JP2554060B2 - Combined generation system - Google Patents

Combined generation system

Info

Publication number
JP2554060B2
JP2554060B2 JP61229156A JP22915686A JP2554060B2 JP 2554060 B2 JP2554060 B2 JP 2554060B2 JP 61229156 A JP61229156 A JP 61229156A JP 22915686 A JP22915686 A JP 22915686A JP 2554060 B2 JP2554060 B2 JP 2554060B2
Authority
JP
Japan
Prior art keywords
fuel
exhaust
power generation
generation system
reactor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP61229156A
Other languages
Japanese (ja)
Other versions
JPS6385207A (en
Inventor
正 辻
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP61229156A priority Critical patent/JP2554060B2/en
Priority to AU78888/87A priority patent/AU596218B2/en
Publication of JPS6385207A publication Critical patent/JPS6385207A/en
Application granted granted Critical
Publication of JP2554060B2 publication Critical patent/JP2554060B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K23/00Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids
    • F01K23/02Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled
    • F01K23/06Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle
    • F01K23/10Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle with exhaust fluid of one cycle heating the fluid in another cycle
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/16Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)
  • Hydrogen, Water And Hydrids (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はガスタービン発電系と蒸気タービン発電系と
の複合発電システムに係り、特に燃料処理システムを改
良した複合発電システムに関する。
TECHNICAL FIELD The present invention relates to a combined power generation system of a gas turbine power generation system and a steam turbine power generation system, and more particularly to a combined power generation system with an improved fuel processing system.

〔従来の技術〕[Conventional technology]

近時、ガスタービン発電系と、その排熱エネルギによ
り駆動される蒸気タービン発電系とを組合せた複合発電
システムが、LNG気化ガス等のクリーン燃料の有効利用
を図り得る新らしい技術として注目されている。第7図
はこの種の従来(特願昭57−215914号明細書)の概略構
成を示す図である。燃料aは、燃料予熱器7aと反応触媒
内蔵の燃料気化器(燃料蒸発器)7bを順次通して燃料器
1に供給され、上記燃料aは圧縮機2cで圧縮された燃焼
用空気bと共に燃焼し、その燃焼エネルギによりガスタ
ービン発電系を駆動している。このガスタービン発電
は、ガスタービン2aと、そのタービン出力によって
駆動される発電機2bおよび上記燃焼用空気bに対する空
気圧縮器2cを備えて構成され、発電出力を得ている。し
かして、ガスタービン発電系の高温排ガスは、排熱ボ
イラ系の排気本管3aを通して排出される。
Recently, a combined power generation system that combines a gas turbine power generation system and a steam turbine power generation system driven by its exhaust heat energy has been drawing attention as a new technology that can effectively utilize clean fuel such as LNG vaporized gas. There is. FIG. 7 is a diagram showing a schematic structure of a conventional device of this type (Japanese Patent Application No. 57-215914). The fuel a is supplied to the fuel unit 1 through the fuel preheater 7a and the fuel vaporizer (fuel evaporator) 7b with a built-in reaction catalyst in sequence, and the fuel a is burned together with the combustion air b compressed by the compressor 2c. The gas turbine power generation system 2 is driven by the combustion energy. The gas turbine power generation system 2 includes a gas turbine 2a, a generator 2b driven by the turbine output, and an air compressor 2c for the combustion air b to obtain a power generation output. Then, the high-temperature exhaust gas of the gas turbine power generation system 2 is discharged through the exhaust main 3a of the exhaust heat boiler system 3 .

この排気本管3a内の上流端部と下流端部との間を連結
して排気分岐管8aを設け、排気本管3a内には上流側より
下流側に向って蒸気発生器3c、給水予熱器3bおよび燃料
予熱器7aを配設し、排気分岐管8a内には燃料気化器7bを
配設してある。
An exhaust branch pipe 8a is provided by connecting the upstream end and the downstream end in the exhaust main 3a, and in the exhaust main 3a, the steam generator 3c from the upstream side toward the downstream side, the feed water preheating A device 3b and a fuel preheater 7a are provided, and a fuel vaporizer 7b is provided in the exhaust branch pipe 8a.

上記排気分岐管8aの入口部と出口部にはそれぞれ分岐
ダクト入口ダンパ8b、分岐ダクト出口ダンパ8cが設けら
れ、排気分岐管8a内を分流する排ガス流量を制御できる
構成となっている。また上記蒸気発生器3cと給水予熱器
3bとは排気本管3a内における上記入口ダンパ8bと出口ダ
ンパ8cとの間の位置に配設されている。
A branch duct inlet damper 8b and a branch duct outlet damper 8c are provided at the inlet and outlet of the exhaust branch pipe 8a, respectively, so that the flow rate of exhaust gas branched in the exhaust branch pipe 8a can be controlled. Also, the steam generator 3c and the water supply preheater
The 3b is disposed in the exhaust main pipe 3a at a position between the inlet damper 8b and the outlet damper 8c.

そこで、上記ガスタービン2aに供給される燃料aは、
予め、排気本管3a内の燃料予熱器7aにより加熱され、さ
らに排気分岐管8a内の燃料気化器7bにより、ガスタービ
ン2aからの高温排ガスcの熱エネルギを与えられて化学
的に反応し、燃焼エネルギの高い二次燃料に変換される
ことになる。
Therefore, the fuel a supplied to the gas turbine 2a is
In advance, it is heated by the fuel preheater 7a in the exhaust main pipe 3a, and further, by the fuel vaporizer 7b in the exhaust branch pipe 8a, the heat energy of the high-temperature exhaust gas c from the gas turbine 2a is given to chemically react, It will be converted into secondary fuel with high combustion energy.

一方、蒸気タービン発電系の蒸気タービン4aには上
記排熱ボイラ系で発生した蒸気が供給され、発電機4b
が駆動されてタービン出力が得られるようになってい
る。そして、上記蒸気タービン4aを駆動した後の蒸気は
復水器5に供給され、冷却水dにより冷却液化されたの
ち冷却水ポンプ6を介して上記給水予熱器3bに供給さ
れ、さらに蒸気発生器3cにより加熱されて高圧蒸気とな
る。
On the other hand, the steam generated in the exhaust heat boiler system 3 is supplied to the steam turbine 4a of the steam turbine power generation system 4 , and the power generator 4b
Is driven to obtain turbine output. Then, the steam after driving the steam turbine 4a is supplied to the condenser 5, liquefied by the cooling water d and then supplied to the feed water preheater 3b via the cooling water pump 6, and further the steam generator. It is heated by 3c and becomes high-pressure steam.

〔発明が解決しようとする問題点〕[Problems to be solved by the invention]

上記複合発電システムにおいて、ガスタービン発電系
に供給する燃料aは、燃料予熱器7a、燃料気化器7bで
排気から吸熱し、保有熱量を高めることができるが、こ
れだけでは現実化する上では、非常に高価である触媒の
量をかなり多く必要とすることから経済的な問題があ
る。触媒の量を多く必要とするのは、燃料気化器7bは、
いろいろな機能部を含んでいて、かつ実際に触媒が必要
でない機能部まで触媒が設けられているからである。
In the above combined power generation system, a gas turbine power generation system
The fuel a supplied to No. 2 can absorb heat from the exhaust gas in the fuel preheater 7a and the fuel vaporizer 7b to increase the amount of heat possessed. There is an economic problem because it requires a lot. A large amount of catalyst is required for the fuel vaporizer 7b,
This is because the catalyst is provided up to the functional part that includes various functional parts and does not actually require the catalyst.

そこで、本発明は高価な触媒の量が少なくてすみ、設
備費が安価となる複合発電システムを提供することを目
的とする。
Therefore, an object of the present invention is to provide a combined power generation system in which the amount of expensive catalyst is small and the equipment cost is low.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は上記目的を達成するため、ガスタービン発電
系と、このガスタービン発電系からの高温排ガスを流通
させる排気本管と、この排気本管の上流端部と下流端部
との間を連結して設けられた排気分岐管と、この排気分
岐管の入口側および出口側にそれぞれ配設され前記排ガ
スの流量を調整するダンパと、前記排気本管内における
前記排気分岐管の入口と出口との間に配設され、高圧蒸
気により駆動される蒸気タービン発電系と、前記排気分
岐管内に配設され前記ガスタービン発電系に供給される
燃料を前記排気分岐管を介して流通する排ガスの熱エネ
ルギにより予熱する燃料予熱器と、この燃料予熱器で予
熱された燃料を気化させる蒸発器と、前記排気分岐管の
入口と出口の間に配設され、前記蒸発器で気化させた燃
料蒸気を化学的に反応させて燃料エネルギの高い二次燃
料に変換する触媒を有した反応器と、この反応器からの
二次燃料を過熱して前記ガスタービン発電系に供給する
過熱器とを具備した複合発電システムである。
In order to achieve the above object, the present invention connects a gas turbine power generation system, an exhaust main for circulating high temperature exhaust gas from this gas turbine power generation system, and an upstream end and a downstream end of the exhaust main. An exhaust branch pipe provided with a damper for adjusting the flow rate of the exhaust gas, which is provided at each of an inlet side and an outlet side of the exhaust branch pipe, and an inlet and an outlet of the exhaust branch pipe in the exhaust main pipe. Thermal energy of the exhaust gas which is disposed between the steam turbine power generation system driven by high pressure steam and the fuel which is disposed in the exhaust branch pipe and is supplied to the gas turbine power generation system through the exhaust branch pipe. A fuel preheater that preheats the fuel vapor, an evaporator that vaporizes the fuel that has been preheated by the fuel preheater, and a fuel vapor that is vaporized by the evaporator that is disposed between the inlet and the outlet of the exhaust branch pipe. Against A combined power generation system including a reactor having a catalyst for converting the secondary fuel having high fuel energy into a secondary fuel, and a superheater which superheats the secondary fuel from the reactor and supplies it to the gas turbine power generation system. is there.

〔作用〕[Action]

上記のように従来の燃料気化器を複数の機能部に分け
て、化学吸熱を行う反応器のみに触媒を内蔵させるよう
にしたので、従来のものに比べて触媒の量が少なくてす
み、これにより設備費が安価となる。
As described above, the conventional fuel vaporizer is divided into a plurality of functional parts, and the catalyst is contained only in the reactor that chemically absorbs heat.Therefore, the amount of the catalyst is smaller than that of the conventional one. This reduces equipment costs.

〔実施例〕〔Example〕

以下、本発明の実施例について図面を参照して説明す
るが、ここでは第7図の従来例と異る点を中心に説明す
る。
Embodiments of the present invention will be described below with reference to the drawings. Here, the points different from the conventional example shown in FIG. 7 will be mainly described.

第1図はその一実施例を説明するための燃料処理シス
テムの基本構成およびプラント構成を示す。
FIG. 1 shows a basic structure and a plant structure of a fuel processing system for explaining the embodiment.

燃料aは燃料処理システムでガスタービン排気(反応
器用排気)eと熱交換を行い、保有熱量を高めたのち主
燃料ライン12aからガスタービン発電系に供給され
る。ガスタービン排気eは、燃料aの消費量に見合うよ
うに分岐ダクト入口ダンパ8bと分岐ダクト出口ダンパ8c
により調整し、残りのガスタービン排気fは排気ボイラ
で蒸気を発生させ、これを蒸気タービン発電系
供給させる。このように複合発電システムはガスタービ
ン発電系と蒸気タービン発電系で構成される。
The fuel a is heat-exchanged with the gas turbine exhaust (reactor exhaust) e in the fuel processing system to increase the retained heat amount, and then supplied to the gas turbine power generation system 2 from the main fuel line 12a. The gas turbine exhaust e is provided with a branch duct inlet damper 8b and a branch duct outlet damper 8c so as to be commensurate with the consumption amount of the fuel a.
The remaining gas turbine exhaust f is generated by the exhaust boiler system 3 and supplied to the steam turbine power generation system 4 . Thus, the combined power generation system is composed of the gas turbine power generation system 2 and the steam turbine power generation system 4 .

一方、燃料処理システムはガスタービン排気eの流入
側より排気eの流出側に向って過熱器12と反応器11と加
熱器10と蒸発器9と燃料予熱器7aを順次配置し、吸熱化
学反応に用いる触媒は反応器11にのみ内蔵する。上記過
熱器12と反応器11は各々過熱器12とガスタービン発電系
の燃焼器1との間に過熱器バイパスライン12bと、ま
た反応器11と過熱器12との間に反応器バイパスライン13
を備え、これは運転調整に使用する。反応器11に内蔵す
る反応触媒は、長時間使用の間に性能低下を伴う場合が
あり、その場合は主燃料ライン12aを用いて反応温度を
高める。
On the other hand, in the fuel processing system, a superheater 12, a reactor 11, a heater 10, an evaporator 9 and a fuel preheater 7a are sequentially arranged from the inflow side of the gas turbine exhaust e toward the outflow side of the exhaust e, and an endothermic chemical reaction is performed. The catalyst used for is contained only in the reactor 11. The superheater 12 and the reactor 11 are the superheater 12 and the gas turbine power generation system, respectively.
2 between the combustor 1 and the superheater bypass line 12b, and between the reactor 11 and the superheater 12 the reactor bypass line 13
Which is used for driving adjustment. The reaction catalyst contained in the reactor 11 may be deteriorated in performance during long-term use, and in this case, the reaction temperature is raised by using the main fuel line 12a.

上記反応器11としてはメタノール分解反応器あるいは
メタノール水蒸気改質反応器およびこの両方であっても
よい。この場合のメタノール分解反応は次の(1),
(2)式のようになる。
The reactor 11 may be a methanol decomposition reactor, a methanol steam reforming reactor, or both. The methanol decomposition reaction in this case is as follows (1),
It becomes like the formula (2).

CH3OH→CO+2H2 ΔH25℃=21.7k cal/mol …(1) CH3OH+nH2O→(2+n)H2+(1−n)CO+nCO2
(2) ここで0<n<1 またメタノール水蒸気改質反応は次の(3)式のよう
になる。
CH 3 OH → CO + 2H 2 ΔH25 ℃ = 21.7k cal / mol ... (1) CH 3 OH + nH 2 O → (2 + n) H 2 + (1-n) CO + nCO 2 ...
(2) 0 <n <1 Here, the methanol steam reforming reaction is expressed by the following equation (3).

CH3OH+H2O→CO2+3H2ΔH25℃=11.8k cal/mol…(3) 上記反応器11に内蔵する触媒としては次のようなもの
を用いる。
CH 3 OH + H 2 O → CO 2 + 3H 2 ΔH 25 ° C. = 11.8 kcal / mol (3) The following catalyst is used as the catalyst built in the reactor 11.

すなわち、上記反応器11がメタノール分解反応器の場
合には白金触媒(例えば18m3)と、ニッケル−銅系触媒
(例えば36m3)を用い、白金触媒を上流の高温側、ニッ
ケル−銅系触媒を下流の低温側に配置つまり排ガス温度
500〜400℃よりも高い反応器部にのみ耐熱性のある白金
触媒を用いて触媒費を節約する。
That is, when the reactor 11 is a methanol decomposition reactor, a platinum catalyst (for example, 18 m 3 ) and a nickel-copper catalyst (for example, 36 m 3 ) are used. Is placed on the low temperature side downstream, that is, the exhaust gas temperature
Save catalyst cost by using heat-resistant platinum catalyst only in the reactor section higher than 500 ~ 400 ℃.

また上記反応器11がメタノール水蒸気改質反応器の場
合には銅−亜鉛系触媒(例えば100m3)を充填したもの
を用い、505℃(分解)、509℃(水蒸気改質)の排熱を
ボイラに導入する第1図に示す複合発電システムによ
りコンピュータシミュレーションを用いて試験を行っ
た。
When the reactor 11 is a methanol steam reforming reactor, a reactor filled with a copper-zinc catalyst (for example, 100 m 3 ) is used, and exhaust heat at 505 ° C. (decomposition) and 509 ° C. (steam reforming) is used. tests were conducted using computer simulation by the combined power generation system shown in Figure 1 to be introduced into the boiler 3.

メタノールはChemical Grade〔MeOH 99.7(wt%),H2
O 0.1(wt%)〕としている。分解反応では触媒の寿命
を長くするため極く少量の水蒸気(Stcam/MeOH=0.1mol
e ratis)が混入するようメタノール・水混合物を使用
するか、メタノール蒸気へ水蒸気をボイラから供給す
る。メタノール(56265kg/h)と蒸気(3105kg/h)の混
合気を265℃で供給し、反応器11で分解反応を行わせ、5
9370kg/hのガス(H2:64.6vol%,co:27.1vol%,co2:3.6v
ol%,CH3OH:3.5vol%,H2O:0.6vol%,Others:0.6vol%)
を得た。メタノール転化率は90%であった。
Methanol is Chemical Grade [MeOH 99.7 (wt%), H 2
O 0.1 (wt%)]. In the decomposition reaction, an extremely small amount of water vapor (Stcam / MeOH = 0.1 mol) is used to prolong the life of the catalyst.
e ratis) so that a mixture of methanol and water is mixed, or steam is supplied from a boiler 3 to methanol vapor. A mixture of methanol (56265kg / h) and steam (3105kg / h) was supplied at 265 ° C to cause decomposition reaction in the reactor 11 ,
9370kg / h of a gas (H 2: 64.6vol%, co : 27.1vol%, co 2: 3.6v
ol%, CH 3 OH: 3.5vol%, H 2 O: 0.6vol%, Others: 0.6vol%)
I got The conversion of methanol was 90%.

また、このガスを燃焼器で燃焼させてガスタービン
2aを回し、その排熱の一部を排熱ボイラで回収し、図
示しない蒸気発生器で発生させた蒸気により蒸気タービ
ンを回すとガスタービン2a出力は127.670KW、蒸気ター
ビン系の出力は31400KW、プラント合計は159.070KWと
なり、発電効率51.2%(低位発熱量基準)が得られた。
In addition, the gas turbine is burned by burning this gas in the combustor 1.
2a is rotated, a part of the exhaust heat is recovered by the exhaust heat boiler 3 , and the steam turbine is rotated by the steam generated by the steam generator (not shown), the output of the gas turbine 2a is 127.670KW and the output of the steam turbine system 4 is 31400KW, the total plant was 159.070KW, and the power generation efficiency was 51.2% (lower heating value standard).

一方、水蒸気改質反応では、メタノール(61504kg/
h)と水蒸気(63506kg/h)の混合気を250℃で供給し、
反応器11で水蒸気改質反応を行わせ、125,010kg/h)の
ガス(H2:58.3vol%,co:0.5vol%,co2:17.1vol%,CH2O
H:1.8vol%、H2O:20.3vol%)を得た。蒸気はボイラ
又は蒸気タービンの抽気から供給する。メタノール転
化率は91.6%であった。
On the other hand, in the steam reforming reaction, methanol (61504 kg /
Supply a mixture of h) and steam (63506 kg / h) at 250 ° C,
The reactor 11 to perform the steam reforming reaction, 125,010kg / h) of gas (H 2: 58.3vol%, co : 0.5vol%, co 2: 17.1vol%, CH 2 O
H: 1.8vol%, H 2 O: 20.3vol%) was obtained. Steam is boiler 3
Alternatively, it is supplied from the steam extracted from the steam turbine 4 . The conversion of methanol was 91.6%.

上記と同様にガスタービンと蒸気タービンを回すと、
ガスタービン系の出力は149.660KW,蒸気タービン系
の出力は22.400KW,プラント合計は172.060KWとなり発電
効率50.7%(低位発熱量基準)が得られた。
If you turn the gas turbine and steam turbine in the same way as above,
Output of gas turbine system 2 is 149.660 KW, steam turbine system 4
Output was 22.400KW, total plant was 172.060KW, and power generation efficiency was 50.7% (lower heating value standard).

これは蒸気タービンの抽気を反応用蒸気とし、蒸気
タービン出力を高く得る配慮をしている。
This is because the extracted steam of the steam turbine 4 is used as reaction steam, and a high steam turbine output is obtained.

上記ガスタービン排気量eはガスタービンの型式によ
り異なるが、それは(排気流量・排気温度・燃料消費
率)がメーカ型式により千差万別であることによる。
The gas turbine exhaust amount e varies depending on the model of the gas turbine, but it is because (exhaust flow rate, exhaust temperature, fuel consumption rate) varies depending on the manufacturer model.

以上述べた本発明システムの検討に採用したガスター
ビンの場合を例として示すと、 で、丁度メタノールの反応に必要な熱量が確保できた。
As an example of the case of the gas turbine adopted in the examination of the system of the present invention described above, Therefore, the amount of heat necessary for the reaction of methanol was secured.

また、熱の利用状況を分りやすく説明するためにメタ
ノールを液体のまま用いた場合の複合発電と比較した結
果を次の第1表に示す。
Table 1 below shows the results of comparison with combined power generation in the case where methanol was used as a liquid in order to explain the utilization state of heat in an easy-to-understand manner.

メタノール分解はメタノール水蒸気改質より相対的に
約7%反応熱が多く回収でき、その結果ガスタービンで
のメタノール消費量(KWあたり)が節約される。メタノ
ール分解は液体メタノールに比べると約6%の燃料節約
に相当する。
Methanol decomposition can recover about 7% more heat of reaction than methanol steam reforming, and as a result, methanol consumption (per KW) in the gas turbine can be saved. Methanol decomposition corresponds to a fuel saving of about 6% compared to liquid methanol.

第2図および第3図は燃料処理システムの、ガスター
ビン排気eからの吸熱状況を説明するための図で、予熱
器7a、蒸発器9、加熱器10、反応器11、過熱器12の交換
熱量をQ添字で表示している。過熱器12は反応後燃料a
の顕熱を高めるもので、Q12の吸熱を行うが、主燃料ラ
イン12aを全閉、12bを全開し過熱器12を完全にバイパス
するときは第3図の吸熱状況となる。反応器11の入口ガ
ス温度はT2からT1に上昇するため反応器11の中では温度
上昇q11が加わり反応器内での吸熱量はQ11′に増加する
ので第2図よりも高温の反応温度を確保できる。反応器
バイパスライン13は設備始動初期/停止時等で反応器温
度が指定より低い場合に使用し、反応触媒の熱サイクル
疲労を軽減して寿命を維持する。停止の場合は反応器バ
イパスライン13を開けると同時に反応器11に不活性ガス
を封入するなどの措置を行う。反応器バイパスライン13
の使用中は、蒸発燃料でガスタービンを運転する。
FIGS. 2 and 3 are views for explaining the heat absorption state from the gas turbine exhaust e of the fuel processing system, in which the preheater 7a, the evaporator 9, the heater 10, the reactor 11, and the superheater 12 are replaced. The heat quantity is indicated by the Q suffix. After the reaction, the superheater 12 is fuel a
Which enhance the sensible heat, but absorbs the heat of Q 12, fully closed the main fuel line 12a, when fully bypasses the superheater 12 is fully opened and 12b is endothermic situation of Figure 3. Since the inlet gas temperature of the reactor 11 rises from T 2 to T 1 , a temperature rise q 11 is added in the reactor 11 and the endothermic amount in the reactor increases to Q 11 ′. The reaction temperature of can be secured. The reactor bypass line 13 is used when the reactor temperature is lower than specified at the initial stage of equipment start / stop, etc., to reduce thermal cycle fatigue of the reaction catalyst and maintain its life. In the case of stopping, the reactor bypass line 13 is opened, and at the same time, the reactor 11 is filled with an inert gas. Reactor bypass line 13
During use, the gas turbine 2 is operated with the evaporated fuel.

第4図に燃料蒸発システムの基本構成を示すもので、
第1図の反応器11と加熱器10を省いたものであり、この
ようにすることにより第1図に比べて付帯設備が低減す
るのでさらに安価となり、また各機器の配置が容易とな
る。
Fig. 4 shows the basic structure of the fuel evaporation system.
The reactor 11 and the heater 10 shown in FIG. 1 are omitted, and by doing so, auxiliary equipment is reduced as compared with FIG. 1, so that the cost is further reduced and the arrangement of each device is facilitated.

第5図は燃料処理システムの応用例を示すもので、
(1)は第1図に対応した例であり、(4)は第4図に
対応した例である。また(2)は燃料予熱器7aを7a1
ら分割して合流ダクト7a2として設ける例、(3)はボ
イラ部の給水予熱を分割して反応器側に設ける例であ
る。
FIG. 5 shows an application example of the fuel processing system.
(1) is an example corresponding to FIG. 1, and (4) is an example corresponding to FIG. The (2) examples provided as merging duct 7a 2 divides the fuel preheater 7a from 7a 1, (3) is an example in which the reactor side by dividing the feed water preheating of boiler unit 3.

排気ダクトは2分岐で使用することが本発明の基本で
あるが、第6図の配列が考えられる。すなわち、 (1)はダクトを合流させる場合、 排気ダクトを1本とできるのでダクトの引き回しに有
利である。反応器11への排気ガス制御は流量制御ダンパ
(R)8bで行い、それと連動する流量制御ダンパ(R)
8c,8dで合流部の気流調整を行う。
Although it is the basis of the present invention to use the exhaust duct in two branches, the arrangement of FIG. 6 is conceivable. That is, in (1), when the ducts are joined together, the number of exhaust ducts can be one, which is advantageous for routing the ducts. Exhaust gas control to the reactor 11 is performed by the flow rate control damper (R) 8b, and the flow rate control damper (R) that is interlocked with it
Adjust the airflow at the merging section at 8c and 8d.

(2),(3)は排気ダクトを個別のまま煙突へ接続
する場合、 反応器11の出口側、ボイラ出口側ともに遮断ダンパ8
c,8dを配設する。この場合、遮断ダンパ8c,8dは設備停
止中のドラフト閉止用であり、設備的には(1)より簡
略化できるが、排気ダクトの引き回し量が倍必要とな
る。
In (2) and (3), when connecting the exhaust duct to the chimney as it is, the shut-off damper 8 is installed on both the outlet side of the reactor 11 and the boiler outlet side.
c and 8d are arranged. In this case, the shut-off dampers 8c and 8d are for closing the draft while the equipment is stopped, and the equipment can be simplified as compared with (1), but the amount of routing of the exhaust duct is required twice.

以上、述べた実施例によれば次のような効果が得られ
る。
According to the embodiment described above, the following effects can be obtained.

(1) 第1図のように化学吸熱を行う反応器11のみに
触媒を内蔵させるようにしたので、従来のものに比べて
吸熱計画が容易となり、しかも触媒の量が少なくてす
み、これにより設備費が安価となる。
(1) As shown in FIG. 1, since the catalyst is incorporated only in the reactor 11 that carries out the chemical endotherm, the endothermic planning is easier and the amount of the catalyst is smaller than that of the conventional one. Equipment costs are low.

(2) 反応器11(第7図では燃料気化器7b)側の構成
を、第1図のように過熱器12/反応器11/加熱器10/蒸発
器8/予熱器7aにしたりあるいは第4図のように過熱器12
/蒸発器9/予熱器7aにしたので、上記反応器11での化学
吸熱あるいはその他で物理吸熱が行われ、燃料aの保有
熱量を高めることができ、これにより燃料aを未処理で
用いる場合よりも高い複合発電システムの効率が得られ
る。
(2) The structure of the reactor 11 (fuel vaporizer 7b in FIG. 7) side may be replaced by a superheater 12 / reactor 11 / heater 10 / evaporator 8 / preheater 7a as shown in FIG. 4 Superheater 12
Since / Evaporator 9 / Preheater 7a is used, physical endotherm is performed by the chemical endotherm or other in the reactor 11, and the heat quantity of the fuel a can be increased. Higher efficiency of combined power generation system can be obtained.

上記化学吸熱を行う反応としてメタノールの分解反応
又は水蒸気改質反応があるが、上記した実施例のように
触媒およびその反応温度を各々所定のものとすればこれ
らの反応が実現できる。一方、蒸発潜熱が大きい場合
は、その潜熱と顕熱の物理吸熱のみで保有熱量を向上し
ても、液体燃料での単純使用より複合発電効率が向上す
る。向上の度合は反応吸熱使用の場合より低いが、設備
費が安い分有益である。
Methanol decomposition reaction or steam reforming reaction is a reaction for carrying out the above chemical endotherm, but these reactions can be realized if the catalyst and its reaction temperature are set to predetermined values as in the above-mentioned embodiment. On the other hand, when the latent heat of vaporization is large, the combined power generation efficiency is improved as compared with the simple use with liquid fuel even if the retained heat amount is improved only by the physical heat absorption of the latent heat and sensible heat. Although the degree of improvement is lower than that in the case of using the reaction endotherm, it is beneficial because the equipment cost is low.

(3) 過熱器12とガスタービン発電系の燃焼器1と
の間に、過熱器バイパスライン12bを設けたので、反応
器11の温度を高めることにより、反応触媒の性能低下を
抑制できる。すなわち過熱器バイパスライン12bは、第
2図および第3図のように反応触媒の性能が低下したと
き、過熱器12の吸熱量低減用に作用するので、「反応効
率の維持のための反応器周囲ガス温度の向上」に有効で
ある。
(3) Since the superheater bypass line 12b is provided between the superheater 12 and the combustor 1 of the gas turbine power generation system 2 , by raising the temperature of the reactor 11, deterioration of the performance of the reaction catalyst can be suppressed. That is, since the superheater bypass line 12b acts to reduce the amount of heat absorbed by the superheater 12 when the performance of the reaction catalyst is lowered as shown in FIGS. 2 and 3, the “reactor for maintaining reaction efficiency” It is effective for improving the ambient gas temperature.

(4) 反応器11と過熱器12との間に設けてある反応器
バイパスライン13は、反応触媒の粉化、反応器11の損傷
等で反応器11が使用できなくなった場合、あるいはプラ
ント(つまりガスタービン)が低負荷で反応器温度が所
定値を下まわる場合、ならびに「急激な過渡運転(発
停)の場合に、反応器11をパイパレス触媒へ投入される
燃料蒸気温度が大きく変化して触媒性能・寿命の低下」
するのを防止する場合等に有効に使用できる。
(4) The reactor bypass line 13 provided between the reactor 11 and the superheater 12 is used when the reactor 11 cannot be used due to pulverization of the reaction catalyst, damage to the reactor 11, or the plant ( In other words, when the gas turbine) has a low load and the reactor temperature falls below a specified value, and when "a sudden transient operation (starting / stopping), the temperature of the fuel vapor fed into the reactor 11 changes significantly. Lowers catalyst performance and life. "
It can be effectively used for preventing such a situation.

以上述べた本発明による複合発電システムの構成の仕
方は一例であり、本発明のガスタービン排熱回収技術は
ガスタービンおよび発生蒸気を利用するシステム全てに
応用できる。
The method of constructing the combined power generation system according to the present invention described above is an example, and the gas turbine exhaust heat recovery technique of the present invention can be applied to all systems using a gas turbine and generated steam.

複合発電システムの構成は一般に多用されているもの
が対象となるので、(a)一軸型、(b)多軸型のいず
れにも対応できる。
Since the configuration of the combined power generation system is generally used, it can be applied to both (a) uniaxial type and (b) multiaxial type.

また蒸気の圧力は、(単圧・複圧・再熱)など使用す
る蒸気タービンとの対応で如何ようにも採用できる。
In addition, the steam pressure (single pressure, double pressure, reheat), etc., can be used in any manner depending on the steam turbine used.

さらに、複合発電システムで蒸気タービンを駆動する
蒸気は別途ガスタービンのタービン入口部に投入して動
力回収することも可能である。
Furthermore, the steam that drives the steam turbine in the combined cycle power generation system can be separately injected into the turbine inlet of the gas turbine to recover the power.

要するに、本発明は、ガスタービン排熱を回収する技
術思想と、メタノールの化学反応吸熱に使用した残りの
排熱で蒸気を発生する技術思想の2点を備えたシステム
ならば何でも適用できる。
In short, the present invention can be applied to any system as long as it has a technical idea of recovering the exhaust heat of the gas turbine and a technical idea of generating steam by the residual exhaust heat used for the chemical reaction endotherm of methanol.

〔発明の効果〕〔The invention's effect〕

以上述べた本発明によれば、化学吸熱を行う反応器の
みに触媒を内蔵させるようにしたので、従来のものに比
べて触媒の量が少なくてすみ、これにより設備費が安価
となる複合発電システムを提供できる。
According to the present invention described above, since the catalyst is incorporated only in the reactor that performs the chemical endotherm, the amount of the catalyst is smaller than that of the conventional one, and thus the combined power generation cost is low. System can be provided.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の複合発電システムの一実施例を示す概
略構成図、第2図および第3図は第1図の作用効果を説
明するための図、第4図は第1図の変形例を示す概略構
成図、第5図は本発明の燃料処理システムの応用例を示
す図、第6図は本発明の排気ダクト分割の応用例を示す
図、第7図は従来の複合発電システムの一例を示す概略
構成図である。 1……燃焼器、……ガスタービン発電系、2a……ガス
タービン、2b……発電機、2c……空気圧縮機、……排
熱ボイラ系、3a……排気本管、……蒸気タービン発電
系、4a……蒸気タービン、4b……発電機、5……復水
器、7a……燃料予熱器、8a……排気分岐管、8b,8c……
分岐ダクト入口、出口ダンパ、9……蒸発器、10……加
熱器、11……反応器、12……過熱器。
FIG. 1 is a schematic configuration diagram showing an embodiment of the combined power generation system of the present invention, FIGS. 2 and 3 are diagrams for explaining the action and effect of FIG. 1, and FIG. 4 is a modification of FIG. Fig. 5 is a schematic configuration diagram showing an example, Fig. 5 is a diagram showing an application example of the fuel processing system of the present invention, Fig. 6 is a diagram showing an application example of the exhaust duct division of the present invention, and Fig. 7 is a conventional combined power generation system. It is a schematic block diagram which shows an example. 1 ...... combustor, 2 ...... gas turbine power generation system, 2a ...... gas turbine, 2b ...... generator, 2c ...... air compressor, 3 ...... waste heat boiler system, 3a ...... exhaust main pipe, 4 ... … Steam turbine power generation system, 4a …… Steam turbine, 4b …… Generator, 5 …… Condenser, 7a …… Fuel preheater, 8a …… Exhaust branch pipe, 8b, 8c ……
Branch duct inlet, outlet damper, 9 ... Evaporator, 10 ... Heater, 11 ... Reactor, 12 ... Superheater.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】ガスタービン発電系と、 このガスタービン発電系からの高温排ガスを流通させる
排気本管と、 この排気本管の上流端部と下流端部との間を連結して設
けられた排気分岐管と、 この排気分岐管の入口側および出口側にそれぞれ配設さ
れ前記排ガスの流量を調整するダンパと、 前記排気本管内における前記排気分岐管の入口と出口と
の間に配設され、高圧蒸気により駆動される蒸気タービ
ン発電系と、 前記排気分岐管内に配設され前記ガスタービン発電系に
供給される燃料を前記排気分岐管を介して流通する排ガ
スの熱エネルギにより予熱する燃料予熱器と、 この燃料予熱器で予熱された燃料を気化させる蒸発器
と、 前記排気分岐管の入口と出口の間に配設され、前記蒸発
器で気化させた燃料蒸気を化学的に反応させて燃料エネ
ルギの高い二次燃料に変換する触媒を有した反応器と、 この反応器からの二次燃料を過熱して前記ガスタービン
発電系に供給する過熱器とを具備したことを特徴とする
複合発電システム。
1. A gas turbine power generation system, an exhaust main for circulating high temperature exhaust gas from the gas turbine power generation system, and an upstream end and a downstream end of the exhaust main connected to each other. An exhaust branch pipe, dampers that are respectively arranged on the inlet side and the outlet side of the exhaust branch pipe to adjust the flow rate of the exhaust gas, and are arranged between the inlet and the outlet of the exhaust branch pipe in the exhaust main pipe. A steam turbine power generation system driven by high-pressure steam, and a fuel preheating for preheating fuel disposed in the exhaust branch pipe and supplied to the gas turbine power generation system with heat energy of exhaust gas flowing through the exhaust branch pipe And an evaporator for evaporating the fuel preheated by the fuel preheater, and a fuel vapor which is disposed between the inlet and the outlet of the exhaust branch pipe and chemically reacts the fuel vapor vaporized by the evaporator. Fuel energy Combined power generation, comprising: a reactor having a catalyst for converting secondary fuel with high Rugi, and a superheater that superheats the secondary fuel from the reactor and supplies it to the gas turbine power generation system. system.
JP61229156A 1986-09-27 1986-09-27 Combined generation system Expired - Fee Related JP2554060B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP61229156A JP2554060B2 (en) 1986-09-27 1986-09-27 Combined generation system
AU78888/87A AU596218B2 (en) 1986-09-27 1987-09-23 Combined power generating system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61229156A JP2554060B2 (en) 1986-09-27 1986-09-27 Combined generation system

Publications (2)

Publication Number Publication Date
JPS6385207A JPS6385207A (en) 1988-04-15
JP2554060B2 true JP2554060B2 (en) 1996-11-13

Family

ID=16887657

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61229156A Expired - Fee Related JP2554060B2 (en) 1986-09-27 1986-09-27 Combined generation system

Country Status (2)

Country Link
JP (1) JP2554060B2 (en)
AU (1) AU596218B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102562313A (en) * 2012-01-11 2012-07-11 哈尔滨工程大学 Chemically recuperated cycle gas turbine
CN103232085A (en) * 2013-03-18 2013-08-07 哈尔滨工程大学 Water treatment system for producing high pressure water vapor and distilled water

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5845481A (en) * 1997-01-24 1998-12-08 Westinghouse Electric Corporation Combustion turbine with fuel heating system
JP4496950B2 (en) * 2004-01-09 2010-07-07 株式会社日立製作所 Reforming furnace system
US8359868B2 (en) * 2008-09-11 2013-01-29 General Electric Company Low BTU fuel flow ratio duct burner for heating and heat recovery systems
JP5407546B2 (en) * 2009-05-20 2014-02-05 スズキ株式会社 Fuel cell vehicle
WO2014033837A1 (en) * 2012-08-28 2014-03-06 株式会社日立製作所 Waste heat recovery boiler, method for controlling waste heat recovery boiler, and combined cycle power generation plant using same
US10989075B2 (en) * 2018-10-01 2021-04-27 Mitsubishi Power Americas, Inc. Emission reducing louvers

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61152929A (en) * 1984-12-27 1986-07-11 Mitsubishi Heavy Ind Ltd Compound generating system
JPS61183101A (en) * 1985-02-07 1986-08-15 Mitsubishi Heavy Ind Ltd Treatment of byproduct produced in methanol decomposition or reforming

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102562313A (en) * 2012-01-11 2012-07-11 哈尔滨工程大学 Chemically recuperated cycle gas turbine
CN102562313B (en) * 2012-01-11 2014-04-16 哈尔滨工程大学 Chemically recuperated cycle gas turbine
CN103232085A (en) * 2013-03-18 2013-08-07 哈尔滨工程大学 Water treatment system for producing high pressure water vapor and distilled water

Also Published As

Publication number Publication date
JPS6385207A (en) 1988-04-15
AU7888887A (en) 1988-03-31
AU596218B2 (en) 1990-04-26

Similar Documents

Publication Publication Date Title
US6223519B1 (en) Method of generating power using an advanced thermal recuperation cycle
US11939915B2 (en) Raw material fluid treatment plant and raw material fluid treatment method
JP2581825B2 (en) Power plant
US20090064653A1 (en) Partial load combustion cycles
JPS6017967B2 (en) Exhaust heat recovery boiler equipment
US20100180567A1 (en) Combined Power Augmentation System and Method
JPH0586898A (en) Halfopen cycle operation type natural gas steam turbine system
EP2351915A1 (en) Combined cycle power plant and method of operating such power plant
JPH08261013A (en) Combined-cycle power plant and improving method of efficiency thereof
JPH0429923B2 (en)
JPH08226335A (en) Hydrogen-burning gas turbine plant
JP2554060B2 (en) Combined generation system
JP3709669B2 (en) Gasification integrated combined power plant
JP4209015B2 (en) Solid electrolyte fuel cell combined power plant system
JPH1089016A (en) Combined power generation plant of nuclear power generation and gas turbine power generation
JPH03258902A (en) Electric power plant
EP4230847B1 (en) Combined power generation system and driving method thereof
JPH11280413A (en) Nox concentration suppressing device for combined cycle power generation plant
JP2004044533A (en) Turbine equipment
JPH0339173B2 (en)
JP2000282893A (en) Gas turbine system
JP2024070646A (en) Heat utilization system and heat utilization method
JPH10197687A (en) Complex reactor power generation equipment
JPS6310287B2 (en)
JPS61290665A (en) Complex power generating device using fuel cell

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees