted.
 図3及び図4に示されるように、第1ブラケット23及び第2ブラケット24は、剛性の高い材料で構成され、例えば、鉄等の金属で構成される。第1ブラケット23及び第2ブラケット24は、方向Yの両側にて配列体50を挟持することにより、当該配列体50に拘束荷重を付すものである。また、第1ブラケット23及び第2ブラケット24は、電池パック10の筐体11に電池モジュール20を固定するものでもある。第1ブラケット23は、配列体50において方向Yの一方側に配置される。第2ブラケット24は、配列体50において方向Yの他方側に配置される。第1ブラケット23及び第2ブラケット24のそれぞれは、挟持部41及び取付部42を有する。 3 and 4, the first bracket 23 and the second bracket 24 are made of a highly rigid material, for example, a metal such as iron. The first bracket 23 and the second bracket 24 attach a restraining load to the array body 50 by sandwiching the array body 50 on both sides in the direction Y. The first bracket 23 and the second bracket 24 also fix the battery module 20 to the housing 11 of the battery pack 10. The first bracket 23 is disposed on one side in the direction Y in the array 50. The second bracket 24 is disposed on the other side in the direction Y in the array 50. Each of the first bracket 23 and the second bracket 24 has a clamping part 41 and an attachment part 42.
 挟持部41は、略矩形の平板である。第1ブラケット23の挟持部41と第2ブラケット24の挟持部41とは、例えばボルト等の連結部材43によって連結される。この挟持部41同士は、連結部材43によって方向Yにおいて互いに近づくように力を加えられて連結される。これにより、当該挟持部41同士は、方向Yにおける拘束荷重を複数の電池セル21に付加する。挟持部41の筐体11側の端は、方向Zにおいて第2本体部22bの第2主面22bよりも筐体11側に突出する。換言すれば、挟持部41の上記端は、方向Zにおいて第2主面22bよりも配列体50の対向面50aから離間する方向に突出する。 The clamping part 41 is a substantially rectangular flat plate. The clamping part 41 of the first bracket 23 and the clamping part 41 of the second bracket 24 are connected by a connecting member 43 such as a bolt, for example. The holding portions 41 are connected to each other by a connecting member 43 so that a force is applied so as to approach each other in the direction Y. Thereby, the clamping parts 41 apply a restraining load in the direction Y to the plurality of battery cells 21. An end of the sandwiching portion 41 on the housing 11 side projects in the direction Z from the second main surface 22b 2 of the second main body portion 22b to the housing 11 side. In other words, the end of the clamping portion 41 projecting in a direction away from the facing surface 50a of the array 50 than the second major surface 22b 2 in the direction Z.
 取付部42は、挟持部41の筐体11側の端から配列体50と反対側に延在する略矩形の平板である。取付部42には、方向Zに沿って貫通する複数の孔42aが設けられる。この孔42aを挿通すると共に孔11fに螺合されるボルト44により、取付部42は、他方の側板11e上の熱伝導部材13を、方向Yにおいて挟むように取り付けられる。取付部42の筐体11側であって、当該筐体11に接する端面42bは、第2本体部22bの第2主面22bよりも筐体11側に位置する。端面42bと第2本体部22bの第2主面22bとの方向ZにおけるオフセットD1は、例えば1mm程度である。端面42bは第2本体部22bよりも筐体11側に位置することから、当該端面42bは、当然に配列体50の対向面50aよりも筐体11側に位置する。 The attachment portion 42 is a substantially rectangular flat plate extending from the end on the housing 11 side of the sandwiching portion 41 to the side opposite to the array body 50. A plurality of holes 42 a penetrating along the direction Z are provided in the attachment portion 42. The mounting portion 42 is mounted so as to sandwich the heat conducting member 13 on the other side plate 11e in the direction Y by a bolt 44 inserted through the hole 42a and screwed into the hole 11f. A housing 11 side of the mounting portion 42, the end surface 42b in contact with the casing 11 is located in the housing 11 side of the second main surface 22b 2 of the second body portion 22b. Offset D1 in the direction Z of the second main surface 22b 2 of the end face 42b and second body part 22b is, for example, about 1 mm. Since the end surface 42b is located closer to the housing 11 than the second main body 22b, the end surface 42b is naturally located closer to the housing 11 than the facing surface 50a of the array 50.
 弾性部材25は、第1ブラケット23と、配列体50との間に設けられる板状部材である。弾性部材25は、ゴム及び樹脂系のスポンジなどの弾性変形可能な材料から構成される。一般に電池セル21は、電池セル21の使用期間が長くなるにつれて膨張するので、弾性部材25は、電池モジュール20において電池セル21の膨張を吸収する。取付部42の端面42bは、弾性部材25よりも筐体11側に位置する。端面42bと弾性部材25との方向ZにおけるオフセットD2は、セルホルダ31の側面部33、伝熱プレート22の第2本体部22b、及び熱伝導部材27の合計厚さと略同一である。 The elastic member 25 is a plate-like member provided between the first bracket 23 and the array body 50. The elastic member 25 is made of an elastically deformable material such as rubber and resin sponge. In general, since the battery cell 21 expands as the usage period of the battery cell 21 increases, the elastic member 25 absorbs the expansion of the battery cell 21 in the battery module 20. The end face 42 b of the attachment portion 42 is located closer to the housing 11 than the elastic member 25. The offset D2 in the direction Z between the end surface 42b and the elastic member 25 is substantially the same as the total thickness of the side surface portion 33 of the cell holder 31, the second main body portion 22b of the heat transfer plate 22, and the heat conducting member 27.
 制御装置26は、電池モジュール20に関する各種制御(例えば、放電制御又は温度制御等)を行う装置であり、電池セル21上に設けられると共に電池セル21に接続される。制御装置26は、中央演算装置(CPU)、電子制御ユニット(ECU)等によって構成される。 The control device 26 is a device that performs various controls (for example, discharge control or temperature control) regarding the battery module 20, and is provided on the battery cell 21 and connected to the battery cell 21. The control device 26 includes a central processing unit (CPU), an electronic control unit (ECU), and the like.
 次に、第1実施形態に係る電池パックの製造方法について図7を用いながら説明する。図7は、第1実施形態に係る電池パックの製造方法を説明するための工程図である。 Next, the battery pack manufacturing method according to the first embodiment will be described with reference to FIG. FIG. 7 is a process diagram for explaining the battery pack manufacturing method according to the first embodiment.
 図7に示されるように、まず、電池セル21等の組み立てを行う(ステップS1)。ステップS1では、電池セル21をセルホルダ31に組み込む。これにより、セルホルダ31によって電池セル21を保持する。また、ステップS1では、電池セル21の主面21aに伝熱プレート22を接触させ、セルホルダ31の側面部33上に伝熱プレート22の第2本体部22bを配置する。 As shown in FIG. 7, first, the battery cell 21 and the like are assembled (step S1). In step S <b> 1, the battery cell 21 is incorporated into the cell holder 31. Thereby, the battery cell 21 is held by the cell holder 31. In step S <b> 1, the heat transfer plate 22 is brought into contact with the main surface 21 a of the battery cell 21, and the second main body portion 22 b of the heat transfer plate 22 is disposed on the side surface portion 33 of the cell holder 31.
 次に、複数の電池セル21を配列及び拘束する(ステップS2)。ステップS2では、ステップS1にてセルホルダ31に組み込んだ複数の電池セル21を、主面21aに交差する方向(一方向)に沿って配列する。この際、隣り合う電池セル21同士の間に伝熱プレート22の第1本体部22aを挟む。複数の電池セル21を配列させた後、配列した複数の電池セル21を第1ブラケット23及び第2ブラケット24にて一方向において挟持する。この際、第1ブラケット23の挟持部41と、当該挟持部41の隣に位置する電池セル21との間に弾性部材25を挟持する。そして、連結部材43を用いて第1ブラケット23及び第2ブラケット24を連結し、配列した複数の電池セル21に対して一方向に沿った拘束荷重を付加する。これにより、複数の電池セル21を配列してなる配列体50を設ける。 Next, the plurality of battery cells 21 are arranged and restrained (step S2). In step S2, the plurality of battery cells 21 incorporated in the cell holder 31 in step S1 are arranged along a direction (one direction) intersecting the main surface 21a. At this time, the first main body portion 22 a of the heat transfer plate 22 is sandwiched between the adjacent battery cells 21. After arranging the plurality of battery cells 21, the arranged plurality of battery cells 21 are sandwiched in one direction by the first bracket 23 and the second bracket 24. At this time, the elastic member 25 is sandwiched between the sandwiching portion 41 of the first bracket 23 and the battery cell 21 located adjacent to the sandwiching portion 41. And the 1st bracket 23 and the 2nd bracket 24 are connected using the connection member 43, and the restraint load along one direction is added with respect to the some battery cell 21 arranged. Thereby, the array body 50 formed by arranging a plurality of battery cells 21 is provided.
 次に、電池セル21を自己放電する(ステップS3)。ステップS3では、まず拘束された複数の電池セル21の起電力をテスターによってそれぞれ測定する。具体的には、電池セル21の第1端子T1及び第2端子T2にテスターを接続することによって、電池セル21の起電力を測定する。電池セル21の自己放電を開始した後、配列体50を放置する。例えば1日以上5日以下の間、空気雰囲気下且つ常温常圧にて配列体50を静置させておくことによって、電池セル21が自然放電する。第1実施形態では、2.5日から3日程度配列体50を放置する。 Next, the battery cell 21 is self-discharged (step S3). In step S3, first, the electromotive forces of the constrained battery cells 21 are each measured by a tester. Specifically, the electromotive force of the battery cell 21 is measured by connecting a tester to the first terminal T1 and the second terminal T2 of the battery cell 21. After the self-discharge of the battery cell 21 is started, the array body 50 is left as it is. For example, the battery cell 21 spontaneously discharges by allowing the array 50 to stand in an air atmosphere and at normal temperature and pressure for 1 day or more and 5 days or less. In the first embodiment, the array 50 is left for about 2.5 to 3 days.
 次に、電池セル21の自己放電が終了した後、配列体50に対して制御装置26等を取り付ける(ステップS4)。ステップS4では、例えばバスバーによって各電池セル21同士を電気的に接続すると共に、制御装置26を電池セル21に電気的に接続するように取り付ける。これにより、図2に示される電池モジュール20を製造する。 Next, after the self-discharge of the battery cell 21 is completed, the control device 26 and the like are attached to the array 50 (step S4). In step S4, the battery cells 21 are electrically connected to each other by, for example, a bus bar, and the control device 26 is attached to be electrically connected to the battery cells 21. Thereby, the battery module 20 shown in FIG. 2 is manufactured.
 次に、筐体11上に液状の熱伝導材料(TIM)を塗布する(ステップS5)。ステップS4では、筐体11の他方の側板11eにおける領域Rに熱伝導材料を塗布する。この際、筐体11を静置させることによって、熱伝導材料が領域R外へ流れ出ることを抑制する。 Next, a liquid heat conductive material (TIM) is applied on the casing 11 (step S5). In step S4, a heat conductive material is applied to the region R of the other side plate 11e of the housing 11. At this time, the housing 11 is allowed to stand to suppress the heat conduction material from flowing out of the region R.
 次に、筐体11に電池モジュール20を固定する(ステップS6)。ステップS6では、図5に示されるように、電池モジュール20の伝熱プレート22における第2本体部22bが、第1隔壁14及び第2隔壁15によって方向Xにおいて挟まれると共に筐体11上に塗布された熱伝導材料に接するように、電池モジュール20を筐体11に固定する。この際、図4に示されるように、第1ブラケット23及び第2ブラケット24の挟持部41によって熱伝導材料を方向Yにおいて挟むように、電池モジュール20を筐体11上に配置する。これによりステップS6では、第1隔壁14、第2隔壁15、第1ブラケット23、及び第2ブラケット24にて形成される枠によって領域Rが画定され、当該領域Rから熱伝導材料が流れ出ることを抑制する。そして熱伝導材料を硬化させることによって、上記領域R内に第2本体部22bの第2主面22bに接する熱伝導部材13が形成される。ステップS6においては、挟持部41は、熱伝導部材13に接触してもよいし、熱伝導部材13と離間してもよい。また、ステップS6においては、複数の電池モジュール20を上述した方法にて筐体11に固定することによって、図1に示される電池パック10を製造する。 Next, the battery module 20 is fixed to the housing 11 (step S6). In step S6, as shown in FIG. 5, the second main body portion 22b of the heat transfer plate 22 of the battery module 20 is sandwiched in the direction X by the first partition wall 14 and the second partition wall 15 and applied onto the housing 11. The battery module 20 is fixed to the housing 11 so as to be in contact with the heat conduction material. At this time, as shown in FIG. 4, the battery module 20 is arranged on the housing 11 so that the heat conductive material is sandwiched in the direction Y by the sandwiching portions 41 of the first bracket 23 and the second bracket 24. Thereby, in step S6, the region R is defined by the frame formed by the first partition 14, the second partition 15, the first bracket 23, and the second bracket 24, and the heat conduction material flows out from the region R. Suppress. And by curing the thermally conductive material, the heat conducting member 13 in contact with the second major surface 22b 2 of the second body portion 22b in the region R is formed. In step S <b> 6, the sandwiching portion 41 may be in contact with the heat conducting member 13 or may be separated from the heat conducting member 13. In step S6, the battery pack 10 shown in FIG. 1 is manufactured by fixing the plurality of battery modules 20 to the housing 11 by the method described above.
 以上に説明した電池モジュール20を用いた第1実施形態の電池パック10によれば、第1隔壁14及び第2隔壁15によって画定される領域Rに固体状の熱伝導部材13を設けることができる。この熱伝導部材13は、液状の熱伝導材料を硬化することにより形成される。このため、上述したように領域Rに液状の熱伝導材料を塗布して熱伝導部材13を形成する場合、第1隔壁14及び第2隔壁15によって液状の熱伝導材料が領域R外、特に方向Xにおいて第1隔壁14を越えた領域及び第2隔壁15を越えた領域へ流れ出ることを抑制できる。このため、例えば第1隔壁14よりも上側に設けられる孔11fに熱伝導材料が流れ込むことが抑制され、ジャンクションボックス12を筐体11に取り付けることが困難になることを防止できる。したがって、上記電池パック10によれば、液状の熱伝導材料が意図しない領域へ流れ出ることを抑制できる。 According to the battery pack 10 of the first embodiment using the battery module 20 described above, the solid heat conductive member 13 can be provided in the region R defined by the first partition wall 14 and the second partition wall 15. . The heat conducting member 13 is formed by curing a liquid heat conducting material. Therefore, as described above, when the heat conductive member 13 is formed by applying the liquid heat conductive material to the region R, the liquid heat conductive material is out of the region R, particularly in the direction, by the first partition wall 14 and the second partition wall 15. It is possible to suppress the flow out of the region beyond the first partition 14 and the region beyond the second partition 15 in X. For this reason, for example, it is possible to prevent the heat conductive material from flowing into the holes 11 f provided above the first partition wall 14, and to prevent the junction box 12 from being difficult to attach to the housing 11. Therefore, according to the said battery pack 10, it can suppress that a liquid heat conductive material flows out to the area | region which is not intended.
 また、電池モジュール20は、方向Yにおいて配列体50を挟持する第1ブラケット23及び第2ブラケット24を有し、第1ブラケット23及び第2ブラケット24の端面42bは、配列体50の対向面50aよりも筐体11側に位置する。この場合、筐体11において第1隔壁14及び第2隔壁15によって画定される領域Rに液状の熱硬化材料を塗布した後、電池モジュール20を固定した状態にて熱伝導材料を硬化して熱伝導部材13を形成した場合、第1隔壁14、第2隔壁15、第1ブラケット23、及び第2ブラケット24によって液状の熱伝導材料を取り囲む枠が形成される。つまり、第1隔壁14及び第2隔壁15に加えて、第1ブラケット23及び第2ブラケット24によって液状の熱伝導材料を取り囲むので、第1ブラケット23及び第2ブラケット24によって、方向Yにおける領域R外に熱伝導材料が流れ出ることが抑制される。したがって、液状の熱伝導材料が意図しない領域へ流れ出ることをさらに抑制できる。 Further, the battery module 20 includes a first bracket 23 and a second bracket 24 that sandwich the array body 50 in the direction Y, and end surfaces 42b of the first bracket 23 and the second bracket 24 are opposed surfaces 50a of the array body 50. It is located closer to the housing 11 side. In this case, after a liquid thermosetting material is applied to the region R defined by the first partition wall 14 and the second partition wall 15 in the housing 11, the heat conductive material is cured and heated in a state where the battery module 20 is fixed. When the conductive member 13 is formed, a frame surrounding the liquid heat conductive material is formed by the first partition 14, the second partition 15, the first bracket 23, and the second bracket 24. That is, since the liquid heat conductive material is surrounded by the first bracket 23 and the second bracket 24 in addition to the first partition wall 14 and the second partition wall 15, the region R in the direction Y by the first bracket 23 and the second bracket 24. The heat conduction material is prevented from flowing out. Therefore, it is possible to further suppress the liquid heat conductive material from flowing out to an unintended region.
 また、第1隔壁14及び第2隔壁15は、筐体11と一体化される。この場合、例えば液状の熱伝導材料を筐体11に塗布する領域Rが定まりやすくなる。 Also, the first partition 14 and the second partition 15 are integrated with the housing 11. In this case, for example, the region R where the liquid heat conductive material is applied to the housing 11 is easily determined.
 また、電池モジュール20は、電池セル21において主面21aに接触する伝熱プレート22を備え、伝熱プレート22は、第1本体部22aと、第2本体部22bとを有し、第2本体部22bは、熱伝導部材13に接触する。この場合、電池セル21にて発生した熱は、伝熱プレート22を介して熱伝導部材13に伝導でき、電池セル21の放熱性を向上できる。 The battery module 20 includes a heat transfer plate 22 that contacts the main surface 21a of the battery cell 21, and the heat transfer plate 22 includes a first main body portion 22a and a second main body portion 22b, and the second main body. The part 22 b contacts the heat conducting member 13. In this case, the heat generated in the battery cell 21 can be conducted to the heat conducting member 13 via the heat transfer plate 22, and the heat dissipation of the battery cell 21 can be improved.
 図8は、第1実施形態の第1変形例の筐体の一部を拡大した図である。図8に示されるように、第1変形例は第1実施形態と比較して、電池パック10が第3隔壁61をさらに備える点で相違する。具体的には、第3隔壁61は、筐体11Aの他方の側板11eにおいて領域Rの後ろ側に設けられる。また、第3隔壁61は、方向Xにおいて第1隔壁14と第2隔壁15との間に設けられる。この第3隔壁61は、電池モジュール20が筐体11Aに固定される際に、弾性部材25と筐体11Aとの間に位置するように設けられる。第3隔壁61は、筐体11Aと一体化されると共に、筐体11Aから電池モジュール20に向かって突出し、方向Xに沿って延在する略直方体形状を有する。第3隔壁61の厚さは、熱伝導部材13の厚さよりも大きい。また、第3隔壁61の厚さは、第1隔壁14の厚さ及び第2隔壁15の厚さに対して略同一又は大きくなっている。また、第3隔壁61の長さは、例えば第1隔壁14と第2隔壁15との方向Xにおける離間距離未満であり、熱伝導部材13の方向Xの長さ以上である。第3隔壁61は、電池モジュール20が筐体11に取り付けられた場合に弾性部材25に重なるように設けられてもよい。 FIG. 8 is an enlarged view of a part of the housing of the first modified example of the first embodiment. As shown in FIG. 8, the first modification is different from the first embodiment in that the battery pack 10 further includes a third partition wall 61. Specifically, the third partition wall 61 is provided behind the region R in the other side plate 11e of the housing 11A. Further, the third partition wall 61 is provided between the first partition wall 14 and the second partition wall 15 in the direction X. The third partition wall 61 is provided so as to be positioned between the elastic member 25 and the housing 11A when the battery module 20 is fixed to the housing 11A. The third partition wall 61 is integrated with the housing 11A and has a substantially rectangular parallelepiped shape that protrudes from the housing 11A toward the battery module 20 and extends along the direction X. The thickness of the third partition wall 61 is larger than the thickness of the heat conducting member 13. Further, the thickness of the third partition wall 61 is substantially the same as or larger than the thickness of the first partition wall 14 and the thickness of the second partition wall 15. The length of the third partition wall 61 is, for example, less than the separation distance in the direction X between the first partition wall 14 and the second partition wall 15 and is not less than the length of the heat conducting member 13 in the direction X. The third partition wall 61 may be provided so as to overlap the elastic member 25 when the battery module 20 is attached to the housing 11.
 上記第1変形例では、第1実施形態と同様の作用効果が奏される。また、図8に示されるように、筐体11上の第1隔壁14、第2隔壁15、及び第3隔壁61によって画定される領域Rに液状の熱伝導材料を塗布して熱伝導部材13を形成できる。上記領域Rの3方向が第1隔壁14、第2隔壁15、及び第3隔壁61によって囲まれるので、液状の熱伝導材料が領域R外、特に筐体11上において第3隔壁61を越えた領域へも流れ出ることを抑制できる。したがって、液状の熱伝導材料が意図しない領域へ流れ出ることをさらに抑制できる。また、電池モジュール20が筐体11に取り付けられた場合、弾性部材25と筐体11との間にはオフセットD2が生じる。ここで、第3隔壁61が弾性部材25と重なるように設けられることによって、上記オフセットD2を埋めることができる。これにより、さらに液状の熱伝導材料が意図しない領域へ流れ出ることを抑制できる。 In the first modified example, the same effect as that of the first embodiment is achieved. Further, as shown in FIG. 8, a liquid heat conductive material is applied to a region R defined by the first partition wall 14, the second partition wall 15, and the third partition wall 61 on the housing 11 to heat the heat transfer member 13. Can be formed. Since the three directions of the region R are surrounded by the first partition wall 14, the second partition wall 15, and the third partition wall 61, the liquid heat conductive material exceeds the third partition wall 61 outside the region R, particularly on the housing 11. Flowing out to the area can be suppressed. Therefore, it is possible to further suppress the liquid heat conductive material from flowing out to an unintended region. Further, when the battery module 20 is attached to the housing 11, an offset D <b> 2 is generated between the elastic member 25 and the housing 11. Here, the offset D <b> 2 can be filled by providing the third partition wall 61 so as to overlap the elastic member 25. Thereby, it can suppress that a liquid heat conductive material flows out to the area | region which is not intended further.
 図9は、第1実施形態の第2変形例の筐体の一部を拡大した図である。図9に示されるように、第2変形例は第1実施形態と比較して、第1隔壁14及び第2隔壁15の方向Yに沿った長さが異なる点で相違する。具体的には、第1隔壁14Aの方向Yに沿った長さは、第1実施形態の第1隔壁14の方向Yに沿った長さよりも大きい。同様に、第2隔壁15Aの方向Yに沿った長さは、第1実施形態の第2隔壁15の方向Yに沿った長さよりも大きい。図9において、電池モジュール20が筐体11に固定される際に、第1ブラケット23の挟持部41が配置される位置を領域62、第2ブラケット24の挟持部41が配置される位置を領域63とする。この場合、第1隔壁14A及び第2隔壁15Aのそれぞれは、領域63より前側から領域62の後側まで延在する。換言すれば、第1隔壁14Aの一端は、第1ブラケット23に対して配列体50の反対側に位置し、第1隔壁14Aの他端は、第2ブラケット24に対して配列体50の反対側に位置する。同様に、第2隔壁15Aの一端は、第1ブラケット23に対して配列体50の反対側に位置し、第2隔壁15Aの他端は、第2ブラケット24に対して配列体50の反対側に位置する。 FIG. 9 is an enlarged view of a part of the housing of the second modified example of the first embodiment. As shown in FIG. 9, the second modification is different from the first embodiment in that the lengths of the first partition 14 and the second partition 15 along the direction Y are different. Specifically, the length along the direction Y of the first partition 14A is larger than the length along the direction Y of the first partition 14 of the first embodiment. Similarly, the length along the direction Y of the second partition 15A is larger than the length along the direction Y of the second partition 15 of the first embodiment. In FIG. 9, when the battery module 20 is fixed to the housing 11, the position where the clamping part 41 of the first bracket 23 is arranged is the area 62, and the position where the clamping part 41 of the second bracket 24 is arranged is the area. 63. In this case, each of the first partition wall 14 </ b> A and the second partition wall 15 </ b> A extends from the front side of the region 63 to the rear side of the region 62. In other words, one end of the first partition 14 </ b> A is positioned on the opposite side of the array 50 with respect to the first bracket 23, and the other end of the first partition 14 </ b> A is opposite to the array 50 on the second bracket 24. Located on the side. Similarly, one end of the second partition 15 </ b> A is positioned on the opposite side of the array 50 with respect to the first bracket 23, and the other end of the second partition 15 </ b> A is on the opposite side of the array 50 with respect to the second bracket 24. Located in.
 第2変形例では、第1実施形態と同様の作用効果が奏されると共に、第1隔壁14A及び第2隔壁15Aによって、方向Xにおける液状の熱伝導材料の領域R外への流出がより抑制される。具体的には、第1隔壁14A及び第2隔壁15Aは、方向Yにおいて少なくとも第1ブラケット23及び第2ブラケット24にわたって存在し、第1実施形態における第1隔壁14及び第2隔壁15の方向Yに沿った長さよりも長い。このため、第1隔壁14A、第2隔壁15A、第1ブラケット23、及び第2ブラケット24によって形成される枠において、各角部の隙間を小さくできるので、熱伝導材料が当該隙間から領域R外へ流れ出ることを抑制できる。 In the second modification, the same effects as those of the first embodiment are achieved, and the outflow of the liquid heat conductive material in the direction X outside the region R is further suppressed by the first partition wall 14A and the second partition wall 15A. Is done. Specifically, the first partition wall 14A and the second partition wall 15A exist in at least the first bracket 23 and the second bracket 24 in the direction Y, and the direction Y of the first partition wall 14 and the second partition wall 15 in the first embodiment. Longer than the length along. For this reason, in the frame formed by the first partition wall 14A, the second partition wall 15A, the first bracket 23, and the second bracket 24, the gaps at the corners can be reduced. Can be prevented from flowing out.
 図10は、第1実施形態の第3変形例を説明するための模式端面図である。図10に示されるように、第3変形例は第1実施形態と比較して、第1隔壁及び第2隔壁の数が異なる点で相違する。具体的には、第1隔壁14Bは、方向Yに沿って延在する略直方体形状の隔壁64,65を有する。隔壁64,65は、筐体11と一体化しており、方向Xにおいて互いに並列して離間する。同様に、第2隔壁15Bは、方向Yに沿って延在する略直方体形状の隔壁66,67を有する。隔壁66,67は、筐体11と一体化しており、方向Xにおいて互いに並列して離間する。したがって、方向Xにおいて、隔壁64と隔壁65との間及び隔壁66と隔壁67との間には、それぞれ隙間が形成される。 FIG. 10 is a schematic end view for explaining a third modification of the first embodiment. As shown in FIG. 10, the third modification is different from the first embodiment in that the number of first and second partitions is different. Specifically, the first partition wall 14 </ b> B has substantially rectangular parallelepiped partition walls 64 and 65 extending along the direction Y. The partition walls 64 and 65 are integrated with the casing 11 and are separated from each other in the direction X in parallel. Similarly, the second partition wall 15 </ b> B includes substantially rectangular parallelepiped partition walls 66 and 67 extending along the direction Y. The partition walls 66 and 67 are integrated with the housing 11 and are separated from each other in parallel in the direction X. Accordingly, in the direction X, gaps are formed between the partition walls 64 and 65 and between the partition walls 66 and 67, respectively.
 第3変形例では、第1実施形態と同様の作用効果が奏される。ここで、第3変形例において例えば領域Rに塗布された熱伝導材料が第1隔壁14Bを越えるためには、隔壁64,65の両方を越える必要がある。したがって、筐体11に設けられる複数の隔壁64~67により、領域Rに塗布された熱伝導材料が第1隔壁14B及び第2隔壁15Bを越えて領域R外に流れ出ることをさらに抑制できる。 In the third modified example, the same effects as those of the first embodiment are achieved. Here, in the third modification, for example, in order for the heat conductive material applied to the region R to exceed the first partition 14B, it is necessary to exceed both the partitions 64 and 65. Therefore, the plurality of partition walls 64 to 67 provided in the housing 11 can further suppress the heat conductive material applied to the region R from flowing out of the region R beyond the first partition wall 14B and the second partition wall 15B.
 第3変形例においては、第1隔壁14B及び第2隔壁15Bを構成する隔壁の数は限定されない。例えば、第1隔壁14B及び第2隔壁15Bの数は3つ以上でもよい。また、第1隔壁14Bを構成する隔壁の数と、第2隔壁15Bを構成する隔壁の数とは互いに異なってもよい。この場合、第1隔壁14Bを構成する隔壁の数、又は第2隔壁15Bを構成する隔壁の数は、1つでもよい。 In the third modification, the number of partition walls constituting the first partition wall 14B and the second partition wall 15B is not limited. For example, the number of the first partition walls 14B and the second partition walls 15B may be three or more. Further, the number of partition walls constituting the first partition 14B and the number of partition walls constituting the second partition 15B may be different from each other. In this case, the number of the partition walls configuring the first partition wall 14B or the number of the partition walls configuring the second partition wall 15B may be one.
 図11は、第1実施形態の第4変形例を説明するための模式端面図である。図11に示されるように、第4変形例は第1実施形態と比較して、電池パック10が熱伝導部材13に代えて袋68及び熱伝導材料69を備える点で相違する。具体的には、袋68は、方向Xにおいて第1隔壁14と第2隔壁15との間であって、方向Zにおいて電池モジュール20と筐体11との間に配置される。この袋68は密閉されており、袋68の内部には液状の熱伝導材料69が充填されている。袋68は、筐体11及び第2本体部22bの第2主面22bに接触する。袋68は、第1隔壁14及び第2隔壁15に接してもよいし、第1隔壁14及び第2隔壁15に接しなくてもよい。袋68は、高い熱伝導率を有する材料から構成される。したがって、電池セル21にて発生した熱は、伝熱プレート22、袋68、及び熱伝導材料69を介して筐体11に伝導する。 FIG. 11 is a schematic end view for explaining a fourth modification of the first embodiment. As shown in FIG. 11, the fourth modification is different from the first embodiment in that the battery pack 10 includes a bag 68 and a heat conductive material 69 instead of the heat conductive member 13. Specifically, the bag 68 is disposed between the first partition wall 14 and the second partition wall 15 in the direction X and between the battery module 20 and the housing 11 in the direction Z. The bag 68 is sealed, and the bag 68 is filled with a liquid heat conductive material 69. The bag 68 contacts the housing 11 and the second main surface 22b 2 of the second main body portion 22b. The bag 68 may be in contact with the first partition 14 and the second partition 15, or may not be in contact with the first partition 14 and the second partition 15. The bag 68 is made of a material having a high thermal conductivity. Therefore, the heat generated in the battery cell 21 is conducted to the housing 11 through the heat transfer plate 22, the bag 68, and the heat conductive material 69.
 第4変形例では、第1実施形態と同様の作用効果が奏される。また、袋68内に液状の熱伝導材料69を充填することによって、当該熱伝導材料69を硬化しなくてもよい。これにより、電池パックの製造中に熱伝導材料を硬化する期間を省略できるので、電池パックの生産性を向上できる。 In the fourth modified example, the same effects as those of the first embodiment are achieved. Further, by filling the bag 68 with the liquid heat conductive material 69, the heat conductive material 69 may not be cured. Thereby, since the period which hardens | cures a heat conductive material during manufacture of a battery pack can be abbreviate | omitted, productivity of a battery pack can be improved.
(第2実施形態)
 次に、第2実施形態に係る電池パックについて説明する。以下では、第1実施形態と異なる箇所のみを説明し、第1実施形態と重複する説明を省略する。
(Second Embodiment)
Next, the battery pack according to the second embodiment will be described. Below, only a different part from 1st Embodiment is demonstrated, and the description which overlaps with 1st Embodiment is abbreviate | omitted.
 図12は、第2実施形態の電池パックを説明するための模式端面図である。図12に示されるように、第2実施形態は第1実施形態と比較して、電池モジュール20Aが第1隔壁71及び第2隔壁72を有する点で相違する。具体的には、筐体11Bに第1隔壁及び第2隔壁が設けられず、電池モジュール20Aは、第1隔壁71及び第2隔壁72を有する。第1隔壁71及び第2隔壁72は、方向Yに沿って延在する略直方体形状を有し、電池モジュール20Aと一体化している。第1隔壁71及び第2隔壁72は、セルホルダ31Aを構成する側面部33の表面から筐体11Bに向かって突出する。具体的には、第1隔壁71及び第2隔壁72は、方向Zにおいて第2本体部22bの第2主面22bよりも配列体50から離間する方向に突出する。第1隔壁71及び第2隔壁72の厚さは、熱伝導部材13の厚さよりも大きい。第1隔壁71は、熱伝導部材13及び第2本体部22bよりも上側に設けられる。第2隔壁72は、熱伝導部材13及び第2本体部22bよりも下側に設けられる。電池モジュール20Aが筐体11Bに固定される際に、熱伝導部材13は、方向Xにおいて第1隔壁71及び第2隔壁72によって挟まれるように位置する。また、第2本体部22bは、方向Xにおいて第1隔壁71及び第2隔壁72によって挟まれるように位置する。 FIG. 12 is a schematic end view for explaining the battery pack of the second embodiment. As shown in FIG. 12, the second embodiment is different from the first embodiment in that the battery module 20 </ b> A has a first partition 71 and a second partition 72. Specifically, the first partition wall and the second partition wall are not provided in the housing 11 </ b> B, and the battery module 20 </ b> A includes a first partition wall 71 and a second partition wall 72. The first partition wall 71 and the second partition wall 72 have a substantially rectangular parallelepiped shape extending along the direction Y, and are integrated with the battery module 20A. The 1st partition 71 and the 2nd partition 72 protrude toward the housing | casing 11B from the surface of the side part 33 which comprises 31A of cell holders. Specifically, the first partition wall 71 and the second partition wall 72, projecting in a direction away from the array 50 than the second major surface 22b 2 of the second body portion 22b in the direction Z. The thickness of the first partition wall 71 and the second partition wall 72 is larger than the thickness of the heat conducting member 13. The first partition 71 is provided above the heat conducting member 13 and the second main body portion 22b. The second partition wall 72 is provided below the heat conducting member 13 and the second main body portion 22b. When the battery module 20A is fixed to the housing 11B, the heat conducting member 13 is positioned so as to be sandwiched between the first partition wall 71 and the second partition wall 72 in the direction X. Further, the second main body portion 22 b is located so as to be sandwiched between the first partition wall 71 and the second partition wall 72 in the direction X.
 各セルホルダ31Aは、側面部33にて互いに離間して設けられる突出部33a,33bを有する。突出部33aは側面部33の一端側に設けられ、突出部33bは側面部33の他端側に設けられる。これらの突出部33a,33bは、セルホルダ31Aと同じ樹脂製であり、セルホルダ31Aの側面部33等と一体成形される。第1隔壁71は、各セルホルダ31Aの突出部33aを組み合わせて構成されたものであり、第2隔壁72は、各セルホルダ31Aの突出部33bを組み合わせて構成されたものである。隣り合う突出部33a同士は方向Yにおいて連接してもよいし、連接しなくてもよい。隣り合う突出部33a同士が連接しない場合、当該突出部33a同士の隙間には樹脂等が充填されてもよい。同様に、隣り合う突出部33b同士が連接しない場合、当該突出部33b同士の隙間には樹脂等が充填されてもよい。 Each cell holder 31 </ b> A has protrusions 33 a and 33 b that are provided apart from each other at the side surface portion 33. The protruding portion 33 a is provided on one end side of the side surface portion 33, and the protruding portion 33 b is provided on the other end side of the side surface portion 33. These protrusions 33a and 33b are made of the same resin as the cell holder 31A, and are integrally formed with the side surface portion 33 and the like of the cell holder 31A. The 1st partition 71 is comprised combining the protrusion part 33a of each cell holder 31A, and the 2nd partition 72 is comprised combining the protrusion part 33b of each cell holder 31A. Adjacent protrusions 33a may be connected in the direction Y or may not be connected. When adjacent protrusions 33a are not connected to each other, a gap between the protrusions 33a may be filled with resin or the like. Similarly, when adjacent protrusions 33b are not connected to each other, a gap between the protrusions 33b may be filled with resin or the like.
 以上に説明した第2実施形態の電池パック10Aによれば、電池モジュール20Aが第1隔壁71及び第2隔壁72を有すると共に、第1ブラケット23及び第2ブラケット24の端面42bが、第2本体部22bの第2主面22bよりも方向Zにおいて配列体50から離間する方向に位置する。これにより、第1隔壁71、第2隔壁72、第1ブラケット23、及び第2ブラケット24は、電池モジュール20Aが筐体11Bに固定される場合に配列体50の対向面50aよりも突出すると共に、枠を形成する。このため、筐体11Bにおいて電池モジュール20Aを固定する場合において、液状の熱伝導材料を筐体11Bの領域Rに塗布した後に、電池モジュール20Aを筐体11Bに固定した状態にて当該熱伝導材料を硬化して熱伝導部材を形成する際に液状の熱伝導材料を上記枠によって取り囲むことができるので、熱伝導材料が領域R外へ流れ出ることを抑制できる。したがって、第2実施形態の電池パックによれば、第1実施形態と同様に液状の熱伝導材料が意図しない領域へ流れ出ることを抑制できる。加えて、電池モジュール20Aにおいて電池セル21を保持する樹脂製のセルホルダ31Aは、第1隔壁71を構成するための突出部33a、及び第2隔壁72を構成するための突出部33bを有する。これらの突出部33a,33bがセルホルダ31Aと一体成形されることにより、安価且つ容易に第1隔壁71及び第2隔壁72を設けることができる。 According to the battery pack 10A of the second embodiment described above, the battery module 20A has the first partition wall 71 and the second partition wall 72, and the end surfaces 42b of the first bracket 23 and the second bracket 24 have the second main body. Situated in the direction away from the array 50 in the direction Z than the second major surface 22b 2 parts 22b. Accordingly, the first partition 71, the second partition 72, the first bracket 23, and the second bracket 24 protrude from the facing surface 50a of the array 50 when the battery module 20A is fixed to the housing 11B. , Forming a frame. For this reason, in the case of fixing the battery module 20A in the housing 11B, after the liquid heat conductive material is applied to the region R of the housing 11B, the heat conductive material is fixed in the state where the battery module 20A is fixed to the housing 11B. Since the liquid heat conductive material can be surrounded by the frame when forming the heat conductive member by curing the heat conductive material, it is possible to suppress the heat conductive material from flowing out of the region R. Therefore, according to the battery pack of 2nd Embodiment, it can suppress that a liquid heat conductive material flows out to the area | region which is not intended like 1st Embodiment. In addition, the resin cell holder 31 </ b> A that holds the battery cell 21 in the battery module 20 </ b> A includes a protrusion 33 a for forming the first partition 71 and a protrusion 33 b for forming the second partition 72. By forming these protrusions 33a and 33b integrally with the cell holder 31A, the first partition wall 71 and the second partition wall 72 can be provided inexpensively and easily.
(第3実施形態)
 次に、第3実施形態に係る電池パックについて説明する。以下では、第1実施形態及び第2実施形態と異なる箇所のみを説明し、第1実施形態及び第2実施形態と重複する説明を省略する。
(Third embodiment)
Next, a battery pack according to the third embodiment will be described. Below, only a different part from 1st Embodiment and 2nd Embodiment is demonstrated, and the description which overlaps with 1st Embodiment and 2nd Embodiment is abbreviate | omitted.
 図13は、第3実施形態の電池パックを説明するための模式端面図である。図13に示されるように、第3実施形態は第1実施形態と比較して、筐体11と電池モジュール20Aとの両方が第1隔壁及び第2隔壁を有する点で相違する。具体的には、第3実施形態では、第1実施形態の筐体11と、第2実施形態の電池モジュール20Aとが用いられる。換言すれば、第3実施形態では、第1隔壁14及び第2隔壁15が設けられた筐体11と、第1隔壁71及び第2隔壁72が設けられた電池モジュール20Aとを用いて電池パック10Bが構成される。第3実施形態では、電池モジュール20Aが筐体11に固定されたとき、第1隔壁14,71をあわせて第1隔壁としてよく、第2隔壁15,72をあわせて第2隔壁としてよい。 FIG. 13 is a schematic end view for explaining the battery pack of the third embodiment. As shown in FIG. 13, the third embodiment is different from the first embodiment in that both the housing 11 and the battery module 20 </ b> A have a first partition and a second partition. Specifically, in the third embodiment, the casing 11 of the first embodiment and the battery module 20A of the second embodiment are used. In other words, in the third embodiment, a battery pack using the casing 11 provided with the first partition 14 and the second partition 15 and the battery module 20A provided with the first partition 71 and the second partition 72. 10B is configured. In the third embodiment, when the battery module 20A is fixed to the housing 11, the first partition walls 14 and 71 may be combined as the first partition wall, and the second partition walls 15 and 72 may be combined as the second partition wall.
 筐体11の第1隔壁14の頂面14aは、電池モジュール20Aの第1隔壁71の頂面71aに隙間なく接触される。同様に、筐体11の第2隔壁15の頂面15aは、電池モジュール20Aの第2隔壁72の頂面72aに隙間なく接触される。この場合、筐体11の第1隔壁14及び第2隔壁15の厚さは、熱伝導部材13の厚さ以上であればよい。 The top surface 14a of the first partition 14 of the housing 11 is in contact with the top surface 71a of the first partition 71 of the battery module 20A without a gap. Similarly, the top surface 15a of the second partition 15 of the housing 11 is in contact with the top surface 72a of the second partition 72 of the battery module 20A without a gap. In this case, the thickness of the first partition wall 14 and the second partition wall 15 of the housing 11 may be equal to or greater than the thickness of the heat conducting member 13.
 筐体11の第1隔壁14の方向Xに沿った長さは、電池モジュール20Aの第1隔壁71の方向Xに沿った長さと同じでもよいし、異なってもよい。例えば、筐体11の第1隔壁14の方向Xに沿った長さは、電池モジュール20Aの第1隔壁71の方向Xに沿った長さよりも大きくてもよい。同様に、筐体11の第2隔壁15の方向Xに沿った長さは、電池モジュール20Aの第2隔壁72の方向Xに沿った長さと同じでもよいし、異なってもよい。例えば、筐体11の第2隔壁15の方向Xに沿った長さは、電池モジュール20Aの第2隔壁72の方向Xに沿った長さよりも大きくてもよい。 The length along the direction X of the first partition 14 of the housing 11 may be the same as or different from the length along the direction X of the first partition 71 of the battery module 20A. For example, the length along the direction X of the first partition 14 of the housing 11 may be larger than the length along the direction X of the first partition 71 of the battery module 20A. Similarly, the length along the direction X of the second partition 15 of the housing 11 may be the same as or different from the length along the direction X of the second partition 72 of the battery module 20A. For example, the length along the direction X of the second partition 15 of the housing 11 may be larger than the length along the direction X of the second partition 72 of the battery module 20A.
 以上に説明した電池モジュール20Aを用いた第3実施形態の電池パック10Bによっても、第1実施形態と同様の作用効果を奏することができる。 Also with the battery pack 10B of the third embodiment using the battery module 20A described above, the same operational effects as those of the first embodiment can be obtained.
 図14は、第3実施形態の第1変形例を説明するための模式端面図である。図14に示されるように、第3実施形態の第1変形例は第3実施形態と比較して、筐体11の第1隔壁14の頂面14aと、電池モジュール20Aの第1隔壁71の頂面71aとは、互いに接しない点で相違する。具体的には、第1隔壁14の頂面14aはセルホルダ31Aの側面部33に接し、第1隔壁71の頂面71aは筐体11の他方の側板11eに接する。また、第1隔壁14の熱伝導部材13と反対側の側面14bと、第1隔壁71の熱伝導部材13側の側面71bとが互いに接する。すなわち、筐体11の第1隔壁14は、電池モジュール20Aの第1隔壁71よりも熱伝導部材13側に位置する。同様に、筐体11の第2隔壁15の頂面15aと、電池モジュール20Aの第2隔壁72の頂面72aとは、互いに接しない。第2隔壁15の頂面15aはセルホルダ31Aの側面部33に接し、第2隔壁72の頂面72aは筐体11の他方の側板11eに接する。また、第2隔壁15の熱伝導部材13と反対側の側面15bと、第2隔壁72の熱伝導部材13側の側面72bとが互いに接する。すなわち、筐体11の第2隔壁15は、電池モジュール20Aの第2隔壁72よりも熱伝導部材13側に位置する。 FIG. 14 is a schematic end view for explaining a first modification of the third embodiment. As shown in FIG. 14, the first modification of the third embodiment is different from the third embodiment in the top surface 14a of the first partition 14 of the housing 11 and the first partition 71 of the battery module 20A. It differs from the top surface 71a in that it does not contact each other. Specifically, the top surface 14a of the first partition 14 is in contact with the side surface portion 33 of the cell holder 31A, and the top surface 71a of the first partition 71 is in contact with the other side plate 11e of the housing 11. Further, the side surface 14b of the first partition 14 opposite to the heat conducting member 13 and the side surface 71b of the first partition 71 on the heat conducting member 13 side are in contact with each other. That is, the first partition 14 of the housing 11 is located closer to the heat conducting member 13 than the first partition 71 of the battery module 20A. Similarly, the top surface 15a of the second partition 15 of the housing 11 and the top surface 72a of the second partition 72 of the battery module 20A do not contact each other. The top surface 15a of the second partition 15 is in contact with the side surface portion 33 of the cell holder 31A, and the top surface 72a of the second partition 72 is in contact with the other side plate 11e of the housing 11. Further, the side surface 15b of the second partition 15 opposite to the heat conducting member 13 and the side surface 72b of the second partition 72 facing the heat conducting member 13 are in contact with each other. That is, the second partition 15 of the housing 11 is located closer to the heat conducting member 13 than the second partition 72 of the battery module 20A.
 本変形例では、第3実施形態と同様の作用効果が奏されると共に、硬化する前の熱伝導材料が筐体11上において第1隔壁14,71を越えた領域及び第2隔壁15,72を越えた領域へ流れ出ることを一層抑制できる。また、第1隔壁14,71及び第2隔壁15,72によって筐体11に対する電池モジュール20Aの位置決めが容易になるので、電池モジュール20Aの組み付け性が向上する。 In this modification, the same effect as the third embodiment is exhibited, and the region where the heat conductive material before curing exceeds the first partition walls 14 and 71 on the housing 11 and the second partition walls 15 and 72. It is possible to further suppress the flow out to the area beyond. Moreover, since the positioning of the battery module 20A with respect to the housing 11 is facilitated by the first partition walls 14 and 71 and the second partition walls 15 and 72, the assembling property of the battery module 20A is improved.
 第3実施形態の第1変形例において、電池モジュール20Aの第1隔壁71は、筐体11の第1隔壁14よりも熱伝導部材13側に位置してもよい。同様に、電池モジュール20Aの第2隔壁72は、筐体11の第2隔壁15よりも熱伝導部材13側に位置してもよい。また、第1隔壁14,71は互いに離間してもよく、第2隔壁15,72は互いに離間してもよい。 In the first modification of the third embodiment, the first partition 71 of the battery module 20A may be located closer to the heat conducting member 13 than the first partition 14 of the housing 11. Similarly, the second partition wall 72 of the battery module 20 </ b> A may be located closer to the heat conducting member 13 than the second partition wall 15 of the housing 11. Further, the first partition walls 14 and 71 may be separated from each other, and the second partition walls 15 and 72 may be separated from each other.
 図15は、第3実施形態の第2変形例を説明するための模式端面図である。図15に示されるように、第3実施形態の第2変形例は第3実施形態と比較して、電池モジュール20Aの隔壁に凹部が設けられる点で相違する。具体的には、筐体11の第1隔壁14と、電池モジュール20Aの第1隔壁71とは、互いに嵌合可能に構成され、筐体11の第2隔壁15と、電池モジュール20Aの第2隔壁72とは、互いに嵌合可能に構成される。より具体的には、第1隔壁71の頂面71aには凹部81が形成され、第2隔壁72の頂面72aには凹部82が形成される。電池モジュール20Aが筐体11に固定されるときには、第1隔壁14は当該凹部81に挿入され、第2隔壁15は当該凹部82に挿入される。 FIG. 15 is a schematic end view for explaining a second modification of the third embodiment. As shown in FIG. 15, the second modification of the third embodiment is different from the third embodiment in that a recess is provided in the partition wall of the battery module 20A. Specifically, the first partition 14 of the housing 11 and the first partition 71 of the battery module 20A are configured to be fitted to each other, and the second partition 15 of the housing 11 and the second partition of the battery module 20A are configured. The partition wall 72 is configured to be fitted to each other. More specifically, a recess 81 is formed on the top surface 71 a of the first partition wall 71, and a recess 82 is formed on the top surface 72 a of the second partition wall 72. When the battery module 20 </ b> A is fixed to the housing 11, the first partition 14 is inserted into the recess 81, and the second partition 15 is inserted into the recess 82.
 本変形例では、第3実施形態と同様の作用効果が奏される。また、第1隔壁14及び第2隔壁15が凹部81,82に嵌合されるための目印となるため、筐体11に対する電池モジュール20Aの位置決めが容易になり、電池モジュール20Aの組み付け性が向上する。 In this modification, the same effect as the third embodiment is achieved. In addition, since the first partition wall 14 and the second partition wall 15 serve as marks for fitting into the recesses 81 and 82, the battery module 20A can be easily positioned with respect to the housing 11, and the assembly property of the battery module 20A is improved. To do.
 第3実施形態の第2変形例において、第1隔壁14の頂面14aに凹部が設けられてもよい。この場合、第1隔壁71は、上記凹部に挿入される。同様に、第2隔壁15の頂面15aに凹部が設けられてもよい。この場合、第2隔壁72は、上記凹部に挿入される。なお、第1隔壁14の表面は、凹部81の表面に接してもよいし、接しなくてもよい。同様に第2隔壁15の表面は、凹部82の表面に接してもよいし、接しなくてもよい。 In the second modification of the third embodiment, a recess may be provided on the top surface 14a of the first partition 14. In this case, the 1st partition 71 is inserted in the said recessed part. Similarly, a recess may be provided on the top surface 15 a of the second partition wall 15. In this case, the second partition wall 72 is inserted into the recess. In addition, the surface of the 1st partition 14 may be in contact with the surface of the recessed part 81, and does not need to contact. Similarly, the surface of the second partition 15 may be in contact with the surface of the recess 82 or may not be in contact therewith.
(第4実施形態)
 次に、第4実施形態に係る電池パックについて説明する。以下では、第1~第3実施形態実施形態と異なる箇所のみを説明し、第1~第3実施形態と重複する説明を省略する。
(Fourth embodiment)
Next, a battery pack according to the fourth embodiment will be described. In the following, only the parts different from the first to third embodiments will be described, and the description overlapping with the first to third embodiments will be omitted.
 図16は、第4実施形態の電池パックを説明するための模式端面図である。図16に示されるように、第4実施形態は第1実施形態と比較して、筐体11B及び電池モジュール20に第1隔壁及び第2隔壁が設けられない点で相違する。具体的には、電池パック10Cは、筐体11B及び電池モジュール20とは別体の隔壁部材である第1隔壁91及び第2隔壁92を備える。 FIG. 16 is a schematic end view for explaining the battery pack of the fourth embodiment. As shown in FIG. 16, the fourth embodiment is different from the first embodiment in that the housing 11B and the battery module 20 are not provided with the first partition and the second partition. Specifically, the battery pack 10 </ b> C includes a first partition 91 and a second partition 92 that are partition members separate from the housing 11 </ b> B and the battery module 20.
 第1隔壁91は、方向Yに沿って延在する略直方体形状を有し、方向Zにおいて筐体11Bと電池モジュール20との間に位置する部材である。第2隔壁92は、方向Yに沿って延在する略直方体形状を有し、方向Zにおいて筐体11Bと電池モジュール20との間に位置する部材である。第1隔壁91及び第2隔壁92は、方向Xにおいて並列して離間しており、第1隔壁91は、方向Xにおいて熱伝導部材13よりも上側に配置され、第2隔壁92は、方向Xにおいて熱伝導部材13よりも下側に配置される。換言すれば、第1隔壁91及び第2隔壁92は、熱伝導部材13及び伝熱プレート22の第2本体部22bを方向Xにおいて挟むように配置される。また、第1隔壁91及び第2隔壁92の方向Yに沿った長さは、電池モジュール20の方向Yに沿った長さ未満、かつ配列体50(図3参照)の方向Yに沿った長さ以上である。第1隔壁91及び第2隔壁92は、樹脂から構成されるゴム材料である。第1隔壁91及び第2隔壁92の厚さは、熱伝導部材13の厚さよりも大きい。第1隔壁91及び第2隔壁92は、筐体11B及び電池モジュール20の少なくとも一方に対して、接着剤等を介して固定される。 The first partition wall 91 is a member having a substantially rectangular parallelepiped shape extending in the direction Y and positioned between the housing 11B and the battery module 20 in the direction Z. The second partition wall 92 is a member that has a substantially rectangular parallelepiped shape extending in the direction Y and is positioned between the housing 11 </ b> B and the battery module 20 in the direction Z. The first partition wall 91 and the second partition wall 92 are spaced apart in parallel in the direction X, the first partition wall 91 is disposed above the heat conducting member 13 in the direction X, and the second partition wall 92 is aligned in the direction X. In FIG. 2, it is arranged below the heat conducting member 13. In other words, the first partition wall 91 and the second partition wall 92 are arranged so as to sandwich the heat conducting member 13 and the second main body portion 22b of the heat transfer plate 22 in the direction X. Further, the length along the direction Y of the first partition 91 and the second partition 92 is less than the length along the direction Y of the battery module 20 and the length along the direction Y of the array 50 (see FIG. 3). That's it. The 1st partition 91 and the 2nd partition 92 are rubber materials comprised from resin. The thickness of the first partition wall 91 and the second partition wall 92 is larger than the thickness of the heat conducting member 13. The first partition 91 and the second partition 92 are fixed to at least one of the housing 11B and the battery module 20 via an adhesive or the like.
 以上に説明した電池モジュール20を用いた第4実施形態の電池パック10Cによっても、第1実施形態と同様の作用効果を奏することができる。また、第1隔壁91及び第2隔壁92は筐体11B及び電池モジュール20と別体の部材となっているので、第1隔壁91及び第2隔壁92を構成する材質等の自由度が向上する。 Also with the battery pack 10C of the fourth embodiment using the battery module 20 described above, the same operational effects as those of the first embodiment can be obtained. In addition, since the first partition 91 and the second partition 92 are separate members from the housing 11B and the battery module 20, the degree of freedom of the materials constituting the first partition 91 and the second partition 92 is improved. .
 なお、本発明に係る電池モジュール及び電池パックは、上記実施形態及び変形例に限定されない。また、上記実施形態及び変形例を適宜組み合わせてもよい。例えば、第1実施形態と第2実施形態とを組み合わせることによって、第1隔壁及び第2隔壁の一方を筐体と一体化した隔壁とし、第1隔壁及び第2隔壁の他方を電池モジュールと一体化した隔壁としてもよい。また、例えば第1実施形態の第3変形例と第3実施形態とを組み合わせることによって、複数の隔壁を有する第1隔壁において、一部を筐体と一体化した隔壁とし、他部を電池モジュールと一体化した隔壁としてもよい。第2隔壁についても同様である。また、例えば第1実施形態の第1変形例~第4変形例のそれぞれを、第2~第4実施形態又は他の変形例に適用してもよい。 In addition, the battery module and battery pack which concern on this invention are not limited to the said embodiment and modification. Moreover, you may combine the said embodiment and modification suitably. For example, by combining the first embodiment and the second embodiment, one of the first partition and the second partition is integrated with the housing, and the other of the first partition and the second partition is integrated with the battery module. It is good also as an integrated partition. Further, for example, by combining the third modification of the first embodiment and the third embodiment, in the first partition having a plurality of partitions, a part of the partition is integrated with the housing, and the other part is the battery module. It is good also as a partition integrated with. The same applies to the second partition. For example, each of the first to fourth modifications of the first embodiment may be applied to the second to fourth embodiments or other modifications.
 また、上記実施形態においては、第1ブラケット23及び第2ブラケット24は取付部42を有しているが、これに限られない。例えば、第1ブラケット23及び第2ブラケット24は挟持部41のみを有してもよい。この場合、第1ブラケット23及び第2ブラケット24は、例えばL字型の金具等を用いて筐体11に固定されてもよい。また、この場合、第1ブラケット23及び第2ブラケット24の挟持部41の筐体側の端面が、伝熱プレート22の第2本体部22bよりも筐体側に位置すればよい。 Moreover, in the said embodiment, although the 1st bracket 23 and the 2nd bracket 24 have the attaching part 42, it is not restricted to this. For example, the first bracket 23 and the second bracket 24 may have only the clamping part 41. In this case, the first bracket 23 and the second bracket 24 may be fixed to the housing 11 using, for example, an L-shaped metal fitting. Further, in this case, the end surface on the housing side of the sandwiching portion 41 of the first bracket 23 and the second bracket 24 only needs to be positioned on the housing side with respect to the second main body portion 22 b of the heat transfer plate 22.
 また、上記実施形態においては、電池モジュールは、第1本体部22a及び第2本体部22bを含む複数の伝熱プレート22を有しているが、これに限られない。例えば、電池モジュールは、伝熱プレート22を有しなくてもよい。 Moreover, in the said embodiment, although the battery module has the some heat-transfer plate 22 containing the 1st main-body part 22a and the 2nd main-body part 22b, it is not restricted to this. For example, the battery module may not have the heat transfer plate 22.
 また、上記実施形態における電池パックの製造方法は、ステップS1~S6を有するが、これに限られない。例えば、ステップS5をステップS3の前に実施してもよい。 In addition, the battery pack manufacturing method according to the embodiment includes steps S1 to S6, but is not limited thereto. For example, step S5 may be performed before step S3.
 10,10A~10C…電池パック、11,11A,11B…筐体、11e…側板、11f…孔、13…熱伝導部材、14,71,91…第1隔壁、15,72,92…第2隔壁、20,20A…電池モジュール、21…電池セル、21a…主面、21b…側面、22…伝熱プレート、22a…第1本体部、22b…第2本体部、25…弾性部材、31,31A…セルホルダ(ホルダー)、33a,33b…突出部、50…配列体、50a…対向面、61…第3隔壁、64~67…隔壁、68…袋、69…熱伝導材料、D1,D2…オフセット、T1…第1端子、T2…第2端子。 DESCRIPTION OF SYMBOLS 10,10A-10C ... Battery pack 11,11A, 11B ... Case, 11e ... Side plate, 11f ... Hole, 13 ... Heat conduction member, 14,71,91 ... First partition, 15,72,92 ... Second Partition wall 20, 20A ... battery module, 21 ... battery cell, 21a ... main surface, 21b ... side surface, 22 ... heat transfer plate, 22a ... first body part, 22b ... second body part, 25 ... elastic member, 31, 31A ... Cell holder (holder), 33a, 33b ... Projection, 50 ... Array, 50a ... Opposing surface, 61 ... Third partition, 64-67 ... Partition, 68 ... Bag, 69 ... Thermally conductive material, D1, D2 ... Offset, T1... First terminal, T2.

Claims (12)

  1.  複数の電池セルを一方向に配列してなる配列体を有する電池モジュールと、
     前記電池モジュールが固定される筐体と、
     前記配列体と前記筐体とによって挟まれ、液状の熱伝導材料が硬化してなる固体状の熱伝導部材と、
     前記電池モジュールと前記筐体との間にて前記一方向に沿って延在し、前記熱伝導部材を挟むように位置する第1隔壁及び第2隔壁と、
    を備える電池パック。
    A battery module having an array formed by arranging a plurality of battery cells in one direction;
    A housing to which the battery module is fixed;
    A solid heat conductive member sandwiched between the array and the housing and formed by curing a liquid heat conductive material;
    A first partition and a second partition that extend along the one direction between the battery module and the housing and are positioned so as to sandwich the heat conducting member;
    A battery pack comprising:
  2.  前記電池モジュールは、前記一方向において前記配列体を挟持する第1プレート及び第2プレートをさらに有し、
     前記第1プレート及び前記第2プレートの前記筐体側の端面は、前記配列体の前記筐体に対向する対向面よりも前記筐体側に位置する、請求項1に記載の電池パック。
    The battery module further includes a first plate and a second plate that sandwich the array in the one direction,
    2. The battery pack according to claim 1, wherein end surfaces of the first plate and the second plate on the housing side are located closer to the housing than a facing surface of the array body facing the housing.
  3.  前記一方向に対して交差する方向に延在する第3隔壁をさらに備え、
     前記電池モジュールは、前記第1プレートと前記配列体との間に設けられる弾性部材を有し、
     前記第3隔壁は、前記弾性部材と前記筐体との間に設けられる、請求項2に記載の電池パック。
    A third partition extending in a direction intersecting the one direction;
    The battery module has an elastic member provided between the first plate and the array,
    The battery pack according to claim 2, wherein the third partition is provided between the elastic member and the housing.
  4.  前記第1隔壁の一端は、前記第1プレートに対して前記配列体の反対側に位置し、
     前記第1隔壁の他端は、前記第2プレートに対して前記配列体の反対側に位置する、請求項2又は3に記載の電池パック。
    One end of the first partition is located on the opposite side of the array with respect to the first plate,
    4. The battery pack according to claim 2, wherein the other end of the first partition is located on an opposite side of the array body with respect to the second plate. 5.
  5.  前記第1隔壁及び前記第2隔壁は、前記筐体と一体化される、請求項1~4のいずれか一項に記載の電池パック。 The battery pack according to any one of claims 1 to 4, wherein the first partition and the second partition are integrated with the housing.
  6.  前記第1隔壁及び前記第2隔壁は、前記電池モジュールと一体化される、請求項1~3のいずれか一項に記載の電池パック。 The battery pack according to any one of claims 1 to 3, wherein the first partition and the second partition are integrated with the battery module.
  7.  前記第1隔壁は、前記筐体と一体化され、
     前記第2隔壁は、前記電池モジュールと一体化される、請求項1~4のいずれか一項に記載の電池パック。
    The first partition is integrated with the housing;
    The battery pack according to any one of claims 1 to 4, wherein the second partition wall is integrated with the battery module.
  8.  前記第1隔壁は、前記一方向に沿って延在する複数の隔壁を有する、請求項1~7のいずれか一項に記載の電池パック。 The battery pack according to any one of claims 1 to 7, wherein the first partition has a plurality of partitions extending along the one direction.
  9.  前記第1隔壁は、前記一方向に沿って延在する複数の隔壁を有し、
     前記複数の隔壁の一部は、前記筐体と一体化され、
     前記複数の隔壁の他部は、前記電池モジュールと一体化される、請求項1~3のいずれか一項に記載の電池パック。
    The first partition has a plurality of partitions extending along the one direction,
    Some of the plurality of partition walls are integrated with the housing,
    The battery pack according to any one of claims 1 to 3, wherein other portions of the plurality of partition walls are integrated with the battery module.
  10.  前記第1隔壁及び前記第2隔壁は、前記筐体及び前記電池モジュールと別体である隔壁部材である、請求項1~4のいずれか一項に記載の電池パック。 The battery pack according to any one of claims 1 to 4, wherein the first partition wall and the second partition wall are partition members that are separate from the casing and the battery module.
  11.  前記電池モジュールは、前記電池セルにおいて前記一方向に交差する面である主面に接触する伝熱プレートを備え、
     前記伝熱プレートは、前記主面に接触する第1本体部と、前記第1本体部の前記筐体側の端から前記主面に交差する方向に延在する第2本体部とを有し、
     前記第2本体部は、前記熱伝導部材に接触する、請求項1~10のいずれか一項に記載の電池パック。
    The battery module includes a heat transfer plate that contacts a main surface that is a surface intersecting the one direction in the battery cell,
    The heat transfer plate includes a first main body portion that contacts the main surface, and a second main body portion that extends in a direction intersecting the main surface from an end of the first main body portion on the housing side,
    The battery pack according to any one of claims 1 to 10, wherein the second main body portion is in contact with the heat conducting member.
  12.  液状の熱伝導材料が硬化してなる固体状の熱伝導部材を挟んで筐体に固定される電池モジュールであって、
     複数の電池セルを一方向に配列してなる配列体と、
     前記電池セルを保持する樹脂製のホルダーと、
     前記電池セルにおいて前記一方向に交差する面である主面に接触する第1本体部、及び前記第1本体部の一端から前記一方向に延在する第2本体部を有する伝熱プレートと、
     前記一方向において前記配列体を挟持する第1プレート及び第2プレートと、を備え、
     前記第2本体部は、前記ホルダーに接する第1主面と、前記第1主面に対向する第2主面とを有し、
     前記ホルダーは、第1隔壁及び第2隔壁を有し、
     前記第1隔壁及び前記第2隔壁は、前記一方向に沿って延在し、前記第2本体部を挟むように設けられると共に、前記第2主面よりも前記配列体から離間する方向に突出し、
     前記第1プレート及び前記第2プレートは、前記第2主面よりも前記配列体から離間する方向に突出する、
    電池モジュール。
    A battery module fixed to a housing with a solid heat conductive member formed by curing a liquid heat conductive material,
    An array formed by arranging a plurality of battery cells in one direction;
    A resin holder for holding the battery cells;
    A heat transfer plate having a first main body portion that contacts a main surface that is a surface that intersects the one direction in the battery cell, and a second main body portion that extends in one direction from one end of the first main body portion;
    A first plate and a second plate sandwiching the array in the one direction,
    The second main body portion has a first main surface in contact with the holder, and a second main surface facing the first main surface,
    The holder has a first partition and a second partition,
    The first partition and the second partition extend along the one direction, are provided so as to sandwich the second main body portion, and protrude in a direction away from the array from the second main surface. ,
    The first plate and the second plate protrude in a direction away from the array body than the second main surface,
    Battery module.
PCT/JP2016/070563 2015-09-14 2016-07-12 Battery pack and battery module WO2017047211A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015180355A JP6620478B2 (en) 2015-09-14 2015-09-14 Battery pack and battery module
JP2015-180355 2015-09-14

Publications (1)

Publication Number Publication Date
WO2017047211A1 true WO2017047211A1 (en) 2017-03-23

Family

ID=58288686

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/070563 WO2017047211A1 (en) 2015-09-14 2016-07-12 Battery pack and battery module

Country Status (2)

Country Link
JP (1) JP6620478B2 (en)
WO (1) WO2017047211A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020116825A1 (en) * 2018-12-05 2020-06-11 주식회사 엘지화학 Battery module and method for manufacturing same

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7300678B2 (en) 2017-07-28 2023-06-30 パナソニックIpマネジメント株式会社 Combined Battery Modules and Combined Battery Packs
CN111033791B (en) 2017-08-29 2022-06-17 松下知识产权经营株式会社 Battery pack
JP7001501B2 (en) * 2017-10-26 2022-01-19 信越ポリマー株式会社 Heat dissipation structure and battery with it
WO2022030449A1 (en) * 2020-08-07 2022-02-10 株式会社Gsユアサ Power storage device
KR20220021611A (en) * 2020-08-14 2022-02-22 주식회사 엘지에너지솔루션 Battery module and battery pack including the same

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005310449A (en) * 2004-04-19 2005-11-04 Fujitsu Component Ltd Battery pack
JP2005353557A (en) * 2004-06-14 2005-12-22 Sanyo Electric Co Ltd Power source device
JP2011508366A (en) * 2007-12-06 2011-03-10 ヴァレオ エキプマン エレクトリク モトゥール Vehicle power supply
WO2012057169A1 (en) * 2010-10-26 2012-05-03 三洋電機株式会社 Power-supply device, vehicle using same, battery cell, and battery-cell manufacturing method
WO2012165493A1 (en) * 2011-06-02 2012-12-06 三洋電機株式会社 Power source device for supplying power and vehicle provided with power source device
JP2014107213A (en) * 2012-11-29 2014-06-09 Toyota Industries Corp Battery pack
WO2014091998A1 (en) * 2012-12-10 2014-06-19 株式会社 豊田自動織機 Battery module and method for manufacturing battery module

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005310449A (en) * 2004-04-19 2005-11-04 Fujitsu Component Ltd Battery pack
JP2005353557A (en) * 2004-06-14 2005-12-22 Sanyo Electric Co Ltd Power source device
JP2011508366A (en) * 2007-12-06 2011-03-10 ヴァレオ エキプマン エレクトリク モトゥール Vehicle power supply
WO2012057169A1 (en) * 2010-10-26 2012-05-03 三洋電機株式会社 Power-supply device, vehicle using same, battery cell, and battery-cell manufacturing method
WO2012165493A1 (en) * 2011-06-02 2012-12-06 三洋電機株式会社 Power source device for supplying power and vehicle provided with power source device
JP2014107213A (en) * 2012-11-29 2014-06-09 Toyota Industries Corp Battery pack
WO2014091998A1 (en) * 2012-12-10 2014-06-19 株式会社 豊田自動織機 Battery module and method for manufacturing battery module
JP2014116193A (en) * 2012-12-10 2014-06-26 Toyota Industries Corp Battery module and manufacturing method for the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020116825A1 (en) * 2018-12-05 2020-06-11 주식회사 엘지화학 Battery module and method for manufacturing same
CN111670516A (en) * 2018-12-05 2020-09-15 株式会社Lg化学 Battery module and method for manufacturing same
US11749852B2 (en) 2018-12-05 2023-09-05 Lg Energy Solution, Ltd. Battery module and manufacturing method thereof

Also Published As

Publication number Publication date
JP2017059299A (en) 2017-03-23
JP6620478B2 (en) 2019-12-18

Similar Documents

Publication Publication Date Title
JP6620478B2 (en) Battery pack and battery module
JP7027635B2 (en) Battery module, battery pack containing the battery module and automobile including the battery pack
JP6558198B2 (en) Battery module
CN106663760B (en) Power supply device
KR20200021609A (en) Battery module and Manufacturing method of the same
US20160104873A1 (en) Battery pack system and method for fabrication thereof
KR102456993B1 (en) Battery module, manufacturing method thereof and battery pack including battery module
JP2012014962A (en) Battery pack
CN111095597B (en) Battery module case and battery module including the same
JP2006278263A (en) Power storage device and its packaging structure
US20200220126A1 (en) Electricity storage module and manufacturing method of electricity storage module
JP7501966B2 (en) Battery pack and device including same
WO2017064978A1 (en) Battery module
JP6609989B2 (en) Battery module
JP2017076504A (en) Battery module and battery module manufacturing method
CN111971814A (en) Battery pack and battery module
JP6627291B2 (en) Battery pack
CN114450840B (en) Battery pack and method of manufacturing the same
KR101465491B1 (en) Battery module and cell-cartridge
JP2017054766A (en) Manufacturing method of battery module and manufacturing method of battery pack
CN114467224A (en) Battery module, battery pack including the same, and method of manufacturing the same
CN110495017B (en) Connection plate and battery module including the same
JP2012028119A (en) Fuel battery stack and method of manufacturing the same
KR20210120558A (en) Battery module and battery pack including the same
JP7472848B2 (en) Battery case and manufacturing method thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16846084

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16846084

Country of ref document: EP

Kind code of ref document: A1