JPS59149664A - Fuel-cell system - Google Patents

Fuel-cell system

Info

Publication number
JPS59149664A
JPS59149664A JP58016383A JP1638383A JPS59149664A JP S59149664 A JPS59149664 A JP S59149664A JP 58016383 A JP58016383 A JP 58016383A JP 1638383 A JP1638383 A JP 1638383A JP S59149664 A JPS59149664 A JP S59149664A
Authority
JP
Japan
Prior art keywords
gas
fuel
exhaust gas
mixer
oxygen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58016383A
Other languages
Japanese (ja)
Inventor
Hideomi Takahashi
秀臣 高橋
Taichi Takechi
武知 太一
Shuichi Yoshida
修一 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP58016383A priority Critical patent/JPS59149664A/en
Publication of JPS59149664A publication Critical patent/JPS59149664A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0606Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants
    • H01M8/0612Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Abstract

PURPOSE:To enable a fuel-cell system to be safely driven by preventing any local explosion which might be caused due to fuel gas or oxygen by controlling the quantity of air exhaust gas flowing into the gas mixer of a recycle system by means of an oxygen-concentration controlling means. CONSTITUTION:Fuel exhaust gas and air exhaust gas exhausted from a cell body 7 are diluted and mixed with recycle gas in a gas mixer 23. Since oxygen and hydrogen concentrations in mixture gas are made zero in the reformer 15 of a recycle system, oxygen and hydrogen concentrations respectively become only around 1.5% and 3% even after the mixture gas is mixed with exhaust gas causing no possibility of explosion. An oxygen concentration detector 27 opens the control valve 28 of a bypass tube 29 branching from a fuel gas exhaust tube 22 when oxygen concentration in recycle gas flowing into the gas mixer 23 becomes over zero % so as to control the quantity of air exhaust gas flowing into the gas mixer 23 and to restrict oxygen concentration in an upper stream from the reformer 15 to around 1.5%, thereby preventing any local explosion.

Description

【発明の詳細な説明】 本発明は、燃料電池装置の改良に関する。[Detailed description of the invention] The present invention relates to improvements in fuel cell devices.

〔発明の技術的背景〕[Technical background of the invention]

燃料の有している化学エネルギーを直接電気エネルギー
に変換するものとして燃料′il’j /ll1.が知
られている。この燃料・…1池は通常、電解質を挾んで
一対の多孔質状の電極を配置すると共に一方の′tb;
極の背面に水素等の燃料)ガスを接触させ、神だ他方の
電、極の背面に酸化剤として空気に含まれる酸素を接触
させ、このときに起こる電気化学反応によシ発生する電
気エネルギーを上記一対の電極から取出すようにしたも
のである。
Fuel 'il'j /ll1. is used to directly convert the chemical energy of fuel into electrical energy. It has been known. This fuel tank usually has a pair of porous electrodes sandwiching the electrolyte, and one 'tb;
The electrical energy generated by the electrochemical reaction that occurs when the back of the electrode is brought into contact with a gas (such as hydrogen or other fuel), and the back of the electrode is brought into contact with oxygen contained in the air as an oxidizing agent. is taken out from the pair of electrodes.

上記において電解質としては、溶融塩,アルカリ溶液,
酸性溶液等が用いられ、特に代表的なものとしてはリン
酸が用いられている。
In the above, electrolytes include molten salt, alkaline solution,
Acidic solutions and the like are used, with phosphoric acid being particularly typical.

以下第1図を参照して上記リン酸を電解質とした燃料電
池の原理について説明する。第1図において、ノは繊維
質シート或いは鉱物質粉末にリン酸を含浸した電解質で
ある。この電解質1にはアノードとしての電極2人,カ
ソードとしての電極2Bが対向して設置されている。こ
の電極,?A,,?Bは、多孔性の炭素質からなシ、電
解質1に接する一方面には触媒として白金が塗布されて
いる。また電極2A,2Bの他方面には、水素等の燃料
ガスが流入する部屋である燃料ガス供給室3と、酸化剤
(酸素)としての空気が流入する部屋である空気供給室
4とが対向して設けられている。
The principle of a fuel cell using phosphoric acid as an electrolyte will be explained below with reference to FIG. In FIG. 1, symbol ``No'' is an electrolyte made by impregnating a fibrous sheet or mineral powder with phosphoric acid. In this electrolyte 1, two electrodes as an anode and an electrode 2B as a cathode are placed facing each other. This electrode? A,,? B is made of porous carbonaceous material, and one surface in contact with the electrolyte 1 is coated with platinum as a catalyst. Further, on the other side of the electrodes 2A and 2B, a fuel gas supply chamber 3, which is a chamber into which fuel gas such as hydrogen flows, and an air supply chamber 4, which is a chamber into which air as an oxidizer (oxygen) flows, are opposed to each other. It is provided.

このような構成の燃料電池は、燃料ガス供給室3に流入
した□i;,’I、料ガスとして水素ガスが多孔性状の
電極2人のタ″隙部(H’lに倣散し、正極2への触媒
に達する。ここで水素ガスは触媒の作用により水素イオ
ンと?L子に電離する。反応式で表わすと、Ii2→2
H″一+ 2 e である。水素イオン2H+は電解質1に入り、起電圧の
作用と濃度拡散により電極2Bに向って泳動する。一方
、電子2eは電極2Bにj:1]Ω五し、電極2Bを負
電位に課電する。電極2Bの触媒面では、上記水素イオ
ン2H+と、空気供給室4に供給され多孔性の電極2B
の空隙部を1F41つだ酸素と、電極2Aから外部の電
力負荷Rを通って、電極2Bに来たTト、子とが反応を
起こす。
In a fuel cell with such a configuration, hydrogen gas flows into the fuel gas supply chamber 3, and hydrogen gas as a source gas diffuses into the gap between the two porous electrodes (H'l). It reaches the catalyst to the positive electrode 2. Here, the hydrogen gas is ionized into hydrogen ions and ?L atoms by the action of the catalyst. Expressed in the reaction formula, Ii2→2
H″1+2e.Hydrogen ions 2H+ enter the electrolyte 1 and migrate toward the electrode 2B due to the action of electromotive force and concentration diffusion.On the other hand, the electrons 2e move to the electrode 2B with j:1]Ω5, The electrode 2B is charged with a negative potential. On the catalyst surface of the electrode 2B, the hydrogen ions 2H+ and the porous electrode 2B supplied to the air supply chamber 4 are
A reaction occurs between the oxygen that passes through the void of 1F4 and the oxygen that has come from electrode 2A through external power load R to electrode 2B.

反応式で表わすと、 4、H++ 4 e + 02−) 2H20となる。Expressed as a reaction formula, 4, H++ 4 e + 02-) 2H20.

ここで水素が酸化されて水になる反応と、このときの化
学エネルギーが電気エネルギーに変換する反応とが発生
し、上記電気エネルギーは電力負荷Rにて消音される。
Here, a reaction in which hydrogen is oxidized to become water and a reaction in which the chemical energy at this time is converted into electrical energy occur, and the electrical energy is muffled by the electric power load R.

このとき、電気エネルギーの一部は、′Pl′!.)性
質1の中で、燃料電池の内部抵抗により消費される。従
って燃\ 別電池の効率を高めるために、電解質1は極めて薄く設
計され、水素イオンの泳動距離を短くし、内部抵抗を小
さくするようになっている。
At this time, part of the electrical energy is 'Pl'! .. ) In property 1, it is consumed by the internal resistance of the fuel cell. Therefore, in order to increase the efficiency of the combustion battery, the electrolyte 1 is designed to be extremely thin, shortening the migration distance of hydrogen ions and reducing internal resistance.

壕だ原料として供給される燃料ガス及び空気は、通常に
おいては数気圧に加圧されたものが用いられ、反応速度
を速め、効率゛の向上を図っている。
The fuel gas and air supplied as raw materials for the trench are normally pressurized to several atmospheres in order to speed up the reaction rate and improve efficiency.

また上記燃料電池における燃料ガスと空気とを隔離する
電解質1は、電気化学反応特性を一定値以上に確保する
だめに、繊荊1質シート或いは鉱物性粉末にリン酸を含
浸した厚さ0. 1 mm程度の極めて薄い部材からな
っている。
The electrolyte 1 that separates the fuel gas from the air in the fuel cell is made of a fiber sheet or mineral powder impregnated with phosphoric acid and has a thickness of 0.5 mm, in order to ensure electrochemical reaction characteristics above a certain value. It is made of an extremely thin member of about 1 mm.

ところが、電気系統における負荷変動等により、供給さ
れる燃料ガス及び空気には流量変動に伴う圧力変動が発
生し、電解質lには多大な応力が作用することがある。
However, due to load fluctuations in the electrical system, pressure fluctuations occur in the supplied fuel gas and air due to flow rate fluctuations, and a large amount of stress may act on the electrolyte I.

この応力作用にょシ雷1解質1が破損する事態が考えら
れ、燃料電池内にて燃料ガスと空気とが瞬間的に接触及
び混合し、局部的に爆発1−、装置全体を破壊する恐れ
があった。
There is a possibility that the electrolyte 1 may be damaged due to this stress effect, and the fuel gas and air may come into contact and mix momentarily within the fuel cell, leading to a local explosion 1- and the destruction of the entire device. was there.

上記燃料電池内における局部的な爆発を防止するために
、第2図に示すような燃料ガス及び空気供給部及び排出
部を第1図に示しだ燃料電池に設けた燃料電池装置が提
案されている。即ち、水蒸気及び、15ンプ5にて圧縮
された天然ガスとを、改質器6の触媒部6Aにて下記(
1)式のCH4+ 2H20−+ Co2+4H2・・
(1)反応を施こして高濃度の水素を含有した燃料ガス
を生成し、電解741.電極2A、2B、燃料ガス供給
室3.空気供給♀4を備えた電池本体7の燃料ガス供給
室3に供給し、一方タービンコングレノサ8のコンプレ
ッサ部8 A K”tlJf縮された9気は、電池本体
7の伊気供給宰4に供給する。燃料ガス供給室3と空気
供給室4とに供給された燃料ガスと空気とは電気化学反
応により直流電力の発生と水分を生成した後、燃料排ガ
ス、空気排ガスとし7て夫々電池本体7から排出される
。電池本体7から排出された燃料排ガスは、気水分離器
8にて水分を除去し、改質器6のバーナ部6Bにて、改
質に必要な熱エネルギーを供給するだめに含有水素成分
を燃焼させた後ガス混合器9に流入する。一方、電池本
体7から排出された空気排ガス中 10にて水分を除去しだ移・、ガ゛ス混合器9にて上記
燃料排ガスとともに混合して、流通圧力を一致させた後
、その排ガスはタービンコンプレソザ8のタービン部8
Bにてタービンを回して大気中に放出される。
In order to prevent local explosions within the fuel cell, a fuel cell device has been proposed in which the fuel cell shown in FIG. 1 is provided with a fuel gas and air supply section and a discharge section as shown in FIG. There is. That is, water vapor and the natural gas compressed by the pump 5 are subjected to the following (
1) Formula CH4+ 2H20-+ Co2+4H2...
(1) Perform a reaction to generate fuel gas containing high concentration of hydrogen, and electrolyze 741. Electrodes 2A, 2B, fuel gas supply chamber 3. The compressed air is supplied to the fuel gas supply chamber 3 of the battery main body 7 equipped with an air supply ♀4, while the compressed air is supplied to the air supply chamber 4 of the battery main body 7. The fuel gas and air supplied to the fuel gas supply chamber 3 and the air supply chamber 4 generate DC power and moisture through an electrochemical reaction, and then are converted into fuel exhaust gas and air exhaust gas 7 to the battery body, respectively. 7. The fuel exhaust gas discharged from the battery body 7 has moisture removed in a steam/water separator 8, and then supplied with the thermal energy necessary for reforming in the burner section 6B of the reformer 6. After the hydrogen component contained in the battery is burned, it flows into the gas mixer 9. On the other hand, moisture is removed from the air exhaust gas 10 discharged from the battery main body 7, and then the above-mentioned gas is removed by the gas mixer 9. After mixing with the fuel exhaust gas and matching the flow pressure, the exhaust gas is transferred to the turbine section 8 of the turbine compressor 8.
At B, a turbine is turned and the gas is released into the atmosphere.

上記構成の燃料電池装置において通常運転で発生する燃
料排ガスと空気排ガスとの圧力変動は、気水分離器8,
10における圧力降下の差と、燃料排ガスが改質器6の
バーナ部6Bにて燃焼されることによって発生する圧力
降下とにより生じるものである。
The pressure fluctuations between the fuel exhaust gas and the air exhaust gas that occur during normal operation in the fuel cell device with the above configuration are handled by the steam separator 8,
This is caused by the difference in pressure drop in the fuel cell 10 and the pressure drop caused by combustion of the fuel exhaust gas in the burner section 6B of the reformer 6.

との場合、電池本体7内での電気化学反応に直接開力し
ない気水分離器8,10にて発生する圧力変動を防止す
ることは、設計に自由度が許容されるので容易である。
In this case, it is easy to prevent pressure fluctuations occurring in the steam and water separators 8 and 10, which do not directly respond to the electrochemical reaction within the battery body 7, since this allows flexibility in design.

しかしながら、改質器6のバーナ部6Bにて燃焼するこ
とによって生じる燃料排ガスの圧力降下を防止すること
は、改質に必シヒな熱エネルギーを安全供給する事を必
須条件としているので、容易に行なうことができない。
However, preventing the pressure drop of the fuel exhaust gas caused by combustion in the burner section 6B of the reformer 6 is an essential condition for safely supplying the thermal energy essential for reforming. I can't do it.

1だ燃料排ガスのバーナ部6Bにおける圧力降下は、水
柱で数千ミIJメートルに達する。従ってバーナ部6B
での圧力降下に基づく燃料排ガスと空気排ガスの圧力変
動は、電解質lが有している水柱で数ミリメートル以内
では破損しないという条件を越えてし捷い、電解質1を
破損し、電池本体7で燃料ガスと空気との局部爆発を発
生する事態を招いた。
The pressure drop of the fuel exhaust gas in the burner section 6B reaches several thousand micrometers in the water column. Therefore, burner part 6B
The pressure fluctuations in the fuel exhaust gas and air exhaust gas caused by the pressure drop at This resulted in a local explosion between fuel gas and air.

まだ電池本体7に対して供給される燃料力スと空気との
供給量と、電池本体7がら排出される燃旧排ガスと空気
排ガスとの排出部の条件によっては、空気排ガス中の酸
素成分が減少し、燃料排ガス中の水素成分が失火して、
配管系統上等において局部爆発を誘発することがあった
Depending on the amount of fuel and air supplied to the battery body 7 and the conditions of the exhaust section of the combustion exhaust gas and air exhaust gas discharged from the battery body 7, the oxygen component in the air exhaust gas may hydrogen component in the fuel exhaust gas misfires,
Local explosions could occur in piping systems.

〔発明の目的〕[Purpose of the invention]

本発明は上記事情に基づいてなされたもので、その目的
とするところは、高特性を確保しっつ且つ燃料ガスと空
気とにより局部的な爆発を防止し、よって安全に運転が
なし得る燃料電池装置を提供することにある。
The present invention has been made based on the above circumstances, and its purpose is to provide a fuel that maintains high properties and prevents local explosions due to fuel gas and air, thereby allowing safe operation. The purpose of the present invention is to provide a battery device.

〔発明の概要〕[Summary of the invention]

本発明による燃料電池装置は、燃料ガス及び空気排出部
を、リサイクル系統として、燃料排ガスと空気排ガスと
をガス混合器にて混合し、この混合した排ガ゛スを低畠
側流路と高温側流路とを有したリバース熱交換器の低温
側流路に流通させた後、前記改質器の改質用熱エネルギ
ー供給源として用いた後、前記リバース熱交換器の高温
側流路に流通させ、熱交換器により冷却した後リザイク
ルブロワーにより前記ガス混合器に流入させ、圧力調整
手段により上記リサイクル系統の流通圧力を一定値に保
つように余剰ガ゛スを排出するようにし、更に、酸素濃
度制御手段により前記混合器へ流入する空気排ガスの流
量を制御して、上記目的を達成するようにしている。
The fuel cell device according to the present invention uses the fuel gas and air discharge section as a recycling system, mixes the fuel exhaust gas and the air exhaust gas in a gas mixer, and transfers the mixed exhaust gas to the low-field side flow path and high temperature. After passing through the low temperature side flow path of the reverse heat exchanger having a side flow path, and after being used as a thermal energy supply source for reforming of the reformer, the high temperature side flow path of the reverse heat exchanger is used. After being circulated and cooled by a heat exchanger, it is caused to flow into the gas mixer by a recycle blower, and excess gas is discharged by a pressure regulating means so as to maintain the circulation pressure in the recycle system at a constant value. The above object is achieved by controlling the flow rate of air exhaust gas flowing into the mixer by means of oxygen concentration control means.

〔発明の実施例〕[Embodiments of the invention]

以下本発明の実施例を図面を参照して説明する。第3図
は本発明による燃料電池装置の第1の実施例を示す構成
図であり、第1図及び第2図と同一部分には同一符号を
付してその説明を省略し、ここでは異なる部分のみを説
明する。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 3 is a configuration diagram showing the first embodiment of the fuel cell device according to the present invention. The same parts as in FIGS. Only parts will be explained.

第3図において、タービンコンプレノザ8のコンゾレッ
サ部8Aでは圧縮された空気は、管路上に空気供給量調
整弁11を有した空気供給管12を介して電池本体7の
空気供給室4に流入する。天然ガス等のメタンCH4を
含有した燃料ガスは、熱交換器13により予熱され、混
合器14にて外部から流入した水蒸気とともに混合され
、改質器15の改質管15Aを流通してCH4+H2O
−+CO+3H2及びcH4+2H2o−>co2+4
H2の反応が起こり、水素と一酸化炭素そして二酸化炭
素の混合した燃料ガスが生成され、上記−酸化炭素は一
酸化炭素変成器16にてCO+H20→Co2+■(2
の反応により二酸化炭素化され且つ水素濃度が高められ
管路上に燃料ガス供給量調整弁17を有した燃料ガス供
給管)8を介して電池本体7の燃料ガス供給室3に流入
する。電池本体7では供給された燃料ガスと空気との電
気化学反応により直流電力を発生し、燃料排ガスと空気
排ガスとは、夫々管路上に気水分離器19.:zoを有
した燃料ガス排出管21と空気排出管22を介してガス
混合器23に流入する。燃料排ガスと空気排ガスとはガ
ス混合器23にて混合され、この混合ガスは約200℃
であり低温側流路24A、高温側流路24Bとを有した
リバース熱交換器24の低温側流路24Aに入り、予熱
されて650℃程度に加熱された後、改質器15の触媒
層15Bにて混合′ガスに含有している水素と酸素との
触媒作用による反応熱を発生し、改質管15kを加熱し
て、燃料ガスを改質するに必要な改質用熱エネルギーを
供給した後、水素及び酸素の濃度を零とし約700℃の
混合ガスとしてリバース熱交換器15の高温側流路24
Bを通って上記低温側流路24kを加熱した後、熱交換
器13に約350℃の混合ガスとして流入する。熱交換
器13に流入した約350℃の混合ガスは、メタンを含
有した天然ガスを改質前に予熱する。熱交換器13にて
熱放出した後流出した混合ガスは約300℃となり、リ
サイクルブロワ−25を介して前記ガス混合器23にリ
サイクルガスとして流入し、ガス混合器23内では約3
00℃となる。
In FIG. 3, compressed air in the consolestor section 8A of the turbine compressor 8 flows into the air supply chamber 4 of the battery main body 7 through an air supply pipe 12 having an air supply amount adjustment valve 11 on the pipe. . Fuel gas containing methane CH4, such as natural gas, is preheated by the heat exchanger 13, mixed with water vapor that has flowed in from the outside in the mixer 14, and flows through the reforming pipe 15A of the reformer 15 to form CH4+H2O.
-+CO+3H2 and cH4+2H2o->co2+4
A reaction of H2 occurs, and a fuel gas containing a mixture of hydrogen, carbon monoxide, and carbon dioxide is generated, and the above -carbon oxide is converted into CO+H20→Co2+■(2
As a result of the reaction, the hydrogen is converted into carbon dioxide and its hydrogen concentration is increased, and it flows into the fuel gas supply chamber 3 of the battery main body 7 via a fuel gas supply pipe (8) having a fuel gas supply amount adjustment valve 17 on the pipe. In the battery body 7, DC power is generated by an electrochemical reaction between the supplied fuel gas and air, and the fuel exhaust gas and the air exhaust gas are separated by a steam separator 19. The fuel gas flows into the gas mixer 23 through the fuel gas exhaust pipe 21 and the air exhaust pipe 22 having the following characteristics. Fuel exhaust gas and air exhaust gas are mixed in a gas mixer 23, and this mixed gas is heated to approximately 200°C.
enters the low temperature side flow path 24A of the reverse heat exchanger 24, which has a low temperature side flow path 24A and a high temperature side flow path 24B, and is preheated to about 650°C, and then the catalyst layer of the reformer 15. 15B generates reaction heat due to the catalytic action of hydrogen and oxygen contained in the mixed gas, heats the reforming pipe 15k, and supplies reforming thermal energy necessary to reform the fuel gas. After that, the concentration of hydrogen and oxygen is reduced to zero, and a mixed gas of about 700°C is passed through the high temperature side flow path 24 of the reverse heat exchanger 15.
After passing through B and heating the low temperature side flow path 24k, it flows into the heat exchanger 13 as a mixed gas at about 350°C. The mixed gas at approximately 350° C. that has entered the heat exchanger 13 preheats the natural gas containing methane before reforming. The mixed gas that flows out after releasing heat in the heat exchanger 13 has a temperature of about 300°C, and flows into the gas mixer 23 as a recycle gas via the recycle blower 25.
It becomes 00℃.

上記、電池本体7から排出された燃料排ガス及び空気排
ガスを処理する。ガス混合器23゜リバース熱交換器2
4.改質器11) +熱交換器13、リサイクルブロワ
−25は一連のりザイクル系統を構成している。図中2
6は圧力制御弁であり、リサイクル系統を流通する混合
ガスを一定にするために必要に応じて聞いて余剰ガスを
放出する。図中27は酸素温度を検出する濃度検出器で
あり、ガス混合器23に流入するリサイクルガスの酸素
濃度が零係以上となったとき、燃料ガス排出管22に対
し分岐配管された制御弁28を有したバイパス管29の
制御弁28を開き、ガス混合器23に流入する空気排ガ
スの流入量を制御する。
The fuel exhaust gas and air exhaust gas discharged from the battery main body 7 are treated. Gas mixer 23° Reverse heat exchanger 2
4. The reformer 11) + heat exchanger 13 and recycle blower 25 constitute a series of cycle systems. 2 in the diagram
Reference numeral 6 denotes a pressure control valve, which releases excess gas as necessary to keep the mixed gas flowing through the recycling system constant. In the figure, 27 is a concentration detector that detects the oxygen temperature, and when the oxygen concentration of the recycled gas flowing into the gas mixer 23 becomes equal to or higher than zero, a control valve 28 branched to the fuel gas discharge pipe 22 is activated. The control valve 28 of the bypass pipe 29 having the above-mentioned structure is opened to control the amount of air exhaust gas flowing into the gas mixer 23.

上記において圧力制御弁26及びパイ・ぐス管29を介
して放出された排ガスは共にタービンコンプレノザ8の
タービン部8Bにてタービンを回して大気中に放出され
る。
In the above, the exhaust gases released through the pressure control valve 26 and the pipe 29 both rotate a turbine in the turbine portion 8B of the turbine compressor 8 and are released into the atmosphere.

次に上記のように構成された燃料電池装置の作用につい
て述べる。即ち、空気供給量調整弁11と燃料ガス供給
量調整弁17とを制御し、燃料ガスに対し空気を過剰に
電池本体7に供給し、電池本体7内での電気化学反応を
良好に行なわせる。電池本体7から排出された燃料排ガ
スと空気排ガスとは流れ抵抗を有する気水分離器19,
2θにて僅かに圧力降下した後、ガス混合器23にてリ
サイクルガスと共に希釈混合する。前述したようにガス
混合器23を含むリサイクル系統の改質器15にて混合
ガス中の酸素及び水素濃度は零とされ、力゛ス混合器2
3に流入する。従ってリサイクル系統からのリサイクル
ガスは酸素及び水素濃度が零であるので、燃料排ガス及
び空気排ガスと共に混合しても、酸素濃度が15係、水
素濃度が3係程度でそして窒素、炭酸ガスとが混合した
混合ガスであり、爆発することはない。まだリバース熱
交換器24にょシ混合ガスの高効率熱交換を行なってい
るので改質器15における改質用熱エネルギーの供給は
有効に行なわれる。
Next, the operation of the fuel cell device configured as described above will be described. That is, the air supply amount adjustment valve 11 and the fuel gas supply amount adjustment valve 17 are controlled to supply air to the battery body 7 in excess of the fuel gas, so that the electrochemical reaction within the battery body 7 can be performed satisfactorily. . The fuel exhaust gas and air exhaust gas discharged from the battery main body 7 are separated by a steam separator 19 having flow resistance.
After a slight pressure drop at 2θ, the gas is diluted and mixed with the recycle gas in the gas mixer 23. As mentioned above, the oxygen and hydrogen concentrations in the mixed gas are brought to zero in the reformer 15 of the recycling system including the gas mixer 23, and the concentration of oxygen and hydrogen in the mixed gas is reduced to zero.
3. Therefore, the recycled gas from the recycling system has zero oxygen and hydrogen concentration, so even if it is mixed with fuel exhaust gas and air exhaust gas, the oxygen concentration is about 15 parts, the hydrogen concentration is about 3 parts, and nitrogen and carbon dioxide are mixed. It is a mixed gas and will not explode. Since the reverse heat exchanger 24 is still performing highly efficient heat exchange of the mixed gas, the reformer 15 is effectively supplied with reforming thermal energy.

まだ本実施例では、リサイクル系統に設けた濃度検出器
27により、リサイクル系統の酸素濃度が零飴以上とな
ったら、開側1弁28を開き、ガス混合器23に流入す
る空気排ガスの供給量を制限するようにしたフィードバ
ック制御機能を備えだ酸素濃度制御手段が構成されてい
る。
In this embodiment, when the concentration detector 27 provided in the recycling system detects that the oxygen concentration in the recycling system is equal to or higher than zero candy, the opening side valve 28 is opened and the amount of air exhaust gas supplied to the gas mixer 23 is controlled. The oxygen concentration control means is provided with a feedback control function to limit the oxygen concentration.

従って、ガス混合器23に流入する前のリサイクルガス
、図中0部における酸素濃度は零%程度となり、■部即
ち、改質器15における上流側でも酸素濃度は15チ程
度となり、また(0部、即ち改質器15における下流側
でも局部爆発が起こることはない。壕だ、局部爆発に伴
って、改質器15における触媒層15Bの触媒を劣化さ
せるようなこともない。
Therefore, before flowing into the gas mixer 23, the oxygen concentration at the 0 part in the figure is about 0%, and the oxygen concentration at the part (■), that is, the upstream side of the reformer 15, is about 15%, and (0 In other words, no local explosion occurs on the downstream side of the reformer 15.There is no possibility that the catalyst in the catalyst layer 15B in the reformer 15 will deteriorate due to the local explosion.

次に、本実施例による差圧制御特性を説明する。第3図
においてガス混合器23で燃料排ガスと空気排ガスとが
混合されるので両者の圧力は一致している。ここより電
池本体7へは燃料ガス排出部にて気水分離器19の流れ
抵抗、才だ空気排出部では同じ様に気水分離器20の流
れ抵抗が入っており、第2図に示したような燃料排出部
にバーナ部の火器が入るということがない。流れ抵抗を
有した気水分離器19,2θはバーナ等の火器と異なり
差圧が小であシ、水柱1001部m程度である。まだそ
の圧力損失特性も第4図に示すように二乗特性となり、
それぞれの定格流量(空気供給・排出部:Fa、燃料ガ
ス供給・排出部:Ff)で、差圧ΔPoが水柱で数泗と
することは容易なことである。
Next, the differential pressure control characteristics according to this embodiment will be explained. In FIG. 3, the fuel exhaust gas and the air exhaust gas are mixed in the gas mixer 23, so that their pressures are the same. From here, to the battery body 7, there is a flow resistance of the steam and water separator 19 at the fuel gas discharge section, and a flow resistance of the steam and water separator 20 at the air discharge section, as shown in Fig. 2. Firearms from the burner section never enter the fuel discharge section. Unlike a firearm such as a burner, the steam/water separator 19, 2θ having flow resistance has a small differential pressure, about 1001 parts m of water column. However, the pressure loss characteristic also becomes a square law characteristic as shown in Figure 4.
At each rated flow rate (air supply/discharge section: Fa, fuel gas supply/discharge section: Ff), it is easy to set the differential pressure ΔPo to several tens of water columns.

また、電力負荷に変動があった場合、電力負荷に応じて
燃料ガスは燃料ガス供給量調整弁17で、空気は空気供
給量調整弁11で調整することにより流量(空気供給・
排出部: Fa ’ +燃料ガス供給・排出部: Ff
l )は、第4図に示したように Ff’/F f = F a ’7’F aと制御する
ことにより差圧ΔP′を定格流量時の差圧ΔPoよりも
小さくすることができる。
In addition, when there is a change in the power load, the flow rate (air supply/
Discharge section: Fa' + fuel gas supply/discharge section: Ff
By controlling Ff'/Ff=F a '7'F a as shown in FIG. 4, the differential pressure ΔP' can be made smaller than the differential pressure ΔPo at the rated flow rate.

件だ、この差圧制御が過度的に運動して対応できない場
合でも、全体の差圧が定格時で水柱での100閾である
から、最悪の状態でも負荷変動差圧は水柱で1003で
ある。従って、この差圧(水柱で100 rnm )に
よる電池本体7での応力では電解質1を破損して、燃料
ガスと空気ガスとが混合して爆発させることはない。
The problem is, even if this differential pressure control cannot cope with excessive movement, the overall differential pressure is 100 threshold in the water column at the rated time, so even in the worst case, the load fluctuation differential pressure will be 1003 in the water column. . Therefore, the stress in the battery body 7 due to this differential pressure (100 rnm in water column) will not damage the electrolyte 1 and cause the fuel gas and air gas to mix and explode.

次に第5図を参照して本発明の第2の実施例について説
明する。第3図においては第3図と同一部分には同一符
号を付して、その説1明は省略し、ここでは異なる部分
のみを能、明する。L(1ち第5図においては、第3図
におけるフィードバンク制御機能と以下に述べるフィー
ドバック制御機能をイl古えたものを実施している。即
ち、燃料ガス排出管21に燃料排ガス流量計30及び空
気排出管22に空気排ガス流量計31を設け、第1の実
施例で述べたように燃料排ガス。
Next, a second embodiment of the present invention will be described with reference to FIG. In FIG. 3, the same parts as those in FIG. 3 are given the same reference numerals, and the explanation thereof will be omitted, and only the different parts will be explained here. L (1) In FIG. 5, the feed bank control function in FIG. An air exhaust gas flowmeter 31 is provided in the air exhaust pipe 22 to measure the fuel exhaust gas as described in the first embodiment.

空気排ガス及びリサイクルガスからなるガス混合器23
での混合ガスの酸素濃度が15係程度となるように、ガ
ス混合器23に流入する空気排ガスの流量を制御弁28
にて制御するように構成している。
Gas mixer 23 consisting of air exhaust gas and recycled gas
The flow rate of air exhaust gas flowing into the gas mixer 23 is controlled by the control valve 28 so that the oxygen concentration of the mixed gas becomes about 15%.
It is configured to be controlled by

上記のように構成することにより、フィードバック制御
機能とフィードフォード制御機能との相乗作用により酸
素濃度の定値制御及び電池本体7内での燃料ガス及び空
気の差圧制御は極めて有効に実行できる。
With the above configuration, constant value control of oxygen concentration and differential pressure control between fuel gas and air within the battery body 7 can be executed extremely effectively due to the synergistic effect of the feedback control function and the feedford control function.

本発明は上記実施例に限定されるものではなく、例えば
、リサイクル系統の混合ガスの流通圧力を制御する圧力
制御弁26は、リバース熱交換器24の高温側流路24
Bの出口側或いはガス混合器23におけるリサイクルガ
スの流入部側等に設けたものであっても、所定の制御は
行なえる。この信奉発明は要旨を変更しない範囲で種々
変形して実施できる。
The present invention is not limited to the above-mentioned embodiments. For example, the pressure control valve 26 that controls the flow pressure of the mixed gas in the recycling system may be connected to the high temperature side flow path 24 of the reverse heat exchanger 24.
Predetermined control can be performed even if it is provided on the outlet side of B or the inlet side of the recycled gas in the gas mixer 23. This invention can be modified and implemented in various ways without changing the gist.

〔発明の効果〕〔Effect of the invention〕

以上述べたように本発明によれば、燃料ガス及び空気排
出部を、リサイクル系統として、燃料排ガスと空気排ガ
スとをガス混合器にて混合し、この混合(7た排ガスを
低温(1111流路と高温側流路とを有したリバース熱
交換器の低温側流路に流通させた後、前記改質器の改質
用熱エネルギー供給源として用いた後、前記リバース熱
交換器の高温側流路に流通させ、熱交換器により冷却し
た後リサイクルブロワーにより前記ガス混合器に流入さ
せ、圧力5)^1整手段により上記リサイクル系統の流
通圧力を一定値に保つように余剰ガスを排出するように
し、更に、酸素流5度制御手段により前記混合器へ流入
する空気排ガスの流量を制御したので、高特性を確保し
っつ燃料ガスと空気とにより局部的な1iuA発を防止
し、よって安全に運転がなし得る燃料電池装置が提供で
きる。
As described above, according to the present invention, the fuel gas and air discharge section is used as a recycling system, and the fuel exhaust gas and the air exhaust gas are mixed in the gas mixer, and the mixed exhaust gas is transferred to the low temperature (1111 channel). and a high temperature side flow path, and after being used as a thermal energy supply source for reforming of the reformer, the high temperature side flow of the reverse heat exchanger is used as a reforming thermal energy supply source of the reformer. After being cooled by a heat exchanger, the excess gas is flowed into the gas mixer by a recycle blower, and the excess gas is discharged by a pressure regulating means so as to maintain the circulation pressure in the recycle system at a constant value. Furthermore, since the flow rate of the air exhaust gas flowing into the mixer is controlled by the oxygen flow 5 degree control means, localized 1iuA emission is prevented by the fuel gas and air while ensuring high characteristics, thereby making it safe. Therefore, it is possible to provide a fuel cell device that can be operated in a variety of ways.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は燃料電池の原理を説明するだめの図、第2図は
従来の燃料化、他装置を示す構成図、第3図は本発明に
よる燃料電池装置の第1の実施例を示す構成図、第4図
は同実施例の作用を説明するだめの特性図、第5図は本
発明の第2の実施例を示す構成図である。 1・・電解質1.?A、2B・・電極、3・・・燃料ガ
ス供給室、4・・・空気供給室、7・・・電池本体、8
゛°゛タービンコングレノサ、11・・・空気供給量調
整弁、12・・空気供給管、13・・・熱交換器、14
・・・混合器、15・・・改質器、16・・・酸化炭素
変成器、17・・・燃料ガス供給量調整弁、18・・・
燃料ガス供給管、19,2θ・・・気水分離器、2ノ・
・・燃料ガス排出管、22・・空気排出管、23・・・
ガス混合器、24・・・リバース熱交換器、25・・・
リサイクルブロワ−126・圧力制御弁、27・・・濃
度検出器、28・制御弁、29・・・バイパス管、30
・・・燃料排ガス流量計、31・・・空気排ガス流量計
。 出願人代理人 弁理士 鈴 江 武 彦第 3 図 第4図 〕皿型と−−
FIG. 1 is a diagram for explaining the principle of a fuel cell, FIG. 2 is a configuration diagram showing conventional fuel conversion and other devices, and FIG. 3 is a configuration diagram showing a first embodiment of a fuel cell device according to the present invention. FIG. 4 is a characteristic diagram for explaining the operation of the same embodiment, and FIG. 5 is a configuration diagram showing a second embodiment of the present invention. 1. Electrolyte 1. ? A, 2B... Electrode, 3... Fuel gas supply chamber, 4... Air supply chamber, 7... Battery body, 8
゛°゛Turbine congressor, 11... Air supply amount adjustment valve, 12... Air supply pipe, 13... Heat exchanger, 14
... Mixer, 15... Reformer, 16... Carbon oxide shift converter, 17... Fuel gas supply amount adjustment valve, 18...
Fuel gas supply pipe, 19, 2θ...Steam water separator, 2-
...Fuel gas discharge pipe, 22...Air discharge pipe, 23...
Gas mixer, 24... Reverse heat exchanger, 25...
Recycle blower 126・Pressure control valve, 27・Concentration detector, 28・Control valve, 29・Bypass pipe, 30
... Fuel exhaust gas flow meter, 31... Air exhaust gas flow meter. Applicant's Representative Patent Attorney Takehiko Suzue 3 Figure 4] Dish-shaped and --

Claims (4)

【特許請求の範囲】[Claims] (1)燃料ガスを高濃度水素成分に変成する改質器を有
した燃料ガス供給部及び酸化剤ガス供給部から燃料ガス
酸化剤ガスの供給を受けて、この燃料ガスと酸化剤ガス
との電気化学反応によシ直流電力を発生させ、燃料排ガ
スと酸化剤排ガスとを燃料ガス及び酸化剤ガス排出部に
排出する燃料電池装置において、前記燃料ガス及び酸化
剤ガス排出部は、前記燃料排ガスと酸化剤排ガスとをガ
ス混合器にて混合し、この混合した排ガスを低温側流路
と高温側流路とを有したリバース熱交換器の低温側流路
に流通させた後、前記改質器の改質用熱エネルギー供給
源として用い、次に前記リバース熱交換器の高温側流路
に流通させ、熱交換器により冷却した後リサイクルブロ
ワ−により前記ガス混合器に流入させるリサイクル系統
と、このリサイクル系統の流通圧力を一定値に保つよう
に余剰ガスを外部に排出する圧力調整手段と、前記ガス
混合器に流入する空気排ガスの流量を制御する酸素濃度
制御手段とから構成したことを特徴とする燃料電池装置
(1) Receive fuel gas oxidant gas from a fuel gas supply section and an oxidant gas supply section that have a reformer that converts fuel gas into a high-concentration hydrogen component, and combine the fuel gas and oxidant gas. In a fuel cell device that generates DC power through an electrochemical reaction and discharges fuel exhaust gas and oxidant gas to a fuel gas and oxidant gas discharge section, the fuel gas and oxidant gas discharge section is configured to discharge the fuel exhaust gas and oxidant gas and oxidizer exhaust gas are mixed in a gas mixer, and the mixed exhaust gas is passed through a low temperature side flow path of a reverse heat exchanger having a low temperature side flow path and a high temperature side flow path, and then the reforming process is performed. a recycle system that is used as a thermal energy supply source for reforming of the reactor, is then passed through the high-temperature side flow path of the reverse heat exchanger, is cooled by the heat exchanger, and then flows into the gas mixer by a recycle blower; It is characterized by comprising a pressure regulating means for discharging surplus gas to the outside so as to maintain the circulation pressure of the recycling system at a constant value, and an oxygen concentration controlling means for controlling the flow rate of air exhaust gas flowing into the gas mixer. A fuel cell device.
(2)酸素濃度制御手段は、前記リサイクル系統の酸素
濃度を検出して、この検出値に応じて前記ガス混合器へ
流入する空気排ガスの流量を制御する機能を有してなる
特許請求の範囲第(1)項記載の燃料電池装置。
(2) The oxygen concentration control means has a function of detecting the oxygen concentration of the recycling system and controlling the flow rate of air exhaust gas flowing into the gas mixer according to the detected value. The fuel cell device according to item (1).
(3)酸素濃度制御手段は、前記燃料ガス供給部及び空
気供給部から供給される燃料ガス及び空気の供給量に対
応して前記ガス混合器に流入する空気排ガスを酸素過剰
量分だけ外部に排出させることにより、燃料排ガス中に
含有する水素成分を燃焼させるだめの等量近傍の酸素を
含有した空気排ガスをガス混合器に流入させる制御機能
を有してなる特許請求の範囲第(1)項記載の燃料電池
装置。
(3) The oxygen concentration control means controls the air exhaust gas flowing into the gas mixer to the outside by an excess amount of oxygen in accordance with the supply amount of the fuel gas and air supplied from the fuel gas supply section and the air supply section. Claim No. 1, which has a control function to cause air exhaust gas containing nearly the same amount of oxygen to be discharged into a gas mixer to burn the hydrogen component contained in the fuel exhaust gas. The fuel cell device described in Section 1.
(4)酸素濃度制御手段は、前記燃料ガス及び空気供給
部から供給される燃料ガス及び空気の供給量に対応して
前記力゛ス混合器に流入する空気排ガスを酸素過剰量分
だけ外部に排出させることにより、燃料排ガス中に含有
する水素成分を燃焼させるだめの等量近傍の酸素を含有
した空気排ガスをガス混合器に流入さぜる制御機能と、
前記リサイクル系統の酸素濃度を検出して、この検出値
に応じて前記ガス混合器へ流入する空気排ガスの流量を
制御する機能とを有してなる特許請求の範囲第(1)項
記載の燃料電池装置”。
(4) The oxygen concentration control means controls the air exhaust gas flowing into the force mixer to the outside by an excess amount of oxygen in accordance with the amount of fuel gas and air supplied from the fuel gas and air supply section. a control function for causing air exhaust gas containing nearly an equal amount of oxygen to flow into the gas mixer to burn the hydrogen component contained in the fuel exhaust gas by discharging it;
The fuel according to claim (1), which has a function of detecting the oxygen concentration of the recycling system and controlling the flow rate of air exhaust gas flowing into the gas mixer according to the detected value. “Battery device”.
JP58016383A 1983-02-03 1983-02-03 Fuel-cell system Pending JPS59149664A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58016383A JPS59149664A (en) 1983-02-03 1983-02-03 Fuel-cell system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58016383A JPS59149664A (en) 1983-02-03 1983-02-03 Fuel-cell system

Publications (1)

Publication Number Publication Date
JPS59149664A true JPS59149664A (en) 1984-08-27

Family

ID=11914750

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58016383A Pending JPS59149664A (en) 1983-02-03 1983-02-03 Fuel-cell system

Country Status (1)

Country Link
JP (1) JPS59149664A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0393694A2 (en) * 1989-04-21 1990-10-24 International Fuel Cells Corporation Fuel cell power plant
US5429885A (en) * 1993-11-22 1995-07-04 Yardney Technical Products, Inc. Hydrogen management system for metal/air fuel cell
WO1996018218A1 (en) * 1994-12-08 1996-06-13 Yardney Technical Products, Inc. Hydrogen management system for metal/air fuel cell
US6426158B1 (en) * 2000-07-20 2002-07-30 Motorola, Inc. Method of diluting hydrogen gas exhausted from a fuel cell
JP2014137984A (en) * 2013-01-18 2014-07-28 Mitsubishi Heavy Ind Ltd Power generation system
JP2018181541A (en) * 2017-04-10 2018-11-15 株式会社デンソー Fuel cell system

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0393694A2 (en) * 1989-04-21 1990-10-24 International Fuel Cells Corporation Fuel cell power plant
US5429885A (en) * 1993-11-22 1995-07-04 Yardney Technical Products, Inc. Hydrogen management system for metal/air fuel cell
WO1996018218A1 (en) * 1994-12-08 1996-06-13 Yardney Technical Products, Inc. Hydrogen management system for metal/air fuel cell
US6426158B1 (en) * 2000-07-20 2002-07-30 Motorola, Inc. Method of diluting hydrogen gas exhausted from a fuel cell
JP2014137984A (en) * 2013-01-18 2014-07-28 Mitsubishi Heavy Ind Ltd Power generation system
JP2018181541A (en) * 2017-04-10 2018-11-15 株式会社デンソー Fuel cell system

Similar Documents

Publication Publication Date Title
JP6616054B1 (en) Fuel cell system, combined power generation system, and control method for fuel cell system
KR102507658B1 (en) Fuel cell system and its control method
US6926748B2 (en) Staged lean combustion for rapid start of a fuel processor
JP6804661B2 (en) Fuel cell temperature distribution control system, fuel cell, and temperature distribution control method
KR101563455B1 (en) Method and arrangement for utilizing recirculation for high temperature fuel cell system
JP2000501227A (en) Operating method of high-temperature fuel cell equipment and high-temperature fuel cell equipment
US20070154745A1 (en) Purging a fuel cell system
JPS59149664A (en) Fuel-cell system
US20070154746A1 (en) Purging a fuel cell system
JPS61277171A (en) Fuel cell power generation system
JPH0654674B2 (en) Fuel cell power generator
JPS63254675A (en) Fuel cell power generating system
KR20190094122A (en) Methods for Transitioning a Fuel Cell System between Modes of Operation
JPS59149665A (en) Fuel-cell system
JPS62283564A (en) Generating system for fuel cell
JPS60208061A (en) Fuel cell power generating system
JP2567122B2 (en) Fuel cell power generation system
JPS59149663A (en) Fuel-cell power generating system
JPS6266578A (en) Air cooling type fuel cell power generating system
KR100814434B1 (en) Differential pressure control method for Molten Carbonates Fuel Cell power plants
JPS63254677A (en) Fuel cell power generating system
JPS6182678A (en) Fuel cell power generation system
JPH07101613B2 (en) Fuel cell power generation system
JPS63207053A (en) Fuel cell power generation plant
JPS61147471A (en) Fuel cell power generating system