WO2013002090A1 - Power supply device, vehicle including same, and method for manufacturing power supply device - Google Patents

Power supply device, vehicle including same, and method for manufacturing power supply device Download PDF

Info

Publication number
WO2013002090A1
WO2013002090A1 PCT/JP2012/065725 JP2012065725W WO2013002090A1 WO 2013002090 A1 WO2013002090 A1 WO 2013002090A1 JP 2012065725 W JP2012065725 W JP 2012065725W WO 2013002090 A1 WO2013002090 A1 WO 2013002090A1
Authority
WO
WIPO (PCT)
Prior art keywords
power supply
battery
supply device
battery stack
cooling plate
Prior art date
Application number
PCT/JP2012/065725
Other languages
French (fr)
Japanese (ja)
Inventor
高志 瀬戸
土屋 正樹
康広 浅井
橋本 裕之
貴英 籠谷
Original Assignee
三洋電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三洋電機株式会社 filed Critical 三洋電機株式会社
Publication of WO2013002090A1 publication Critical patent/WO2013002090A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/62Heating or cooling; Temperature control specially adapted for specific applications
    • H01M10/625Vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/60Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries
    • B60L50/64Constructional details of batteries specially adapted for electric vehicles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/613Cooling or keeping cold
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/653Means for temperature control structurally associated with the cells characterised by electrically insulating or thermally conductive materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/655Solid structures for heat exchange or heat conduction
    • H01M10/6556Solid parts with flow channel passages or pipes for heat exchange
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/204Racks, modules or packs for multiple batteries or multiple cells
    • H01M50/207Racks, modules or packs for multiple batteries or multiple cells characterised by their shape
    • H01M50/209Racks, modules or packs for multiple batteries or multiple cells characterised by their shape adapted for prismatic or rectangular cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/218Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by the material
    • H01M50/22Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by the material of the casings or racks
    • H01M50/227Organic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/233Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by physical properties of casings or racks, e.g. dimensions
    • H01M50/24Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by physical properties of casings or racks, e.g. dimensions adapted for protecting batteries from their environment, e.g. from corrosion
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/289Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by spacing elements or positioning means within frames, racks or packs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/64Heating or cooling; Temperature control characterised by the shape of the cells
    • H01M10/647Prismatic or flat cells, e.g. pouch cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention mainly includes a power source device for a motor for driving a vehicle such as a hybrid vehicle or an electric vehicle, or a large current power source device used for power storage for home use or factory use, and such a power source device.
  • the present invention relates to a vehicle and a method for manufacturing such a power supply device.
  • a cooling pipe 260 for circulating a refrigerant is arranged on the lower surface of the battery stack 205 in which the battery cells 201 are stacked, and is connected to the cooling mechanism 269.
  • the cooling pipe 260 is extended and piped in a direction crossing the stacking direction in which the battery cells 201 are stacked.
  • the cooling pipe 260 is extended and connected in parallel with the stacking direction in which the battery cells 201 are stacked.
  • the cooling plate 261 is disposed on the lower surface of the battery stack 205 and the cooling pipe 260 is provided on the cooling plate 261, so that the cooling is performed by removing heat from the battery stack 205 via the cooling plate 261. I am letting.
  • the surface of the battery cell which is a metal outer can, is completely covered with resin, etc., and the air layer is removed from the surface of the battery cell, so that moisture contained in the air is condensed. It is possible to avoid it.
  • the periphery of the battery cell is completely covered with the resin, the thermal coupling with the cooling plate is hindered, resulting in a problem that the cooling capacity is lowered.
  • one surface (for example, the bottom surface) of the battery stack is opened and the cooling plate is disposed here, a gap is generated between the cooling plate and the battery stack.
  • JP 2009-134901 A JP 2009-134936 A JP 2010-15788 A Japanese Utility Model Publication No. 34-16929 JP 2005-149837 A Japanese Patent Laid-Open No. 2002-100407
  • the present invention has been made to solve such conventional problems.
  • SUMMARY OF THE INVENTION The main object of the present invention is to provide a power supply device capable of maintaining the thermal coupling between the battery cell and the cooling plate while avoiding the situation of condensation on the surface of the battery cell, a vehicle equipped with the power supply device, and a method for manufacturing the power supply device. It is in.
  • a battery laminate 5 formed by laminating a plurality of rectangular battery cells 1 and the outside of the battery laminate 5 are provided.
  • a covering case 16 that covers a part of one surface of the battery stack 5 and a heat-bonded state disposed on one surface of the battery stack 5 and flowing a refrigerant therein to exchange heat with the battery stack 5
  • the waterproof sheet 19 can be fixed with the filler layer 18 by interposing a filler layer 18 formed by injecting filler into the gap.
  • a waterproof sheet can be applied instead of the filling layer to exhibit waterproofness, and the waterproof sheet is also attached to the battery laminate by curing of the filler forming the filling layer. Since it can be fixed, there is an advantage that reliability can be improved.
  • the covering case 16 has a pair of projecting portions 16b formed so as to project from both sides with respect to one surface of the battery laminate 5;
  • the waterproof sheet 19 can be gripped by the pair of overhang portions 16b.
  • the waterproof sheet 19 can be further fixed to the projecting portion 16b. Thereby, while being able to fix the edge of a waterproof sheet to a covering case, the flooding from this part can be prevented.
  • the heat conductive sheet 12 which has insulation and heat conductivity interposed between the said cooling plate and the said battery laminated body 5, and the said heat
  • the conductive sheet 12 can further have elasticity. Thereby, it is possible to maintain high thermal conductivity while achieving insulation between the battery stack and the cooling plate with an insulating thermal conductive sheet. Further, the elasticity of the heat conductive sheet can reduce the generation of gaps at the contact interface between the battery stack and the cooling plate, and can also avoid the situation where heat conduction is hindered by the formation of the air layer.
  • the covering case 16 forms an opening that opens a region sandwiched between the pair of projecting portions 16b, and the cooling plate 61 includes the opening.
  • the portion can be formed in a size that can be closed.
  • the opening part is provided in one surface of a battery laminated body, and the circumference
  • one surface of the battery stack 5 can be the bottom surface of the battery stack 5.
  • the covering case 16 can be made of resin, and the filler can be made of the same resin as the covering case 16. Thereby, when a filler hardens
  • the filler can be a urethane resin.
  • seat 19 can be removed so that the said heat conductive sheet 12 and a part of said battery laminated body 5 may be made to contact directly.
  • a vehicle equipped with the power supply device described above can be provided.
  • a battery laminate 5 formed by laminating a plurality of rectangular battery cells 1 and the outside of the battery laminate 5 are connected to one surface of the battery laminate 5.
  • a method of manufacturing a power supply device comprising: an insulating and thermally conductive, and thermally conductive sheet 12 interposed between the cooling plate and the battery stack 5.
  • the outside of the battery laminate 5 is covered with a waterproof sheet 19 on one surface of the battery laminate 5, and the other surface of the battery laminate 5 is covered with a covering case 16.
  • the waterproof sheet is covered with the covering case 16 on the finished surface.
  • a jig JG is disposed so as to press the waterproof sheet 19 against the battery stack 5 in the opening where the waterproof sheet 19 is exposed from the covering case 16 while covering the periphery of the cover 9.
  • the step of disposing the heat conductive sheet 12 and the cooling plate 61 may be included.
  • a waterproof sheet can be applied instead of the filling layer to provide waterproofness, and further, the waterproof sheet can be fixed to the battery stack by curing the filling layer.
  • the step of removing a portion of the waterproof sheet 19 that is not fixed by the filling layer 18 before the heat conductive sheet 12 is disposed.
  • FIG. 1 It is a disassembled perspective view of a power supply device provided with the power supply device which concerns on Example 1 of this invention. It is a perspective view which shows the assembled battery of FIG. It is a disassembled perspective view which shows the state which removed the cooling plate from the battery laminated body of FIG. It is the perspective view which looked at the battery laminated body of FIG. 2 from diagonally downward. It is a disassembled perspective view which shows the assembled battery of FIG. It is a disassembled perspective view of the battery laminated body of FIG. It is sectional drawing which shows the power supply device which concerns on a modification. It is a schematic cross section which shows the example which arrange
  • FIG. 6 is a cross-sectional view illustrating a power supply device according to a second embodiment. It is sectional drawing which shows the assembly state of the power supply device shown in FIG. It is a disassembled sectional view which shows the state which arrange
  • each element constituting the present invention may be configured such that a plurality of elements are constituted by the same member and the plurality of elements are shared by one member, and conversely, the function of one member is constituted by a plurality of members. It can also be realized by sharing.
  • the contents described in some examples and embodiments may be used in other examples and embodiments.
  • FIG. 1 is an exploded perspective view of the power supply device 100
  • FIG. 2 is a perspective view showing the battery stack 5 of FIG. 1
  • FIG. 3 is an exploded perspective view with the cooling plate 61 removed from the battery stack 5 of FIG. 4 is a perspective view of the battery stack 5 of FIG. 2 as viewed obliquely from below
  • FIG. 5 is an exploded perspective view of the battery stack 5 of FIG. 2
  • FIG. 6 is an exploded perspective view of the battery stack 5 of FIG. 7 is a cross-sectional view showing a power supply device according to a modification
  • FIG. 1 is an exploded perspective view of the power supply device 100
  • FIG. 2 is a perspective view showing the battery stack 5 of FIG. 1
  • FIG. 5 is an exploded perspective view of the battery stack 5 of FIG. 2
  • This power supply device 100 is mainly mounted on an electric vehicle such as a hybrid vehicle or an electric vehicle, and is used as a power source for supplying electric power to a traveling motor of the vehicle and causing the vehicle to travel.
  • the power supply device of the present invention can be used for an electric vehicle other than a hybrid vehicle or an electric vehicle, and can also be used for an application requiring a high output other than an electric vehicle. (Power supply device 100)
  • the external appearance of the power supply device 100 is a box shape whose upper surface is rectangular.
  • a box-shaped outer case 70 is divided into two, and a plurality of assembled batteries 10 are accommodated therein.
  • the exterior case 70 includes a lower case 71, an upper case 72, and end plates 73 connected to both ends of the lower case 71 and the upper case 72.
  • the upper case 72 and the lower case 71 have a flange portion 74 protruding outward, and the flange portion 74 is fixed with a bolt and a nut.
  • the outer case 70 has a flange 74 disposed on the side surface of the outer case 70. Further, in the example shown in FIG.
  • the assembled battery 10 is composed of four battery stacks 5 in the example shown in FIG. That is, two battery stacks 5 are connected in the stacking direction of the rectangular battery cells 1 to form one battery stack continuous body 10B, and two battery stack continuous bodies 10B in such a connected state are arranged in parallel.
  • the assembled battery 10 is configured.
  • FIG. 2 shows a perspective view of each battery stack 5 constituting the assembled battery 10.
  • the battery stack 5 is fixed on a cooling plate 61 for cooling it.
  • the battery stack 5 has a connection structure for fixing on the cooling plate 61 (details will be described later).
  • each battery stack 5 is a separator that insulates the prismatic battery cells 1 by interposing them on a surface where a plurality of prismatic battery cells 1 and a plurality of prismatic battery cells 1 are stacked.
  • a covering case 16 that houses a battery stack 5 in which a plurality of prismatic battery cells 1 and separators 2 are alternately stacked, a pair of end plates 3 that are disposed on the end surface of the battery stack 5 in the stacking direction, and a battery
  • a plurality of metal fastening members 4 that fasten the end plates 3 disposed on both end faces of the laminate 5 are provided.
  • the battery stack 5 is formed by stacking a plurality of rectangular battery cells 1 with an insulating separator 2 interposed therebetween. Further, as shown in FIG. 5, a pair of end plates 3 are arranged on both end faces of the battery stack 5, and the pair of end plates 3 are connected by a fastening member 4. In this way, a battery stack 5 in which a plurality of prismatic battery cells 1 and separators 2 are alternately stacked by interposing a separator 2 that insulates adjacent prismatic battery cells 1 on a stacking surface of the prismatic battery cells 1. Yes. (Square battery cell 1)
  • the rectangular battery cell 1 has an outer can constituting the outer shape of a rectangular shape whose thickness is smaller than the width.
  • Positive and negative electrode terminals are provided on the sealing plate for closing the outer can, and a safety valve is provided between the electrode terminals.
  • the safety valve is configured to open when the internal pressure of the outer can rises to a predetermined value or more, and to release the internal gas. The increase in the internal pressure of the outer can can be stopped by opening the safety valve.
  • the unit cell constituting the rectangular battery cell 1 is a rechargeable secondary battery such as a lithium ion battery, a nickel-hydrogen battery, or a nickel-cadmium battery.
  • the battery cell used in the present invention is not limited to a rectangular battery cell, but may be a cylindrical battery cell or a rectangular battery cell in which an exterior body is covered with a laminate material or other shapes.
  • the respective rectangular battery cells 1 that are stacked to form the battery stack 5 are connected in series by connecting adjacent positive and negative electrode terminals with a bus bar 6.
  • the assembled battery 10 in which the adjacent rectangular battery cells 1 are connected in series can increase the output voltage and increase the output.
  • an assembled battery can connect adjacent square battery cells in parallel, or can combine a series connection and a parallel connection into multiple parallels or multiple parallels.
  • the rectangular battery cell 1 is manufactured with a metal outer can.
  • an insulating separator 2 is sandwiched between the adjacent rectangular battery cells 1 in order to prevent short-circuiting of the outer can of the rectangular battery cell 1.
  • the outer can of the rectangular battery cell can also be made of an insulating material such as plastic. In this case, since it is not necessary for the rectangular battery cell to insulate and laminate the outer can, the separator can be made of metal or the separator can be made unnecessary. (Separator 2)
  • Separator 2 is a spacer for insulating and stacking adjacent rectangular battery cells 1 electrically and thermally.
  • the separator 2 is made of an insulating material such as plastic, and is disposed between the adjacent rectangular battery cells 1 to insulate the adjacent rectangular battery cells 1.
  • the side surface of the separator 2 can be simplified and downsized. That is, in the example shown in FIGS. 5 and 6, since the side surface of the battery stack 5 can be protected by making the side surface of the covering case 16 insulative, the separator 2 only has to insulate only the surface where the rectangular battery cells 1 face each other. It is not necessary to cover the side surface of the rectangular battery cell with a separator. For this reason, it is possible to reduce the size by eliminating the part protruding from the side surface of the separator so as to cover the side surface of the battery stack 5. Or what hold
  • this separator can be configured to be substantially flush with the surface of the prismatic battery cell on the side surface of the battery stack, the lateral width of the battery stack can be reduced.
  • the protruding portion provided on the side surface of the separator is provided for positioning the battery cells to be stacked.
  • the entire covering case may be made of metal.
  • the side surface of the covering case is also made of metal, it is preferable to cover the side surface of the rectangular battery cell with a separator in order to insulate the rectangular battery cells on the side surface of the battery stack.
  • the battery laminated body does not necessarily need to interpose a separator between square battery cells.
  • the prismatic battery cell outer cans are molded with an insulating material, or the outer periphery of the prismatic battery cell outer cans are covered with a heat-shrinkable tube, insulating sheet, insulating paint, etc. By insulating, a separator can be made unnecessary.
  • a method of cooling the battery stack through a cooling plate cooled by using a refrigerant or the like is employed, instead of an air cooling method in which cooling air is forced between the rectangular battery cells to cool the rectangular battery cells.
  • an air cooling system that cools the prismatic battery cells by forcibly blowing cooling air between the prismatic battery cells.
  • a pair of end plates 3 are arranged on both end faces of the battery stack 5 in which the rectangular battery cells 1 and the separators 2 are alternately stacked. With the pair of end plates 3, the battery stack 5 is fastened so as to be sandwiched from both sides.
  • the end plate 3 is made of a material that exhibits sufficient strength, for example, metal. Further, the end plate 3 may be provided with a fixing structure for fixing to the lower case 71 shown in FIG.
  • both end surfaces of the covering case 16 are opened, but the present invention is not limited to this configuration.
  • the end surface of one covering case can be closed in advance.
  • the covering end case can be closed around the side surface by closing the opening end face with one end plate. (Fastening member 4)
  • the fastening members 4 are arranged on both side surfaces of the battery stack 5 in which the end plates 3 are stacked at both ends, and are fixed to the pair of end plates 3 so that the battery stack 5 is fixed.
  • the fastening member 4 includes a main body 41 that covers the side surface of the battery stack 5, and a bent piece 42 that is bent at both ends of the main body 41 and fixed to the end plate 3. And an upper surface holding portion 43 that is bent upward to hold the upper surface of the battery stack 5 and a fastening connecting portion 44 that protrudes downward.
  • a fastening member 4 is made of a material having sufficient strength, for example, a metal bind bar.
  • the fastening member is provided in each battery laminated body 5, respectively, In this case, the end plates located in each end surface are fixed to each battery laminated body 5 with a fastening member. In addition, in the state which arranged the two battery laminated bodies 5 in the lamination direction, both side surfaces can also be integrally connected by the fastening member 4.
  • FIG. In this configuration, the fastening member 4 is also used as a member for connecting the battery stacks 5 to each other.
  • the end plates 3 positioned on the end surfaces are fixed to each other by the fastening members 4, and the fastening members are not fixed to the end plates 3 facing each other between the two battery stacks 5.
  • the end plate 3 which opposes between two battery laminated bodies 5 can also be shared as one component.
  • the fixing of the end plate and the fastening member is not limited to the structure of fixing with the bolt described in the embodiment. (Coating case 16)
  • the battery stack 5 is covered with a covering case 16.
  • the battery stack 5 includes a covering case 16 having a U-shaped cross section and opening the lower surface and both end surfaces, and an end plate 3 covering both ends of the covering case 16.
  • a waterproof sheet 19 that covers the bottom surface of the battery stack 5, a cooling plate 61 that closes the opening of the covering case 16, and a heat conductive sheet 12 that is disposed between the cooling plate 61 and the waterproof sheet 19. Is done.
  • the end plate 3 that holds the battery stack 5 from both end faces is also used as the end face of the covering case 16.
  • a packing 3 b is provided inside the end plate 3.
  • the packing 3b is a sheet-like elastic member.
  • a cover portion 24 is provided on the upper surface of the covering case 16.
  • the cover portion 24 is provided with slits for communicating with the electrode terminals of the respective battery cells, and electrical connection between the bus bars 6 for connecting adjacent battery cells through the slits and the bus bar 6 and the circuit board is obtained. It is done.
  • the cover portion 24 is provided with a filler inlet for injecting a filler. After the covering case 16 is closed with the cover portion 24, the potting material can be filled. In this case, there is an advantage that a gap between the cover part 24 and the covering case 16 or a gap between the cover part 24 and the battery stack 5 can be filled. In this way, it is possible to avoid the situation where the prismatic battery cell 1 is covered and the surface is condensed.
  • a gas duct 26 communicating with the safety valve of the rectangular battery cell 1 is provided on the inner surface of the cover portion 24.
  • a circuit board on which a control circuit for controlling the power supply device 100 is mounted is disposed on the upper surface of the cover portion 24. Further, the circuit board may be integrally provided in the cover portion.
  • cover part 24 is provided integrally with the covering case 16, these can also be comprised by another member.
  • FIG. 7 Such an example is shown in FIG. 7 as a modified example.
  • the covering case 16B shown in this figure closes the upper surface with the cover portion 24B as a separate member.
  • the covering case 16 can also hermetically seal the fitting portion by using a case member constituting each surface as a fitting structure.
  • a fitting structure a packing, an O-ring, a gasket or the like can be used, and the covering case 16 can be sealed.
  • the covering case 16 is provided with a protruding portion 16b protruding from the side edge to the bottom surface at the corner of the battery stack 5 at the bottom.
  • the overhanging portion 16b holds the bottom surface of the battery stack 5 at the corners on both sides.
  • the covering case 16 covers the upper surface of the battery stack 5, the top surface of the battery cells constituting the battery stack 5 is the same by sandwiching the battery stack 5 from above and below with the covering case 16. They can be arranged on a plane. In other words, by aligning the bottom surface of the battery stack 5 to the same surface, the connection surface with the cooling plate 61 can be made flat, and the stability and reliability of thermal coupling can be improved.
  • the opening on the bottom surface of the covering case 16 can be used for fixing when the waterproof sheet 19 covers the opening. (Aperture)
  • the covering case 16 is an opening having a bottom opening.
  • the opening is a region sandwiched between the pair of overhang portions 16b.
  • the opening has a size that can be closed by the cooling plate 61.
  • the outer shape of the heat conductive sheet 12 is formed to be substantially the same as or slightly smaller than the opening so that the heat conductive sheet 12 can be inserted into the opening. (Thermal conductive sheet 12)
  • a heat transfer member such as the heat conductive sheet 12 is interposed between the battery stack 5 and the cooling plate 61.
  • the heat conductive sheet 12 is made of a material that is insulating and excellent in heat conduction, and more preferably has a certain degree of elasticity. Examples of such a material include acrylic, urethane, epoxy, and silicone resins. By doing in this way, between the battery laminated body 5 and the cooling plate 61 is electrically insulated.
  • the outer can of the square battery cell 1 is made of metal and the cooling plate 61 is made of metal, it is necessary to insulate the battery so as not to conduct at the bottom surface of the square battery cell 1.
  • the surface of the outer can is covered and insulated with a heat-shrinkable tube or the like, and in order to further improve the insulation, the insulating heat conductive sheet 12 is interposed to enhance safety and reliability. Moreover, it can replace with a heat conductive sheet and can also use a heat conductive paste. Furthermore, an additional insulating film can be interposed in order to reliably maintain the insulating property.
  • the cooling pipe can be made of an insulating material. When sufficient insulation is achieved in this way, the heat conductive sheet or the like may be omitted.
  • the surface of the heat conductive sheet 12 is elastically deformed to eliminate a gap at the contact surface between the battery stack 5 and the cooling plate 61, and the thermal coupling state can be improved satisfactorily.
  • the battery stack 5 is covered with a covering case 16 to have a waterproof structure. Thereby, intrusion of dust and moisture from the outside can be prevented, and unintended conduction and corrosion can be avoided. On the other hand, it is possible to protect not only moisture entering from the outside but also water droplets generated by condensation inside. In particular, if a cooling system that takes heat away from the prismatic battery cells by heat exchange using a refrigerant is used as a cooling system for the prismatic battery cells, the cooling can be performed more efficiently, but the temperature drops below the dew point due to high cooling performance. Thus, moisture in the air present around the battery stack may be cooled to cause condensation on the surface of the prismatic battery cell.
  • FIG. 8 shows a cross-sectional view of the battery stack 5 having such a waterproof structure.
  • a filling layer 18 is disposed between the battery stack 5 and the covering case 16. That is, by filling the gap between the battery stack 5 and the covering case 16 with the filler, and providing the filling layer 18, moisture in the air existing in the gap is condensed and the battery stack 5 is adversely affected. The situation to give is avoided.
  • the battery stack 5 is covered with a filler as the filler layer 18.
  • the filler is injected between the battery stack 5 and the covering case 16 by surrounding the battery stack 5 with the covering case 16. Yes.
  • the space between the battery stack 5 and the covering case 16 is eliminated, and a situation in which the surface of the battery stack 5 is dewed and adversely affected can be avoided.
  • the filling layer 18 is filled with a filler. Thereby, a waterproof structure in which the periphery of the battery stack 5 is waterproof is obtained. (Filler)
  • a potting material that fills the gap can be used as the filler.
  • urethane resin can be preferably used.
  • the inside of the covering case 16 it is preferable to make the inside of the covering case 16 have a reduced pressure or a negative pressure when filling the filler so as to spread the filler in the gap and avoid the generation of bubbles.
  • the filler can be injected under pressure. After filling the filler, it is dried until the filler is completely cured.
  • the adhesiveness after hardening of a filler can also be improved by making a coating case into resin and making a filler into resin of the same system as a coating case. (Waterproof sheet 19)
  • the covering case 16 since the covering case 16 has an open bottom, the battery stack 5 cannot be covered with this portion. Therefore, a waterproof sheet 19 that covers the opening surface is provided. As shown in the perspective view of FIG. 4, the waterproof sheet 19 is disposed so as to cover the bottom surface of the battery stack 5, and is fixed to the battery stack 5 in this state. For fixing the waterproof sheet 19, for example, an adhesive is applied to the interface between the waterproof sheet 19 and the battery stack 5. Further, it can be fixed by the overhanging portion 16 b of the covering case 16. In particular, when the filling layer 18 is filled and fixed in the gap between the battery stack 5 and the covering case 16, the waterproof sheet 19 can also be fixed.
  • waterproof sheet 19 and covering case 16 A waterproof structure capable of blocking water from this portion can be realized.
  • the waterproof sheet 19 a resin-made sheet having excellent waterproof properties can be used.
  • PET, PEV, PP, or the like can be used.
  • the battery laminated body 5 is radiated by the cooling plate 61 through the waterproof sheet, it is preferable to use a member having excellent heat conduction.
  • the battery cell is also excellent in heat resistance so that the battery cell is not easily damaged even if it generates heat.
  • an acrylic material or the like can be suitably used. (Example 2)
  • a part of the waterproof sheet 19 can be removed so that the heat conductive sheet 12 is brought into direct contact with the battery stack 5.
  • FIG. 1 The battery laminate 5 shown in this figure has the waterproof sheet 19 covering the bottom surface of the battery laminate 5 removed from the state shown in FIG. 11 after the filler is cured. Since the bottom surface of the battery stack 5 is exposed at the portion where the waterproof sheet 19 has been removed, the heat conductive sheet 12 is pressed against this surface, and the battery stack 5 and the heat conductive sheet 12 are directly adhered to each other. It can be expected that resistance is reduced and heat dissipation by the cooling plate 61 is improved.
  • the waterproof structure can be maintained. .
  • the removal of the waterproof sheet 19 is preferably made smaller than the area of the heat conductive sheet 12.
  • the waterproof sheet 19b remaining without being removed can maintain airtightness at the overhanging portion 16b. Thereby, the region where the waterproof sheet 19 is removed and the bottom surface of the battery stack 5 is exposed can be completely covered with the heat conductive sheet 12.
  • a waterproof sheet 19 is disposed in the opening on the bottom surface of the battery stack 5 with the cover case 16 covering the periphery.
  • the waterproof sheet 19 is supported using a jig JG for fixing the waterproof sheet.
  • the jig JG has a size substantially the same as or slightly smaller than the opening, and presses the waterproof sheet 19 against the bottom surface of the battery stack 5 through the opening.
  • the filler is injected from, for example, a filler inlet that is previously opened in the covering case 16. Then, after the filler is cured, the jig JG is removed and the opening is opened. In this state, the filling layer 18 formed by the hardening of the filler can eliminate a gap between the outer surface of the battery stack 5 and the inner surface of the covering case 16. Further, from this state, as shown in FIG. 11, the cooling plate 61 is placed in the battery stack 5 so that the heat conduction sheet 12 is inserted into the opening and the bottom surface of the heat conduction sheet 12 is pressed by the cooling plate 61.
  • the cooling plate 61 can be in a heat conduction state on the bottom surface of the battery stack 5 via the heat conductive sheet 12 and the waterproof sheet 19, and the battery stack 5 can be cooled by performing heat exchange on this surface.
  • the waterproof sheet 19 may be partially removed before disposing the heat conductive sheet 12 as necessary.
  • the bottom surface of the covering case 16 is opened to thermally couple with the cooling plate 61 at the bottom surface of the battery stack 5.
  • the present invention is not limited to this configuration, and for example, the side surface or top surface of the battery stack can be opened, and thermal coupling with the cooling plate can be achieved at this portion.
  • the electrode terminal of a battery cell is generally provided in the top
  • a cooling plate is arrange
  • the battery stack 5 and the cooling plate 61 have a connection structure for fixing the battery stack 5 on the cooling plate 61.
  • the connection structure includes a fastening connection portion 44 provided so as to protrude from the lower end of the main body portion 41 of the fastening member 4, and a plate connection portion provided on the cooling plate 61 side. Composed. A plurality of fastening connecting portions 44 are provided apart from each other.
  • the lower end of the main body portion 41 is provided at three locations on both sides and in the middle. (Locking piece)
  • the fastening connecting portion 44 is a locking piece having a tip formed in a hook shape. This locking piece has a hook-like protruding direction that is outward from the battery stack 5. (Plate connecting part)
  • a plate connecting portion is provided as a connecting mechanism for connecting to the fastening connecting portion 44.
  • the plate connecting portion is provided at a position corresponding to the position where the fastening connecting portion 44 is provided.
  • a connecting bar 50 in which a locking hole 51 capable of locking a locking piece is formed is used.
  • the fastening member 4 can be easily fixed to the cooling plate 61 by inserting a hook-like locking piece into the locking hole 51 and locking it.
  • the connecting bar 50 has a shape in which the strip strip is bent in a substantially U shape in a sectional view.
  • the strip strip is made of a metal plate so as to exhibit sufficient strength.
  • the strength is improved by forming a step on the surface of the strip strip.
  • the length of the connecting bar 50 is set such that the bottom surface of the cooling plate 61 can be sandwiched between the substantially U-shaped bent portions.
  • a locking hole 51 is opened on the end face of the connecting bar 50 as a plate connecting portion. In this manner, the plate connecting portion can be easily added to the cooling plate 61 by using the connecting bar 50.
  • a coupling mechanism can be added without complicating the shape of the cooling plate 61 having a refrigerant circulation function or the like. (Refrigerant circulation mechanism)
  • the cooling plate 61 is provided with a refrigerant circulation mechanism therein.
  • FIG. 12 shows an example of such a refrigerant circulation mechanism.
  • a battery stack 5 in which a plurality of rectangular battery cells 1 are stacked is arranged on the upper surface of a cooling plate 61.
  • the cooling plate 61 is disposed in a thermally coupled state to the rectangular battery cells 1 constituting the battery stack 5.
  • the cooling plate 61 is provided with a refrigerant pipe, and the refrigerant pipe is connected to a cooling mechanism 69.
  • the assembled battery 10 can be effectively cooled directly by bringing the battery stack 5 into contact with the cooling plate 61.
  • each member disposed on the end face of the battery stack can be cooled together.
  • the cooling plate 61 containing the cooling pipe 60 that circulates the refrigerant therein is brought into contact with the coating case 16 to cool it, thereby improving heat dissipation and allowing the power supply device to be used stably even at high output. And can. (Cooling plate 61)
  • the cooling plate 61 is a heat radiating body for conducting heat of the rectangular battery cell 1 to dissipate it to the outside.
  • the cooling plate 61 incorporates a cooling pipe 60 that is a refrigerant pipe made of copper, aluminum, or the like that circulates a liquefied refrigerant that is a cooling liquid as a heat exchanger.
  • the cooling pipe 60 is thermally coupled to the upper surface plate of the cooling plate 61, and a heat insulating material is disposed between the cooling plate 60 and the bottom plate to insulate the space from the bottom plate.
  • the cooling plate 61 can be composed of only a metal plate. For example, it is made into the shape excellent in heat dissipation and heat transfer property, such as a metal body provided with a radiation fin. Or you may utilize not only metal but the heat-transfer sheet
  • the cooling plate 61 is cooled by supplying the coolant from the cooling mechanism 69 to the refrigerant piping provided inside.
  • the cooling plate 61 can cool the cooling liquid supplied from the cooling mechanism 69 more efficiently as a refrigerant that cools the cooling plate 61 with heat of vaporization that evaporates inside the refrigerant pipe.
  • two battery stacks 5 are placed on each cooling plate 61. As described above, two battery stacks 5 are connected in the length direction, that is, the stacking direction of the rectangular battery cells 1 to form one battery stack continuous body 10B, and the two batteries in such a connected state are formed.
  • the stacked body 5 is supported by one cooling plate 61. Two of these battery stack continuous bodies 10B are arranged in parallel to constitute the assembled battery 10.
  • the cooling plate 61 is extended in the stacking direction of the prismatic battery cells 1, and the cooling pipe 60 piped therein is meandered so as to be folded back at the edge, thereby forming three straight lines.
  • a cooling pipe 60 is disposed on the lower surface of the battery stack 5.
  • coolant is made common by connecting the cooling pipes 60 with battery lamination
  • a meandering cooling pipe can be divided at a folded portion to form a plurality of cooling pipes. Thereby, since the meandering portion can be eliminated, the weight can be reduced. At this time, the cooling pipes may be connected to share a refrigerant path.
  • position a cooling pipe can be changed suitably.
  • the cooling plate 61 also functions as a soaking means for equalizing the temperatures of the plurality of rectangular battery cells 1. That is, by adjusting the thermal energy absorbed by the cooling plate 61 from the rectangular battery cell 1, the rectangular battery cell whose temperature is increased, for example, the rectangular battery cell in the central portion is efficiently cooled, and the temperature is decreased, for example, both ends The cooling of the rectangular battery cells is reduced, and the temperature difference between the rectangular battery cells is reduced. As a result, the temperature unevenness of the prismatic battery cells can be reduced, and a situation in which some of the prismatic battery cells are deteriorated and overcharge and overdischarge can be avoided.
  • cooling plate 61 in the bottom face of the battery laminated body 5
  • the cooling plates can be arranged on both side surfaces of the prismatic battery cell, or can be arranged only on the side surfaces.
  • the cooling pipe 60 through which the internal refrigerant passes can be directly disposed on the lower surface of the battery stack 5 without using a metal plate such as a cooling plate. That is, as shown in the schematic cross-sectional view of FIG. 13, a plurality of rows of cooling pipes 60 are arranged on the lower surface of the covering case 16 that houses the battery stack 5, and the heat insulating member 14 is arranged between the cooling pipes 60. . In this way, the air pipe is eliminated around the cooling pipe 60 and is insulated by covering with the heat insulating member, so that the cooling pipe 60 can be efficiently cooled.
  • the cooling pipe for flowing the coolant can be directly applied to the battery stack 5 without interposing a metal plate such as a cooling plate, so that in this respect as well, the thickness, weight, and size can be reduced. It is done.
  • the cooling pipe 60 is formed in a flat shape having a flat surface facing the battery stack 5.
  • the cooling pipe 60 is made of a material excellent in heat conduction.
  • metal such as aluminum.
  • the aluminum cooling pipe is relatively soft, the surface can be slightly deformed by pressing at the contact interface with the battery stack 5 to improve the adhesion, and high thermal conductivity can be realized.
  • the heat insulating member 14 is disposed in the gap between the cooling pipes 60.
  • the heat insulating member 14 can be a heat insulating resin.
  • urethane resin can be suitably used.
  • the periphery of the cooling pipe 60 is covered with a heat insulating resin by potting. By doing so, the cooling pipe 60 and the bottom surface of the battery stack 5 can be reliably covered by potting to prevent the occurrence of condensation and enhance safety.
  • a heat insulating member is provided in the gap between the cooling pipes 60 or the lower surface of the cooling pipe 60 in a state where the cooling pipe 60 is in contact with the bottom surface of the battery stack 5 via the heat conductive sheet 12. 14 is filled and coated. However, if the upper surface of the cooling pipe 60 is also filled with the heat insulating member 14, the upper surface of the cooling pipe 60 can be insulated, and the heat conductive sheet provided between the prismatic battery cells 1 can be dispensed with.
  • the cover case 16 is a box type with an open lower surface and a closed upper surface.
  • the cover case has an open upper surface and a closed lower surface as described above.
  • a bottom box type can also be used.
  • the cooling plate may be a uniform metal plate, or may be insert-molded so that one or a plurality of strip-shaped metal plates are partially embedded.
  • the cooling plate is configured such that the metal plate 21c is disposed at a position corresponding to the cooling pipe 60, thereby improving the thermal coupling with the cooling pipe 60. Can do.
  • the power supply device 100 seals the battery stack 5 to have a waterproof structure, and protects the prismatic battery cell 1 from condensation and the like.
  • the inner space can be defined by the covering case 16 and the end plate 3, and the filling layer 18 can be disposed and sealed by potting or the like.
  • the end plate 3 is located outside, there is an advantage that it can be easily fixed to an exterior case, a frame, or the like.
  • the fastening member 4 is located outside the covering case 16, there is also an advantage that the fixing structure for fixing the cooling plate 61 can be reduced in size.
  • the battery stack can be fastened by fixing the end plate 3 to the covering case by providing the covering case with a sufficient strength such as being made of metal. If it is this structure, since a coating
  • the above power supply apparatus can be used as a vehicle-mounted power supply.
  • a vehicle equipped with a power supply device an electric vehicle such as a hybrid vehicle or a plug-in hybrid vehicle that runs with both an engine and a motor, or an electric vehicle that runs only with a motor can be used, and is used as a power source for these vehicles. . (Power supply for hybrid vehicles)
  • FIG. 15 shows an example in which a power supply device is mounted on a hybrid vehicle that runs with both an engine and a motor.
  • a vehicle HV equipped with the power supply device shown in this figure includes an engine 96 and a travel motor 93 that travel the vehicle HV, a power supply device 100 that supplies power to the motor 93, and a generator that charges a battery of the power supply device 100.
  • the power supply apparatus 100 is connected to a motor 93 and a generator 94 via a DC / AC inverter 95.
  • the vehicle HV travels by both the motor 93 and the engine 96 while charging / discharging the battery of the power supply device 100.
  • the motor 93 is driven to drive the vehicle when the engine efficiency is low, for example, during acceleration or low-speed driving.
  • the motor 93 is driven by power supplied from the power supply device 100.
  • the generator 94 is driven by the engine 96 or is driven by regenerative braking when the vehicle is braked to charge the battery of the power supply device 100. (Power
  • FIG. 16 shows an example in which a power supply device is mounted on an electric vehicle that runs only with a motor.
  • a vehicle EV equipped with the power supply device shown in this figure includes a traveling motor 93 for traveling the vehicle EV, a power supply device 100 that supplies power to the motor 93, and a generator 94 that charges a battery of the power supply device 100.
  • the motor 93 is driven by power supplied from the power supply device 100.
  • the generator 94 is driven by energy when regeneratively braking the vehicle EV and charges the battery of the power supply device 100. (Power storage device for power storage)
  • this power supply device can be used not only as a power source for a moving body but also as a stationary power storage facility.
  • a power source for home and factory use a power supply system that is charged with sunlight or midnight power and discharged when necessary, or a streetlight power supply that charges sunlight during the day and discharges at night, or during a power outage It can also be used as a backup power source for driving signals.
  • FIG. The power supply apparatus 100 shown in this figure forms a battery unit 82 by connecting a plurality of battery packs 81 in a unit shape.
  • Each battery pack 81 has a plurality of prismatic battery cells 1 connected in series and / or in parallel.
  • Each battery pack 81 is controlled by a power controller 84.
  • the power supply apparatus 100 drives the load LD after charging the battery unit 82 with the charging power supply CP. For this reason, the power supply apparatus 100 includes a charging mode and a discharging mode.
  • the load LD and the charging power source CP are connected to the power supply device 100 via the discharging switch DS and the charging switch CS, respectively.
  • ON / OFF of the discharge switch DS and the charge switch CS is switched by the power supply controller 84 of the power supply apparatus 100.
  • the power supply controller 84 switches the charging switch CS to ON and the discharging switch DS to OFF to permit charging from the charging power supply CP to the power supply apparatus 100.
  • the power controller 84 turns off the charging switch CS and turns on the discharging switch DS to discharge.
  • the mode is switched to permit discharge from the power supply apparatus 100 to the load LD.
  • the charge switch CS can be turned on and the discharge switch DS can be turned on to supply power to the load LD and charge the power supply device 100 at the same time.
  • the load LD driven by the power supply device 100 is connected to the power supply device 100 via the discharge switch DS.
  • the power supply controller 84 switches the discharge switch DS to ON, connects to the load LD, and drives the load LD with the power from the power supply apparatus 100.
  • the discharge switch DS a switching element such as an FET can be used. ON / OFF of the discharge switch DS is controlled by the power supply controller 84 of the power supply apparatus 100.
  • the power controller 84 also includes a communication interface for communicating with external devices. In the example of FIG. 17, it is connected to the host device HT according to an existing communication protocol such as UART or RS-232C. Further, if necessary, a user interface for the user to operate the power supply system can be provided.
  • Each battery pack 81 includes a signal terminal and a power supply terminal.
  • the signal terminals include a pack input / output terminal DI, a pack abnormality output terminal DA, and a pack connection terminal DO.
  • the pack input / output terminal DI is a terminal for inputting / outputting signals from other pack batteries and the power supply controller 84
  • the pack connection terminal DO is for inputting / outputting signals to / from other pack batteries which are child packs.
  • the pack abnormality output terminal DA is a terminal for outputting the abnormality of the battery pack to the outside.
  • the power supply terminal is a terminal for connecting the battery packs 81 in series and in parallel.
  • the battery units 82 are connected to the output line OL via the parallel connection switch 85 and are connected in parallel to each other.
  • a power supply apparatus for a plug-in hybrid electric vehicle, a hybrid electric vehicle, an electric vehicle, or the like that can switch between an EV traveling mode and an HEV traveling mode. It can be suitably used.
  • a backup power supply device that can be mounted on a rack of a computer server, a backup power supply device for a wireless base station such as a mobile phone, a power storage device for home use and a factory, a power supply for a street light, etc. Also, it can be used as appropriate for applications such as a backup power source such as a traffic light.
  • SYMBOLS 100 Power supply device 1 ... Square battery cell 2 ... Separator 3 ... End plate; 3b ... Packing 4 ... Fastening member 5 ... Battery laminated body 6 ... Bus bar 10 ... Assembly battery 10B ... Battery laminated continuous body 12 ... Thermal conductive sheet 14 ... Thermal insulation Member 16, 16B ... Covering case 16b ... Overhang part 18 ... Filling layer 19, 19b ... Waterproof sheet 21c ... Metal plate 24, 24B ... Cover part 26 ... Gas duct 41 ... Main part 42 ... Bent piece 43 ... Upper surface holding part 44 ... fastening connection part 50 ... connection bar 51 ... locking hole 60 ... cooling pipe 61 ... cooling plate 69 ... cooling mechanism 70 ...

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Energy (AREA)
  • Mechanical Engineering (AREA)
  • Transportation (AREA)
  • Power Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Secondary Cells (AREA)
  • Battery Mounting, Suspending (AREA)

Abstract

[Problem] It make it possible to maintain thermal coupling between a battery cell and a cooling plate, while avoiding a situation in which condensation occurs on the surface of the battery cell. [Solution] Provided is a power supply device that includes: a battery stack that is formed by stacking a plurality of square-shaped battery cells (1); a covering case (16) that covers the outside of the battery stack (5) apart from a portion of one surface of the battery stack (5); and a cooling plate (61) that is placed on the one surface of the battery stack (5) in a thermal coupling state to perform heat exchange with the battery stack (5) by having a refrigerant flowing therein. The power supply device further includes a waterproof sheet (19) that covers the one surface of the battery stack (5), a filling layer (18) formed by injecting a filling material is interposed between the battery stack (5) and the coating case (16), and the waterproof sheet (19) is fixed by the filling layer (18).

Description

電源装置及びこれを備える車両並びに電源装置の製造方法Power supply device, vehicle equipped with the same, and method of manufacturing power supply device
 本発明は、主として、ハイブリッド車や電気自動車等の自動車を駆動するモータの電源用、あるいは家庭用、工場用の蓄電用途等に使用される大電流用の電源装置及びこのような電源装置を備える車両並びにこのような電源装置の製造方法に関する。 The present invention mainly includes a power source device for a motor for driving a vehicle such as a hybrid vehicle or an electric vehicle, or a large current power source device used for power storage for home use or factory use, and such a power source device. The present invention relates to a vehicle and a method for manufacturing such a power supply device.
 車両用の組電池等、出力を高くした電源装置が求められている。このような電源装置では、多数の電池セルを直列に接続して出力電圧を高く、出力電力を大きくしている。電池セルは、大電流で充放電されると発熱する。特に、使用する電池セルの数が増えるに従い、発熱量も増大する。よって、効率よく電池セルの放熱を熱伝導して発散させる放熱機構が求められる。このような放熱機構としては、電池セルに対して冷却風を送風する空冷方式の他、冷媒を供給、循環させた冷却パイプを電池セルに接触させて、熱交換により直接冷却する方式も提案されている(例えば特許文献1~3参照)。このようなバッテリシステムにおいては、例えば図18、図19に示すように、電池セル201を積層した電池積層体205の下面に、冷媒を循環させる冷却パイプ260を配置し、冷却機構269に接続することで、冷却パイプ260あるいは冷却プレート261を介して、電池積層体205から熱を奪い冷却させている。図18の例では、冷却パイプ260が電池セル201を積層する積層方向と交差する方向に延長して配管している。また図19の例では、電池セル201を積層する積層方向と平行に冷却パイプ260を延長して配管している。さらに図20の例では、電池積層体205の下面に冷却プレート261を配置し、冷却プレート261に冷却パイプ260を配管することで、冷却プレート261を介して、電池積層体205から熱を奪い冷却させている。 There is a demand for power supplies with high output, such as battery packs for vehicles. In such a power supply device, a large number of battery cells are connected in series to increase the output voltage and increase the output power. The battery cell generates heat when charged and discharged with a large current. In particular, the amount of heat generation increases as the number of battery cells used increases. Therefore, there is a need for a heat dissipation mechanism that efficiently conducts and dissipates heat dissipation from battery cells. As such a heat dissipation mechanism, in addition to an air cooling method in which cooling air is blown to the battery cell, a method in which a cooling pipe supplied and circulated with refrigerant is brought into contact with the battery cell and directly cooled by heat exchange has been proposed. (For example, see Patent Documents 1 to 3). In such a battery system, for example, as shown in FIGS. 18 and 19, a cooling pipe 260 for circulating a refrigerant is arranged on the lower surface of the battery stack 205 in which the battery cells 201 are stacked, and is connected to the cooling mechanism 269. Thus, heat is taken from the battery stack 205 via the cooling pipe 260 or the cooling plate 261 to be cooled. In the example of FIG. 18, the cooling pipe 260 is extended and piped in a direction crossing the stacking direction in which the battery cells 201 are stacked. In the example of FIG. 19, the cooling pipe 260 is extended and connected in parallel with the stacking direction in which the battery cells 201 are stacked. Further, in the example of FIG. 20, the cooling plate 261 is disposed on the lower surface of the battery stack 205 and the cooling pipe 260 is provided on the cooling plate 261, so that the cooling is performed by removing heat from the battery stack 205 via the cooling plate 261. I am letting.
 これらの冷却方式では、隣接する電池セル同士の隙間に冷却空気を送風する空冷式の冷却方式に比べ、冷媒を用いた熱交換によってより効率よく電池セルの熱を奪うことが可能となる。その反面、高い冷却性能のため冷却部分が比較的低温になる結果、温度が結露点以下に低下し、空気中の水分が冷やされて電池セルの表面に結露することがある。このような結露が生じると、意図しない通電が生じたり、腐食が生じたりすることがある。 In these cooling methods, it is possible to take heat of the battery cells more efficiently by heat exchange using a refrigerant, compared to an air-cooling type cooling method in which cooling air is blown into a gap between adjacent battery cells. On the other hand, as a result of the cooling performance being relatively low due to the high cooling performance, the temperature may drop below the dew point, causing moisture in the air to cool and condensation on the surface of the battery cell. If such condensation occurs, unintended energization may occur or corrosion may occur.
 このための対策として、金属製の外装缶である電池セルの表面を樹脂などで完全に被覆し、電池セルの表面から空気層を排除することで、空気中に含まれる水分が結露する事態を回避することが考えられる。しかしながら、電池セルの周囲を樹脂で完全に被覆してしまうと、冷却プレートとの熱結合が阻害されてしまい、冷却能力が低下する問題があった。かといって、電池積層体の一面(例えば底面)を開放して、ここに冷却プレートを配置する場合は、冷却プレートと電池積層体との間に隙間が生じる。また、冷却プレートとの間で隙間を排除することができても、冷却プレートの電池積層体との接合部分の端縁では完全に電池積層体を被覆することが困難であり、この部分で結露が発生することを阻止できなかった。このように、電池積層体を被覆することと、冷却プレートとの熱結合を図ることとは構造的に相反するため、両立が困難であり、これらを満たした電源装置を得ることがこれまでできなかった。 As a countermeasure for this, the surface of the battery cell, which is a metal outer can, is completely covered with resin, etc., and the air layer is removed from the surface of the battery cell, so that moisture contained in the air is condensed. It is possible to avoid it. However, if the periphery of the battery cell is completely covered with the resin, the thermal coupling with the cooling plate is hindered, resulting in a problem that the cooling capacity is lowered. However, when one surface (for example, the bottom surface) of the battery stack is opened and the cooling plate is disposed here, a gap is generated between the cooling plate and the battery stack. In addition, even if the gap between the cooling plate and the cooling plate can be eliminated, it is difficult to completely cover the battery stack at the edge of the joint portion of the cooling plate with the battery stack. Could not be prevented from occurring. Thus, since covering the battery laminate and structurally conflicting with the cooling plate are structurally contradictory, it is difficult to achieve both, and it has been possible to obtain a power supply device that satisfies these conditions. There wasn't.
特開2009-134901号公報JP 2009-134901 A 特開2009-134936号公報JP 2009-134936 A 特開2010-15788号公報JP 2010-15788 A 実公昭34-16929号公報Japanese Utility Model Publication No. 34-16929 特開2005-149837号公報JP 2005-149837 A 特開2002-100407号公報Japanese Patent Laid-Open No. 2002-100407
 本発明は、従来のこのような問題点を解決するためになされたものである。本発明の主な目的は、電池セル表面に結露する事態を回避しつつ、電池セルと冷却プレートとの熱結合も維持可能な電源装置及びこれを備える車両並びに電源装置の製造方法を提供することにある。 The present invention has been made to solve such conventional problems. SUMMARY OF THE INVENTION The main object of the present invention is to provide a power supply device capable of maintaining the thermal coupling between the battery cell and the cooling plate while avoiding the situation of condensation on the surface of the battery cell, a vehicle equipped with the power supply device, and a method for manufacturing the power supply device. It is in.
課題を解決するための手段及び発明の効果Means for Solving the Problems and Effects of the Invention
 上記の目的を達成するために、本発明の第1の側面に係る電源装置によれば、複数の角形電池セル1を積層してなる電池積層体5と、前記電池積層体5の外部を、該電池積層体5の一面の一部を残して被覆する被覆ケース16と、該電池積層体5の一面に熱結合状態に配置され、内部に冷媒を流すことで該電池積層体5と熱交換を行うための冷却プレート61と、を備える電源装置であって、前記電源装置はさらに、前記電池積層体5の一面を被覆する防水性シート19を備え、前記電池積層体5と被覆ケース16との隙間に充填材を注入して形成された充填層18を介在させ、前記充填層18でもって前記防水性シート19を固定することができる。これにより、充填材を注入して形成された充填層によって、電池積層体の外表面と被覆ケースの内面との間の隙間を排除し、空気層が介在することによる結露を防止できる。また冷却プレートとの熱結合を行う面においては、充填層に代えて防水性シートを貼付して防水性を発揮でき、さらに充填層を形成する充填材の硬化によって防水性シートも電池積層体に固定できるので、信頼性も高められる利点が得られる。 In order to achieve the above object, according to the power supply device of the first aspect of the present invention, a battery laminate 5 formed by laminating a plurality of rectangular battery cells 1 and the outside of the battery laminate 5 are provided. A covering case 16 that covers a part of one surface of the battery stack 5 and a heat-bonded state disposed on one surface of the battery stack 5 and flowing a refrigerant therein to exchange heat with the battery stack 5 A cooling plate 61 for carrying out the operation, wherein the power supply device further includes a waterproof sheet 19 that covers one surface of the battery stack 5, and the battery stack 5 and the covering case 16. The waterproof sheet 19 can be fixed with the filler layer 18 by interposing a filler layer 18 formed by injecting filler into the gap. Thereby, the gap between the outer surface of the battery stack and the inner surface of the covering case is eliminated by the filling layer formed by injecting the filler, and condensation due to the air layer interposed can be prevented. In addition, on the surface to be thermally coupled to the cooling plate, a waterproof sheet can be applied instead of the filling layer to exhibit waterproofness, and the waterproof sheet is also attached to the battery laminate by curing of the filler forming the filling layer. Since it can be fixed, there is an advantage that reliability can be improved.
 また第2の側面に係る電源装置によれば、前記被覆ケース16は、前記電池積層体5の一面に対して、両側から張り出すように形成された一対の張り出し部16bを有してなり、前記一対の張り出し部16bで、前記防水性シート19を把持することができる。これにより、電池積層体の一面を両側から回り込むようにして保持できるので、密閉構造を実現しやすくできる。 Further, according to the power supply device according to the second aspect, the covering case 16 has a pair of projecting portions 16b formed so as to project from both sides with respect to one surface of the battery laminate 5; The waterproof sheet 19 can be gripped by the pair of overhang portions 16b. Thereby, since it can hold | maintain so that one surface of a battery laminated body may wrap around from both sides, it can be easy to implement | achieve a sealing structure.
 さらに第3の側面に係る電源装置によれば、さらに前記防水性シート19が、前記張り出し部16bに固定することができる。これにより、防水性シートの端縁を被覆ケースに固定できると共に、この部分からの浸水を阻止できる。 Further, according to the power supply device according to the third aspect, the waterproof sheet 19 can be further fixed to the projecting portion 16b. Thereby, while being able to fix the edge of a waterproof sheet to a covering case, the flooding from this part can be prevented.
 さらにまた第4の側面に係る電源装置によれば、さらに前記冷却プレートと、前記電池積層体5との間に介在される、絶縁性と熱伝導性を有する熱伝導シート12を備え、前記熱伝導シート12がさらに弾性を備えることができる。これによって、絶縁性の熱伝導シートで電池積層体と冷却プレートとの絶縁を図りつつ、高い熱伝導性を維持できる。また熱伝導シートの弾性によって、電池積層体と冷却プレートとの接触界面での隙間の発生を低減でき、空気層の形成によって熱伝導が阻害される事態も回避できる。 Furthermore, according to the power supply device which concerns on a 4th side surface, it is further provided with the heat conductive sheet 12 which has insulation and heat conductivity interposed between the said cooling plate and the said battery laminated body 5, and the said heat | fever The conductive sheet 12 can further have elasticity. Thereby, it is possible to maintain high thermal conductivity while achieving insulation between the battery stack and the cooling plate with an insulating thermal conductive sheet. Further, the elasticity of the heat conductive sheet can reduce the generation of gaps at the contact interface between the battery stack and the cooling plate, and can also avoid the situation where heat conduction is hindered by the formation of the air layer.
 さらにまた第5の側面に係る電源装置によれば、前記被覆ケース16は、前記一対の張り出し部16bで挟まれた領域を開口した開口部を形成しており、前記冷却プレート61は、該開口部を閉塞できる大きさに形成することができる。これにより、電池積層体の一面に開口部を設け、この開口部を冷却プレートで閉塞することによって、電池積層体の周囲を完全に被覆することができる。 Furthermore, according to the power supply device of the fifth aspect, the covering case 16 forms an opening that opens a region sandwiched between the pair of projecting portions 16b, and the cooling plate 61 includes the opening. The portion can be formed in a size that can be closed. Thereby, the opening part is provided in one surface of a battery laminated body, and the circumference | surroundings of a battery laminated body can be completely coat | covered by obstruct | occluding this opening part with a cooling plate.
 さらにまた第6の側面に係る電源装置によれば、前記電池積層体5の一面を、電池積層体5の底面とすることができる。これにより、電池積層体の底面から冷却プレートで冷却しつつ、周囲を被覆して結露の発生を効果的に阻止できる。 Furthermore, according to the power supply device according to the sixth aspect, one surface of the battery stack 5 can be the bottom surface of the battery stack 5. Thereby, while cooling with a cooling plate from the bottom face of a battery laminated body, the circumference | surroundings can be coat | covered and generation | occurrence | production of dew condensation can be prevented effectively.
 さらにまた第7の側面に係る電源装置によれば、前記被覆ケース16が樹脂製であり、前記充填材が、前記被覆ケース16と同系統の樹脂製とすることができる。これにより、充填材が硬化した際に被覆ケースとの接着性を向上させることもできる。 Furthermore, according to the power supply device of the seventh aspect, the covering case 16 can be made of resin, and the filler can be made of the same resin as the covering case 16. Thereby, when a filler hardens | cures, adhesiveness with a coating | coated case can also be improved.
 さらにまた第8の側面に係る電源装置によれば、前記充填材を、ウレタン系樹脂とすることができる。 Furthermore, according to the power supply device of the eighth aspect, the filler can be a urethane resin.
 さらにまた第9の側面に係る電源装置によれば、前記熱伝導シート12と前記電池積層体5の一部とを直接接触させるように、前記防水性シート19の一部を除去することができる。これにより、電池積層体と熱伝導シートとの接触を直接行わせることで熱抵抗を低減し、冷却プレートによる放熱性を高めることができる。 Furthermore, according to the power supply device which concerns on a 9th side surface, a part of said waterproof sheet | seat 19 can be removed so that the said heat conductive sheet 12 and a part of said battery laminated body 5 may be made to contact directly. . Thereby, by making a battery laminated body and a heat conductive sheet contact directly, thermal resistance can be reduced and the heat dissipation by a cooling plate can be improved.
 さらにまた第10の側面に係る電源装置によれば、上記の電源装置を搭載した車両とすることができる。 Furthermore, according to the power supply device according to the tenth aspect, a vehicle equipped with the power supply device described above can be provided.
 さらにまた第11の側面に係る電源装置の製造方法によれば、複数の角形電池セル1を積層してなる電池積層体5と、前記電池積層体5の外部を、該電池積層体5の一面の一部を残して被覆する被覆ケース16と、該電池積層体5の一面に熱結合状態に配置され、内部に冷媒を流すことで該電池積層体5と熱交換を行うための冷却プレート61と、前記冷却プレートと、前記電池積層体5との間に介在される、絶縁性と熱伝導性を有し、かつ弾性を有する熱伝導シート12と、を備える電源装置の製造方法であって、前記電池積層体5の外部を、前記電池積層体5の一面は防水性シート19で被覆し、該電池積層体5の他の面は被覆ケース16で被覆し、前記防水性シート19で被覆した面において、前記被覆ケース16で該防水性シート19の周囲を覆いつつ、該防水性シート19を該被覆ケース16から露出させた開口部において、該防水性シート19を電池積層体5に対して押圧するように治具JGを配置する工程と、前記電池積層体5と被覆ケース16との隙間に充填材を注入して充填層18を形成する工程と、前記充填層18の硬化後に、治具JGを除去する工程と、前記開口部に、前記熱伝導シート12と前記冷却プレート61とを配置する工程とを含むことができる。これにより、充填材を注入して形成された充填層によって、電池積層体の外表面と被覆ケースの内面との間の隙間を排除し、空気層が介在することによる結露を防止できる。また冷却プレートとの熱結合を行う面においては、充填層に代えて防水性シートを貼付して防水性を発揮でき、さらに充填層の硬化によって防水性シートも電池積層体に固定できるので、信頼性も高められる利点が得られる。 Furthermore, according to the method for manufacturing the power supply device according to the eleventh aspect, a battery laminate 5 formed by laminating a plurality of rectangular battery cells 1 and the outside of the battery laminate 5 are connected to one surface of the battery laminate 5. A coating case 16 that covers a part of the battery stack 5 and a cooling plate 61 that is disposed in one surface of the battery stack 5 in a heat-coupled state and exchanges heat with the battery stack 5 by flowing a refrigerant therein. And a method of manufacturing a power supply device comprising: an insulating and thermally conductive, and thermally conductive sheet 12 interposed between the cooling plate and the battery stack 5. The outside of the battery laminate 5 is covered with a waterproof sheet 19 on one surface of the battery laminate 5, and the other surface of the battery laminate 5 is covered with a covering case 16. The waterproof sheet is covered with the covering case 16 on the finished surface. A jig JG is disposed so as to press the waterproof sheet 19 against the battery stack 5 in the opening where the waterproof sheet 19 is exposed from the covering case 16 while covering the periphery of the cover 9. , A step of injecting a filler into the gap between the battery stack 5 and the covering case 16 to form a filling layer 18; a step of removing the jig JG after the hardening of the filling layer 18; The step of disposing the heat conductive sheet 12 and the cooling plate 61 may be included. Thereby, the gap between the outer surface of the battery stack and the inner surface of the covering case is eliminated by the filling layer formed by injecting the filler, and condensation due to the air layer interposed can be prevented. In addition, on the surface that performs thermal coupling with the cooling plate, a waterproof sheet can be applied instead of the filling layer to provide waterproofness, and further, the waterproof sheet can be fixed to the battery stack by curing the filling layer. The advantage that the property is also improved is obtained.
 さらにまた第12の側面に係る電源装置の製造方法によれば、前記熱伝導シート12を配置する前に、前記防水性シート19の、前記充填層18によって固定されていない部分を除去する工程を含むことができる。これにより、電池積層体と熱伝導シートとの接触を直接行わせることで熱抵抗を低減し、冷却プレートによる放熱性を高めることができる。 Furthermore, according to the method for manufacturing the power supply device according to the twelfth aspect, the step of removing a portion of the waterproof sheet 19 that is not fixed by the filling layer 18 before the heat conductive sheet 12 is disposed. Can be included. Thereby, by making a battery laminated body and a heat conductive sheet contact directly, thermal resistance can be reduced and the heat dissipation by a cooling plate can be improved.
本発明の実施例1に係る電源装置を備える電源装置の分解斜視図である。It is a disassembled perspective view of a power supply device provided with the power supply device which concerns on Example 1 of this invention. 図1の組電池を示す斜視図である。It is a perspective view which shows the assembled battery of FIG. 図2の電池積層体から冷却プレートを外した状態を示す分解斜視図である。It is a disassembled perspective view which shows the state which removed the cooling plate from the battery laminated body of FIG. 図2の電池積層体を斜め下方から見た斜視図である。It is the perspective view which looked at the battery laminated body of FIG. 2 from diagonally downward. 図2の組電池を示す分解斜視図である。It is a disassembled perspective view which shows the assembled battery of FIG. 図5の電池積層体の分解斜視図である。It is a disassembled perspective view of the battery laminated body of FIG. 変形例に係る電源装置を示す断面図である。It is sectional drawing which shows the power supply device which concerns on a modification. 電池積層体に吸水シートを配置する例を示す模式断面図である。It is a schematic cross section which shows the example which arrange | positions a water absorbing sheet to a battery laminated body. 実施例2に係る電源装置を示す断面図である。FIG. 6 is a cross-sectional view illustrating a power supply device according to a second embodiment. 図8に示す電源装置の組み立て状態を示す断面図である。It is sectional drawing which shows the assembly state of the power supply device shown in FIG. 図10に示す電源装置に熱伝導シート及び冷却プレートを配置する状態を示す分解断面図である。It is a disassembled sectional view which shows the state which arrange | positions a heat conductive sheet and a cooling plate in the power supply device shown in FIG. 冷却プレートの配置状態を示す模式平面図である。It is a schematic plan view which shows the arrangement | positioning state of a cooling plate. 実施例3に係る冷却パイプを下面に配置した電池積層体を示す模式断面図である。It is a schematic cross section which shows the battery laminated body which has arrange | positioned the cooling pipe which concerns on Example 3 on the lower surface. 実施例4に係る電池積層体を示す模式断面図である。6 is a schematic cross-sectional view showing a battery stack according to Example 4. FIG. エンジンとモータで走行するハイブリッド車に電源装置を搭載する例を示すブロック図である。It is a block diagram which shows the example which mounts a power supply device in the hybrid vehicle which drive | works with an engine and a motor. モータのみで走行する電気自動車に電源装置を搭載する例を示すブロック図である。It is a block diagram which shows the example which mounts a power supply device in the electric vehicle which drive | works only with a motor. 蓄電用の電源装置に適用する例を示すブロック図である。It is a block diagram which shows the example applied to the power supply device for electrical storage. 従来の電源装置の冷却機構を示す斜視図である。It is a perspective view which shows the cooling mechanism of the conventional power supply device. 従来の他の電源装置の冷却機構を示す斜視図である。It is a perspective view which shows the cooling mechanism of the other conventional power supply device. 従来のさらに他の電源装置の冷却機構を示す斜視図である。It is a perspective view which shows the cooling mechanism of the further another conventional power supply device.
 以下、本発明の実施の形態を図面に基づいて説明する。ただし、以下に示す実施の形態は、本発明の技術思想を具体化するための電源装置及びこれを備える車両並びに電源装置の製造方法を例示するものであって、本発明は電源装置及びこれを備える車両並びに電源装置の製造方法を以下のものに特定しない。また、特許請求の範囲に示される部材を、実施の形態の部材に特定するものでは決してない。特に実施の形態に記載されている構成部材の寸法、材質、形状、その相対的配置等は、特定的な記載がない限りは、本発明の範囲をそれのみに限定する趣旨ではなく、単なる説明例にすぎない。なお、各図面が示す部材の大きさや位置関係等は、説明を明確にするため誇張していることがある。さらに以下の説明において、同一の名称、符号については同一もしくは同質の部材を示しており、詳細説明を適宜省略する。さらに、本発明を構成する各要素は、複数の要素を同一の部材で構成して一の部材で複数の要素を兼用する態様としてもよいし、逆に一の部材の機能を複数の部材で分担して実現することもできる。また、一部の実施例、実施形態において説明された内容は、他の実施例、実施形態等に利用可能なものもある。
(実施例1)
Hereinafter, embodiments of the present invention will be described with reference to the drawings. However, the embodiment described below exemplifies a power supply apparatus for embodying the technical idea of the present invention, a vehicle including the power supply apparatus, and a method for manufacturing the power supply apparatus. The vehicle and power supply device manufacturing method provided are not specified as follows. Moreover, the member shown by the claim is not what specifies the member of embodiment. In particular, the dimensions, materials, shapes, relative arrangements, and the like of the constituent members described in the embodiments are not intended to limit the scope of the present invention only to the description unless otherwise specified. It is just an example. Note that the size, positional relationship, and the like of the members shown in each drawing may be exaggerated for clarity of explanation. Furthermore, in the following description, the same name and symbol indicate the same or the same members, and detailed description thereof will be omitted as appropriate. Furthermore, each element constituting the present invention may be configured such that a plurality of elements are constituted by the same member and the plurality of elements are shared by one member, and conversely, the function of one member is constituted by a plurality of members. It can also be realized by sharing. In addition, the contents described in some examples and embodiments may be used in other examples and embodiments.
Example 1
 図1~図8に、本発明の実施例1に係る電源装置100として、車載用の電源装置に適用した例を説明する。これらの図において、図1は電源装置100の分解斜視図、図2は図1の電池積層体5を示す斜視図、図3は図2の電池積層体5から冷却プレート61を外した分解斜視図、図4は図2の電池積層体5を斜め下方から見た斜視図、図5は図2の電池積層体5の分解斜視図、図6は図5の電池積層体5の分解斜視図、図7は変形例に係る電源装置を示す断面図、図8は電池積層体5と被覆ケース16との間に吸水シートを配置する例を示す模式断面図を、それぞれ示している。この電源装置100は、主としてハイブリッド車や電気自動車等の電動車両に搭載されて、車両の走行モータに電力を供給して、車両を走行させる電源に使用される。ただ、本発明の電源装置は、ハイブリッド車や電気自動車以外の電動車両に使用でき、また電動車両以外の大出力が要求される用途にも使用できる。
(電源装置100)
1 to 8 illustrate an example in which the power supply device 100 according to the first embodiment of the present invention is applied to an in-vehicle power supply device. In these drawings, FIG. 1 is an exploded perspective view of the power supply device 100, FIG. 2 is a perspective view showing the battery stack 5 of FIG. 1, and FIG. 3 is an exploded perspective view with the cooling plate 61 removed from the battery stack 5 of FIG. 4 is a perspective view of the battery stack 5 of FIG. 2 as viewed obliquely from below, FIG. 5 is an exploded perspective view of the battery stack 5 of FIG. 2, and FIG. 6 is an exploded perspective view of the battery stack 5 of FIG. 7 is a cross-sectional view showing a power supply device according to a modification, and FIG. 8 is a schematic cross-sectional view showing an example in which a water absorbent sheet is disposed between the battery stack 5 and the covering case 16. This power supply device 100 is mainly mounted on an electric vehicle such as a hybrid vehicle or an electric vehicle, and is used as a power source for supplying electric power to a traveling motor of the vehicle and causing the vehicle to travel. However, the power supply device of the present invention can be used for an electric vehicle other than a hybrid vehicle or an electric vehicle, and can also be used for an application requiring a high output other than an electric vehicle.
(Power supply device 100)
 電源装置100の外観は、図1の分解斜視図に示すように、上面を長方形状とする箱形である。この電源装置100は、箱形の外装ケース70を二分割して、内部に複数の組電池10を収納している。外装ケース70は、下ケース71と、上ケース72と、これらの下ケース71、上ケース72の両端に連結している端面プレート73とを備えている。上ケース72と下ケース71は、外側に突出する鍔部74を有し、この鍔部74をボルトとナットで固定している。外装ケース70は、鍔部74を外装ケース70の側面に配置している。また図1に示す例では、電池積層体5を長手方向に2つ、横方向に2列、計4個下ケース71に収納している。各電池積層体5は、外装ケース70内部の定位置に固定している。端面プレート73は、下ケース71と上ケース72の両端に連結されて、外装ケース70の両端を閉塞している。
(組電池10)
As shown in the exploded perspective view of FIG. 1, the external appearance of the power supply device 100 is a box shape whose upper surface is rectangular. In the power supply device 100, a box-shaped outer case 70 is divided into two, and a plurality of assembled batteries 10 are accommodated therein. The exterior case 70 includes a lower case 71, an upper case 72, and end plates 73 connected to both ends of the lower case 71 and the upper case 72. The upper case 72 and the lower case 71 have a flange portion 74 protruding outward, and the flange portion 74 is fixed with a bolt and a nut. The outer case 70 has a flange 74 disposed on the side surface of the outer case 70. Further, in the example shown in FIG. 1, two battery stacks 5 are housed in the lower case 71 in total, two in the longitudinal direction and two in the lateral direction. Each battery stack 5 is fixed at a fixed position inside the outer case 70. The end surface plate 73 is connected to both ends of the lower case 71 and the upper case 72 and closes both ends of the exterior case 70.
(Battery 10)
 組電池10は、図1に示す例では、4つの電池積層体5で構成される。すなわち、角型電池セル1の積層方向に2つの電池積層体5が連結されて一の電池積層連続体10Bを構成し、このような連結状態にある電池積層連続体10Bを2つ平行に並べて、組電池10を構成している。 The assembled battery 10 is composed of four battery stacks 5 in the example shown in FIG. That is, two battery stacks 5 are connected in the stacking direction of the rectangular battery cells 1 to form one battery stack continuous body 10B, and two battery stack continuous bodies 10B in such a connected state are arranged in parallel. The assembled battery 10 is configured.
 組電池10を構成する各電池積層体5の斜視図を図2に示す。この電池積層体5は、これを冷却するための冷却プレート61上に固定されている。電池積層体5は、図2~図5に示すように、冷却プレート61上に固定するための連結構造を備えている(詳細は後述)。 FIG. 2 shows a perspective view of each battery stack 5 constituting the assembled battery 10. The battery stack 5 is fixed on a cooling plate 61 for cooling it. As shown in FIGS. 2 to 5, the battery stack 5 has a connection structure for fixing on the cooling plate 61 (details will be described later).
 各電池積層体5は、図5及び図6に示すように、複数の角形電池セル1と、複数の角形電池セル1同士を積層する面に介在させて、角形電池セル1間を絶縁するセパレータ2と、複数の角形電池セル1とセパレータ2を交互に積層した電池積層体5を収納する被覆ケース16と、電池積層体5の積層方向の端面に配置された一対のエンドプレート3と、電池積層体5の両端面に配置されたエンドプレート3同士を締結する金属製の複数の締結部材4とを備えている。
(電池積層体5)
As shown in FIGS. 5 and 6, each battery stack 5 is a separator that insulates the prismatic battery cells 1 by interposing them on a surface where a plurality of prismatic battery cells 1 and a plurality of prismatic battery cells 1 are stacked. 2, a covering case 16 that houses a battery stack 5 in which a plurality of prismatic battery cells 1 and separators 2 are alternately stacked, a pair of end plates 3 that are disposed on the end surface of the battery stack 5 in the stacking direction, and a battery A plurality of metal fastening members 4 that fasten the end plates 3 disposed on both end faces of the laminate 5 are provided.
(Battery laminate 5)
 電池積層体5は、図6に示すように複数の角形電池セル1を、絶縁性のセパレータ2を介して積層している。さらに図5に示すように、この電池積層体5の両端面に一対のエンドプレート3を配置して、一対のエンドプレート3を締結部材4で連結している。このように、互いに隣接する角形電池セル1を絶縁するセパレータ2を角形電池セル1同士の積層面に介在させて、複数の角形電池セル1とセパレータ2とを交互に積層した電池積層体5としている。
(角形電池セル1)
As shown in FIG. 6, the battery stack 5 is formed by stacking a plurality of rectangular battery cells 1 with an insulating separator 2 interposed therebetween. Further, as shown in FIG. 5, a pair of end plates 3 are arranged on both end faces of the battery stack 5, and the pair of end plates 3 are connected by a fastening member 4. In this way, a battery stack 5 in which a plurality of prismatic battery cells 1 and separators 2 are alternately stacked by interposing a separator 2 that insulates adjacent prismatic battery cells 1 on a stacking surface of the prismatic battery cells 1. Yes.
(Square battery cell 1)
 角形電池セル1は、図6に示すように、その外形を構成する外装缶を、幅よりも厚さを薄くした角形としている。この外装缶を閉塞する封口板に正負の電極端子を設けると共に、電極端子の間に安全弁を設けている。安全弁は、外装缶の内圧が所定値以上に上昇した際に開弁して、内部のガスを放出できるように構成される。安全弁の開弁により、外装缶の内圧上昇を停止することができる。この角形電池セル1を構成する素電池は、リチウムイオン電池、ニッケル-水素電池、ニッケル-カドミウム電池等の充電可能な二次電池である。特に、角形電池セル1にリチウムイオン二次電池を使用すると、電池セル全体の体積や質量に対する充電容量を大きくできる特長がある。さらに、本発明で用いる電池セルは角形電池セルに限らず、円筒型電池セルや外装体がラミネート材料で被覆された角形やその他の形状のラミネート電池セルであってもよい。 As shown in FIG. 6, the rectangular battery cell 1 has an outer can constituting the outer shape of a rectangular shape whose thickness is smaller than the width. Positive and negative electrode terminals are provided on the sealing plate for closing the outer can, and a safety valve is provided between the electrode terminals. The safety valve is configured to open when the internal pressure of the outer can rises to a predetermined value or more, and to release the internal gas. The increase in the internal pressure of the outer can can be stopped by opening the safety valve. The unit cell constituting the rectangular battery cell 1 is a rechargeable secondary battery such as a lithium ion battery, a nickel-hydrogen battery, or a nickel-cadmium battery. In particular, when a lithium ion secondary battery is used for the prismatic battery cell 1, there is an advantage that the charge capacity with respect to the volume and mass of the entire battery cell can be increased. Furthermore, the battery cell used in the present invention is not limited to a rectangular battery cell, but may be a cylindrical battery cell or a rectangular battery cell in which an exterior body is covered with a laminate material or other shapes.
 積層されて電池積層体5を構成する各角形電池セル1は、隣接する正負の電極端子をバスバー6で連結して互いに直列に接続している。隣接する角形電池セル1を互いに直列に接続する組電池10は、出力電圧を高くして出力を大きくできる。ただ、組電池は、隣接する角形電池セルを並列に接続することも、直列接続と並列接続とを組み合わせて多直多並、又は、多並多直とすることもできる。また角形電池セル1は、金属製の外装缶で製作している。この角形電池セル1は、隣接する角形電池セル1の外装缶のショートを防止するために絶縁材のセパレータ2を挟着している。なお、角形電池セルの外装缶は、プラスチック等の絶縁材で製作することもできる。この場合、角形電池セルは外装缶を絶縁して積層する必要がないので、セパレータを金属製とすることや、セパレータを不要とすることもできる。
(セパレータ2)
The respective rectangular battery cells 1 that are stacked to form the battery stack 5 are connected in series by connecting adjacent positive and negative electrode terminals with a bus bar 6. The assembled battery 10 in which the adjacent rectangular battery cells 1 are connected in series can increase the output voltage and increase the output. However, an assembled battery can connect adjacent square battery cells in parallel, or can combine a series connection and a parallel connection into multiple parallels or multiple parallels. The rectangular battery cell 1 is manufactured with a metal outer can. In this rectangular battery cell 1, an insulating separator 2 is sandwiched between the adjacent rectangular battery cells 1 in order to prevent short-circuiting of the outer can of the rectangular battery cell 1. Note that the outer can of the rectangular battery cell can also be made of an insulating material such as plastic. In this case, since it is not necessary for the rectangular battery cell to insulate and laminate the outer can, the separator can be made of metal or the separator can be made unnecessary.
(Separator 2)
 セパレータ2は、隣接する角形電池セル1を電気的、熱的に絶縁して積層するスペーサである。このセパレータ2はプラスチック等の絶縁材で製作しており、互いに隣接する角形電池セル1同士の間に配置されて、隣接する角形電池セル1を絶縁している。 Separator 2 is a spacer for insulating and stacking adjacent rectangular battery cells 1 electrically and thermally. The separator 2 is made of an insulating material such as plastic, and is disposed between the adjacent rectangular battery cells 1 to insulate the adjacent rectangular battery cells 1.
 ここで、被覆ケース16と角形電池セル1との絶縁を確保することで、セパレータ2の側面を簡略化して小型化できる。すなわち図5及び図6に示す例では、被覆ケース16の側面を絶縁性として電池積層体5の側面を保護できるため、このセパレータ2は、角形電池セル1同士が対向する面のみを絶縁すれば足り、セパレータで角形電池セルの側面を被覆する必要がない。このため、セパレータの側面から、電池積層体5の側面を被覆するように突出させた部位を無くして小型化できる。あるいは、セパレータ自体を保持及び位置決めのために、角形電池セル側面の面取り部分に僅かに突出させたものを使用することもできる。このセパレータは、電池積層体の側面において角形電池セルの表面とほぼ同一平面に構成できるので、電池積層体の横幅を小さくできる。また、セパレータの上面に凹凸等による嵌合構造を設け、セパレータ同士の位置決めをすることもできる。その一方で、セパレータの側面に設けられた突出部分は、積層する電池セルを位置決めするために設けられる。 Here, by ensuring insulation between the covering case 16 and the rectangular battery cell 1, the side surface of the separator 2 can be simplified and downsized. That is, in the example shown in FIGS. 5 and 6, since the side surface of the battery stack 5 can be protected by making the side surface of the covering case 16 insulative, the separator 2 only has to insulate only the surface where the rectangular battery cells 1 face each other. It is not necessary to cover the side surface of the rectangular battery cell with a separator. For this reason, it is possible to reduce the size by eliminating the part protruding from the side surface of the separator so as to cover the side surface of the battery stack 5. Or what hold | maintained the separator itself in the chamfering part of the square battery cell side surface for holding and positioning can also be used. Since this separator can be configured to be substantially flush with the surface of the prismatic battery cell on the side surface of the battery stack, the lateral width of the battery stack can be reduced. In addition, it is possible to position the separators by providing a fitting structure with unevenness on the upper surface of the separators. On the other hand, the protruding portion provided on the side surface of the separator is provided for positioning the battery cells to be stacked.
 なお、被覆ケースの全体を金属製とすることもできる。この場合は、被覆ケースの側面も金属製となるため、電池積層体の側面において角形電池セル間の絶縁を図るためセパレータで角形電池セルの側面を被覆することが好ましい。その一方で、電池積層体は、必ずしも角形電池セルの間にセパレータを介在させる必要はない。例えば角形電池セルの外装缶を絶縁材で成形し、あるいは角形電池セルの外装缶の外周を熱収縮チューブや絶縁シート、絶縁塗料等で被覆する等の方法で、互いに隣接する角形電池セル同士を絶縁することによって、セパレータを不要とできる。特に、角形電池セルの間に冷却風を強制送風して角形電池セルを冷却する空冷式によらず、冷媒等を用いて冷却させた冷却プレートを介して電池積層体を冷却する方式を採用する構成においては、角形電池セルの間にセパレータを介在させる必要は必ずしも無い。さらに、冷媒等を用いて冷却させた冷却プレートを介して電池積層体を冷却する方式を採用する構成においては、角形電池セルの間に冷却風を強制送風して角形電池セルを冷却する空冷式のように、角型電池セル同士の間に介在される絶縁性のセパレータに冷却風を流すための風路を設ける必要がないので、角型電池セルの積層方向の長さを短くすることができ、電池積層体の小型化を図ることができる。
(エンドプレート3)
The entire covering case may be made of metal. In this case, since the side surface of the covering case is also made of metal, it is preferable to cover the side surface of the rectangular battery cell with a separator in order to insulate the rectangular battery cells on the side surface of the battery stack. On the other hand, the battery laminated body does not necessarily need to interpose a separator between square battery cells. For example, the prismatic battery cell outer cans are molded with an insulating material, or the outer periphery of the prismatic battery cell outer cans are covered with a heat-shrinkable tube, insulating sheet, insulating paint, etc. By insulating, a separator can be made unnecessary. In particular, a method of cooling the battery stack through a cooling plate cooled by using a refrigerant or the like is employed, instead of an air cooling method in which cooling air is forced between the rectangular battery cells to cool the rectangular battery cells. In the configuration, it is not always necessary to interpose a separator between the rectangular battery cells. Furthermore, in the configuration that employs a system that cools the battery stack through a cooling plate that has been cooled using a refrigerant or the like, an air cooling system that cools the prismatic battery cells by forcibly blowing cooling air between the prismatic battery cells. As described above, since it is not necessary to provide an air path for flowing cooling air to the insulating separator interposed between the square battery cells, the length of the square battery cells in the stacking direction can be shortened. This can reduce the size of the battery stack.
(End plate 3)
 角形電池セル1とセパレータ2とを交互に積層した電池積層体5の両端面には、図5に示すように一対のエンドプレート3を配置している。この一対のエンドプレート3でもって、電池積層体5を両面から挟持するように締結している。エンドプレート3は、十分な強度を発揮する材質、例えば金属製とする。またエンドプレート3には、図1に示す下ケース71と固定するための固定構造を備えることもできる。 As shown in FIG. 5, a pair of end plates 3 are arranged on both end faces of the battery stack 5 in which the rectangular battery cells 1 and the separators 2 are alternately stacked. With the pair of end plates 3, the battery stack 5 is fastened so as to be sandwiched from both sides. The end plate 3 is made of a material that exhibits sufficient strength, for example, metal. Further, the end plate 3 may be provided with a fixing structure for fixing to the lower case 71 shown in FIG.
 なお、図5の例では被覆ケース16の両側端面を開放しているが、この構成に限られず、例えば一方の被覆ケースの端面を予め閉塞しておくことできる。この場合は、他方の開口端面から電池積層体を挿入した後、1枚のエンドプレートでもってこの開口端面を閉塞することにより、被覆ケースを側面周囲を閉塞することができる。
(締結部材4)
In the example of FIG. 5, both end surfaces of the covering case 16 are opened, but the present invention is not limited to this configuration. For example, the end surface of one covering case can be closed in advance. In this case, after the battery stack is inserted from the other opening end face, the covering end case can be closed around the side surface by closing the opening end face with one end plate.
(Fastening member 4)
 締結部材4は、図2~図5に示すように、両端にエンドプレート3が積層された電池積層体5の両側面に配置されて、一対のエンドプレート3に固定されて電池積層体5を締結する。この締結部材4は、図5の斜視図に示すように、電池積層体5の側面を覆う本体部41と、本体部41の両端で折曲され、エンドプレート3と固定される折曲片42と、上方で折曲されて電池積層体5の上面を保持する上面保持部43と、下方に突出される締結連結部44を備える。このような締結部材4は、十分な強度を有する材質、例えば金属製のバインドバーで構成される。なお図1に示す例では、各電池積層体5にそれぞれ締結部材を設けており、この場合は各電池積層体5にそれぞれの端面に位置するエンドプレート同士を、締結部材で固定する。尚、2つの電池積層体5を積層方向に並べた状態で、両側側面を締結部材4で一体的に連結することもできる。この構成では、締結部材4を電池積層体5同士を連結するための部材としても利用している。ここでは、端面に位置するエンドプレート3同士を締結部材4で固定すると共に、2つの電池積層体5の間で対向するエンドプレート3には、締結部材は固定されない。さらに、2つの電池積層体5の間で対向するエンドプレート3を一部品として共通化することもできる。エンドプレートと締結部材の固定は、実施例で記載のボルト等で固定する構造のものに限定しない。
(被覆ケース16)
As shown in FIGS. 2 to 5, the fastening members 4 are arranged on both side surfaces of the battery stack 5 in which the end plates 3 are stacked at both ends, and are fixed to the pair of end plates 3 so that the battery stack 5 is fixed. Conclude. As shown in the perspective view of FIG. 5, the fastening member 4 includes a main body 41 that covers the side surface of the battery stack 5, and a bent piece 42 that is bent at both ends of the main body 41 and fixed to the end plate 3. And an upper surface holding portion 43 that is bent upward to hold the upper surface of the battery stack 5 and a fastening connecting portion 44 that protrudes downward. Such a fastening member 4 is made of a material having sufficient strength, for example, a metal bind bar. In addition, in the example shown in FIG. 1, the fastening member is provided in each battery laminated body 5, respectively, In this case, the end plates located in each end surface are fixed to each battery laminated body 5 with a fastening member. In addition, in the state which arranged the two battery laminated bodies 5 in the lamination direction, both side surfaces can also be integrally connected by the fastening member 4. FIG. In this configuration, the fastening member 4 is also used as a member for connecting the battery stacks 5 to each other. Here, the end plates 3 positioned on the end surfaces are fixed to each other by the fastening members 4, and the fastening members are not fixed to the end plates 3 facing each other between the two battery stacks 5. Furthermore, the end plate 3 which opposes between two battery laminated bodies 5 can also be shared as one component. The fixing of the end plate and the fastening member is not limited to the structure of fixing with the bolt described in the embodiment.
(Coating case 16)
 電池積層体5は、被覆ケース16で被覆される。実施例1において電池積層体5は、図5の分解斜視図に示すように、断面をコ字状として下面と両端面を開口した被覆ケース16と、被覆ケース16の両端を覆うエンドプレート3と、電池積層体5の底面を被覆する防水性シート19と、被覆ケース16の開口部を閉塞する冷却プレート61と、冷却プレート61と防水性シート19の間に配置される熱伝導シート12で構成される。ここでは電池積層体5を両端面から狭持するエンドプレート3を、被覆ケース16の端面としても共用している。またエンドプレート3の内側にはパッキン3bが設けられる。パッキン3bは、シート状等の弾性部材である。このようにして電池積層体5を被覆ケース16で覆うことで、密閉構造が実現される。また被覆ケース16は、内面を絶縁して、積層された角形電池セル1間の絶縁を図っている。 The battery stack 5 is covered with a covering case 16. In Example 1, as shown in the exploded perspective view of FIG. 5, the battery stack 5 includes a covering case 16 having a U-shaped cross section and opening the lower surface and both end surfaces, and an end plate 3 covering both ends of the covering case 16. , A waterproof sheet 19 that covers the bottom surface of the battery stack 5, a cooling plate 61 that closes the opening of the covering case 16, and a heat conductive sheet 12 that is disposed between the cooling plate 61 and the waterproof sheet 19. Is done. Here, the end plate 3 that holds the battery stack 5 from both end faces is also used as the end face of the covering case 16. A packing 3 b is provided inside the end plate 3. The packing 3b is a sheet-like elastic member. By covering the battery stack 5 with the covering case 16 in this way, a sealed structure is realized. The covering case 16 insulates the inner surfaces of the stacked rectangular battery cells 1 from each other.
 さらに被覆ケース16の上面には、カバー部24が設けられる。カバー部24には、各電池セルの電極端子と連通するためのスリットが設けられ、このスリットを介して隣接する電池セル同士を接続するバスバー6や、バスバー6と回路基板との電気接続が得られる。またカバー部24には、充填材を注入するための充填材注入口を設けており、先にカバー部24で被覆ケース16を閉塞した後、ポッティング材を充填することができる。この場合は、カバー部24と被覆ケース16との間の隙間、あるいはカバー部24と電池積層体5との間の隙間も充填できる利点が得られる。このようにして、角形電池セル1を被覆し、表面に結露する事態を回避できる。 Further, a cover portion 24 is provided on the upper surface of the covering case 16. The cover portion 24 is provided with slits for communicating with the electrode terminals of the respective battery cells, and electrical connection between the bus bars 6 for connecting adjacent battery cells through the slits and the bus bar 6 and the circuit board is obtained. It is done. Further, the cover portion 24 is provided with a filler inlet for injecting a filler. After the covering case 16 is closed with the cover portion 24, the potting material can be filled. In this case, there is an advantage that a gap between the cover part 24 and the covering case 16 or a gap between the cover part 24 and the battery stack 5 can be filled. In this way, it is possible to avoid the situation where the prismatic battery cell 1 is covered and the surface is condensed.
 さらにカバー部24の内面には、角形電池セル1の安全弁と連通されたガスダクト26を設けている。ガスダクト26を各角形電池セル1の安全弁と連結し、さらにガスダクト26を外部に配管することで、角形電池セル1の内圧が上昇した際に排出されるガスを、安全に外部に排出できる。またカバー部24の上面には、電源装置100を制御するための制御回路を実装した回路基板が配置される。またカバー部に回路基板を一体的に設けてもよい。 Further, a gas duct 26 communicating with the safety valve of the rectangular battery cell 1 is provided on the inner surface of the cover portion 24. By connecting the gas duct 26 to the safety valve of each rectangular battery cell 1 and piping the gas duct 26 to the outside, the gas discharged when the internal pressure of the rectangular battery cell 1 rises can be safely discharged to the outside. A circuit board on which a control circuit for controlling the power supply device 100 is mounted is disposed on the upper surface of the cover portion 24. Further, the circuit board may be integrally provided in the cover portion.
 なお図5の例では、カバー部24を被覆ケース16と一体的に設けているが、これらを別部材で構成することもできる。このような例を変形例として図7に示す。この図に示す被覆ケース16Bは、カバー部24Bを別部材として上面を閉塞している。 In addition, in the example of FIG. 5, although the cover part 24 is provided integrally with the covering case 16, these can also be comprised by another member. Such an example is shown in FIG. 7 as a modified example. The covering case 16B shown in this figure closes the upper surface with the cover portion 24B as a separate member.
 このようにして被覆ケース16で電池積層体5を収納する。被覆ケース16は、各面を構成するケース部材を嵌合構造として、嵌合部分を気密に封止することもできる。このような嵌合構造としては、パッキン、Oリング、ガスケット等が利用でき、被覆ケース16を封止できる。
(張り出し部16b)
In this way, the battery stack 5 is accommodated in the covering case 16. The covering case 16 can also hermetically seal the fitting portion by using a case member constituting each surface as a fitting structure. As such a fitting structure, a packing, an O-ring, a gasket or the like can be used, and the covering case 16 can be sealed.
(Overhang 16b)
 また被覆ケース16は、図8の断面図等に示すように、その底辺において、電池積層体5の隅部で側縁から底面にかけて張り出した張り出し部16bが設けられている。張り出し部16bは、電池積層体5の底面を両側の隅部で保持する。一方で被覆ケース16は、電池積層体5の上面を被覆しているので、被覆ケース16で電池積層体5を上下から挟持することで、電池積層体5を構成する電池セルの天面を同一平面上に並べることができる。いいかえると、電池積層体5の底面を同一面に揃えることで、冷却プレート61との連結面を平面状として、熱結合の安定性、信頼性を向上できる。加えて、被覆ケース16底面の開口を、防水性シート19で覆う際の固定にも利用できる。
(開口部)
Further, as shown in the cross-sectional view of FIG. 8 and the like, the covering case 16 is provided with a protruding portion 16b protruding from the side edge to the bottom surface at the corner of the battery stack 5 at the bottom. The overhanging portion 16b holds the bottom surface of the battery stack 5 at the corners on both sides. On the other hand, since the covering case 16 covers the upper surface of the battery stack 5, the top surface of the battery cells constituting the battery stack 5 is the same by sandwiching the battery stack 5 from above and below with the covering case 16. They can be arranged on a plane. In other words, by aligning the bottom surface of the battery stack 5 to the same surface, the connection surface with the cooling plate 61 can be made flat, and the stability and reliability of thermal coupling can be improved. In addition, the opening on the bottom surface of the covering case 16 can be used for fixing when the waterproof sheet 19 covers the opening.
(Aperture)
 この被覆ケース16は、底面を開口した開口部としている。開口部は、一対の張り出し部16bで挟まれた領域である。この開口部は、冷却プレート61で閉塞できる大きさとする。その一方で、開口部に熱伝導シート12を挿入できるよう、熱伝導シート12の外形は開口部とほぼ同じ又はこれよりも若干小さい大きさに形成される。
(熱伝導シート12)
The covering case 16 is an opening having a bottom opening. The opening is a region sandwiched between the pair of overhang portions 16b. The opening has a size that can be closed by the cooling plate 61. On the other hand, the outer shape of the heat conductive sheet 12 is formed to be substantially the same as or slightly smaller than the opening so that the heat conductive sheet 12 can be inserted into the opening.
(Thermal conductive sheet 12)
 加えて、電池積層体5と冷却プレート61との間には、熱伝導シート12等の伝熱部材が介在される。熱伝導シート12は、絶縁性でかつ熱伝導に優れた材質とし、さらに好ましくはある程度の弾性を有するものが好ましい。このような材質としてはアクリル系、ウレタン系、エポキシ系、シリコーン系の樹脂等が挙げられる。このようにすることで電池積層体5と冷却プレート61との間を電気的に絶縁する。特に、角型電池セル1の外装缶を金属製とし、さらに冷却プレート61を金属製とする場合は、角型電池セル1の底面で導通しないよう、絶縁を図る必要がある。上述の通り外装缶の表面を熱収縮チューブ等で被覆して絶縁しつつ、さらに絶縁性を向上させるために絶縁性の熱伝導シート12を介在させて安全性、信頼性を高めている。また、熱伝導シートに代えて、熱伝導ペースト等を利用することもできる。さらに絶縁性を確実に維持するため、追加の絶縁フィルムを介在させることもできる。また、冷却パイプを絶縁製の材質で構成することもできる。このようにして十分な絶縁性が図られる場合は、熱伝導シート等を省略してもよい。 In addition, a heat transfer member such as the heat conductive sheet 12 is interposed between the battery stack 5 and the cooling plate 61. The heat conductive sheet 12 is made of a material that is insulating and excellent in heat conduction, and more preferably has a certain degree of elasticity. Examples of such a material include acrylic, urethane, epoxy, and silicone resins. By doing in this way, between the battery laminated body 5 and the cooling plate 61 is electrically insulated. In particular, when the outer can of the square battery cell 1 is made of metal and the cooling plate 61 is made of metal, it is necessary to insulate the battery so as not to conduct at the bottom surface of the square battery cell 1. As described above, the surface of the outer can is covered and insulated with a heat-shrinkable tube or the like, and in order to further improve the insulation, the insulating heat conductive sheet 12 is interposed to enhance safety and reliability. Moreover, it can replace with a heat conductive sheet and can also use a heat conductive paste. Furthermore, an additional insulating film can be interposed in order to reliably maintain the insulating property. In addition, the cooling pipe can be made of an insulating material. When sufficient insulation is achieved in this way, the heat conductive sheet or the like may be omitted.
 また熱伝導シート12に弾性を持たせることで、熱伝導シート12の表面を弾性変形させて電池積層体5と冷却プレート61との接触面で隙間を無くし、熱結合状態を良好に改善できる。
(防水構造)
Moreover, by giving elasticity to the heat conductive sheet 12, the surface of the heat conductive sheet 12 is elastically deformed to eliminate a gap at the contact surface between the battery stack 5 and the cooling plate 61, and the thermal coupling state can be improved satisfactorily.
(Waterproof structure)
 電池積層体5は、被覆ケース16で周囲を覆い、防水構造としている。これにより、外部からの埃や水分の浸入を阻止し、意図しない導通や腐食を回避できる。その一方で、外部から侵入する水分のみならず、内部で結露等によって発生した水滴からも保護できる。特に角形電池セルの冷却方式として、冷媒を用いた熱交換によって角形電池セルの熱を奪う冷媒方式を利用すると、より効率よく冷却可能な反面、高い冷却性能のため温度が結露点以下に低下して、電池積層体の周囲に存在する空気中の水分が冷やされて角形電池セルの表面に結露することがある。そこで、単に被覆ケース16を防水構造とするのでなく、被覆ケース16で囲まれた電池積層体5の表面をこのような水滴から保護するため、電池積層体5の表面を充填層18で被覆して、隙間を充填する構造としている。
(充填層18)
The battery stack 5 is covered with a covering case 16 to have a waterproof structure. Thereby, intrusion of dust and moisture from the outside can be prevented, and unintended conduction and corrosion can be avoided. On the other hand, it is possible to protect not only moisture entering from the outside but also water droplets generated by condensation inside. In particular, if a cooling system that takes heat away from the prismatic battery cells by heat exchange using a refrigerant is used as a cooling system for the prismatic battery cells, the cooling can be performed more efficiently, but the temperature drops below the dew point due to high cooling performance. Thus, moisture in the air present around the battery stack may be cooled to cause condensation on the surface of the prismatic battery cell. Therefore, in order to protect the surface of the battery stack 5 surrounded by the cover case 16 from such water droplets, instead of simply making the cover case 16 waterproof, the surface of the battery stack 5 is covered with the filling layer 18. Thus, the gap is filled.
(Filling layer 18)
 図8に、このような防水構造を備える電池積層体5の断面図を示す。この図に示すように、電池積層体5と被覆ケース16との間に充填層18を配置している。すなわち、電池積層体5と被覆ケース16との間の隙間に充填材を充填して充填層18を設けることで、この隙間に存在する空気中の水分が結露して電池積層体5に悪影響を与える事態を回避している。 FIG. 8 shows a cross-sectional view of the battery stack 5 having such a waterproof structure. As shown in this figure, a filling layer 18 is disposed between the battery stack 5 and the covering case 16. That is, by filling the gap between the battery stack 5 and the covering case 16 with the filler, and providing the filling layer 18, moisture in the air existing in the gap is condensed and the battery stack 5 is adversely affected. The situation to give is avoided.
 実施例1の例では、充填層18として電池積層体5の周囲を充填材で被覆している。ここでは、電池積層体5の表面に充填材を保持するため、電池積層体5の周囲を被覆ケース16で囲むことにより、電池積層体5と被覆ケース16との間に充填材を注入している。これによって電池積層体5と被覆ケース16との間の空間を無くし、電池積層体5の表面が結露して悪影響を与える事態を回避できる。実施例1では、エンドプレート3と被覆ケース16で防水構造を実現するため、締結部材4による締結後、エンドプレート3と被覆ケース16で囲まれた領域内で、電池積層体5との隙間に、充填層18として充填材を充填している。これによって、電池積層体5の周囲を防水した防水構造が得られる。
(充填材)
In the example of Example 1, the battery stack 5 is covered with a filler as the filler layer 18. Here, in order to hold the filler on the surface of the battery stack 5, the filler is injected between the battery stack 5 and the covering case 16 by surrounding the battery stack 5 with the covering case 16. Yes. As a result, the space between the battery stack 5 and the covering case 16 is eliminated, and a situation in which the surface of the battery stack 5 is dewed and adversely affected can be avoided. In Example 1, in order to realize a waterproof structure with the end plate 3 and the covering case 16, after fastening by the fastening member 4, in the space surrounded by the end plate 3 and the covering case 16, The filling layer 18 is filled with a filler. Thereby, a waterproof structure in which the periphery of the battery stack 5 is waterproof is obtained.
(Filler)
 充填材は、隙間を充填するポッティング材が利用できる。このようなポッティング材としては、ウレタン系樹脂が好適に利用できる。このように充填材でポッティングすることで、空間を無くし、角形電池セル1の表面を保護し、結露による導通や腐食を回避できる。なお充填材を隙間に行き渡らせ、気泡の発生を回避するよう、充填材の充填時には被覆ケース16内を減圧又は負圧とすることが好ましい。あるいは逆に、充填材を加圧して注入することもできる。充填材の充填後、充填材が完全に硬化するまで乾燥させる。また、被覆ケースを樹脂製とし、充填材を被覆ケースと同系統の樹脂製とすることで、充填材硬化後の接着性を向上させることもできる。
(防水性シート19)
A potting material that fills the gap can be used as the filler. As such a potting material, urethane resin can be preferably used. By potting with the filler in this way, space is eliminated, the surface of the rectangular battery cell 1 is protected, and conduction and corrosion due to condensation can be avoided. In addition, it is preferable to make the inside of the covering case 16 have a reduced pressure or a negative pressure when filling the filler so as to spread the filler in the gap and avoid the generation of bubbles. Or conversely, the filler can be injected under pressure. After filling the filler, it is dried until the filler is completely cured. Moreover, the adhesiveness after hardening of a filler can also be improved by making a coating case into resin and making a filler into resin of the same system as a coating case.
(Waterproof sheet 19)
 一方で、被覆ケース16は底面を開口しているため、この部分で電池積層体5を被覆ができない。そこで、開口面を被覆する防水性シート19を設けている。防水性シート19は、図4の斜視図に示すように、電池積層体5の底面を被覆するように配置され、この状態で電池積層体5に固定される。防水性シート19の固定には、例えば接着材を防水性シート19と電池積層体5との界面に塗布する。また、被覆ケース16の張り出し部16bで固定することもできる。特に、充填層18を電池積層体5と被覆ケース16の隙間に充填して固定する際に、併せて防水性シート19も固定することもできる。このようにすることで、隙間に充填した充填層18の硬化によって防水性シート19の端縁を電池積層体5や被覆ケース16に確実に固定できることに加え、防水性シート19と被覆ケース16との間の隙間も充填されて、この部分からの浸水を阻止可能な防水構造を実現できる。 On the other hand, since the covering case 16 has an open bottom, the battery stack 5 cannot be covered with this portion. Therefore, a waterproof sheet 19 that covers the opening surface is provided. As shown in the perspective view of FIG. 4, the waterproof sheet 19 is disposed so as to cover the bottom surface of the battery stack 5, and is fixed to the battery stack 5 in this state. For fixing the waterproof sheet 19, for example, an adhesive is applied to the interface between the waterproof sheet 19 and the battery stack 5. Further, it can be fixed by the overhanging portion 16 b of the covering case 16. In particular, when the filling layer 18 is filled and fixed in the gap between the battery stack 5 and the covering case 16, the waterproof sheet 19 can also be fixed. By doing in this way, in addition to being able to fix the edge of waterproof sheet 19 to battery layered product 5 or covering case 16 surely by hardening of filling layer 18 filled in the gap, waterproof sheet 19 and covering case 16 A waterproof structure capable of blocking water from this portion can be realized.
 防水性シート19には、防水性に優れた樹脂製のシートが利用でき、例えばPETやPEV、PP等が利用できる。また、防水シートを介して電池積層体5を冷却プレート61で放熱することから、熱伝導に優れる部材とすることが好ましい。加えて、電池積層体5を構成する電池セル間の絶縁も図る必要があり、絶縁性にも優れた素材であることが必要である。さらに、電池セルが発熱しても容易に破損しないよう、耐熱性にも優れることが好ましい。このような特性を備える防水性シート19としては、アクリル系材料等が好適に利用できる。
(実施例2)
As the waterproof sheet 19, a resin-made sheet having excellent waterproof properties can be used. For example, PET, PEV, PP, or the like can be used. Moreover, since the battery laminated body 5 is radiated by the cooling plate 61 through the waterproof sheet, it is preferable to use a member having excellent heat conduction. In addition, it is necessary to insulate the battery cells constituting the battery stack 5, and it is necessary that the material has an excellent insulating property. Furthermore, it is preferable that the battery cell is also excellent in heat resistance so that the battery cell is not easily damaged even if it generates heat. As the waterproof sheet 19 having such characteristics, an acrylic material or the like can be suitably used.
(Example 2)
 また熱伝導シート12を電池積層体5と直接接触させるように、防水性シート19の一部を除去することもできる。このような例を実施例2として図9に示す。この図に示す電池積層体5は、充填材の硬化後に、図11に示す状態から電池積層体5の底面を覆う防水性シート19を除去している。防水性シート19が除去された部分は、電池積層体5の底面が露出するので、この面に熱伝導シート12を押圧して、電池積層体5と熱伝導シート12に直接密着させて、熱抵抗を低減し、冷却プレート61による放熱性を向上させることが期待できる。また、充填材の硬化後であれば、既に電池積層体5の表面は露出部分を除いて密封されているので、露出部分を完全に熱伝導シート12で覆うことができれば、防水構造も維持できる。このため防水性シート19の除去は、好ましくは熱伝導シート12の面積よりも小さくする。また、除去されずに残った防水性シート19bは、張り出し部16bの部分で気密性を維持できる。これによって、防水性シート19が除去されて電池積層体5の底面が露出した領域を、熱伝導シート12で完全に被覆することができる。
(充填材の充填)
Further, a part of the waterproof sheet 19 can be removed so that the heat conductive sheet 12 is brought into direct contact with the battery stack 5. Such an example is shown in FIG. The battery laminate 5 shown in this figure has the waterproof sheet 19 covering the bottom surface of the battery laminate 5 removed from the state shown in FIG. 11 after the filler is cured. Since the bottom surface of the battery stack 5 is exposed at the portion where the waterproof sheet 19 has been removed, the heat conductive sheet 12 is pressed against this surface, and the battery stack 5 and the heat conductive sheet 12 are directly adhered to each other. It can be expected that resistance is reduced and heat dissipation by the cooling plate 61 is improved. Further, since the surface of the battery stack 5 is already sealed except for the exposed portion if the filler is cured, if the exposed portion can be completely covered with the heat conductive sheet 12, the waterproof structure can be maintained. . For this reason, the removal of the waterproof sheet 19 is preferably made smaller than the area of the heat conductive sheet 12. Further, the waterproof sheet 19b remaining without being removed can maintain airtightness at the overhanging portion 16b. Thereby, the region where the waterproof sheet 19 is removed and the bottom surface of the battery stack 5 is exposed can be completely covered with the heat conductive sheet 12.
(Filling material)
 ここで充填材を充填する手順を、図10~図11の断面図に基づいて説明する。この図に示すように、電池積層体5の周囲を被覆ケース16で覆った状態で、その底面の開口部に防水性シート19を配置する。ここでは、防水性シート固定用の治具JGを用いて防水性シート19を支持する。治具JGは、開口部とほぼ同じ大きさか、又はこれよりも若干小さい大きさとして、開口部を貫通して防水性シート19を電池積層体5の底面に押圧する。 Here, the procedure for filling the filler will be described based on the sectional views of FIGS. As shown in this figure, a waterproof sheet 19 is disposed in the opening on the bottom surface of the battery stack 5 with the cover case 16 covering the periphery. Here, the waterproof sheet 19 is supported using a jig JG for fixing the waterproof sheet. The jig JG has a size substantially the same as or slightly smaller than the opening, and presses the waterproof sheet 19 against the bottom surface of the battery stack 5 through the opening.
 治具JGで防水性シート19を押圧した状態で、電池積層体5の表面と被覆ケース16の内面との間の隙間に、充填材を充填する。充填材は、例えば予め被覆ケース16に開口された充填材注入口から注入される。そして充填材が硬化後、治具JGを取り外して、開口部を開口させる。この状態では、充填材の硬化によって形成された充填層18が電池積層体5の外表面と被覆ケース16の内面との間の隙間を排除できる。さらにこの状態から、図11に示すように、開口部に熱伝導シート12を挿入し、さらに熱伝導シート12の底面を冷却プレート61で押圧した状態となるよう、冷却プレート61を電池積層体5に固定する。これにより、冷却プレート61を熱伝導シート12及び防水性シート19を介して電池積層体5の底面に熱伝導状態とでき、この面で熱交換を行うことにより電池積層体5を冷却できる。また、必要に応じて、熱伝導シート12を配置する前に、防水性シート19を部分的に除去してもよいことは、上述の通りである。 充填 Fill the gap between the surface of the battery stack 5 and the inner surface of the covering case 16 with the waterproof sheet 19 pressed by the jig JG. The filler is injected from, for example, a filler inlet that is previously opened in the covering case 16. Then, after the filler is cured, the jig JG is removed and the opening is opened. In this state, the filling layer 18 formed by the hardening of the filler can eliminate a gap between the outer surface of the battery stack 5 and the inner surface of the covering case 16. Further, from this state, as shown in FIG. 11, the cooling plate 61 is placed in the battery stack 5 so that the heat conduction sheet 12 is inserted into the opening and the bottom surface of the heat conduction sheet 12 is pressed by the cooling plate 61. Secure to. Thereby, the cooling plate 61 can be in a heat conduction state on the bottom surface of the battery stack 5 via the heat conductive sheet 12 and the waterproof sheet 19, and the battery stack 5 can be cooled by performing heat exchange on this surface. In addition, as described above, the waterproof sheet 19 may be partially removed before disposing the heat conductive sheet 12 as necessary.
 以上の例では、電池積層体5の底面で冷却プレート61と熱結合させるため、被覆ケース16の底面を開口している。ただ、この構成に限られず、例えば電池積層体の側面や天面を開口させて、この部分で冷却プレートとの熱結合を図ることもできる。なお、電池セルの電極端子は一般に電池セルの天面に設けられるため、好ましくは電極端子を設けた面とは異なる面に、冷却プレートを配置して熱結合を図る。
(連結構造)
In the above example, the bottom surface of the covering case 16 is opened to thermally couple with the cooling plate 61 at the bottom surface of the battery stack 5. However, the present invention is not limited to this configuration, and for example, the side surface or top surface of the battery stack can be opened, and thermal coupling with the cooling plate can be achieved at this portion. In addition, since the electrode terminal of a battery cell is generally provided in the top | upper surface of a battery cell, Preferably a cooling plate is arrange | positioned in the surface different from the surface which provided the electrode terminal, and a thermal coupling is aimed at.
(Linked structure)
 一方で、電池積層体5及び冷却プレート61は、電池積層体5を冷却プレート61上に固定するための連結構造を備えている。連結構造は、図2~図5に示す例では、締結部材4の本体部41の下端から突出するように設けられた締結連結部44と、冷却プレート61側に設けられたプレート連結部とで構成される。締結連結部44は、複数を互いに離間して設けている。図2の例では、本体部41の下端で両側と中間の3箇所に設けられている。
(係止片)
On the other hand, the battery stack 5 and the cooling plate 61 have a connection structure for fixing the battery stack 5 on the cooling plate 61. In the example shown in FIGS. 2 to 5, the connection structure includes a fastening connection portion 44 provided so as to protrude from the lower end of the main body portion 41 of the fastening member 4, and a plate connection portion provided on the cooling plate 61 side. Composed. A plurality of fastening connecting portions 44 are provided apart from each other. In the example of FIG. 2, the lower end of the main body portion 41 is provided at three locations on both sides and in the middle.
(Locking piece)
 締結連結部44は、図3~図4の例では、先端を鉤状に形成した係止片としている。この係止片は、鉤状の突出方向を、電池積層体5から外向きの姿勢としている。
(プレート連結部)
In the example shown in FIGS. 3 to 4, the fastening connecting portion 44 is a locking piece having a tip formed in a hook shape. This locking piece has a hook-like protruding direction that is outward from the battery stack 5.
(Plate connecting part)
 一方で冷却プレート61側には、この締結連結部44と連結するための連結機構としてプレート連結部を設けている。プレート連結部は、締結連結部44を設けた位置と対応する位置に設けられる。このようなプレート連結部として、図5の例では係止片を係止可能な係止孔51が形成された連結バー50を利用している。この係止孔51に鉤状の係止片を挿入して係止することで、締結部材4を容易に冷却プレート61に固定できる。
(連結バー50)
On the other hand, on the cooling plate 61 side, a plate connecting portion is provided as a connecting mechanism for connecting to the fastening connecting portion 44. The plate connecting portion is provided at a position corresponding to the position where the fastening connecting portion 44 is provided. As such a plate connecting portion, in the example of FIG. 5, a connecting bar 50 in which a locking hole 51 capable of locking a locking piece is formed is used. The fastening member 4 can be easily fixed to the cooling plate 61 by inserting a hook-like locking piece into the locking hole 51 and locking it.
(Connection bar 50)
 連結バー50は、図5の分解斜視図に示すように、ストリップ条を断面視略コ字状に折曲した形状としている。ストリップ条は、十分な強度を発揮できるよう金属板で構成する。図5の例では、ストリップ条の表面に段差を形成して強度を向上させている。この連結バー50の長さは、略コ字状の折曲部分で冷却プレート61の底面を挟み込める大きさとする。この連結バー50の端面に、プレート連結部として係止孔51を開口している。このようにして、連結バー50を用いることで冷却プレート61に容易にプレート連結部を付加できる。特に、冷媒循環機能等を備える冷却プレート61の形状を複雑化することなく連結機構を追加できる。
(冷媒循環機構)
As shown in the exploded perspective view of FIG. 5, the connecting bar 50 has a shape in which the strip strip is bent in a substantially U shape in a sectional view. The strip strip is made of a metal plate so as to exhibit sufficient strength. In the example of FIG. 5, the strength is improved by forming a step on the surface of the strip strip. The length of the connecting bar 50 is set such that the bottom surface of the cooling plate 61 can be sandwiched between the substantially U-shaped bent portions. A locking hole 51 is opened on the end face of the connecting bar 50 as a plate connecting portion. In this manner, the plate connecting portion can be easily added to the cooling plate 61 by using the connecting bar 50. In particular, a coupling mechanism can be added without complicating the shape of the cooling plate 61 having a refrigerant circulation function or the like.
(Refrigerant circulation mechanism)
 冷却プレート61は、その内部に冷媒循環機構を設けている。図12に、このような冷媒循環機構の一例を示す。図12に示す組電池10は、複数の角形電池セル1を積層している電池積層体5を、冷却プレート61の上面に配置している。この冷却プレート61は、電池積層体5を構成する角形電池セル1に熱結合状態に配置している。冷却プレート61は、冷媒配管を配設しており、この冷媒配管を冷却機構69に連結している。この組電池10は、電池積層体5を冷却プレート61に接触させて直接、効果的に冷却できる。また、電池積層体のみならず、例えば電池積層体の端面に配置した各部材等も併せて冷却することもできる。このように、内部に冷媒を循環させる冷却パイプ60を内蔵した冷却プレート61を、被覆ケース16と接触させて冷却することで、放熱性を向上させ、電源装置を高出力でも安定的に利用可能とできる。
(冷却プレート61)
The cooling plate 61 is provided with a refrigerant circulation mechanism therein. FIG. 12 shows an example of such a refrigerant circulation mechanism. In the battery pack 10 shown in FIG. 12, a battery stack 5 in which a plurality of rectangular battery cells 1 are stacked is arranged on the upper surface of a cooling plate 61. The cooling plate 61 is disposed in a thermally coupled state to the rectangular battery cells 1 constituting the battery stack 5. The cooling plate 61 is provided with a refrigerant pipe, and the refrigerant pipe is connected to a cooling mechanism 69. The assembled battery 10 can be effectively cooled directly by bringing the battery stack 5 into contact with the cooling plate 61. Further, not only the battery stack, but also, for example, each member disposed on the end face of the battery stack can be cooled together. In this way, the cooling plate 61 containing the cooling pipe 60 that circulates the refrigerant therein is brought into contact with the coating case 16 to cool it, thereby improving heat dissipation and allowing the power supply device to be used stably even at high output. And can.
(Cooling plate 61)
 冷却プレート61は、角形電池セル1の熱を熱伝導して外部に放熱するための放熱体であり、図12の例では冷媒配管を配設している。冷却プレート61は、熱交換器として、冷却液である液化された冷媒を循環させる銅やアルミニウム等の冷媒配管である冷却パイプ60を内蔵している。冷却パイプ60は、冷却プレート61の上面板に熱結合されており、底板との間には断熱材を配設して、底板との間を断熱している。また、冷却プレート61にはこのような冷媒による冷却機能を付加する他、金属板のみで構成することもできる。例えば放熱フィンを設けた金属体等、放熱、伝熱性に優れた形状とする。または金属製に限らず、絶縁性を有する伝熱シートを利用しても良い。 The cooling plate 61 is a heat radiating body for conducting heat of the rectangular battery cell 1 to dissipate it to the outside. In the example of FIG. The cooling plate 61 incorporates a cooling pipe 60 that is a refrigerant pipe made of copper, aluminum, or the like that circulates a liquefied refrigerant that is a cooling liquid as a heat exchanger. The cooling pipe 60 is thermally coupled to the upper surface plate of the cooling plate 61, and a heat insulating material is disposed between the cooling plate 60 and the bottom plate to insulate the space from the bottom plate. Further, in addition to the cooling function by such a refrigerant, the cooling plate 61 can be composed of only a metal plate. For example, it is made into the shape excellent in heat dissipation and heat transfer property, such as a metal body provided with a radiation fin. Or you may utilize not only metal but the heat-transfer sheet | seat which has insulation.
 冷却プレート61は、内部に配管された冷媒配管に、冷却機構69から冷却液が供給されて冷却される。冷却プレート61は、冷却機構69から供給される冷却液を、冷媒配管の内部で気化する気化熱で冷却プレート61を冷却する冷媒としてより効率よく冷却できる。 The cooling plate 61 is cooled by supplying the coolant from the cooling mechanism 69 to the refrigerant piping provided inside. The cooling plate 61 can cool the cooling liquid supplied from the cooling mechanism 69 more efficiently as a refrigerant that cools the cooling plate 61 with heat of vaporization that evaporates inside the refrigerant pipe.
 図12の例では、各冷却プレート61上に2つの電池積層体5を載置している。上述の通り、長さ方向すなわち角型電池セル1の積層方向に2つの電池積層体5が連結されて一の電池積層連続体10Bを構成しており、このような連結状態にある2つの電池積層体5を、一の冷却プレート61で支持している。これらの電池積層連続体10Bを2つ平行に並べて、組電池10を構成している。 In the example of FIG. 12, two battery stacks 5 are placed on each cooling plate 61. As described above, two battery stacks 5 are connected in the length direction, that is, the stacking direction of the rectangular battery cells 1 to form one battery stack continuous body 10B, and the two batteries in such a connected state are formed. The stacked body 5 is supported by one cooling plate 61. Two of these battery stack continuous bodies 10B are arranged in parallel to constitute the assembled battery 10.
 また図12の例では、冷却プレート61を角型電池セル1の積層方向に延長すると共に、内部に配管された冷却パイプ60を端縁で折り返すようにして蛇行させることで、3列の直線状冷却パイプ60が電池積層体5の下面に配置される。そして、電池積層連続体10B同士で冷却パイプ60同士を接続することで、冷媒の循環経路を共通化している。このように、一の冷却プレート61上に複数の電池積層体5を載置して冷却させる構成とすれば、冷却機構を共用でき、冷却プレート61を共通化してより安価で簡素化された冷却機構を実現できる。ただ、電池積層体の下面に複数本の冷却パイプを配置することもでき、例えば蛇行した冷却パイプを折り返し部分で分割して、複数本の冷却パイプとすることができる。これにより、蛇行部分を無くすことができるので、軽量化を図ることができる。このとき、各冷却パイプ同士を接続して、冷媒経路を共通化させても良い。なお、冷却パイプを配置する構成や形状は、適宜変更することができる。 In the example of FIG. 12, the cooling plate 61 is extended in the stacking direction of the prismatic battery cells 1, and the cooling pipe 60 piped therein is meandered so as to be folded back at the edge, thereby forming three straight lines. A cooling pipe 60 is disposed on the lower surface of the battery stack 5. And the circulation path of a refrigerant | coolant is made common by connecting the cooling pipes 60 with battery lamination | stacking continuous bodies 10B. Thus, if it is set as the structure which mounts and cools the several battery laminated body 5 on the one cooling plate 61, a cooling mechanism can be shared and the cooling plate 61 is made common and cheaper and simplified cooling. The mechanism can be realized. However, a plurality of cooling pipes can be arranged on the lower surface of the battery stack. For example, a meandering cooling pipe can be divided at a folded portion to form a plurality of cooling pipes. Thereby, since the meandering portion can be eliminated, the weight can be reduced. At this time, the cooling pipes may be connected to share a refrigerant path. In addition, the structure and shape which arrange | position a cooling pipe can be changed suitably.
 さらに冷却プレート61は、複数の角形電池セル1の温度を均等化する均熱化手段としても機能する。すなわち、冷却プレート61が角形電池セル1から吸収する熱エネルギーを調整して、温度が高くなる角形電池セル、例えば中央部の角形電池セルを効率よく冷却して、温度が低くなる領域、例えば両端部の角形電池セルの冷却を少なくして、角形電池セルの温度差を少なくする。これによって、角形電池セルの温度むらを低減して、一部の角形電池セルの劣化が進み過充電、過放電となる事態を回避できる。 Furthermore, the cooling plate 61 also functions as a soaking means for equalizing the temperatures of the plurality of rectangular battery cells 1. That is, by adjusting the thermal energy absorbed by the cooling plate 61 from the rectangular battery cell 1, the rectangular battery cell whose temperature is increased, for example, the rectangular battery cell in the central portion is efficiently cooled, and the temperature is decreased, for example, both ends The cooling of the rectangular battery cells is reduced, and the temperature difference between the rectangular battery cells is reduced. As a result, the temperature unevenness of the prismatic battery cells can be reduced, and a situation in which some of the prismatic battery cells are deteriorated and overcharge and overdischarge can be avoided.
 なお、図12では、電池積層体5の底面に冷却プレート61を配置する例を示したが、この構成に限られるものでない。例えば冷却プレートを角形電池セルの両側面にそれぞれ配置したり、又は側面にのみ配置することもできる。
(冷却パイプ60)
In addition, although the example which arrange | positions the cooling plate 61 in the bottom face of the battery laminated body 5 was shown in FIG. 12, it is not restricted to this structure. For example, the cooling plates can be arranged on both side surfaces of the prismatic battery cell, or can be arranged only on the side surfaces.
(Cooling pipe 60)
 さらに、冷却プレートのような金属板を用いることなく、内部の冷媒を通す冷却パイプ60を直接電池積層体5の下面に配置することもできる。すなわち図13の模式断面図に示すように、複数列の冷却パイプ60を電池積層体5を収納した被覆ケース16の下面に配置し、さらに冷却パイプ60同士の間には断熱部材14を配置する。このように、冷却パイプ60の周囲で空気層を排除し、断熱部材で覆うことにより断熱して冷却パイプ60の高効率冷却が実現される。また、このようにして高効率の冷却が実現される結果、従来のように冷却パイプを電池積層体の底面に多数列敷設する必要を無くし、2列や3列といった少ない列数でも十分な冷却効果を得て、冷却機構の簡素化と電源装置の軽量化が図られる。さらにこの方式であれば、冷却プレートのような金属板を介在させることなく、冷媒を流す冷却パイプを直接電池積層体5に当てて冷却できるので、この点でも薄型と軽量化、小型化が図られる。 Furthermore, the cooling pipe 60 through which the internal refrigerant passes can be directly disposed on the lower surface of the battery stack 5 without using a metal plate such as a cooling plate. That is, as shown in the schematic cross-sectional view of FIG. 13, a plurality of rows of cooling pipes 60 are arranged on the lower surface of the covering case 16 that houses the battery stack 5, and the heat insulating member 14 is arranged between the cooling pipes 60. . In this way, the air pipe is eliminated around the cooling pipe 60 and is insulated by covering with the heat insulating member, so that the cooling pipe 60 can be efficiently cooled. In addition, as a result of realizing high-efficiency cooling in this way, there is no need to lay a large number of cooling pipes on the bottom surface of the battery stack as in the prior art, and sufficient cooling is possible even with a small number of rows such as two or three rows The effect is obtained, and the cooling mechanism is simplified and the power supply device is reduced in weight. Furthermore, with this method, the cooling pipe for flowing the coolant can be directly applied to the battery stack 5 without interposing a metal plate such as a cooling plate, so that in this respect as well, the thickness, weight, and size can be reduced. It is done.
 冷却パイプ60は、図13に示すように、電池積層体5との対向面を平坦とした扁平型に形成されている。このようにすることで、円筒形の冷却パイプと比べ、角型電池セル1との接触面積を増やして電池積層体5との熱結合を確実に実現できる。また冷却パイプ60は、熱伝導に優れた材質で構成する。ここではアルミニウム等の金属製としている。特に、アルミニウム製の冷却パイプは比較的柔らかいため、電池積層体5との接触界面で押圧させることで表面を多少変形させて密着性を向上でき、高い熱伝導性を実現できる。
(断熱部材14)
As shown in FIG. 13, the cooling pipe 60 is formed in a flat shape having a flat surface facing the battery stack 5. By doing in this way, compared with a cylindrical cooling pipe, the contact area with the square battery cell 1 can be increased, and the thermal coupling with the battery laminated body 5 can be realized reliably. The cooling pipe 60 is made of a material excellent in heat conduction. Here, it is made of metal such as aluminum. In particular, since the aluminum cooling pipe is relatively soft, the surface can be slightly deformed by pressing at the contact interface with the battery stack 5 to improve the adhesion, and high thermal conductivity can be realized.
(Insulation member 14)
 さらに図13の電源装置では、冷却パイプ60同士の間の隙間に断熱部材14を配置している。断熱部材14は、断熱性樹脂とできる。例えばウレタン系樹脂等が好適に利用できる。ここでは、図13に示すように冷却パイプ60の周囲を断熱性樹脂でポッティングにより被覆する。このようにすることで、ポッティングにより確実に冷却パイプ60と電池積層体5の底面とを被覆して、結露の発生を阻止して安全性を高めることができる。 Further, in the power supply device of FIG. 13, the heat insulating member 14 is disposed in the gap between the cooling pipes 60. The heat insulating member 14 can be a heat insulating resin. For example, urethane resin can be suitably used. Here, as shown in FIG. 13, the periphery of the cooling pipe 60 is covered with a heat insulating resin by potting. By doing so, the cooling pipe 60 and the bottom surface of the battery stack 5 can be reliably covered by potting to prevent the occurrence of condensation and enhance safety.
 なお図13の例では、冷却パイプ60を電池積層体5の底面に、熱伝導シート12を介して当接させた状態で、冷却パイプ60同士の間の隙間や冷却パイプ60の下面に断熱部材14を充填して被覆している。ただ、冷却パイプ60の上面にも断熱部材14を充填すれば、冷却パイプ60の上面を絶縁することができ、角型電池セル1との間に設ける熱伝導シートを不要とすることもできる。 In the example of FIG. 13, a heat insulating member is provided in the gap between the cooling pipes 60 or the lower surface of the cooling pipe 60 in a state where the cooling pipe 60 is in contact with the bottom surface of the battery stack 5 via the heat conductive sheet 12. 14 is filled and coated. However, if the upper surface of the cooling pipe 60 is also filled with the heat insulating member 14, the upper surface of the cooling pipe 60 can be insulated, and the heat conductive sheet provided between the prismatic battery cells 1 can be dispensed with.
 また図13の例では、被覆ケース16として下面を開口し上面を閉塞した箱形のタイプを使用した例を説明したが、被覆ケースには上述したように上面を開口して下面を閉塞した有底箱形のタイプを使用することもできる。また、冷却プレートは均一な金属プレートとする他、ストリップ状の金属プレートを一又は複数、部分的に埋め込むようにインサート成形することもできる。この場合は、図14の断面図に示すように、冷却パイプ60と対応する位置に金属プレート21cが配置されるように冷却プレートを構成することで、冷却パイプ60との熱結合を向上させることができる。 In the example of FIG. 13, an example has been described in which the cover case 16 is a box type with an open lower surface and a closed upper surface. However, the cover case has an open upper surface and a closed lower surface as described above. A bottom box type can also be used. The cooling plate may be a uniform metal plate, or may be insert-molded so that one or a plurality of strip-shaped metal plates are partially embedded. In this case, as shown in the cross-sectional view of FIG. 14, the cooling plate is configured such that the metal plate 21c is disposed at a position corresponding to the cooling pipe 60, thereby improving the thermal coupling with the cooling pipe 60. Can do.
 このようにして、実施例1に係る電源装置100は電池積層体5を密閉して防水構造とし、結露等から角形電池セル1を保護している。この構成では、被覆ケース16とエンドプレート3によって内部空間を画定でき、ここにポッティング等によって充填層18を配して密閉できる。また、エンドプレート3が外側に位置するため、外装ケースやフレーム等への固定を容易に行える利点も得られる。さらに締結部材4が被覆ケース16の外側に位置するため、冷却プレート61を固定するための固定構造を小型化できる利点も得られる。 Thus, the power supply device 100 according to the first embodiment seals the battery stack 5 to have a waterproof structure, and protects the prismatic battery cell 1 from condensation and the like. In this configuration, the inner space can be defined by the covering case 16 and the end plate 3, and the filling layer 18 can be disposed and sealed by potting or the like. Moreover, since the end plate 3 is located outside, there is an advantage that it can be easily fixed to an exterior case, a frame, or the like. Furthermore, since the fastening member 4 is located outside the covering case 16, there is also an advantage that the fixing structure for fixing the cooling plate 61 can be reduced in size.
 なお、被覆ケースを金属製とする等十分な強度を持たせることで、被覆ケースにエンドプレート3を固定して電池積層体を締結することもできる。この構成であれば、被覆ケースが締結部材を兼用できるため、より一層の小型化が図られる。 It should be noted that the battery stack can be fastened by fixing the end plate 3 to the covering case by providing the covering case with a sufficient strength such as being made of metal. If it is this structure, since a coating | coated case can serve as a fastening member, further size reduction is achieved.
 以上の電源装置は、車載用の電源として利用できる。電源装置を搭載する車両としては、エンジンとモータの両方で走行するハイブリッド車やプラグインハイブリッド車、あるいはモータのみで走行する電気自動車等の電動車両が利用でき、これらの車両の電源として使用される。
(ハイブリッド車用電源装置)
The above power supply apparatus can be used as a vehicle-mounted power supply. As a vehicle equipped with a power supply device, an electric vehicle such as a hybrid vehicle or a plug-in hybrid vehicle that runs with both an engine and a motor, or an electric vehicle that runs only with a motor can be used, and is used as a power source for these vehicles. .
(Power supply for hybrid vehicles)
 図15に、エンジンとモータの両方で走行するハイブリッド車に電源装置を搭載する例を示す。この図に示す電源装置を搭載した車両HVは、車両HVを走行させるエンジン96及び走行用のモータ93と、モータ93に電力を供給する電源装置100と、電源装置100の電池を充電する発電機94とを備えている。電源装置100は、DC/ACインバータ95を介してモータ93と発電機94に接続している。車両HVは、電源装置100の電池を充放電しながらモータ93とエンジン96の両方で走行する。モータ93は、エンジン効率の悪い領域、例えば加速時や低速走行時に駆動されて車両を走行させる。モータ93は、電源装置100から電力が供給されて駆動する。発電機94は、エンジン96で駆動され、あるいは車両にブレーキをかけるときの回生制動で駆動されて、電源装置100の電池を充電する。
(電気自動車用電源装置)
FIG. 15 shows an example in which a power supply device is mounted on a hybrid vehicle that runs with both an engine and a motor. A vehicle HV equipped with the power supply device shown in this figure includes an engine 96 and a travel motor 93 that travel the vehicle HV, a power supply device 100 that supplies power to the motor 93, and a generator that charges a battery of the power supply device 100. 94. The power supply apparatus 100 is connected to a motor 93 and a generator 94 via a DC / AC inverter 95. The vehicle HV travels by both the motor 93 and the engine 96 while charging / discharging the battery of the power supply device 100. The motor 93 is driven to drive the vehicle when the engine efficiency is low, for example, during acceleration or low-speed driving. The motor 93 is driven by power supplied from the power supply device 100. The generator 94 is driven by the engine 96 or is driven by regenerative braking when the vehicle is braked to charge the battery of the power supply device 100.
(Power supply for electric vehicles)
 また図16に、モータのみで走行する電気自動車に電源装置を搭載する例を示す。この図に示す電源装置を搭載した車両EVは、車両EVを走行させる走行用のモータ93と、このモータ93に電力を供給する電源装置100と、この電源装置100の電池を充電する発電機94とを備えている。モータ93は、電源装置100から電力が供給されて駆動する。発電機94は、車両EVを回生制動する時のエネルギーで駆動されて、電源装置100の電池を充電する。
(蓄電用電源装置)
FIG. 16 shows an example in which a power supply device is mounted on an electric vehicle that runs only with a motor. A vehicle EV equipped with the power supply device shown in this figure includes a traveling motor 93 for traveling the vehicle EV, a power supply device 100 that supplies power to the motor 93, and a generator 94 that charges a battery of the power supply device 100. And. The motor 93 is driven by power supplied from the power supply device 100. The generator 94 is driven by energy when regeneratively braking the vehicle EV and charges the battery of the power supply device 100.
(Power storage device for power storage)
 さらに、この電源装置は、移動体用の動力源としてのみならず、載置型の蓄電用設備としても利用できる。例えば家庭用、工場用の電源として、太陽光や深夜電力等で充電し、必要時に放電する電源システム、あるいは日中の太陽光を充電して夜間に放電する街路灯用の電源や、停電時に駆動する信号機用のバックアップ電源等にも利用できる。このような例を図17に示す。この図に示す電源装置100は、複数の電池パック81をユニット状に接続して電池ユニット82を構成している。各電池パック81は、複数の角型電池セル1が直列及び/又は並列に接続されている。各電池パック81は、電源コントローラ84により制御される。この電源装置100は、電池ユニット82を充電用電源CPで充電した後、負荷LDを駆動する。このため電源装置100は、充電モードと放電モードを備える。負荷LDと充電用電源CPはそれぞれ、放電スイッチDS及び充電スイッチCSを介して電源装置100と接続されている。放電スイッチDS及び充電スイッチCSのON/OFFは、電源装置100の電源コントローラ84によって切り替えられる。充電モードにおいては、電源コントローラ84は充電スイッチCSをONに、放電スイッチDSをOFFに切り替えて、充電用電源CPから電源装置100への充電を許可する。また充電が完了し満充電になると、あるいは所定値以上の容量が充電された状態で負荷LDからの要求に応じて、電源コントローラ84は充電スイッチCSをOFFに、放電スイッチDSをONにして放電モードに切り替え、電源装置100から負荷LDへの放電を許可する。また、必要に応じて、充電スイッチCSをONに、放電スイッチDSをONにして、負荷LDの電力供給と、電源装置100への充電を同時に行うこともできる。 Furthermore, this power supply device can be used not only as a power source for a moving body but also as a stationary power storage facility. For example, as a power source for home and factory use, a power supply system that is charged with sunlight or midnight power and discharged when necessary, or a streetlight power supply that charges sunlight during the day and discharges at night, or during a power outage It can also be used as a backup power source for driving signals. Such an example is shown in FIG. The power supply apparatus 100 shown in this figure forms a battery unit 82 by connecting a plurality of battery packs 81 in a unit shape. Each battery pack 81 has a plurality of prismatic battery cells 1 connected in series and / or in parallel. Each battery pack 81 is controlled by a power controller 84. The power supply apparatus 100 drives the load LD after charging the battery unit 82 with the charging power supply CP. For this reason, the power supply apparatus 100 includes a charging mode and a discharging mode. The load LD and the charging power source CP are connected to the power supply device 100 via the discharging switch DS and the charging switch CS, respectively. ON / OFF of the discharge switch DS and the charge switch CS is switched by the power supply controller 84 of the power supply apparatus 100. In the charging mode, the power supply controller 84 switches the charging switch CS to ON and the discharging switch DS to OFF to permit charging from the charging power supply CP to the power supply apparatus 100. Further, when the charging is completed and the battery is fully charged, or in response to a request from the load LD in a state where a capacity of a predetermined value or more is charged, the power controller 84 turns off the charging switch CS and turns on the discharging switch DS to discharge. The mode is switched to permit discharge from the power supply apparatus 100 to the load LD. Further, if necessary, the charge switch CS can be turned on and the discharge switch DS can be turned on to supply power to the load LD and charge the power supply device 100 at the same time.
 電源装置100で駆動される負荷LDは、放電スイッチDSを介して電源装置100と接続されている。電源装置100の放電モードにおいては、電源コントローラ84が放電スイッチDSをONに切り替えて、負荷LDに接続し、電源装置100からの電力で負荷LDを駆動する。放電スイッチDSはFET等のスイッチング素子が利用できる。放電スイッチDSのON/OFFは、電源装置100の電源コントローラ84によって制御される。また電源コントローラ84は、外部機器と通信するための通信インターフェースを備えている。図17の例では、UARTやRS-232C等の既存の通信プロトコルに従い、ホスト機器HTと接続されている。また必要に応じて、電源システムに対してユーザが操作を行うためのユーザインターフェースを設けることもできる。 The load LD driven by the power supply device 100 is connected to the power supply device 100 via the discharge switch DS. In the discharge mode of the power supply apparatus 100, the power supply controller 84 switches the discharge switch DS to ON, connects to the load LD, and drives the load LD with the power from the power supply apparatus 100. As the discharge switch DS, a switching element such as an FET can be used. ON / OFF of the discharge switch DS is controlled by the power supply controller 84 of the power supply apparatus 100. The power controller 84 also includes a communication interface for communicating with external devices. In the example of FIG. 17, it is connected to the host device HT according to an existing communication protocol such as UART or RS-232C. Further, if necessary, a user interface for the user to operate the power supply system can be provided.
 各電池パック81は、信号端子と電源端子を備える。信号端子は、パック入出力端子DIと、パック異常出力端子DAと、パック接続端子DOとを含む。パック入出力端子DIは、他のパック電池や電源コントローラ84からの信号を入出力するための端子であり、パック接続端子DOは子パックである他のパック電池に対して信号を入出力するための端子である。またパック異常出力端子DAは、パック電池の異常を外部に出力するための端子である。さらに電源端子は、電池パック81同士を直列、並列に接続するための端子である。また電池ユニット82は並列接続スイッチ85を介して出力ラインOLに接続されて互いに並列に接続されている。 Each battery pack 81 includes a signal terminal and a power supply terminal. The signal terminals include a pack input / output terminal DI, a pack abnormality output terminal DA, and a pack connection terminal DO. The pack input / output terminal DI is a terminal for inputting / outputting signals from other pack batteries and the power supply controller 84, and the pack connection terminal DO is for inputting / outputting signals to / from other pack batteries which are child packs. Terminal. The pack abnormality output terminal DA is a terminal for outputting the abnormality of the battery pack to the outside. Furthermore, the power supply terminal is a terminal for connecting the battery packs 81 in series and in parallel. The battery units 82 are connected to the output line OL via the parallel connection switch 85 and are connected in parallel to each other.
 本発明に係る電源装置及びこれを備える車両並びに電源装置の製造方法は、EV走行モードとHEV走行モードとを切り替え可能なプラグイン式ハイブリッド電気自動車やハイブリッド式電気自動車、電気自動車等の電源装置として好適に利用できる。またコンピュータサーバのラックに搭載可能なバックアップ電源装置、携帯電話等の無線基地局用のバックアップ電源装置、家庭内用、工場用の蓄電用電源、街路灯の電源等、太陽電池と組み合わせた蓄電装置、信号機等のバックアップ電源用等の用途にも適宜利用できる。 A power supply apparatus according to the present invention, a vehicle including the power supply apparatus, and a method for manufacturing the power supply apparatus are provided as a power supply apparatus for a plug-in hybrid electric vehicle, a hybrid electric vehicle, an electric vehicle, or the like that can switch between an EV traveling mode and an HEV traveling mode. It can be suitably used. Also, a backup power supply device that can be mounted on a rack of a computer server, a backup power supply device for a wireless base station such as a mobile phone, a power storage device for home use and a factory, a power supply for a street light, etc. Also, it can be used as appropriate for applications such as a backup power source such as a traffic light.
100…電源装置
1…角形電池セル
2…セパレータ
3…エンドプレート;3b…パッキン
4…締結部材
5…電池積層体
6…バスバー
10…組電池
10B…電池積層連続体
12…熱伝導シート
14…断熱部材
16、16B…被覆ケース
16b…張り出し部
18…充填層
19、19b…防水性シート
21c…金属プレート
24、24B…カバー部
26…ガスダクト
41…本体部
42…折曲片
43…上面保持部
44…締結連結部
50…連結バー
51…係止孔
60…冷却パイプ
61…冷却プレート
69…冷却機構
70…外装ケース
71…下ケース
72…上ケース
73…端面プレート
74…鍔部
81…電池パック
82…電池ユニット
84…電源コントローラ
85…並列接続スイッチ
93…モータ
94…発電機
95…DC/ACインバータ
96…エンジン
201…電池セル
205…電池積層体
260…冷却パイプ
261…冷却プレート
269…冷却機構
JG…治具
EV、HV…車両
LD…負荷;CP…充電用電源;DS…放電スイッチ;CS…充電スイッチ
OL…出力ライン;HT…ホスト機器
DI…パック入出力端子;DA…パック異常出力端子;DO…パック接続端子
DESCRIPTION OF SYMBOLS 100 ... Power supply device 1 ... Square battery cell 2 ... Separator 3 ... End plate; 3b ... Packing 4 ... Fastening member 5 ... Battery laminated body 6 ... Bus bar 10 ... Assembly battery 10B ... Battery laminated continuous body 12 ... Thermal conductive sheet 14 ... Thermal insulation Member 16, 16B ... Covering case 16b ... Overhang part 18 ... Filling layer 19, 19b ... Waterproof sheet 21c ... Metal plate 24, 24B ... Cover part 26 ... Gas duct 41 ... Main part 42 ... Bent piece 43 ... Upper surface holding part 44 ... fastening connection part 50 ... connection bar 51 ... locking hole 60 ... cooling pipe 61 ... cooling plate 69 ... cooling mechanism 70 ... outer case 71 ... lower case 72 ... upper case 73 ... end face plate 74 ... collar part 81 ... battery pack 82 ... Battery unit 84 ... Power supply controller 85 ... Parallel connection switch 93 ... Motor 94 ... Generator 95 ... DC / AC inverter 96 ... Engine 01 ... Battery cell 205 ... Battery stack 260 ... Cooling pipe 261 ... Cooling plate 269 ... Cooling mechanism JG ... Jig EV, HV ... Vehicle LD ... Load; CP ... Charging power source; DS ... Discharge switch; CS ... Charge switch OL ... Output line; HT ... Host equipment DI ... Pack input / output terminal; DA ... Pack abnormal output terminal; DO ... Pack connection terminal

Claims (12)

  1.  複数の角形電池セル(1)を積層してなる電池積層体(5)と、
     前記電池積層体(5)の外部を、該電池積層体(5)の一面の一部を残して被覆する被覆ケース(16)と、
     該電池積層体(5)の一面に熱結合状態に配置され、内部に冷媒を流すことで該電池積層体(5)と熱交換を行うための冷却プレート(61)と、
    を備える電源装置であって、
     前記電源装置はさらに、前記電池積層体(5)の一面を被覆する防水性シート(19)を備え、
     前記電池積層体(5)と被覆ケース(16)との隙間に充填材を注入して形成された充填層(18)を介在させ、
     前記充填層(18)でもって前記防水性シート(19)を固定してなることを特徴とする電源装置。
    A battery laminate (5) formed by laminating a plurality of rectangular battery cells (1);
    A coating case (16) for covering the outside of the battery stack (5), leaving a part of one surface of the battery stack (5);
    A cooling plate (61) disposed in one surface of the battery stack (5) in a heat-coupled state and for exchanging heat with the battery stack (5) by flowing a refrigerant therein;
    A power supply device comprising:
    The power supply device further includes a waterproof sheet (19) covering one surface of the battery stack (5),
    Interposing a filling layer (18) formed by injecting a filler into the gap between the battery laminate (5) and the covering case (16),
    A power supply device, wherein the waterproof sheet (19) is fixed by the filling layer (18).
  2.  請求項1に記載の電源装置であって、
     前記被覆ケース(16)は、前記電池積層体(5)の一面に対して、両側から張り出すように形成された一対の張り出し部(16b)を有してなり、
     前記一対の張り出し部(16b)で、前記防水性シート(19)を把持してなることを特徴とする電源装置。
    The power supply device according to claim 1,
    The covering case (16) has a pair of projecting portions (16b) formed so as to project from both sides with respect to one surface of the battery stack (5),
    The power supply apparatus, wherein the waterproof sheet (19) is gripped by the pair of overhang portions (16b).
  3.  請求項2に記載の電源装置であって、さらに、
     前記防水性シート(19)が、前記張り出し部(16b)に固定されてなることを特徴とする電源装置。
    The power supply device according to claim 2, further comprising:
    The power supply device, wherein the waterproof sheet (19) is fixed to the projecting portion (16b).
  4.  請求項2又は3に記載の電源装置であって、さらに、
     前記冷却プレートと、前記電池積層体(5)との間に介在される、絶縁性と熱伝導性を有する熱伝導シート(12)を備え、
     前記熱伝導シート(12)がさらに弾性を備えることを特徴とする電源装置。
    The power supply device according to claim 2, further comprising:
    Provided between the cooling plate and the battery stack (5), comprising a heat conductive sheet (12) having insulation and thermal conductivity,
    The power supply device, wherein the heat conductive sheet (12) further has elasticity.
  5.  請求項2から4のいずれか一に記載の電源装置であって、
     前記被覆ケース(16)は、前記一対の張り出し部(16b)で挟まれた領域を開口した開口部を形成しており、
     前記冷却プレート(61)は、該開口部を閉塞できる大きさに形成されてなることを特徴とする電源装置。
    The power supply device according to any one of claims 2 to 4,
    The covering case (16) forms an opening that opens a region sandwiched between the pair of overhang portions (16b),
    The power supply device according to claim 1, wherein the cooling plate (61) is formed to have a size capable of closing the opening.
  6.  請求項1から4のいずれか一に記載の電源装置であって、
     前記電池積層体(5)の一面が、電池積層体(5)の底面であることを特徴とする電源装置。
    The power supply device according to any one of claims 1 to 4,
    One surface of the said battery laminated body (5) is a bottom face of a battery laminated body (5), The power supply device characterized by the above-mentioned.
  7.  請求項1から6のいずれか一に記載の電源装置であって、
     前記被覆ケース(16)が樹脂製であり、
     前記充填材が、前記被覆ケース(16)と同系統の樹脂製であることを特徴とする電源装置。
    The power supply device according to any one of claims 1 to 6,
    The covering case (16) is made of resin,
    The power supply device according to claim 1, wherein the filler is made of the same type of resin as the covering case (16).
  8.  請求項1から7のいずれか一に記載の電源装置であって、
     前記充填材が、ウレタン系樹脂であることを特徴とする電源装置。
    The power supply device according to any one of claims 1 to 7,
    The power supply device, wherein the filler is urethane resin.
  9.  請求項1から8のいずれか一に記載の電源装置であって、
     前記熱伝導シート(12)と前記電池積層体(5)の一部とを直接接触させるように、前記防水性シート(19)の一部が除去されてなることを特徴とする電源装置。
    The power supply device according to any one of claims 1 to 8,
    A power supply device, wherein a part of the waterproof sheet (19) is removed so that the heat conductive sheet (12) and a part of the battery laminate (5) are in direct contact with each other.
  10.  請求項1から9のいずれか一に記載の電源装置を搭載してなる車両。 A vehicle comprising the power supply device according to any one of claims 1 to 9.
  11.  複数の角形電池セル(1)を積層してなる電池積層体(5)と、
     前記電池積層体(5)の外部を、該電池積層体(5)の一面の一部を残して被覆する被覆ケース(16)と、
     該電池積層体(5)の一面に熱結合状態に配置され、内部に冷媒を流すことで該電池積層体(5)と熱交換を行うための冷却プレート(61)と、
     前記冷却プレートと、前記電池積層体(5)との間に介在される、絶縁性と熱伝導性を有し、かつ弾性を有する熱伝導シート(12)と、
    を備える電源装置の製造方法であって、
     前記電池積層体(5)の外部を、
      前記電池積層体(5)の一面は防水性シート(19)で被覆し、
      該電池積層体(5)の他の面は被覆ケース(16)で被覆し、
      前記防水性シート(19)で被覆した面において、前記被覆ケース(16)で該防水性シート(19)の周囲を覆いつつ、該防水性シート(19)を該被覆ケース(16)から露出させた開口部において、該防水性シート(19)を電池積層体(5)に対して押圧するように治具(JG)を配置する工程と、
     前記電池積層体(5)と被覆ケース(16)との隙間に充填材を注入して充填層(18)を形成する工程と、
     前記充填層(18)の硬化後に、治具(JG)を除去する工程と、
     前記開口部に、前記熱伝導シート(12)と前記冷却プレート(61)とを配置する工程と
    を含むことを特徴とする電源装置の製造方法。
    A battery laminate (5) formed by laminating a plurality of rectangular battery cells (1);
    A coating case (16) for covering the outside of the battery stack (5), leaving a part of one surface of the battery stack (5);
    A cooling plate (61) disposed in one surface of the battery stack (5) in a heat-coupled state and for exchanging heat with the battery stack (5) by flowing a refrigerant therein;
    Interposed between the cooling plate and the battery stack (5), having heat insulation and insulation, and a heat conduction sheet (12) having elasticity,
    A method of manufacturing a power supply device comprising:
    The outside of the battery stack (5),
    One surface of the battery laminate (5) is covered with a waterproof sheet (19),
    The other surface of the battery laminate (5) is covered with a covering case (16),
    The waterproof sheet (19) is exposed from the covering case (16) while covering the periphery of the waterproof sheet (19) with the covering case (16) on the surface covered with the waterproof sheet (19). A step of arranging a jig (JG) so as to press the waterproof sheet (19) against the battery laminate (5) in the opened opening,
    A step of injecting a filler into a gap between the battery laminate (5) and the covering case (16) to form a filling layer (18);
    A step of removing the jig (JG) after curing of the filling layer (18);
    A method of manufacturing a power supply device comprising the step of disposing the heat conductive sheet (12) and the cooling plate (61) in the opening.
  12.  請求項11に記載の電源装置の製造方法であって、
     前記熱伝導シート(12)を配置する前に、前記防水性シート(19)の、前記充填層(18)によって固定されていない部分を除去する工程を含むことを特徴とする電源装置の製造方法。
    It is a manufacturing method of the power supply device according to claim 11,
    Before placing the heat conductive sheet (12), including a step of removing a portion of the waterproof sheet (19) that is not fixed by the filling layer (18), .
PCT/JP2012/065725 2011-06-30 2012-06-20 Power supply device, vehicle including same, and method for manufacturing power supply device WO2013002090A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-145740 2011-06-30
JP2011145740 2011-06-30

Publications (1)

Publication Number Publication Date
WO2013002090A1 true WO2013002090A1 (en) 2013-01-03

Family

ID=47423987

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/065725 WO2013002090A1 (en) 2011-06-30 2012-06-20 Power supply device, vehicle including same, and method for manufacturing power supply device

Country Status (1)

Country Link
WO (1) WO2013002090A1 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2015008563A1 (en) * 2013-07-17 2017-03-02 カルソニックカンセイ株式会社 Assembled battery
JP2017188375A (en) * 2016-04-08 2017-10-12 株式会社豊田自動織機 Battery pack
CN107757327A (en) * 2016-08-23 2018-03-06 本特勒尔汽车技术有限公司 Method for the battery carrier of electric motor vehicle and for equipping simultaneously assembled batteries carrier
CN108346843A (en) * 2017-01-23 2018-07-31 福特全球技术公司 The electric vehicle battery group of charged pool attachment component
CN110249477A (en) * 2017-09-18 2019-09-17 株式会社Lg化学 Method for manufacturing battery pack
CN111430607A (en) * 2018-12-20 2020-07-17 松下知识产权经营株式会社 Vehicle, heat exchange plate and battery pack
CN111477779A (en) * 2019-01-23 2020-07-31 丰田自动车株式会社 Battery device
CN113140849A (en) * 2020-01-20 2021-07-20 三星Sdi株式会社 Housing, battery system, electric vehicle, and method for manufacturing housing
CN114207912A (en) * 2019-08-07 2022-03-18 三洋电机株式会社 Power supply device, and electrically powered vehicle and power storage device using same
JP7454411B2 (en) 2020-03-04 2024-03-22 三洋電機株式会社 battery pack

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005518642A (en) * 2002-02-19 2005-06-23 スリーエム イノベイティブ プロパティズ カンパニー Temperature control apparatus and method for high energy electrochemical cells
JP2006134800A (en) * 2004-11-09 2006-05-25 Sanyo Electric Co Ltd Battery pack
JP2010062130A (en) * 2008-08-07 2010-03-18 Sanyo Electric Co Ltd Vehicular power supply device
JP2010153141A (en) * 2008-12-24 2010-07-08 Sanyo Electric Co Ltd Power source device for vehicle

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005518642A (en) * 2002-02-19 2005-06-23 スリーエム イノベイティブ プロパティズ カンパニー Temperature control apparatus and method for high energy electrochemical cells
JP2006134800A (en) * 2004-11-09 2006-05-25 Sanyo Electric Co Ltd Battery pack
JP2010062130A (en) * 2008-08-07 2010-03-18 Sanyo Electric Co Ltd Vehicular power supply device
JP2010153141A (en) * 2008-12-24 2010-07-08 Sanyo Electric Co Ltd Power source device for vehicle

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10153526B2 (en) 2013-07-17 2018-12-11 Calsonic Kansei Corporation Assembled battery
JPWO2015008563A1 (en) * 2013-07-17 2017-03-02 カルソニックカンセイ株式会社 Assembled battery
JP2017188375A (en) * 2016-04-08 2017-10-12 株式会社豊田自動織機 Battery pack
CN107757327A (en) * 2016-08-23 2018-03-06 本特勒尔汽车技术有限公司 Method for the battery carrier of electric motor vehicle and for equipping simultaneously assembled batteries carrier
CN107757327B (en) * 2016-08-23 2021-09-24 本特勒尔汽车技术有限公司 Battery carrier for an electric vehicle and method for equipping and assembling a battery carrier
CN108346843A (en) * 2017-01-23 2018-07-31 福特全球技术公司 The electric vehicle battery group of charged pool attachment component
CN108346843B (en) * 2017-01-23 2023-10-20 福特全球技术公司 Electric vehicle battery pack with battery attachment member
CN110249477B (en) * 2017-09-18 2023-04-28 株式会社Lg新能源 Method for manufacturing battery pack
CN110249477A (en) * 2017-09-18 2019-09-17 株式会社Lg化学 Method for manufacturing battery pack
EP3570363A4 (en) * 2017-09-18 2020-04-29 LG Chem, Ltd. Method for manufacturing battery pack
US11094990B2 (en) 2017-09-18 2021-08-17 Lg Chem, Ltd. Method for manufacturing battery pack
CN111430607A (en) * 2018-12-20 2020-07-17 松下知识产权经营株式会社 Vehicle, heat exchange plate and battery pack
CN111477779A (en) * 2019-01-23 2020-07-31 丰田自动车株式会社 Battery device
EP4012820A4 (en) * 2019-08-07 2022-10-19 SANYO Electric Co., Ltd. Power supply device, electric vehicle using same, and power storage device
CN114207912A (en) * 2019-08-07 2022-03-18 三洋电机株式会社 Power supply device, and electrically powered vehicle and power storage device using same
CN113140849A (en) * 2020-01-20 2021-07-20 三星Sdi株式会社 Housing, battery system, electric vehicle, and method for manufacturing housing
JP7454411B2 (en) 2020-03-04 2024-03-22 三洋電機株式会社 battery pack

Similar Documents

Publication Publication Date Title
JP2013012441A (en) Electric power source device and vehicle including the same
WO2012133708A1 (en) Power source device and vehicle provided with power source device
WO2013002090A1 (en) Power supply device, vehicle including same, and method for manufacturing power supply device
JP6138688B2 (en) Power supply device, vehicle including the same, and power storage device
WO2012133709A1 (en) Power source device, and vehicle provided with power source device
WO2013161654A1 (en) Power-supply device, vehicle provided with power-supply device, and electricity-storage device
JP7348180B2 (en) Battery system and electric vehicle and power storage device equipped with the battery system
WO2012133707A1 (en) Power source device and vehicle provided with power source device
WO2019155713A1 (en) Power supply device, and electric vehicle and power storage device provided with said power supply device
JP5734704B2 (en) Power supply device and vehicle equipped with power supply device
JP2020523749A (en) Battery module, battery pack including the battery module, and automobile including the battery pack
WO2012165493A1 (en) Power source device for supplying power and vehicle provided with power source device
JP5595871B2 (en) Power supply
WO2013146561A1 (en) Power supply device, and vehicle and power storage device equipped with same
WO2013031614A1 (en) Power supply device, vehicle provided with same, and power storage device
WO2012133711A1 (en) Method for producing power source device, power source device, and vehicle provided with power source device
WO2012057169A1 (en) Power-supply device, vehicle using same, battery cell, and battery-cell manufacturing method
JP2012033419A (en) Power supply device, vehicle using the same, battery cell, and method of manufacturing the battery cell
JP2013125617A (en) Power supply device and vehicle having the same, and power storage device
WO2014010438A1 (en) Battery system, and vehicle and power storage device equipped with battery system
WO2012133710A1 (en) Power supply and vehicle comprising same
WO2013084756A1 (en) Power source device, vehicle equipped with same and electricity storage device
KR20130123901A (en) Battery module with excellent cooling efficiency and compact structure
WO2013031612A1 (en) Power supply device, vehicle provided with same, and power storage device
WO2014024451A1 (en) Power source device, electric vehicle provided with same, and electricity storage device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12804623

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12804623

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP