JP2000133295A - Solid electrolyte fuel cell composite power generation plant system - Google Patents

Solid electrolyte fuel cell composite power generation plant system

Info

Publication number
JP2000133295A
JP2000133295A JP10304257A JP30425798A JP2000133295A JP 2000133295 A JP2000133295 A JP 2000133295A JP 10304257 A JP10304257 A JP 10304257A JP 30425798 A JP30425798 A JP 30425798A JP 2000133295 A JP2000133295 A JP 2000133295A
Authority
JP
Japan
Prior art keywords
oxygen
fuel
exhaust
fuel cell
steam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10304257A
Other languages
Japanese (ja)
Other versions
JP4209015B2 (en
Inventor
Masatoshi Kudome
正敏 久留
Hiroshi Takatsuka
汎 高塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP30425798A priority Critical patent/JP4209015B2/en
Publication of JP2000133295A publication Critical patent/JP2000133295A/en
Application granted granted Critical
Publication of JP4209015B2 publication Critical patent/JP4209015B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/16Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

PROBLEM TO BE SOLVED: To enhance power generating efficiency and reliability by installing an exhaust fuel cooling heat exchanger for cooling fuel side exhaust gas of a fuel cell. SOLUTION: A fuel heating heat exchanger 60 and an exhaust fuel cooling heat exchanger 61 are installed in a fuel side exhaust line 58, exhaust fuel whose temperature is lowered compared with outlet exhaust fuel of a fuel cell 53 is supplied to a combustor 59, and an oxygen heating heat exchanger 69 and an exhaust oxygen cooling heat exchanger 70 are installed in an oxygen side exhaust line 68, exhaust oxygen whose temperature is lowered compared with outlet exhaust oxygen of the fuel cell 53 is supplied to the combustor 59. Steam heated by heat exchange when passes through the heat exchanger 61 and the heat exchanger 70 is supplied to the combustor 59. The temperature of steam generated in the combustor 59 can be lowered than allowable temperature of a steam turbine 75 locating downstream of the combustor 59, the maximum amount of steam kept at allowable temperature can be supplied to the steam turbine 75, and power is efficiently generated with a generator 76.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、固体電解質燃料電
池複合発電プラントシステムに関する。
The present invention relates to a solid oxide fuel cell combined cycle power plant system.

【0002】[0002]

【従来の技術】水素・酸素燃焼タービンを有する複合発
電プラントシステムとしては、従来より図2に示すラン
キンサイクル方式および図3に示すトッピング再生サイ
クル方式のものが知られている。
2. Description of the Related Art Conventionally, as a combined cycle power plant system having a hydrogen / oxygen combustion turbine, a Rankine cycle system shown in FIG. 2 and a topping regeneration cycle system shown in FIG. 3 are known.

【0003】図2に示すランキンサイクル方式の複合発
電プラントシステムにおいて、高温蒸気タービン1は超
高温タービン2出口の蒸気を加熱源とする第1熱交換器
3で発生した高圧蒸気および高温タービン4出口の蒸気
を加熱源とする第2熱交換器5で発生した高圧蒸気によ
り駆動される。前記高温蒸気タービン1出口の蒸気は、
第1水素・酸素燃焼器6に導入され、ここで別途供給さ
れた水素および酸素と共に燃焼することにより発生する
超高温蒸気を利用して前記超高温タービン2を駆動す
る。前記超高温タービン2出口の蒸気は、前記第1熱交
換器3で熱交換された後に第2水素・酸素燃焼器7に導
入され、ここで別途供給された水素および酸素と共に燃
焼することにより発生する高温蒸気を利用して前記高温
タービン4を駆動する。前記高温タービン4出口の蒸気
は、前記第2熱交換器5で冷却された後、低温タービン
8に供給される。発電機9は、前記各タービン1,2,
4,8により発電される。
In the Rankine cycle type combined cycle power plant system shown in FIG. 2, a high-temperature steam turbine 1 has a high-pressure steam generated in a first heat exchanger 3 using steam at an outlet of an ultra-high-temperature turbine 2 as a heating source and an outlet of a high-temperature turbine 4. Is driven by the high-pressure steam generated in the second heat exchanger 5 using the steam as a heating source. The steam at the outlet of the high-temperature steam turbine 1 is as follows:
The ultrahigh-temperature turbine 2 is driven by using ultrahigh-temperature steam that is introduced into the first hydrogen / oxygen combustor 6 and generated by burning with hydrogen and oxygen separately supplied here. The steam at the outlet of the ultrahigh-temperature turbine 2 is introduced into the second hydrogen / oxygen combustor 7 after heat exchange in the first heat exchanger 3, and is generated by burning together with hydrogen and oxygen separately supplied here. The high-temperature turbine 4 is driven using the high-temperature steam generated. The steam at the outlet of the high-temperature turbine 4 is supplied to the low-temperature turbine 8 after being cooled in the second heat exchanger 5. The generator 9 includes the turbines 1, 2, 2,
Electric power is generated by the power generators 4, 8.

【0004】前記低温タービン8出口の蒸気は、復水器
10に供給され、ここで凝縮されて水になる。この復水
のうち、前記第1,第2の水素・酸素燃焼器6,7で発
生した水に相当する復水は覆水ポンプ11により系外に
排出されて回収され、負荷に応じた量の復水は給水とし
て給水ポンプ12により圧縮した状態で前記第1,第2
の熱交換器3,5に供給される。
[0004] The steam at the outlet of the low-temperature turbine 8 is supplied to a condenser 10 where it is condensed into water. Among the condensed water, condensed water corresponding to the water generated in the first and second hydrogen / oxygen combustors 6 and 7 is discharged out of the system by the submergence pump 11 and collected, and has an amount corresponding to the load. The condensate is supplied as the first water and the second water in a state of being compressed by the water supply pump 12.
Are supplied to the heat exchangers 3 and 5.

【0005】一方、図3に示すトッピング再生サイクル
方式の複合発電プラントシステムにおいて、高温蒸気タ
ービン21は高温タービン22出口の蒸気を加熱源とす
る第1〜第3の熱交換器23〜25を経由して熱交換さ
れた高圧蒸気により駆動される。この高温蒸気タービン
21出口の蒸気は、超高圧タービン26に供給される。
On the other hand, in the combined power plant system of the topping regeneration cycle system shown in FIG. 3, the high-temperature steam turbine 21 passes through first to third heat exchangers 23 to 25 using steam at the outlet of the high-temperature turbine 22 as a heating source. It is driven by high-pressure steam that has been heat-exchanged. The steam at the outlet of the high-temperature steam turbine 21 is supplied to the ultrahigh-pressure turbine 26.

【0006】前記各熱交換器23〜25およびこのうち
の第3熱交換器25と並列的に配置され、後述する高圧
圧縮機からの蒸気と熱交換する第4熱交換器27を経由
した前記高温タービン22出口の蒸気は、低圧圧縮機2
8を通して高圧圧縮機29に供給されて昇圧され、前記
第4熱交換器27を経由して水素・酸素燃焼器30に導
入され、ここで別途供給された水素および酸素と共に燃
焼することにより発生する高温蒸気を利用して前記超高
温タービン26、およびこの後段に配置された前記高温
タービン22を駆動する。
The heat exchangers 23 to 25 and a third heat exchanger 25 among them are arranged in parallel with each other and pass through a fourth heat exchanger 27 which exchanges heat with steam from a high-pressure compressor described later. The steam at the outlet of the high-temperature turbine 22 is supplied to the low-pressure compressor 2
The pressure is supplied to a high-pressure compressor 29 through 8 and the pressure is increased. The pressure is introduced into the hydrogen / oxygen combustor 30 via the fourth heat exchanger 27, and is generated by burning with hydrogen and oxygen separately supplied here. The ultra-high-temperature turbine 26 and the high-temperature turbine 22 disposed at a subsequent stage are driven by using the high-temperature steam.

【0007】前記第2熱交換器24を経由後の前記高温
タービン22出口の蒸気は、低圧タービン31に供給さ
れる。発電機32は、前記各タービン21,22,2
6,31により発電される。
The steam at the outlet of the high-temperature turbine 22 after passing through the second heat exchanger 24 is supplied to a low-pressure turbine 31. The generator 32 includes the turbines 21, 22, 2
6, 31 generate electric power.

【0008】前記低温タービン31出口の蒸気は、直接
及び第5,第6の熱交換器33,34を経由して復水器
35に供給され、ここで凝縮されて水になる。この復水
のうち、前記水素・酸素燃焼器30で発生した水に相当
する復水は復水ポンプ36により系外に排出されて回収
される。また、前記復水のうち、負荷に応じた量の復水
の一部は第1給水ポンプ37により前記高圧圧縮機29
に供給される。残りの復水は前記第5、第6の熱交換器
33,34で熱交換された後、脱気器38で脱気され、
第2給水ポンプ39により前記第1〜第3の熱交換器2
3〜25で熱交換されて前述したように高温蒸気タービ
ン21に送られる。なお、前記脱気器38には前記低温
タービン31の出口蒸気が導入される。
The steam at the outlet of the low-temperature turbine 31 is supplied to the condenser 35 directly and via the fifth and sixth heat exchangers 33 and 34, where it is condensed into water. Of this condensate, condensate corresponding to the water generated in the hydrogen / oxygen combustor 30 is discharged out of the system by the condensate pump 36 and collected. Further, a part of the condensed water of the amount corresponding to the load is condensed by the first feed pump 37 to the high-pressure compressor 29.
Supplied to The remaining condensate is heat-exchanged in the fifth and sixth heat exchangers 33 and 34 and then deaerated in a deaerator 38.
The first to third heat exchangers 2 are supplied by the second water pump 39.
The heat is exchanged at 3 to 25 and sent to the high-temperature steam turbine 21 as described above. The outlet steam of the low-temperature turbine 31 is introduced into the deaerator 38.

【0009】[0009]

【発明が解決しようとする課題】しかしながら、前述し
た従来の複合発電プラントシステムは次のような問題が
あった。
However, the above-mentioned conventional combined cycle power plant system has the following problems.

【0010】(1)2方式のいずれの複合発電プラント
システムも高級、高価な水素を燃料として使用するた
め、高い発電効率を達成することが不可欠であるが、1
700℃級の高温タービンを適用してもなお効率が61
%程度と低い。
(1) Since both of the two types of combined power plant systems use high-grade and expensive hydrogen as fuel, it is essential to achieve high power generation efficiency.
Even if a 700 ° C. high temperature turbine is applied, the efficiency is still 61%.
% And low.

【0011】(2)2方式のいずれの複合発電プラント
システムに用いられる水素燃焼タービンは、高効率にす
るには高温にする必要があるが、1500℃以上の高温
タービンの開発の目処がたっていないのが実状であり、
その開発には膨大な費用と時間を要する。
(2) It is necessary to raise the temperature of the hydrogen combustion turbine used in any of the two types of combined cycle power plant systems in order to achieve high efficiency, but there is no prospect of developing a high temperature turbine of 1500 ° C. or higher. Is the actual situation,
Its development requires enormous costs and time.

【0012】(3)ランキンサイクル方式の複合発電プ
ラントシステムでは、超高圧(数百kgf/cm2)を
必要とし、高圧タービンの実現性が低い。
(3) In a Rankine cycle combined cycle power plant system, an ultra-high pressure (several hundred kgf / cm 2 ) is required, and the feasibility of a high-pressure turbine is low.

【0013】(4)トッピング再生方式の複合発電プラ
ントシステムは、前述した図3に示すように高温熱交換
器を多数必要とし、設備が複雑になると共に、高価格に
なる。
(4) The combined power plant system of the topping regeneration system requires a large number of high-temperature heat exchangers as shown in FIG. 3 described above, making the equipment complicated and expensive.

【0014】本発明は、高発電効率で、かつ高信頼性の
固体電解質燃料電池複合発電プラントシステムを提供し
ようとするものである。
An object of the present invention is to provide a solid oxide fuel cell combined cycle power generation system with high power generation efficiency and high reliability.

【0015】[0015]

【課題を解決するための手段】本発明に係わる固体電解
質燃料電池複合発電プラントシステムは、燃料供給ライ
ンを通して水素を燃料として供給され、かつ酸素供給ラ
インを通して酸素を酸化剤として供給される固体電解質
燃料電池と、前記燃料電池の燃料側排気を冷却するため
の排燃料冷却用熱交換器と、前記燃料供給ラインに前記
熱交換器で冷却した排燃料を前記燃料電池の温度を制御
するために再循環させる排燃料再循環手段と、排燃料お
よび前記燃料電池の酸素側排気が供給され、高温蒸気を
発生させるための燃焼器と、前記燃焼器に前記熱交換器
出口の蒸気を前記燃焼器出口温度を制御するために供給
する蒸気供給手段と、前記燃焼器で発生した高温蒸気に
より駆動される高温蒸気タービンと、前記タービンから
の蒸気を凝縮するための復水器とを具備したことを特徴
とするものである。
A solid electrolyte fuel cell combined cycle power plant system according to the present invention is provided with a solid electrolyte fuel supplied with hydrogen as fuel through a fuel supply line and supplied with oxygen as an oxidant through an oxygen supply line. A fuel cell, an exhaust fuel cooling heat exchanger for cooling fuel-side exhaust of the fuel cell, and an exhaust fuel cooled by the heat exchanger to the fuel supply line for controlling the temperature of the fuel cell. An exhaust fuel recirculation means for circulating, an exhaust fuel and an oxygen-side exhaust gas of the fuel cell are supplied, and a combustor for generating high-temperature steam; and Steam supply means for controlling the temperature, a high-temperature steam turbine driven by high-temperature steam generated in the combustor, and condensing steam from the turbine It is characterized in that it has and a fit of the condenser.

【0016】本発明に係わる固体電解質燃料電池複合発
電プラントシステムにおいて、前記燃料供給ラインおよ
び前記酸素供給ラインを通して供給される水素および酸
素は、化学等量であることが好ましい。
In the solid oxide fuel cell combined cycle power plant system according to the present invention, it is preferable that hydrogen and oxygen supplied through the fuel supply line and the oxygen supply line are in chemical equivalent amounts.

【0017】本発明に係わる固体電解質燃料電池複合発
電プラントシステムにおいて、さらに前記燃料電池の酸
素側排気を冷却するための排酸素冷却用熱交換器と、前
記酸素供給ラインに前記排酸素冷却用熱交換器で冷却し
た排酸素を前記燃料電池の温度を制御するために再循環
させる排酸素再循環手段とを設けることを許容する。
In the solid oxide fuel cell combined cycle power plant system according to the present invention, further, a heat exchanger for cooling the exhaust gas for cooling the oxygen-side exhaust gas of the fuel cell, and a heat exchanger for cooling the exhaust gas for cooling the oxygen supply line. Exhaust oxygen recirculation means for recirculating the exhaust oxygen cooled by the exchanger to control the temperature of the fuel cell may be provided.

【0018】本発明に係わる固体電解質燃料電池複合発
電プラントシステムにおいて、さらに前記燃料電池出口
の排燃料と前記燃料供給ラインの燃料とを熱交換するた
めの燃料加熱用熱交換器を設けることを許容する。
In the solid oxide fuel cell combined cycle power plant system according to the present invention, it is permissible to further provide a fuel heating heat exchanger for exchanging heat between the fuel discharged from the fuel cell outlet and the fuel in the fuel supply line. I do.

【0019】本発明に係わる固体電解質燃料電池複合発
電プラントシステムにおいて、さらに前記燃料電池出口
の排酸素と前記酸素供給ラインの酸素とを熱交換するた
めの酸素加熱用熱交換器を設けることを許容する。
In the solid oxide fuel cell combined cycle power plant system according to the present invention, it is permissible to further provide an oxygen heating heat exchanger for exchanging heat between the exhausted oxygen at the fuel cell outlet and the oxygen in the oxygen supply line. I do.

【0020】本発明に係わる固体電解質燃料電池複合発
電プラントシステムにおいて、前記酸素は空気であるこ
とが好ましい。
In the solid oxide fuel cell combined cycle power plant system according to the present invention, the oxygen is preferably air.

【0021】[0021]

【発明の実施の形態】以下、本発明に係わる固体電解質
燃料電池複合発電プラントシステムを図1を参照して詳
細に説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, a solid oxide fuel cell combined cycle power plant system according to the present invention will be described in detail with reference to FIG.

【0022】水素燃料タンク51からの水素は、燃料供
給ライン52を通して固体電解質燃料電池(SOFC)
53に供給される。この固体電解質燃料電池53は、発
電膜54と、この発電膜54で区画された燃料室55お
よび酸素室56とを備えた構造を有する。前記発電膜5
4は、燃料極、固体電解質膜および酸素極により構成さ
れ、直交流変換器57に接続されている。前記燃料電池
53の燃料室55は、燃料側排気ライン58を通して燃
焼器59に連結されている。前記燃料供給ライン52の
燃料を加熱するための燃料加熱用熱交換器60は、前記
燃料供給ライン52および燃料側排気ライン58に跨っ
て介装されている。
Hydrogen from the hydrogen fuel tank 51 is supplied through a fuel supply line 52 to a solid oxide fuel cell (SOFC).
53. The solid electrolyte fuel cell 53 has a structure including a power generation membrane 54, and a fuel chamber 55 and an oxygen chamber 56 partitioned by the power generation membrane 54. The power generation film 5
Reference numeral 4 includes a fuel electrode, a solid electrolyte membrane, and an oxygen electrode, and is connected to a cross-current converter 57. The fuel chamber 55 of the fuel cell 53 is connected to a combustor 59 through a fuel-side exhaust line 58. A fuel heating heat exchanger 60 for heating the fuel in the fuel supply line 52 is interposed across the fuel supply line 52 and the fuel-side exhaust line 58.

【0023】排燃料冷却用熱交換器61は、前記熱交換
器60と前記燃焼器59の間の前記燃料側排気ライン5
8に介装されている。燃料側分岐ライン62は、前記排
燃料冷却用熱交換器61で冷却された排燃料を前記水素
燃料タンク51と前記熱交換器60の間に位置する前記
燃料供給ライン52に供給するように前記燃料供給ライ
ン52および燃料側排気ライン58に連結されている。
昇圧ファン63および制御弁64は、前記燃料側分岐ラ
イン62に前記燃料側排気ライン58から順次介装され
ている。なお、前記制御弁64は前記燃料電池に供給さ
れる水素を所定温度に制御するように排燃料の再循環量
を調節する機能を有する。このような燃料側分岐ライン
62、昇圧ファン63および制御弁64により排燃料再
循環機構65を構成している。
The exhaust fuel cooling heat exchanger 61 is connected to the fuel-side exhaust line 5 between the heat exchanger 60 and the combustor 59.
8 is interposed. The fuel side branch line 62 is configured to supply the exhaust fuel cooled by the exhaust fuel cooling heat exchanger 61 to the fuel supply line 52 located between the hydrogen fuel tank 51 and the heat exchanger 60. The fuel supply line 52 and the fuel-side exhaust line 58 are connected.
The boosting fan 63 and the control valve 64 are interposed in the fuel-side branch line 62 sequentially from the fuel-side exhaust line 58. The control valve 64 has a function of adjusting the amount of recirculated exhaust fuel so as to control hydrogen supplied to the fuel cell to a predetermined temperature. The fuel-side branch line 62, the booster fan 63, and the control valve 64 constitute an exhaust fuel recirculation mechanism 65.

【0024】酸素タンク66からの酸素は、酸素供給ラ
イン67を通して前記燃料電池53の酸素室56に供給
される。前記燃料電池53の酸素室56は、酸素側排気
ライン68を通して前記燃焼器59に連結されている。
前記酸素供給ライン67の酸素を加熱するための酸素加
熱用熱交換器69は、前記酸素供給ライン67および酸
素側排気ライン68に跨って介装されている。
The oxygen from the oxygen tank 66 is supplied to the oxygen chamber 56 of the fuel cell 53 through an oxygen supply line 67. The oxygen chamber 56 of the fuel cell 53 is connected to the combustor 59 through an oxygen-side exhaust line 68.
An oxygen heating heat exchanger 69 for heating oxygen in the oxygen supply line 67 is interposed across the oxygen supply line 67 and the oxygen-side exhaust line 68.

【0025】排酸素冷却用熱交換器70は、前記酸素加
熱用熱交換器69と前記燃焼器59の間の前記酸素側排
気ライン68に介装されている。酸素側分岐ライン71
は、前記排酸素冷却用熱交換器70で冷却された排酸素
を前記酸素タンク66と前記酸素加熱用熱交換器69の
間に位置する前記酸素供給ライン67に供給するように
前記酸素供給ライン67および酸素側排気ライン68に
連結されている。昇圧ファン72および制御弁73は、
前記酸素側分岐ライン71に前記酸素側排気ライン68
から順次介装されている。なお、前記制御弁73は前記
燃料電池に供給される酸素を所定温度に制御するように
排酸素の再循環量を調節する機能を有する。このような
酸素側分岐ライン71、昇圧ファン72および制御弁7
3により排酸素再循環機構74を構成している。
The exhaust oxygen cooling heat exchanger 70 is interposed in the oxygen side exhaust line 68 between the oxygen heating heat exchanger 69 and the combustor 59. Oxygen side branch line 71
The oxygen supply line is configured to supply the exhaust oxygen cooled by the exhaust oxygen cooling heat exchanger 70 to the oxygen supply line 67 located between the oxygen tank 66 and the oxygen heating heat exchanger 69. 67 and an oxygen-side exhaust line 68. The booster fan 72 and the control valve 73 are
The oxygen side exhaust line 68 is connected to the oxygen side branch line 71.
Are installed sequentially. The control valve 73 has a function of adjusting the recirculation amount of the exhausted oxygen so as to control the oxygen supplied to the fuel cell to a predetermined temperature. Such an oxygen-side branch line 71, a booster fan 72, and a control valve 7
3 constitutes an exhaust oxygen recirculation mechanism 74.

【0026】前記燃焼器59で発生した蒸気は、蒸気タ
ービン75に供給され、このタービン75により発電機
76が発電される。前記蒸気タービン75は、配管77
を通して復水タンク78に連結されている。前記配管7
7には、前記タービン75側から蒸発器(給水加熱器)
79および凝縮器80が順次介装されている。
The steam generated in the combustor 59 is supplied to a steam turbine 75, which generates a generator 76. The steam turbine 75 includes a pipe 77
Through to the condensate tank 78. The piping 7
7 has an evaporator (feed water heater) from the turbine 75 side.
79 and a condenser 80 are sequentially provided.

【0027】前記復水タンク78は、給水ライン81お
よびこれから分岐した第1,第2の分岐給水ライン8
2,83を通して前記蒸発器79に連結されている。前
記給水ライン81には、給水ポンプ84が介装されてい
る。なお、前記燃焼器59で発生した水に相当する復水
は回収ライン85を通して系外に回収される。前記第
1,第2の分岐給水ライン82,83には、流量制御弁
86,87がそれぞれ介装されている。前記流量制御弁
86は、前記排燃料冷却用熱交換器61出口温度および
前記燃焼器59の入口温度を所定の温度になるように給
水量を調節する機能を有する。前記流量制御弁87は、
前記排酸素冷却用熱交換器70出口温度および前記燃焼
器59の入口温度を所定の温度になるように給水量を調
節する機能を有する。
The condensate tank 78 includes a water supply line 81 and first and second branched water supply lines 8 branched therefrom.
2 and 83 are connected to the evaporator 79. A water supply pump 84 is interposed in the water supply line 81. The condensed water corresponding to the water generated in the combustor 59 is recovered outside the system through the recovery line 85. The first and second branch water supply lines 82 and 83 are provided with flow control valves 86 and 87, respectively. The flow rate control valve 86 has a function of adjusting the amount of water supply so that the outlet temperature of the exhaust fuel cooling heat exchanger 61 and the inlet temperature of the combustor 59 become predetermined temperatures. The flow control valve 87 is
It has a function of adjusting the water supply amount so that the outlet temperature of the exhaust oxygen cooling heat exchanger 70 and the inlet temperature of the combustor 59 become predetermined temperatures.

【0028】前記蒸発器79から延出され、前記第1分
岐給水ライン82と連通する第1蒸気ライン88および
前記蒸発器79から延出され、前記第2分岐給水ライン
83と連通する第2蒸気ライン89は,それぞれ前記排
燃料冷却用熱交換器61および前記排酸素冷却用熱交換
器70を経由して統合され、かつ統合された蒸気ライン
90は前記燃焼器59に連結されている。
A first steam line 88 extending from the evaporator 79 and communicating with the first branch water supply line 82 and a second steam extending from the evaporator 79 and communicating with the second branch water supply line 83 The line 89 is integrated via the exhaust fuel cooling heat exchanger 61 and the exhaust oxygen cooling heat exchanger 70, respectively, and the integrated steam line 90 is connected to the combustor 59.

【0029】次に、前述した図1に示す固体電解質燃料
電池複合発電プラントシステムの動作を説明する。
Next, the operation of the solid oxide fuel cell combined cycle power plant system shown in FIG. 1 will be described.

【0030】まず、水素燃料タンク51から水素を燃料
供給ライン52を通して固体電解質燃料電池53の燃料
室55に供給するとともに、酸素タンク66から酸素を
酸素供給ライン67を通して前記燃料電池53の酸素室
56に供給する。この時、前記水素および酸素は化学等
量になるように前記燃料電池53に供給する。このよう
な水素および酸素の供給により、前記燃料室55および
酸素室56の間に配置された発電膜54により電池反応
がなされ、前記発電膜54に接続された直交流変換器5
7から交流電圧として出力される。
First, hydrogen is supplied from the hydrogen fuel tank 51 to the fuel chamber 55 of the solid electrolyte fuel cell 53 through the fuel supply line 52, and oxygen is supplied from the oxygen tank 66 through the oxygen supply line 67 to the oxygen chamber 56 of the fuel cell 53. To supply. At this time, the hydrogen and oxygen are supplied to the fuel cell 53 so as to have a chemical equivalent. Due to such supply of hydrogen and oxygen, a cell reaction is caused by the power generation film 54 disposed between the fuel chamber 55 and the oxygen chamber 56, and the cross-current converter 5 connected to the power generation film 54
7 is output as an AC voltage.

【0031】前記燃料電池53の燃料室55出口の排気
(排燃料;蒸気を含む)は、燃料加熱用熱交換器60お
よび排燃料冷却用交換器61が介装された燃料側排気ラ
イン58を通して燃焼室59に供給される。このように
排燃料が前記燃料加熱用熱交換器60を通過する過程で
前記燃料供給ライン52を通過する水素は熱交換されて
加熱される。また、排燃料は前記燃料加熱用熱交換器6
0を通過する過程で燃料供給ライン52の水素と熱交換
されて冷却され、さらに排燃料冷却用交換器61を通過
する過程で第1蒸気ライン88の低温蒸気と熱交換され
て冷却される。このため、前記燃料室55出口の排燃料
に比べて低温化された排燃料を前記燃焼器59に供給す
ることが可能になる。さらに、燃料側分岐ライン62、
昇圧ファン63および制御弁64から構成される排燃料
再循環機構65により冷却した後の排燃料を前記燃料加
熱用熱交換器60上流側の燃料供給ライン52に供給す
ることにより、前記燃料電池53出口の温度を適切な温
度まで下げることが可能になる。
The exhaust gas (exhaust fuel; including steam) at the outlet of the fuel chamber 55 of the fuel cell 53 passes through a fuel-side exhaust line 58 in which a fuel heating heat exchanger 60 and an exhaust fuel cooling exchanger 61 are interposed. It is supplied to the combustion chamber 59. In this way, the hydrogen passing through the fuel supply line 52 is heated and exchanged while the exhaust fuel passes through the fuel heating heat exchanger 60. Exhaust fuel is supplied to the fuel heating heat exchanger 6.
In the process of passing through zero, heat is exchanged with hydrogen in the fuel supply line 52 for cooling, and in the process of passing through the exhaust fuel cooling exchanger 61, the heat is exchanged with low-temperature steam in the first steam line 88 for cooling. For this reason, it becomes possible to supply to the combustor 59 exhaust fuel whose temperature is lower than that of the exhaust fuel at the outlet of the fuel chamber 55. Further, the fuel-side branch line 62,
By supplying the exhausted fuel cooled by an exhausted fuel recirculation mechanism 65 composed of a booster fan 63 and a control valve 64 to a fuel supply line 52 upstream of the fuel heating heat exchanger 60, the fuel cell 53 The outlet temperature can be reduced to an appropriate temperature.

【0032】一方、前記燃料電池53の酸素室56出口
の排気(排酸素;蒸気を含む)は、酸素加熱用熱交換器
69および排酸素冷却用熱交換器70が介装された酸素
側排気ライン68を通して燃焼室59に供給される。こ
のように排酸素が前記酸素加熱用熱交換器69を通過す
る過程で前記酸素供給ライン67を通過する酸素は熱交
換されて加熱される。また、排酸素は前記酸素加熱用熱
交換器69を通過する過程で燃料供給ライン52の水素
と熱交換されて冷却され、さらに排酸素冷却用交換器7
0を通過する過程で第2蒸気ライン89の低温蒸気と熱
交換されて冷却される。このため、前記酸素室56出口
の排酸素に比べて低温化された排酸素を前記燃焼器59
に供給することが可能になる。さらに、酸素側分岐ライ
ン71、昇圧ファン72および制御弁73から構成され
る排酸素再循環機構74により冷却した後の排酸素を前
記酸素加熱用熱交換器69上流側の酸素供給ライン67
に供給することにより、前記燃料電池53の出口温度を
適切な温度まで下げることが可能になる。
On the other hand, the exhaust gas (exhaust oxygen; including steam) at the outlet of the oxygen chamber 56 of the fuel cell 53 is supplied to the oxygen-exhaust heat exchanger 69 and the oxygen-exhaust heat exchanger 70 in which the exhaust oxygen cooling heat exchanger 70 is interposed. The fuel is supplied to a combustion chamber 59 through a line 68. As described above, the oxygen passing through the oxygen supply line 67 is heated and exchanged while the exhausted oxygen passes through the oxygen heating heat exchanger 69. Further, the exhaust oxygen is cooled by being exchanged with hydrogen in the fuel supply line 52 in the course of passing through the oxygen heating heat exchanger 69, and further cooled.
In the process of passing through zero, heat is exchanged with the low-temperature steam in the second steam line 89 to be cooled. Therefore, the discharged oxygen whose temperature is lower than the discharged oxygen at the outlet of the oxygen chamber 56 is supplied to the combustor 59.
Can be supplied to Further, the exhausted oxygen that has been cooled by the exhausted oxygen recirculation mechanism 74 including the oxygen-side branch line 71, the booster fan 72, and the control valve 73 is supplied to the oxygen supply line 67 upstream of the oxygen heating heat exchanger 69.
The outlet temperature of the fuel cell 53 can be reduced to an appropriate temperature.

【0033】前述したように排燃料再循環機構65から
の排燃料の燃料供給ライン52への供給および燃料加熱
用熱交換器60での水素の加熱により所定温度に加熱さ
れた水素を前記燃料電池53の燃料室55に供給でき、
かつ排酸素再循環機構74からの排酸素の酸素供給ライ
ン57への供給および酸素加熱用熱交換器69での酸素
の加熱により所定温度に加熱された酸素を前記燃料電池
53の酸素室56に供給できるため、既に述べた燃料電
池53での電池反応が円滑になされ、前記発電膜54に
接続された直交流変換器57から交流電圧として効率よ
く出力できるとともに、燃料電池53の出口温度が過度
に上昇するのを防止することが可能になる。
As described above, the hydrogen heated to a predetermined temperature by supplying the exhaust fuel from the exhaust fuel recirculation mechanism 65 to the fuel supply line 52 and heating the hydrogen in the fuel heating heat exchanger 60 is supplied to the fuel cell. 53 can be supplied to the fuel chamber 55,
The oxygen heated to a predetermined temperature by the supply of the exhaust oxygen from the exhaust oxygen recirculation mechanism 74 to the oxygen supply line 57 and the heating of the oxygen by the oxygen heating heat exchanger 69 is supplied to the oxygen chamber 56 of the fuel cell 53. Since the supply can be performed, the above-described cell reaction in the fuel cell 53 can be smoothly performed, the AC voltage can be efficiently output from the cross-current converter 57 connected to the power generation film 54, and the outlet temperature of the fuel cell 53 becomes excessive. Can be prevented from rising.

【0034】前記燃焼器59での燃焼により発生した蒸
気を蒸気タービン75に供給することにより発電機76
が発電される。
The steam generated by the combustion in the combustor 59 is supplied to a steam turbine 75 to generate a generator 76.
Is generated.

【0035】前記蒸気タービン75の出口蒸気は、蒸発
器79および凝縮器80が介装された配管77を通過す
る過程で凝縮され、復水として復水タンク78に溜めら
れる。この復水タンク78内の復水のうち、前記燃焼器
59で発生した水に相当する復水は回収ライン85を通
して系外に回収され、負荷に応じた量の復水は給水とし
て給水ポンプ84により圧縮した状態で給水管81およ
び第1,第2の分岐給水ライン82,83を通して前記
蒸発器79に供給され、ここで前記タービン75の出口
蒸気と熱交換されて加熱され、低温蒸気を発生する。低
温蒸気は、それぞれ第1,第2の蒸気ライン88,89
を通して前記排燃料冷却用交換器61および排酸素冷却
用交換器70を通過する過程で前述した排燃料、排酸素
とそれぞれ熱交換されて加熱され、さらにこの蒸気は統
合した蒸気ライン90を通して前記燃焼器59に供給さ
れる。
The outlet steam of the steam turbine 75 is condensed in the course of passing through a pipe 77 in which an evaporator 79 and a condenser 80 are interposed, and is stored in a condensate tank 78 as condensate. Of the condensate in the condensate tank 78, condensate corresponding to the water generated in the combustor 59 is collected outside the system through a collection line 85, and the amount of condensate according to the load is supplied as a water supply pump 84. The compressed water is supplied to the evaporator 79 through the water supply pipe 81 and the first and second branch water supply lines 82 and 83, where the heat is exchanged with the outlet steam of the turbine 75 and heated to generate low-temperature steam. I do. The low-temperature steam is supplied to the first and second steam lines 88 and 89, respectively.
In the process of passing through the exhaust fuel cooling exchanger 61 and the exhaust oxygen cooling exchanger 70 through heat exchange and heat exchange with the above-described exhaust fuel and exhaust oxygen, respectively, the steam is heated. Is supplied to the vessel 59.

【0036】前述したよう燃料側排気ライン58に燃料
供給ライン52の水素で熱交換される燃料加熱用熱交換
器60および第1蒸気ライン88の低温蒸気で熱交換す
る排燃料冷却用交換器61をそれぞれ設けて、前記燃料
電池53の燃料室55の出口排燃料に比べて低温化され
た排燃料を燃焼器59に供給し、かつ酸素側排気ライン
68に酸素供給ライン67の酸素と熱交換される酸素加
熱用熱交換器69および第2蒸気ライン89の低温蒸気
で熱交換する排酸素冷却用交換器70をそれぞれ設け
て、前記燃料電池53の酸素室56の出口排酸素に比べ
て低温化された排酸素を燃焼器59に供給し、さらに前
記排燃料冷却用交換器61および排酸素冷却用交換器7
0を通過する過程でそれぞれ熱交換されて加熱された蒸
気を燃焼器59に供給することにより、この燃焼器59
の燃焼により発生した蒸気を前記燃焼器59下流側の蒸
気タービン75の許容温度以下に抑えることが可能にな
ると共に、許容温度で最大量の蒸気を蒸気タービン75
に供給することが可能になる。その結果、発電機76を
効率よく発電することが可能になる。
As described above, the fuel-exchanger 61 for exchanging heat with the low-temperature steam in the first steam line 88 and the heat-exchanging heat exchanger 60 for exchanging heat with hydrogen in the fuel supply line 52 to the fuel-side exhaust line 58. Are supplied to the combustor 59 at a lower temperature than the exhaust fuel at the outlet of the fuel chamber 55 of the fuel cell 53, and the oxygen-exhaust line 68 exchanges heat with oxygen in the oxygen supply line 67. And a heat exchanger 69 for exchanging heat with the low-temperature steam of the second steam line 89 to provide heat exchange with the low-temperature steam in the second steam line 89. The exhausted oxygen is supplied to the combustor 59, and further, the exhausted fuel cooling exchanger 61 and the exhausted oxygen cooling exchanger 7
In the process of passing through each of the combustors 59, the steam that has been subjected to heat exchange and heated in the process of passing through the combustor 59 is supplied to the combustor 59.
The steam generated by the combustion of the steam turbine 75 can be suppressed below the allowable temperature of the steam turbine 75 on the downstream side of the combustor 59, and the maximum amount of steam can be reduced at the allowable temperature to the steam turbine 75.
Can be supplied to As a result, the power generator 76 can efficiently generate power.

【0037】したがって、本発明によれば固体電解質燃
料電池53と燃焼器59および蒸気タービン75の複合
化、燃料供給ライン52への排燃料再循環機構65から
の蒸気を含む冷却した排燃料の供給、燃料電池の燃料室
出口の排燃料、酸素室出口の排酸素の冷却および前記燃
焼器への蒸気の供給によって、前記燃料電池53を適切
な温度(1000℃前後)に維持しつつ効率的な発電を
行なうことができ、かつ前記燃料電池53の未利用水
素、残存酸素および水蒸気を燃焼器59に導入してこの
後段の蒸気タービン75の許容温度を超えない温度に蒸
気を発生して発電機76の効率発電を行なうことかでき
るため、超高効率化を達成した固体電解質燃料電池複合
発電プラントシステムを提供することができる。
Therefore, according to the present invention, the solid electrolyte fuel cell 53, the combustor 59 and the steam turbine 75 are combined, and the cooled exhaust fuel containing steam from the exhaust fuel recirculation mechanism 65 to the fuel supply line 52 is supplied. By cooling the exhaust fuel at the outlet of the fuel chamber of the fuel cell and the exhaust oxygen at the outlet of the oxygen chamber and supplying steam to the combustor, the fuel cell 53 can be efficiently maintained at an appropriate temperature (about 1000 ° C.). The power generation can be performed, and the unused hydrogen, the residual oxygen, and the steam of the fuel cell 53 are introduced into the combustor 59 to generate steam at a temperature not exceeding the allowable temperature of the steam turbine 75 at the subsequent stage. Since it is possible to perform efficient power generation of 76, it is possible to provide a solid oxide fuel cell combined power generation system system that achieves ultra-high efficiency.

【0038】次に、前述した燃料電池の電池反応効率の
向上、燃焼器および蒸気タービンによる発電効率の向上
をモデル化して説明する。
Next, the improvement of the reaction efficiency of the fuel cell and the improvement of the power generation efficiency by the combustor and the steam turbine will be described by modeling.

【0039】固体電解質燃料電池は、その設計品質によ
り差異があるが、通常、最高発電量(発電効率)は50
%、熱発生量35%、未燃分15%である。また、燃料
電池の作動温度は1000℃であり、極力一定の温度に
保持することが必要である。
Although the solid electrolyte fuel cell varies depending on the design quality, the maximum power generation amount (power generation efficiency) is usually 50.
%, Heat generation amount 35%, and unburned portion 15%. The operating temperature of the fuel cell is 1000 ° C., and it is necessary to keep the temperature as constant as possible.

【0040】例えば、前記燃料電池に1kmolの水素
を供給することを想定した場合、その保有エネルギーは
約57000kcal/kmolであり、この中の約2
0000kcalが熱となる。水素1kmolにより発
生する蒸気量は、水素1molで[H2+(1/2O2
=H2O]から約18kgである。排燃料再循環機構6
5から蒸気を燃料供給ライン52に供給しない場合に
は、20000(kcal/kg)/[18(kg/k
mol)×0.57(kcal/kg℃)]{ここで
0.57kcal/kg℃は蒸気の比熱を示す}の式か
ら約2000℃に温度が上昇して燃料電池の運転が不可
になる。したがって、前記排燃料再循環機構65から7
00℃の低温蒸気を燃料供給ライン52に約100kg
供給することにより、熱量計算から燃料電池の出口温度
を約1000℃にすることが可能になる。
For example, assuming that 1 kmol of hydrogen is supplied to the fuel cell, its stored energy is about 57000 kcal / kmol, of which about 27000 kcal / kmol.
0000 kcal becomes heat. The amount of vapor generated by 1 kmol of hydrogen is [H 2 + (1 / O 2 )] in 1 mol of hydrogen.
= About 18kg of H 2 O]. Exhaust fuel recirculation mechanism 6
In the case where steam is not supplied from the fuel supply line 52 to the fuel supply line 52, 20,000 (kcal / kg) / [18 (kg / k
mol) × 0.57 (kcal / kg ° C.)] (where 0.57 kcal / kg ° C. indicates the specific heat of steam), the temperature rises to about 2000 ° C., and the operation of the fuel cell becomes impossible. Therefore, the exhaust fuel recirculation mechanisms 65 to 7
Approximately 100 kg of low temperature steam of 00 ° C is supplied to the fuel supply line 52.
By supplying the fuel, the outlet temperature of the fuel cell can be set to about 1000 ° C. from the calorific value calculation.

【0041】一方、燃料電池53出口の約1000℃に
した排燃料を排燃料冷却用交換器61を通過する過程で
第1蒸気ライン88の低温蒸気と熱交換して冷却し、か
つ同出口の約1000℃にした排酸素を排酸素冷却用交
換器70を通過する過程で第2蒸気ライン89の低温蒸
気と熱交換して冷却することにより、それら排燃料およ
び排酸素をそれぞれ700℃程度に下げることが可能に
なる。このような排燃料および排酸素を燃焼器59に供
給するとともに、第1,第2の蒸気ライン88,89を
通して前記排燃料冷却用交換器61および排酸素冷却用
交換器70を通過する過程で前述した排燃料、排酸素と
それぞれ熱交換されて加熱された加熱蒸気を蒸気ライン
90を通して前記燃焼器59に供給することによって、
前記燃焼器出口温度を後段の比較的低温の蒸気タービン
75の許容温度に維持でき、同時に蒸気量を実質的に増
大できるためタービン出力を最大にすることができる。
On the other hand, the exhaust fuel cooled to about 1000 ° C. at the outlet of the fuel cell 53 exchanges heat with the low-temperature steam of the first steam line 88 in the process of passing through the exhaust fuel cooling exchanger 61, and is cooled. In the process of passing the exhaust oxygen cooled to about 1000 ° C. through the exhaust oxygen cooling exchanger 70, the exhaust fuel and the exhaust oxygen are each reduced to about 700 ° C. by cooling by exchanging heat with the low-temperature steam in the second steam line 89. It becomes possible to lower. In the process of supplying such exhaust fuel and exhaust oxygen to the combustor 59 and passing the exhaust fuel cooling exchanger 61 and the exhaust oxygen cooling exchanger 70 through the first and second steam lines 88 and 89, respectively. By supplying heated steam that has been heat-exchanged with the above-described exhaust fuel and exhaust oxygen to the combustor 59 through a steam line 90,
The combustor outlet temperature can be maintained at the allowable temperature of the relatively low-temperature steam turbine 75 at the subsequent stage, and at the same time, the steam amount can be substantially increased, so that the turbine output can be maximized.

【0042】例えば、蒸気ライン90から加熱蒸気を燃
焼器59に投入しない場合の燃焼器59出口温度を計算
する。既に述べたように水素1kmolの保有エネルギ
ーは約57000kcal/kmolである。また、水
素1kmolを燃料電池53に供給したときの燃料利用
率は概ね85%であるから、燃料電池53の燃料室55
出口の排燃料(排水素)は15%、つまり0.15km
olであり、その排水素の発熱量は57000kcal
/kmol×0.15の計算から8550kcalにな
る。さらに、前記燃料電池53に供給された水素1km
olの全てが酸素と反応して水蒸気に変化したとする
と、約18kgの水蒸気量が燃焼器59に供給されるこ
とになる。したがって、約700℃の排水素および排酸
素を前記燃焼器59に供給すると、燃焼器59出口温度
は次式から求められる。
For example, the temperature of the outlet of the combustor 59 when heating steam is not injected into the combustor 59 from the steam line 90 is calculated. As already mentioned, 1 kmol of hydrogen has an energy of about 57000 kcal / kmol. Further, the fuel utilization rate when 1 kmol of hydrogen is supplied to the fuel cell 53 is approximately 85%.
Exhaust fuel (exhaust hydrogen) at the exit is 15%, ie 0.15km
ol, and the calorific value of the discharged hydrogen is 57000 kcal
It becomes 8550 kcal from the calculation of /kmol×0.15. Further, 1 km of hydrogen supplied to the fuel cell 53
Assuming that all of the ol reacts with oxygen and changes into steam, about 18 kg of steam will be supplied to the combustor 59. Therefore, when exhausted hydrogen and exhausted oxygen at about 700 ° C. are supplied to the combustor 59, the outlet temperature of the combustor 59 can be obtained from the following equation.

【0043】燃焼器59出口温度=700℃+{855
0(kcal/kmol)/[18(kg/kmol)
×0.57(kcal/kg・℃)]}=1533℃ ここで、0.57kcal/Kg℃は蒸気の比熱を示
す。
Combustor 59 outlet temperature = 700 ° C. + {855
0 (kcal / kmol) / [18 (kg / kmol)
× 0.57 (kcal / kg · ° C.)]} = 1533 ° C. Here, 0.57 kcal / Kg ° C. indicates the specific heat of steam.

【0044】よって、蒸気ライン90から加熱蒸気を燃
焼器59に投入しない場合には燃焼器59出口温度は蒸
気タービン75の許容温度以上になる。
Therefore, when heating steam is not introduced into the combustor 59 from the steam line 90, the outlet temperature of the combustor 59 becomes higher than the allowable temperature of the steam turbine 75.

【0045】これに対し、本発明のように蒸気ライン9
0から例えば22kgの加熱蒸気を燃焼器59に投入す
ると、蒸気量は18+22=40(kg/kmol)に
なることから燃焼器59出口温度は次式から求められ
る。
On the other hand, as in the present invention, the steam line 9
When heating steam from 0 to, for example, 22 kg is injected into the combustor 59, the steam amount becomes 18 + 22 = 40 (kg / kmol), so the outlet temperature of the combustor 59 can be obtained from the following equation.

【0046】燃焼器59出口温度=700℃+{855
0(kcal/kmol)/[40(kg/kmol)
×0.57(kcal/kg・℃)]}=1075℃ よって、蒸気ライン90から加熱蒸気を燃焼器59に投
入した場合には燃焼器59出口温度は蒸気タービン75
の許容温度以下に下げることかでき、しかも燃焼器59
に加熱蒸気を供給することにより蒸気量を実質的に増大
できるためタービン出力を最大にすることができる。
Outlet temperature of combustor 59 = 700 ° C. + {855
0 (kcal / kmol) / [40 (kg / kmol)
× 0.57 (kcal / kg · ° C.)]} = 1075 ° C. Therefore, when heating steam is injected into the combustor 59 from the steam line 90, the outlet temperature of the combustor 59 becomes
Below the allowable temperature of the combustor 59.
By supplying heated steam to the turbine, the steam amount can be substantially increased, so that the turbine output can be maximized.

【0047】[0047]

【発明の効果】以上詳述したように本発明によれば、固
体電解質燃料電池と燃焼器との複合化、燃料供給ライン
への排燃料再循環機構からの蒸気を含む冷却した排燃料
の供給、燃料電池の燃料室出口の排燃料、酸素室出口の
排酸素の冷却および前記燃焼器への蒸気の供給によっ
て、燃料電池での電池反応の効率化および蒸気タービン
による効率的な発電を行なうことが可能で、プラント総
合熱効率を向上でき、さらに燃料電池の過度な温度上昇
の防止および蒸気タービンの許容温度以上の加熱防止に
より信頼性が向上された固体電解質燃料電池複合発電プ
ラントシステムを提供できる。
As described above in detail, according to the present invention, a solid electrolyte fuel cell and a combustor are combined, and a supply of cooled exhaust fuel containing steam from an exhaust fuel recirculation mechanism to a fuel supply line is provided. Cooling of exhaust fuel at the outlet of the fuel chamber of the fuel cell, exhaust oxygen at the outlet of the oxygen chamber, and supply of steam to the combustor, thereby increasing the efficiency of the cell reaction in the fuel cell and the efficient power generation by the steam turbine. It is possible to provide a solid oxide fuel cell combined cycle power plant system which can improve the overall thermal efficiency of the plant, and further improve the reliability by preventing the temperature of the fuel cell from excessively rising and preventing the steam turbine from being heated above the allowable temperature.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の固体電解質燃料電池複合発電プラント
システムを示す概略図。
FIG. 1 is a schematic diagram showing a solid oxide fuel cell combined cycle power plant system of the present invention.

【図2】従来のランキンサイクル方式の複合発電プラン
トシステムを示す概略図。
FIG. 2 is a schematic diagram showing a conventional Rankine cycle system combined cycle power plant system.

【図3】トッピング再生サイクル方式の複合発電プラン
トシステムを示す概略図。
FIG. 3 is a schematic diagram showing a combined power plant system of a topping regeneration cycle system.

【符号の説明】[Explanation of symbols]

51…水素燃料タンク、 52…燃料供給ライン、 53…固体電解質燃料電池、 59…燃焼器、 60…燃料加熱用熱交換器、 61…排燃料冷却用熱交換器、 65…排燃料再循環機構、 66…酸素タンク、 67…酸素供給ライン、 69…酸素加熱用熱交換器、 70…排酸素冷却用熱交換器、 74…排酸素再循環機構、 75…蒸気タービン、 76…発電機、 78…復水タンク、 88,89,90…蒸気ライン。 51: hydrogen fuel tank, 52: fuel supply line, 53: solid electrolyte fuel cell, 59: combustor, 60: heat exchanger for heating fuel, 61: heat exchanger for cooling exhaust fuel, 65: exhaust fuel recirculation mechanism 66, an oxygen tank, 67, an oxygen supply line, 69, a heat exchanger for heating oxygen, 70, a heat exchanger for cooling exhaust oxygen, 74, an exhaust oxygen recirculation mechanism, 75, a steam turbine, 76, a generator, 78 ... condensate tank, 88, 89, 90 ... steam line.

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 燃料供給ラインを通して水素を燃料とし
て供給され、かつ酸素供給ラインを通して酸素を酸化剤
として供給される固体電解質燃料電池と、 前記燃料電池の燃料側排気を冷却するための排燃料冷却
用熱交換器と、 前記燃料供給ラインに前記熱交換器で冷却した排燃料を
前記燃料電池の温度を制御するために再循環させる排燃
料再循環手段と、 排燃料および前記燃料電池の酸素側排気が供給され、高
温蒸気を発生させるための燃焼器と、 前記燃焼器に前記熱交換器出口の蒸気を前記燃焼器出口
温度を制御するために供給する蒸気供給手段と、 前記燃焼器で発生した高温蒸気により駆動される高温蒸
気タービンと、 前記タービンからの蒸気を凝縮するための復水器とを具
備したことを特徴とする固体電解質燃料電池複合発電プ
ラントシステム。
1. A solid electrolyte fuel cell supplied with hydrogen as a fuel through a fuel supply line and supplied with oxygen as an oxidant through an oxygen supply line, and exhaust fuel cooling for cooling fuel-side exhaust of the fuel cell. Exhaust heat recirculation means for recirculating exhaust fuel cooled by the heat exchanger to the fuel supply line to control the temperature of the fuel cell; exhaust fuel and an oxygen side of the fuel cell Exhaust gas is supplied, a combustor for generating high-temperature steam, steam supply means for supplying steam at the heat exchanger outlet to the combustor for controlling the combustor outlet temperature, and generated by the combustor And a high-temperature steam turbine driven by the high-temperature steam, and a condenser for condensing the steam from the turbine. System.
【請求項2】 前記燃料供給ラインおよび前記酸素供給
ラインを通して供給される水素および酸素は、化学等量
であることを特徴とする請求項1記載の固体電解質燃料
電池複合発電プラントシステム。
2. The solid oxide fuel cell combined cycle power plant system according to claim 1, wherein hydrogen and oxygen supplied through said fuel supply line and said oxygen supply line are in a chemical equivalent amount.
【請求項3】 さらに前記燃料電池の酸素側排気を冷却
するための排酸素冷却用熱交換器と、前記酸素供給ライ
ンに前記排酸素冷却用熱交換器で冷却した排酸素を前記
燃料電池の温度を制御するために再循環させる排酸素再
循環手段とを設けたことを特徴とする請求項1または2
記載の固体電解質燃料電池複合発電プラントシステム。
3. An exhaust oxygen cooling heat exchanger for cooling the oxygen-side exhaust gas of the fuel cell, and an exhaust oxygen cooled by the exhaust oxygen cooling heat exchanger to the oxygen supply line. 3. An exhaust gas recirculation means for recirculating for controlling temperature is provided.
The solid electrolyte fuel cell combined cycle power plant system according to the above.
【請求項4】 さらに前記燃料電池出口の排燃料と前記
燃料供給ラインの燃料とを熱交換するための燃料加熱用
熱交換器を設けたことを特徴とする請求項1ないし3い
ずれか記載の固体電解質燃料電池複合発電プラントシス
テム。
4. A fuel heating heat exchanger for exchanging heat between fuel discharged from the fuel cell outlet and fuel in the fuel supply line, according to claim 1, further comprising: Solid electrolyte fuel cell combined cycle power plant system.
【請求項5】 さらに前記燃料電池出口の排酸素と前記
酸素供給ラインの酸素とを熱交換するための酸素加熱用
熱交換器を設けたことを特徴とする請求項1ないし4い
ずれか記載の固体電解質燃料電池複合発電プラントシス
テム。
5. An oxygen heating heat exchanger for exchanging heat between oxygen discharged from the fuel cell outlet and oxygen in the oxygen supply line, further comprising an oxygen heating heat exchanger. Solid electrolyte fuel cell combined cycle power plant system.
【請求項6】 前記酸素は、空気であることを特徴とす
る請求項1ないし5いずれか記載の固体電解質燃料電池
複合発電プラントシステム。
6. The solid oxide fuel cell combined cycle power plant system according to claim 1, wherein said oxygen is air.
JP30425798A 1998-10-26 1998-10-26 Solid electrolyte fuel cell combined power plant system Expired - Fee Related JP4209015B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30425798A JP4209015B2 (en) 1998-10-26 1998-10-26 Solid electrolyte fuel cell combined power plant system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30425798A JP4209015B2 (en) 1998-10-26 1998-10-26 Solid electrolyte fuel cell combined power plant system

Publications (2)

Publication Number Publication Date
JP2000133295A true JP2000133295A (en) 2000-05-12
JP4209015B2 JP4209015B2 (en) 2009-01-14

Family

ID=17930886

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30425798A Expired - Fee Related JP4209015B2 (en) 1998-10-26 1998-10-26 Solid electrolyte fuel cell combined power plant system

Country Status (1)

Country Link
JP (1) JP4209015B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004079207A (en) * 2002-08-09 2004-03-11 Mitsubishi Heavy Ind Ltd Gas circulating system, power generating system and fan for gas circulation
JP2004134263A (en) * 2002-10-11 2004-04-30 Mitsubishi Heavy Ind Ltd Solid oxide type fuel cell power generation facility
WO2008097797A3 (en) * 2007-02-05 2008-10-16 Fuelcell Energy Inc Fuel cell power production system with an integrated hydrogen utilization device
JP2009205930A (en) * 2008-02-27 2009-09-10 Mitsubishi Heavy Ind Ltd Combined system
US9482110B2 (en) 2012-12-25 2016-11-01 Mitsubishi Hitachi Power Systems, Ltd. Power generation system and method of stopping power generation system
CN110030125A (en) * 2019-03-20 2019-07-19 宁波大学 A kind of integrated system based on automatic system of marine diesel-generator and reversible fuel cell

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60195880A (en) * 1984-03-19 1985-10-04 Hitachi Ltd Power generation system using solid electrolyte fuel cell
JPS63216270A (en) * 1987-03-03 1988-09-08 Mitsubishi Heavy Ind Ltd Power generating system for solid electrolyte fuel cell
JPH0845523A (en) * 1994-08-03 1996-02-16 Mitsubishi Heavy Ind Ltd Fuel cell/gas turbine combined generation system
JPH11214021A (en) * 1998-01-27 1999-08-06 Ishikawajima Harima Heavy Ind Co Ltd Solid electrolyte type fuel cell power generating apparatus
JPH11297336A (en) * 1998-04-09 1999-10-29 Mitsubishi Heavy Ind Ltd Composite power generating system
JP2004060514A (en) * 2002-07-29 2004-02-26 Matsushita Electric Ind Co Ltd Motor-driven blower and electric vacuum cleaner

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60195880A (en) * 1984-03-19 1985-10-04 Hitachi Ltd Power generation system using solid electrolyte fuel cell
JPS63216270A (en) * 1987-03-03 1988-09-08 Mitsubishi Heavy Ind Ltd Power generating system for solid electrolyte fuel cell
JPH0845523A (en) * 1994-08-03 1996-02-16 Mitsubishi Heavy Ind Ltd Fuel cell/gas turbine combined generation system
JPH11214021A (en) * 1998-01-27 1999-08-06 Ishikawajima Harima Heavy Ind Co Ltd Solid electrolyte type fuel cell power generating apparatus
JPH11297336A (en) * 1998-04-09 1999-10-29 Mitsubishi Heavy Ind Ltd Composite power generating system
JP2004060514A (en) * 2002-07-29 2004-02-26 Matsushita Electric Ind Co Ltd Motor-driven blower and electric vacuum cleaner

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004079207A (en) * 2002-08-09 2004-03-11 Mitsubishi Heavy Ind Ltd Gas circulating system, power generating system and fan for gas circulation
JP2004134263A (en) * 2002-10-11 2004-04-30 Mitsubishi Heavy Ind Ltd Solid oxide type fuel cell power generation facility
WO2008097797A3 (en) * 2007-02-05 2008-10-16 Fuelcell Energy Inc Fuel cell power production system with an integrated hydrogen utilization device
US7862938B2 (en) 2007-02-05 2011-01-04 Fuelcell Energy, Inc. Integrated fuel cell and heat engine hybrid system for high efficiency power generation
JP2009205930A (en) * 2008-02-27 2009-09-10 Mitsubishi Heavy Ind Ltd Combined system
US9482110B2 (en) 2012-12-25 2016-11-01 Mitsubishi Hitachi Power Systems, Ltd. Power generation system and method of stopping power generation system
CN110030125A (en) * 2019-03-20 2019-07-19 宁波大学 A kind of integrated system based on automatic system of marine diesel-generator and reversible fuel cell
CN110030125B (en) * 2019-03-20 2023-12-22 宁波大学 Integrated system based on ship diesel generator and reversible fuel cell

Also Published As

Publication number Publication date
JP4209015B2 (en) 2009-01-14

Similar Documents

Publication Publication Date Title
KR101644764B1 (en) Power generation system and method for operating power generation system
JPH0622148B2 (en) Molten carbonate fuel cell power plant
JP4540472B2 (en) Waste heat steam generator
US4961311A (en) Deaerator heat exchanger for combined cycle power plant
JPH08226335A (en) Hydrogen-burning gas turbine plant
JP4358338B2 (en) Fuel cell combined power plant system
JPS6257072B2 (en)
JP4209015B2 (en) Solid electrolyte fuel cell combined power plant system
JPH08504049A (en) Fuel cell exhaust heat utilization method and heat utilization device implementing this method
CN117090647A (en) SOEC-coupled coal-fired power generation system and unit depth peak regulation operation method
JPH04169073A (en) Exhaust heat recovery method and device for fuel cell
JPH11238520A (en) Fuel cell power generating apparatus
JPH05203792A (en) Power plant equipment and operation thereof
JP2554060B2 (en) Combined generation system
JP2004022230A (en) Fuel cell compound gas turbine system
JPH0260060A (en) Fuel cell system with exhaust heat energy recovery unit
JPH1089016A (en) Combined power generation plant of nuclear power generation and gas turbine power generation
US20100285381A1 (en) Method and apparatus for operating a fuel cell in combination with an orc system
JPH03258902A (en) Electric power plant
RU2709783C1 (en) Method of hydrogen heating of feed water to npp
JPS6257073B2 (en)
JPS63241872A (en) Fuel cell generating plant
JP3546234B2 (en) Solid oxide fuel cell / internal combustion type Stirling engine combined system
RU2773580C1 (en) Combined-cycle thermal power plant with energy storage
JP2001160404A (en) Power storage system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051026

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20051205

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070613

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070626

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070827

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081007

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081022

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111031

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111031

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121031

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121031

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131031

Year of fee payment: 5

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees