JPH02273466A - Fuel cell power generating system - Google Patents

Fuel cell power generating system

Info

Publication number
JPH02273466A
JPH02273466A JP1093688A JP9368889A JPH02273466A JP H02273466 A JPH02273466 A JP H02273466A JP 1093688 A JP1093688 A JP 1093688A JP 9368889 A JP9368889 A JP 9368889A JP H02273466 A JPH02273466 A JP H02273466A
Authority
JP
Japan
Prior art keywords
exhaust gas
fuel cell
fuel
cathode
air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1093688A
Other languages
Japanese (ja)
Inventor
Hideo Nishigaki
英雄 西垣
Hideo Kaneko
金子 秀男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP1093688A priority Critical patent/JPH02273466A/en
Publication of JPH02273466A publication Critical patent/JPH02273466A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

PURPOSE:To balance the respective exhaust gas side pressure losses of a fuel line and an air line with simple means so as to restrain differential pressure between anode and cathode inside a fuel cell by omitting a differential pressure control valve which is to be installed in the exhaust gas piping passage of the fuel cell, and installing a restricting member in another exhaust gas passage provided on the side of the cathode. CONSTITUTION:A fixed restrictor 13 serving as a pressure loss compensating restricting member for adding pipe resistance is installed inside the exhaust gas piping 32 of the air system drawn out from the exit of the cathode 1a of the fuel cell 1 of a fuel cell power generating system. Between the position P where a fuel exhaust gas piping 11 extended from a reformer 3 and a piping 12 are combined together, and the exist side of the battery 1, the restriction resistance of the fixed restrictor 13 corrects a difference between the pressure loss of the exhaust gas piping passage of the fuel system which passage is extended via the reformer 3 and that of the exhaust gas piping passage of the air system, so that the pressure losses of both piping passages are equalized.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、りん酸型燃料電池、t9融炭酸塩型燃料電池
などを対象とする燃料電池発電システムに関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a fuel cell power generation system for phosphoric acid fuel cells, t9 carbonate fuel cells, and the like.

〔従来の技術〕[Conventional technology]

順相の燃料電池発電システムについて、りん酸型燃料電
池は、天然ガス、LPG、メタノールなどの燃料を改質
器で水素リッチな燃料ガスに改質して燃料電池のアノー
ドに供給し、カソードには空気ブロア、コンプレッサを
5通じて大気側から取り込んだ空気を供給して発電する
とともに、アノードから排出する燃料系の排ガス(水素
を含む)を改質器のバーナに送り込んで燃焼させ、その
燃焼熱で燃料の改質を行うようにしている。また、特に
燃料電池の動作圧力を高めた加圧形燃料電池発電システ
ムでは、プラント効率向上を狙いに、高温、高圧な改質
器の燃焼排ガス、および電池からのカソード排ガスを有
効利用して排ガスタービン/発電機を駆動し、ここで発
電した電力を空気昇圧用の空気ブロア、コンプレッサな
どの補機に給電して運転するようにした熱回収方式が実
用化されている。
Regarding normal-phase fuel cell power generation systems, phosphoric acid fuel cells use a reformer to reform fuel such as natural gas, LPG, or methanol into hydrogen-rich fuel gas, which is then supplied to the anode of the fuel cell, and then to the cathode. generates electricity by supplying air taken in from the atmosphere through an air blower and compressor 5, and also sends the exhaust gas (including hydrogen) from the fuel system discharged from the anode to the burner of the reformer and burns it. The fuel is reformed using heat. In addition, in pressurized fuel cell power generation systems in which the operating pressure of the fuel cell is particularly high, high-temperature, high-pressure combustion exhaust gas from the reformer and cathode exhaust gas from the battery are effectively used to improve plant efficiency. A heat recovery method has been put into practical use in which a turbine/generator is driven and the power generated is supplied to auxiliary equipment such as air blowers and compressors for boosting air pressure.

一方、溶融炭酸塩型燃料電池の発電システムでは、燃料
電池に例えば石炭のガス化、および有害成分を除去する
化学的精製プロセスを組合せた燃料処理装置を通じて得
た燃料ガスを燃料電池のアノードに供給し、カソードに
対してはアノードからの排ガスを昇圧、燃焼して得た炭
酸ガスと空気との混合ガスを供給して発電するようにし
ている。
On the other hand, in a power generation system using a molten carbonate fuel cell, fuel gas obtained through a fuel processing device that combines the fuel cell with coal gasification and a chemical refining process that removes harmful components is supplied to the fuel cell anode. However, the exhaust gas from the anode is pressurized and a mixed gas of carbon dioxide and air obtained by combustion is supplied to the cathode to generate electricity.

また、前記のりん酸型燃料電池発電システムと同様に、
溶融炭酸塩型燃料電池のカソード側から排出する排ガス
を有効活用して排ガスタービンの動力を得るようにした
熱回収方式が式が採用されている。
In addition, similar to the phosphoric acid fuel cell power generation system described above,
The system uses a heat recovery method that effectively utilizes the exhaust gas discharged from the cathode side of the molten carbonate fuel cell to generate power for the exhaust gas turbine.

一方、燃料電池の内部ではマトリックスを透過してアノ
ードとカソードの極間でガスクロスが発生すると、電池
の出力特性が低下する他、局所加熱が生じて電池寿命が
低下する。そのために、アノード/カソードの極間差圧
をある限度(通常は200mmHzO程度)以内に抑え
る必要があり、この差圧制御手段として、従来では燃料
電池の出口側でアノード8カソードの排ガス管路に差圧
制御弁を介装して次相のように差圧制御を行う方法が実
施されている。
On the other hand, inside the fuel cell, if gas crosses through the matrix and occurs between the anode and cathode, not only will the output characteristics of the cell decrease, but local heating will occur, shortening the battery life. For this purpose, it is necessary to suppress the differential pressure between the anode and cathode within a certain limit (usually around 200 mmHzO). Conventionally, as a means of controlling this differential pressure, the exhaust gas pipes of the anode and cathode are A method has been implemented in which a differential pressure control valve is installed to perform differential pressure control as in the next phase.

(1)燃料電池の格納圧力容器に封入した窒素ガスの圧
力を一定に維持し、この窒素ガス圧を基準に燃料電池の
アノード、カソードの出口側配管路にそれぞれ介装した
差圧制御弁でアノード/カソードの極間差圧を許容限度
以内に維持する方法。
(1) The pressure of the nitrogen gas sealed in the containment pressure vessel of the fuel cell is maintained constant, and based on this nitrogen gas pressure, the differential pressure control valves installed in the anode and cathode outlet pipes of the fuel cell are used as a reference. A method of maintaining the anode/cathode differential pressure within acceptable limits.

(2)空気もしくは燃料ガスのいずれか一方の圧力を基
準に、他方側の排気配管に介装した差圧制御弁によりア
ノード/カソードの極間差圧を許容限度以内に維持する
とともに、併せて圧力容器内の封入窒素ガス圧も所定値
に維持するよう圧力制御する方法。
(2) Based on the pressure of either air or fuel gas, the differential pressure between the anode and cathode is maintained within the permissible limit by a differential pressure control valve installed in the exhaust piping on the other side, and at the same time A pressure control method that maintains the pressure of the nitrogen gas sealed inside the pressure vessel at a predetermined value.

第3図は前記(1)の差圧制御方式を採用した従来にお
けるりん酸型燃料電池発電システムのフロー図を示すも
のである。図において、1は加圧形の燃料電池、2は燃
料電池1を格納した窒素ガス封入の圧力容器、3は天然
ガス、LPG、メタノールなどの燃料を水素リッチな燃
料ガスに改質する改質器、4は大気から取り込んだ空気
を昇圧する空気ブロア、5は排ガスの熱回収を行う排ガ
スタービン、6は発電機、7.8は燃料電池1のアノー
ド1a+カソード1bの出口より引出した排ガス配管路
に介装接続した差圧制御弁、9,10は窒素ガス−燃料
ガスの差圧発振器、窒素ガス−空気の差圧発振器である
FIG. 3 shows a flowchart of a conventional phosphoric acid fuel cell power generation system that employs the differential pressure control method described in (1) above. In the figure, 1 is a pressurized fuel cell, 2 is a pressure vessel filled with nitrogen gas that stores the fuel cell 1, and 3 is a reformer for reforming fuel such as natural gas, LPG, methanol, etc. into hydrogen-rich fuel gas. 4 is an air blower that boosts the pressure of air taken in from the atmosphere, 5 is an exhaust gas turbine that recovers heat from exhaust gas, 6 is a generator, and 7.8 is an exhaust gas pipe drawn out from the outlet of the anode 1a + cathode 1b of the fuel cell 1. Differential pressure control valves 9 and 10 interposed and connected to the passage are a nitrogen gas-fuel gas differential pressure oscillator and a nitrogen gas-air differential pressure oscillator.

かかる構成で、発電システムの運転時には、改質器3の
バーナ3aに燃料電池1の燃料排ガス〈水素を含んでい
る)と空気ブロア4から送気した空気を供給して燃焼さ
せ、その燃焼熱により燃料と改質触媒とを接触反応させ
て燃料を水素リッチな燃料ガスに改質する。また、改質
器3より引出した燃焼排ガス配管11に燃料電池のカソ
ード1bより引出した空気排ガス配管12を結合し、燃
焼排ガスと空気排ガスを合流させた上で排ガスタービン
5に導いて排ガスタービン5/発電機6を駆動し、その
発電電力を空気ブロア4に給電して運転するようにして
いる。一方、燃料電池1の通常運転時には、圧力容器2
に封入した窒素ガスを基準圧力として差圧発振器9.1
0を介して差圧制御弁78を制御し、燃料電池内部にお
けるアノード1a+カソード1bとの極間差圧が許容限
度以内に収まるように差圧制御を行っている。
With this configuration, when the power generation system is in operation, the fuel exhaust gas (containing hydrogen) from the fuel cell 1 and the air sent from the air blower 4 are supplied to the burner 3a of the reformer 3 and combusted, and the combustion heat is generated. The fuel and the reforming catalyst undergo a catalytic reaction to reform the fuel into hydrogen-rich fuel gas. Further, the air exhaust gas pipe 12 drawn from the cathode 1b of the fuel cell is connected to the combustion exhaust gas pipe 11 drawn from the reformer 3, and the combustion exhaust gas and the air exhaust gas are combined and guided to the exhaust gas turbine 5. /The generator 6 is driven, and the generated power is supplied to the air blower 4 for operation. On the other hand, during normal operation of the fuel cell 1, the pressure vessel 2
Differential pressure oscillator 9.1 using the nitrogen gas sealed in as the reference pressure
0 to control the differential pressure control valve 78 to control the differential pressure so that the differential pressure between the anode 1a and the cathode 1b inside the fuel cell is within an allowable limit.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

ところで、前記のように燃料電池のアノードカソードの
排ガス配管路に差圧制御弁を介装して差圧制御を行う従
来の差圧制御方式では、複雑な差圧制御系が必要となる
。さらに、差圧制御に伴い排ガスが差圧制御弁を通過す
る過程で制御弁の内部に大きな圧力損失を生じることが
避けられない。このために、前述のように改質器の燃焼
排ガス、空気排ガスの保有するエネルギーで排ガスター
ビンの動力を得る熱回収方式を採用した場合は、前記し
た差圧制御弁に生じる圧力損失が原因で排ガスタービン
における断熱膨張のエンタルピ落差が減少し、回収動力
も低下してその分だけ発電システムの総合的なプラント
効率が低くなる。
By the way, in the conventional differential pressure control method in which differential pressure control is performed by interposing a differential pressure control valve in the exhaust gas piping of the anode cathode of a fuel cell as described above, a complicated differential pressure control system is required. Furthermore, due to differential pressure control, it is inevitable that a large pressure loss will occur inside the control valve during the process in which the exhaust gas passes through the differential pressure control valve. For this reason, when a heat recovery method is adopted to power the exhaust gas turbine using the energy contained in the combustion exhaust gas and air exhaust gas of the reformer as described above, the pressure loss caused by the differential pressure control valve described above is The enthalpy drop of adiabatic expansion in the exhaust gas turbine decreases, the recovered power also decreases, and the overall plant efficiency of the power generation system decreases accordingly.

また、溶融炭酸塩型燃料電池では、電池の動作温度が5
50〜650“Cの高温でであり、このためにさらに差
圧制御に用いる圧力制御弁には、前記したりん酸型燃料
電池発電システムと同様な問題点に加え、さらに高い耐
熱温度、および大流量(特に空気極側では空冷式による
空気流量が多く、かつ運転温度が高温のため容積流量が
増加する)の仕様が要求され、このために差圧制御弁が
非常に高価なものとなる。
In addition, in molten carbonate fuel cells, the operating temperature of the cell is 5
50 to 650"C, and for this reason, the pressure control valve used for differential pressure control has the same problems as the phosphoric acid fuel cell power generation system described above, as well as a higher heat resistance temperature and large capacity. Specifications are required for the flow rate (particularly on the air electrode side, the air flow rate is large due to the air cooling system, and the volumetric flow rate increases due to the high operating temperature), which makes the differential pressure control valve extremely expensive.

本発明は、上記の点にかんがみなされたものであり、排
ガス系での圧力損失の増加、コスト高の要因となる従来
システムに採用していた差圧制御弁を省略し、その代わ
りに管路抵抗を付加する簡易な絞り部材を用いることで
、アノード/カソードの極間差圧を許容限度以内に抑え
つつ、併せて加圧形燃料電池に対しては排ガス配管経路
の圧力損失を低く抑えて排ガスタービンの回収動力を高
め、これにより総合的なプラント効率の改善が図れるよ
うにした燃料電池発電システムを提供することを目的と
する。
The present invention has been developed in consideration of the above points, and eliminates the differential pressure control valve used in conventional systems, which causes increased pressure loss in the exhaust gas system and increases costs, and instead uses a pipe line. By using a simple throttle member that adds resistance, the pressure difference between the anode and cathode can be kept within the permissible limit, and at the same time, for pressurized fuel cells, the pressure loss in the exhaust gas piping route can be kept low. The object of the present invention is to provide a fuel cell power generation system that increases the recovery power of an exhaust gas turbine and thereby improves overall plant efficiency.

〔課題を解決するための手段〕[Means to solve the problem]

上記課題を解決するために、本発明の燃料電池発電シス
テムにおいては、燃料電池のカソード側出口より引出し
た空気系の排ガス配管路に、燃料系の排ガス配管路と空
気系の排ガス配管路との圧力損失を整合させる絞り部材
を介装するものとする。
In order to solve the above problems, in the fuel cell power generation system of the present invention, the air system exhaust gas piping led out from the cathode side outlet of the fuel cell is connected to the fuel system exhaust gas piping and the air system exhaust gas piping. A throttle member shall be interposed to match the pressure loss.

〔作用〕[Effect]

先述した燃料電池発電システムでは、燃料電池の排ガス
配管路について、燃料系と空気系ではガス密度、配管経
路が相違し、かつその配管経路の構成によって燃料系、
空気系排ガス配管路の固有な圧力損失も自ずと決まる。
In the above-mentioned fuel cell power generation system, regarding the exhaust gas piping of the fuel cell, the gas density and piping route are different between the fuel system and the air system, and the configuration of the piping route differs between the fuel system and the air system.
The inherent pressure loss of the air system exhaust gas piping is also determined automatically.

この場合に、−船釣な発電システムの構成では、燃料系
の排ガス配管路には改質器のバーナ(りん酸型燃料電池
)、ブロア3燃焼器(溶融炭酸塩型燃料電池)など機器
を含むために、その配管経路の圧力損失が空気系と比べ
て大きい。したがって、カソード例の排ガス配管路中に
管路抵抗を付加する例えば固定絞りを採用した絞り部材
を介装し、かつ燃料系と空気系との間の排ガス配管路の
固有な圧力損失の差分を補正するように前記絞り部材の
絞り抵抗を設定することにより、差圧制御弁を用いた差
圧制御方式を採用することなく、燃料電池内部における
アノード/カソードのガス圧力を均衡させて極間差圧を
許容限度以下に抑えることができる。
In this case, in a typical power generation system configuration, devices such as the reformer burner (phosphoric acid fuel cell), blower 3 combustor (molten carbonate fuel cell), etc. are installed in the exhaust gas piping of the fuel system. Because of this, the pressure loss in the piping route is greater than that in an air system. Therefore, a restriction member that adds resistance to the exhaust gas piping in the cathode example, such as a fixed restriction, is inserted, and the difference in pressure loss inherent in the exhaust gas piping between the fuel system and the air system is reduced. By setting the throttling resistance of the throttling member to compensate, the gas pressure between the anode and cathode inside the fuel cell can be balanced and the difference between the electrodes can be reduced without employing a differential pressure control method using a differential pressure control valve. The pressure can be kept below the permissible limit.

しかも、圧力損失補正用として管路に介装した絞り部材
による圧力損失分は極く僅かであり、かつ絞り部材の設
置により差圧制御用の圧力制御弁が不要となる。したが
って差圧制御方式の場合に生じる大きな圧力損失分がな
くなり、特に加圧形燃料電池の発電システムのように排
ガスの熱回収を行う場合には、排ガスタービンの回収動
力も改善されて発電システムの総合的なプラント効率が
向上することになる。
Moreover, the pressure loss due to the throttle member inserted in the pipe line for pressure loss correction is extremely small, and the provision of the throttle member eliminates the need for a pressure control valve for differential pressure control. Therefore, the large pressure loss that occurs with the differential pressure control method is eliminated, and especially when heat is recovered from the exhaust gas, such as in a pressurized fuel cell power generation system, the recovery power of the exhaust gas turbine is also improved, which improves the power generation system. Overall plant efficiency will be improved.

〔実施例〕〔Example〕

第1図、第2図はそれぞれ本発明実施例によるりん酸型
燃料電池発電システム1および溶融炭酸塩型燃料電池発
電システムのフロー図を示すものであり、第3図に対応
する同一部材には同じ符号が付しである。
1 and 2 are flowcharts of a phosphoric acid fuel cell power generation system 1 and a molten carbonate fuel cell power generation system according to embodiments of the present invention, respectively, and the same members corresponding to FIG. The same symbols are attached.

まず、第1図の実施例において、燃料電池1のカソード
laの出口側から引出した空気系の排ガス配管12の途
中には管路抵抗を付加する圧力損失補正用の絞り部材と
して、例えば固定絞り13が介装されている。ここで、
固定絞り13の絞り抵抗は次のように設定される。すな
わら、改質器3から4出した燃焼排ガス配管11と空気
排ガス配管12とが合流する地点P(この合流地点で燃
料系と空気系の排ガス圧力が同じになる)と燃料電池1
の出口側との間で、改質器3を経由する燃料系の排ガス
配管路の圧力損失と空気系の排ガス配管路の圧力損失の
差分を補正して双方の配管路の圧力損失が略同じになる
ように設定する。
First, in the embodiment shown in FIG. 1, an exhaust gas pipe 12 of the air system led out from the outlet side of the cathode la of the fuel cell 1 is provided with a restrictor member for pressure loss correction that adds pipe resistance, for example, a fixed restrictor. 13 is interposed. here,
The aperture resistance of the fixed aperture 13 is set as follows. In other words, there is a point P where the combustion exhaust gas pipe 11 and the air exhaust gas pipe 12 discharged from the reformer 3 and 4 merge (at this meeting point, the exhaust gas pressures of the fuel system and the air system become the same) and the fuel cell 1.
The difference between the pressure loss in the fuel system exhaust gas piping via the reformer 3 and the pressure loss in the air system exhaust gas piping is corrected to ensure that the pressure loss in both piping is approximately the same. Set it so that

これにより、燃料電池1の内部では、従来の差圧制御方
式のように差圧制御弁を用いることなく、アノード1a
とカソード1bとの間で反応ガス圧が均衡するようにな
り、極間差圧を許容限度内に抑えてガスクロスの発生を
防止することができる。しかも差圧制御弁を省略するこ
とで、差圧制御弁に生じる大きな圧力損失分がなくなり
、排ガスタービン5での回収動力が第3図の構成と比べ
て数%程度高まるようになる。
As a result, inside the fuel cell 1, the anode 1a is
The reaction gas pressure becomes balanced between the electrode 1b and the cathode 1b, and the pressure difference between the electrodes can be suppressed within an allowable limit, thereby preventing gas cross from occurring. Moreover, by omitting the differential pressure control valve, a large pressure loss occurring in the differential pressure control valve is eliminated, and the recovered power in the exhaust gas turbine 5 is increased by several percent compared to the configuration shown in FIG. 3.

なお、固定絞り13は、発電プラントを現地に据付けた
状態で、実際に系内にガスを流しながら穴径の異なるオ
リフィスを差し替えて最適な管路抵抗を付加すように設
定する。
The fixed throttle 13 is set in such a way that when the power generation plant is installed on site, orifices with different hole diameters are replaced while gas is actually flowing into the system to add the optimum pipe resistance.

一方、第2図は溶融炭酸塩型燃料電池の発電システムを
対象とした実施例であり、14は石炭などの燃料をガス
化した上で有害成分を除去して燃料ガスを得る燃料処理
装置、15は燃料電池1のアノード1aから排出する燃
料排ガスの昇圧用ブロア、16は大気中より空気を取り
込む空気コンプレッサ、17はその駆動モータ、18は
燃料排ガスと空気とを燃焼させて炭酸ガス、空気成分の
カソード反応ガスを生成する燃焼器、19はカソード1
bの入口、出口の間のガス循環回路に介装した熱交換器
、20は循環ガスブロアである。
On the other hand, FIG. 2 shows an example of a power generation system using a molten carbonate fuel cell, and 14 is a fuel processing device that gasifies fuel such as coal and removes harmful components to obtain fuel gas; 15 is a blower for boosting the pressure of the fuel exhaust gas discharged from the anode 1a of the fuel cell 1; 16 is an air compressor that takes in air from the atmosphere; 17 is its drive motor; and 18 is a combustion engine that burns the fuel exhaust gas and air to produce carbon dioxide and air. a combustor for producing a component cathode reaction gas; 19 is a cathode 1;
The heat exchanger 20 installed in the gas circulation circuit between the inlet and outlet of b is a circulating gas blower.

かかる構成で、第1図の実施例と同様に燃料電池1のカ
ソード1aの出口より引出した排ガス配管12には絞り
部材として固定絞り13が介装されている。この固定絞
り13は、カソード1bの出口側から引出した排気系の
圧力損失をアノードIaの排気系の圧力損失と均衡させ
るようにその絞り抵抗が設定される。これにより第1図
の実施例と同様に燃料電池1の内部におけるアノード1
aとカソードIbの極間差圧を許容限度以内に抑えるこ
とができる。
With this configuration, a fixed throttle 13 is interposed as a throttle member in the exhaust gas pipe 12 led out from the outlet of the cathode 1a of the fuel cell 1, similar to the embodiment shown in FIG. The restricting resistance of the fixed throttle 13 is set so as to balance the pressure loss of the exhaust system drawn from the outlet side of the cathode 1b with the pressure loss of the exhaust system of the anode Ia. As a result, the anode 1 inside the fuel cell 1 is similar to the embodiment shown in FIG.
The differential pressure between the poles a and cathode Ib can be suppressed within the permissible limit.

また、従来の差圧制御方式で使用していた差圧制御弁と
比べて絞り部材の圧力損失が低く、その分だけ排ガスタ
ービン5での回収動力を高めることができる。
Moreover, the pressure loss of the throttle member is lower than that of the differential pressure control valve used in the conventional differential pressure control method, and the recovered power in the exhaust gas turbine 5 can be increased accordingly.

〔発明の効果〕〔Effect of the invention〕

本発明による燃料電池発電システムは、以上述べたよう
に構成されているので、次相の効果を奏する。
Since the fuel cell power generation system according to the present invention is configured as described above, it achieves the following effects.

(1)従来の差圧制御方式で燃料電池の排ガス配管路に
介装していた差圧制御弁を省略し、その代わりにカソー
ド側の排ガス管路に絞り部材を介装した簡易な手段で、
燃料系と空気系の排ガス側の圧力損失を均衡させて燃料
電池内部におけるアノードとカソードの極間差圧を許容
限度以内に抑えてガスクロスの発生を防止することがで
きる。
(1) By omitting the differential pressure control valve that was installed in the exhaust gas piping of the fuel cell in the conventional differential pressure control method, a simple means was adopted in which a throttle member was inserted in the exhaust gas piping on the cathode side. ,
By balancing the pressure loss on the exhaust gas side of the fuel system and the air system, it is possible to suppress the differential pressure between the anode and cathode within the fuel cell to within an allowable limit, thereby preventing the occurrence of gas cross.

(2)特に加圧形燃料電池のように、発電システムの系
内に排ガスの保有するエネルギーを回収する排ガスター
ビンなどを備えたものに対しては、従来の差圧制御方式
と比べ、系内における圧力損失を低減して回収動力を高
め、プラント総合効率の向上が図れる。
(2) In particular, for pressurized fuel cells, which are equipped with an exhaust gas turbine to recover the energy held in exhaust gas within the power generation system, compared to the conventional differential pressure control method, It is possible to reduce the pressure loss in the plant, increase the recovery power, and improve the overall efficiency of the plant.

【図面の簡単な説明】[Brief explanation of drawings]

第1図、第2図はそれぞれりん酸型燃料電池溶融炭酸塩
型燃料電池を対象とした本発明実施例のシステムフロー
図、第3図は従来の差圧制御方式を採用したりん酸型燃
料電池発電システムのシステムフロー図である。図にお
いて、 1;燃料電池、1a;アノード、Xb:カソード、3:
改質器、4:空気ブロア、5:排ガスタービン、12:
カソード側の排ガス配管、13:固定絞り(絞り部材)
、1.4.:燃料処理装置。
Figures 1 and 2 are system flow diagrams of an embodiment of the present invention targeting a phosphoric acid fuel cell and a molten carbonate fuel cell, respectively, and Figure 3 is a system flow diagram of a phosphoric acid fuel cell using a conventional differential pressure control method. It is a system flow diagram of a battery power generation system. In the figure, 1: fuel cell, 1a: anode, Xb: cathode, 3:
Reformer, 4: Air blower, 5: Exhaust gas turbine, 12:
Cathode side exhaust gas piping, 13: Fixed throttle (throttle member)
, 1.4. :Fuel processing device.

Claims (1)

【特許請求の範囲】[Claims] 1)燃料電池のアノード,カソードに対し燃料処理装置
で得た燃料ガス,および空気を供給して発電する燃料電
池発電システムにおいて、燃料電池のカソード側出口よ
り引出した空気系の排ガス配管路に、燃料系の排ガス配
管路と空気系の排ガス配管路との圧力損失を整合させる
絞り部材を介装したことを特徴とする燃料電池発電シス
テム。
1) In a fuel cell power generation system that generates electricity by supplying fuel gas obtained from a fuel processing device and air to the anode and cathode of a fuel cell, an exhaust gas piping line of the air system drawn out from the cathode side outlet of the fuel cell, A fuel cell power generation system characterized by interposing a throttle member to match pressure loss between a fuel system exhaust gas piping path and an air system exhaust gas piping path.
JP1093688A 1989-04-13 1989-04-13 Fuel cell power generating system Pending JPH02273466A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1093688A JPH02273466A (en) 1989-04-13 1989-04-13 Fuel cell power generating system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1093688A JPH02273466A (en) 1989-04-13 1989-04-13 Fuel cell power generating system

Publications (1)

Publication Number Publication Date
JPH02273466A true JPH02273466A (en) 1990-11-07

Family

ID=14089345

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1093688A Pending JPH02273466A (en) 1989-04-13 1989-04-13 Fuel cell power generating system

Country Status (1)

Country Link
JP (1) JPH02273466A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003203658A (en) * 2001-11-05 2003-07-18 Osaka Gas Co Ltd Hydrogen-contained gas supply structure and fuel cell having the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003203658A (en) * 2001-11-05 2003-07-18 Osaka Gas Co Ltd Hydrogen-contained gas supply structure and fuel cell having the same

Similar Documents

Publication Publication Date Title
JP2005038817A (en) Fuel cell/normal pressure turbine/hybrid system
CN104737347A (en) Power generation system and operation method for power generation system
JP2000200617A (en) Fuel-cell composite power generating plant system
JPS63166157A (en) Solid electrolyte fuel cell power generating system
JP2000331697A (en) Fuel cell generating device injecting vapor into anode exhaust gas line
JPH11238520A (en) Fuel cell power generating apparatus
JP6066662B2 (en) Combined power generation system and method of operating combined power generation system
JP5166660B2 (en) Combined power generation system
KR20020031686A (en) Apparatus and method of efficiency improvement for Fuel Cell generation of electric power sysytem
JP3208970B2 (en) Fuel cell temperature control method and apparatus
JP3344439B2 (en) Combustion device and combustion method for turbine compressor
JPH02273466A (en) Fuel cell power generating system
JP2005203223A (en) Combined power generation system using high temperature fuel cell
JP2001015134A (en) Combined power generating device of fuel cell with gas turbine
JP3513933B2 (en) Fuel cell power generator
JPH1167251A (en) Fuel cell power generating device
JP2000133295A (en) Solid electrolyte fuel cell composite power generation plant system
JP3882337B2 (en) Fuel cell power generation facility with differential pressure self-control function
JPS6264067A (en) Fuel battery system
JPH11135140A (en) Combined power generating facilities recycling anode exhaust gas
JP5550327B2 (en) Solid oxide fuel cell power generation system
JP3440825B2 (en) Fuel cell system
JP3582131B2 (en) Molten carbonate fuel cell power generator
JPH02297866A (en) Fuel cell power generating system
JPH10223236A (en) Fuel cell electricity-generating apparatus