JPS6310287B2 - - Google Patents

Info

Publication number
JPS6310287B2
JPS6310287B2 JP21591482A JP21591482A JPS6310287B2 JP S6310287 B2 JPS6310287 B2 JP S6310287B2 JP 21591482 A JP21591482 A JP 21591482A JP 21591482 A JP21591482 A JP 21591482A JP S6310287 B2 JPS6310287 B2 JP S6310287B2
Authority
JP
Japan
Prior art keywords
fuel
exhaust
power generation
steam
generation system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP21591482A
Other languages
Japanese (ja)
Other versions
JPS59105909A (en
Inventor
Yukihisa Tamai
Kyomitsu Iwata
Takeshi Arase
Tadashi Tsuji
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP21591482A priority Critical patent/JPS59105909A/en
Publication of JPS59105909A publication Critical patent/JPS59105909A/en
Publication of JPS6310287B2 publication Critical patent/JPS6310287B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K23/00Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids
    • F01K23/02Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled
    • F01K23/06Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle
    • F01K23/064Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle in combination with an industrial process, e.g. chemical, metallurgical
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/16Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]

Description

【発明の詳細な説明】 本発明は発電効率の高い燃料クラツキング複合
発電システムに関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a fuel cracking combined cycle system with high power generation efficiency.

近時、ガスタービンと、その排熱エネルギによ
り駆動される蒸気タービンとを組合せた複合発電
システムが、LNG気化ガス等のクリーン燃料の
有効利用を図り得る新らしい技術として注目され
ている。第1図はこの種のシステムの概略構成を
示す概略図である。燃焼器1は供給された燃料a
を、燃焼用空気bと共に燃焼し、その燃焼エネル
ギによりガスタービン発電系を駆動している。
このガスタービン発電系は、ガスタービン2a
と、そのタービン出力によつて駆動される発電機
2bおよび前記燃焼用空気bに対する空気圧縮器
2cを備えて構成され、発電出力を得ている。し
かして、ガスタービン発電系の高温排ガスc
は、排熱ボイラ系の排気管3aを通して排出さ
れる。この排気管3a内にはボイラ蒸気に対する
給水予熱器3bおよび蒸気発生器3cが設けられ
ており、前記排ガスcの熱エネルギを回収して蒸
気を発生させるように構成されている。そして、
この蒸気が蒸気タービン発電系の蒸気タービン
4aに供給され、発電機4bが駆動されてタービ
ン出力が得られるようになつている。尚、上記蒸
気タービン4aを駆動した後の蒸気は復水器5に
供給され、冷却水dにより冷却液化されたのち冷
却水ポンプ6を介して前記給水予熱器3bに供給
され、さらに蒸気発生器3cにより加熱されて高
圧蒸気となる。
Recently, a combined power generation system that combines a gas turbine and a steam turbine driven by its exhaust heat energy has been attracting attention as a new technology that can effectively utilize clean fuels such as LNG vaporized gas. FIG. 1 is a schematic diagram showing the general configuration of this type of system. The combustor 1 is supplied with fuel a
is combusted together with the combustion air b, and the combustion energy drives the gas turbine power generation system 2 .
This gas turbine power generation system 2 includes a gas turbine 2a
, a generator 2b driven by the output of the turbine, and an air compressor 2c for the combustion air b, thereby obtaining a power generation output. Therefore, the high temperature exhaust gas c of the gas turbine power generation system 2
is discharged through the exhaust pipe 3a of the waste heat boiler system 3 . A feed water preheater 3b and a steam generator 3c for boiler steam are provided in the exhaust pipe 3a, and are configured to recover the thermal energy of the exhaust gas c to generate steam. and,
This steam is supplied to a steam turbine 4a of a steam turbine power generation system 4 , and a generator 4b is driven to obtain turbine output. The steam after driving the steam turbine 4a is supplied to the condenser 5, cooled and liquefied by the cooling water d, and then supplied to the feed water preheater 3b via the cooling water pump 6, and further to the steam generator. 3c and becomes high pressure steam.

ところで、上記システムは一般に燃料aとして
LNG気化ガス、つまり主としてメタン(CH4
を用いることを想定して開発されている。これに
対して最近では、メタノール(CH3OH)等の炭
素数の少ないアルコールを燃料aとして用いるこ
とが試みられている。このメタノールは、天然ガ
ス、石灰、褐炭、亜炭、重質油、石油コークス、
木材等の多様な炭化水素質源を出発原料として製
造され、石油代替燃料として注目されている。こ
れは常温下では液体であり、ガソリン並みの性状
を示す。またその製造時に硫黄等の不純物が除去
された純度の高い含酸素炭化水素化合物であり、
所謂クリーン燃料として有用である。
By the way, the above system generally uses fuel a as
LNG vaporized gas, i.e. mainly methane (CH 4 )
It has been developed with the assumption that it will be used. On the other hand, recently, attempts have been made to use alcohols with a small number of carbon atoms, such as methanol (CH 3 OH), as fuel a. This methanol can be produced from natural gas, lime, brown coal, lignite, heavy oil, petroleum coke,
It is produced using various hydrocarbon sources such as wood as starting materials, and is attracting attention as an alternative fuel to petroleum. It is a liquid at room temperature and has properties similar to gasoline. It is also a highly pure oxygenated hydrocarbon compound from which impurities such as sulfur have been removed during its production.
It is useful as a so-called clean fuel.

しかしながら、メタン(CH4)の燃焼熱が高位
ベースで212.8Kcal/molであるのに対してメタ
ノール(CH3OH)のそれは182.6Kcal/molと低
い。そして単位燃焼熱当りの水蒸気生成比率が高
く、排ガスcの放出時の損失熱量が多い等の問題
がある。このため、メタノールを燃料とした場
合、発電効率が低くなるという問題があつた。
However, while the heat of combustion of methane (CH 4 ) is 212.8 Kcal/mol on a high-level basis, that of methanol (CH 3 OH) is as low as 182.6 Kcal/mol. There are also problems such as a high steam generation ratio per unit combustion heat and a large amount of heat loss when exhaust gas c is released. For this reason, when methanol was used as fuel, there was a problem that the power generation efficiency was low.

ここで、発電効率を高める対策として、第2図
の如く排気管3a内における下流端部に燃料予熱
器7a、上流端部に燃料クラツキング反応器7b
をそれぞれ配設し、燃料aを上記燃料予熱器7a
および燃料クラツキング反応器7bを通して、燃
焼エネルギの高い二次燃料に変換して前記ガスタ
ービン1に供給することが考えられる。そしてこ
れは、既に本件出願人により出願されている(特
願昭57−164090号)。
Here, as a measure to increase the power generation efficiency, as shown in FIG.
are arranged respectively, and the fuel a is placed in the fuel preheater 7a.
It is conceivable that the secondary fuel is converted into a secondary fuel with high combustion energy and supplied to the gas turbine 1 through the fuel cracking reactor 7b. This patent application has already been filed by the applicant (Japanese Patent Application No. 164090/1982).

ところが、この第2図の構成には次の点に改良
の余地が残されていた。
However, the configuration shown in Figure 2 leaves room for improvement in the following points.

第1に、燃料クラツキング反応器7bが排気管
3a内における上流端部に配設されるため、それ
より下流に配設される蒸気発生器3cにおいては
加熱効果が十分に得られないこと。
First, since the fuel cracking reactor 7b is disposed at the upstream end of the exhaust pipe 3a, a sufficient heating effect cannot be obtained in the steam generator 3c disposed downstream thereof.

第2に、システム起動時には燃料クラツキング
反応器7bが作動温度以下であるため、別途に燃
料系統を設けておき、システム起動時にはその別
途に設けられた燃料系統を通して燃料供給が行な
われる。そして燃料クラツキング反応器7bが所
定温度に達したとき、この反応器7bを作動させ
て別途に設けられた燃料系統との切換を行なう必
要があるが、この燃料系統の切換完了時までは蒸
気発生器3cからの高圧蒸気の発生量が整定しな
いという問題がある。
Second, since the fuel cracking reactor 7b is below the operating temperature when the system is started, a separate fuel system is provided, and fuel is supplied through the separately provided fuel system when the system is started. When the fuel cracking reactor 7b reaches a predetermined temperature, it is necessary to operate this reactor 7b and switch to a separately provided fuel system, but until the switching of this fuel system is completed, steam will not be generated. There is a problem that the amount of high pressure steam generated from the vessel 3c is not stable.

第3に、燃料クラツキング反応器7bのトラブ
ル特に燃料漏洩の発生等があると、その影響が下
流側の蒸気発生器3cにも及び、2次被害が発生
するおそれもある。
Thirdly, if there is any trouble in the fuel cracking reactor 7b, especially fuel leakage, the influence will extend to the steam generator 3c on the downstream side, and there is a possibility that secondary damage will occur.

本発明はこのような事情を考慮してなされたも
ので、その目的は、ガスタービンと、このガスタ
ービンの排熱エネルギにより駆動される蒸気ター
ビンとを備えた複合発電システムにおいて、排気
分岐管内に燃料クラツキング反応器を配設し、上
記ガスタービンに供給する燃料を上記ガスタービ
ンの排熱エネルギを用いて化学的に反応させ、上
記燃料より燃焼エネルギの高い二次燃料に変換し
て前記ガスタービンに供給することにより、例え
ばメタノール等を燃料とする場合であつても高度
の発電効率が得られるようにすること、並びに蒸
気タービン系の蒸気発生器に対する加熱効果を低
下させず、システム起動時における蒸気発生器か
らの高圧蒸気の発生量を短時間で整定させること
ができ、万一、燃料クラツキング反応器にトラブ
ルが発生した場合でもその影響が蒸気発生器に及
ぶことのないようにすることにある。
The present invention has been made in consideration of these circumstances, and its purpose is to provide a combined power generation system that includes a gas turbine and a steam turbine driven by the exhaust heat energy of the gas turbine, in which a gas turbine is installed in an exhaust branch pipe. A fuel cracking reactor is provided to chemically react the fuel supplied to the gas turbine using exhaust heat energy of the gas turbine, converting it into a secondary fuel having higher combustion energy than the fuel, and converting the fuel to the gas turbine. By supplying the fuel to the steam generator, a high power generation efficiency can be obtained even when using methanol as a fuel, and the heating effect on the steam generator of the steam turbine system is not reduced, and the heating efficiency at the time of system startup is The amount of high-pressure steam generated from the steam generator can be stabilized in a short time, and even if trouble occurs in the fuel cracking reactor, it will not affect the steam generator. be.

以下、第3図に示す本発明システムの一実施例
につき説明する。
An embodiment of the system of the present invention shown in FIG. 3 will be described below.

第3図は燃料クラツキング複合発電システムの
概略構成を示すものである。尚、第1図、第2図
のシステムと同一の部分は同一符号を付してあ
る。
FIG. 3 shows a schematic configuration of the fuel cracking combined power generation system. Note that the same parts as in the systems of FIGS. 1 and 2 are given the same reference numerals.

このシステムの特徴とするところは、ガスター
ビン2aの高温排ガスを流通させる排気本管(第
1図、第2図の排気管3aと同一構成)3a内の
上流端部と下流端部との間を連結して排気分岐管
8aを設け、排気本管3a内には第2図のシステ
ムと同様に、上流側より下流側に向つて蒸気発生
器3c、給水予熱器3bおよび燃料予熱器7aを
配設し、排気分岐管8a内には燃料クラツキング
反応器7bを配設した点にある。
The feature of this system is that between the upstream end and the downstream end in the exhaust main pipe 3a (same configuration as the exhaust pipe 3a in Figs. 1 and 2) through which high-temperature exhaust gas from the gas turbine 2a flows. A steam generator 3c, a water preheater 3b, and a fuel preheater 7a are installed in the exhaust main pipe 3a from the upstream side to the downstream side, similar to the system shown in FIG. A fuel cracking reactor 7b is disposed within the exhaust branch pipe 8a.

排気分岐管8aの入口部と出口部にはそれぞれ
分岐ダクト入口ダンパ8b、分岐ダクト出口ダン
パ8cが設けられ、排気分岐管8a内を分流する
排ガス流量を制御できる構成となつている。また
少なくとも前記蒸気発生器3cと給水予熱器3b
とは排気本管3a内における前記入口ダンパ8b
と出口ダンパ8cとの間の位置に配設されてい
る。
A branch duct inlet damper 8b and a branch duct outlet damper 8c are provided at the inlet and outlet portions of the exhaust branch pipe 8a, respectively, so that the flow rate of the exhaust gas branched within the exhaust branch pipe 8a can be controlled. Further, at least the steam generator 3c and the feed water preheater 3b
means the inlet damper 8b in the exhaust main pipe 3a.
and the outlet damper 8c.

そこで、前記ガスタービン2aに供給される燃
料は、予め、排気本管3a内の燃料予熱器7aに
より加熱され、さらに排気分岐管8a内の燃料気
化器7bにより、ガスタービン2aからの高温排
ガスcの熱エネルギを与えられて化学的に反応
(クラツキング反応)し、燃焼エネルギの高い二
次燃料に変換されることになる。
Therefore, the fuel supplied to the gas turbine 2a is heated in advance by a fuel preheater 7a in the exhaust main pipe 3a, and is further heated by the fuel vaporizer 7b in the exhaust branch pipe 8a to generate high-temperature exhaust gas c from the gas turbine 2a. Thermal energy is applied to the fuel, causing a chemical reaction (cracking reaction) and converting it into a secondary fuel with high combustion energy.

したがつて上記構成のシステムによれば、ガス
タービン2aの排ガスcの熱エネルギを蒸気発生
器3cおよび燃料クラツキング反応器7bの双方
に対して有効に与えることができ、これによつて
発電効率を高めることができる。
Therefore, according to the system configured as described above, the thermal energy of the exhaust gas c of the gas turbine 2a can be effectively provided to both the steam generator 3c and the fuel cracking reactor 7b, thereby increasing power generation efficiency. can be increased.

また、蒸気発生器3cは排気本管3a内に、燃
料クラツキング反応器7bは排気分岐管8a内に
配設されているので、燃料クラツキング反応器7
bが蒸気発生器3cの加熱効率を低下させること
はない。
Furthermore, since the steam generator 3c is disposed within the exhaust main pipe 3a and the fuel cracking reactor 7b is disposed within the exhaust branch pipe 8a, the fuel cracking reactor 7b is disposed within the exhaust main pipe 3a.
b does not reduce the heating efficiency of the steam generator 3c.

さらに、蒸気発生器3cと燃料クラツキング反
応器7cとが互いに影響し合うことはないので、
いずれか一方のみについて、性能、運転モード、
構造、配置等を自由に変更することができる。ま
た、システム起動時における蒸気発生器3cから
の高圧蒸気の発生量を短時間で整定させることが
でき、万一、燃料クラツキング反応器7bにトラ
ブルが発生した場合でもその影響が蒸気発生器3
cには及ばないので、2次被害の発生を防止する
ことができる。
Furthermore, since the steam generator 3c and the fuel cracking reactor 7c do not affect each other,
performance, driving mode,
The structure, arrangement, etc. can be changed freely. In addition, the amount of high-pressure steam generated from the steam generator 3c at the time of system startup can be stabilized in a short time, and even if trouble occurs in the fuel cracking reactor 7b, the influence of the problem will not be affected by the steam generator 3c.
Since the damage is not as bad as c, secondary damage can be prevented from occurring.

以上詳述したように、本発明によれば、高度の
発電効率が得られ、蒸気タービン系の蒸気発生器
に対する加熱効果を低下させず、システム起動時
における蒸気発生器からの高圧蒸気の発生量を短
時間で整定させることができ、万一、燃料クラツ
キング反応器にトラブルが発生した場合でもその
影響を蒸気発生器に及ぼすことなく、2次被害を
防止できる燃料クラツキング複合発電システムを
提供することができる。
As detailed above, according to the present invention, a high power generation efficiency is obtained, the heating effect on the steam generator of the steam turbine system is not reduced, and the amount of high-pressure steam generated from the steam generator at the time of system startup is To provide a fuel cracking combined power generation system that can stabilize the temperature in a short time and prevent secondary damage without affecting a steam generator even if trouble occurs in a fuel cracking reactor. Can be done.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図および第2図は本発明の背景技術を説明
するための概略構成図、第3図は本発明の一実施
例を示す概略構成図である。 2a……ガスタービン、2b……発電機、3a
……排気本管、3b……給水予熱器、3c……蒸
気発生器、4a……蒸気タービン、4b……発電
機、7a……燃料予熱器、7b……燃料クラツキ
ング反応器、8a……排気分岐管。
1 and 2 are schematic configuration diagrams for explaining the background technology of the present invention, and FIG. 3 is a schematic configuration diagram showing one embodiment of the present invention. 2a... Gas turbine, 2b... Generator, 3a
...exhaust main pipe, 3b...feed water preheater, 3c...steam generator, 4a...steam turbine, 4b...generator, 7a...fuel preheater, 7b...fuel cracking reactor, 8a... Exhaust branch pipe.

Claims (1)

【特許請求の範囲】[Claims] 1 ガスタービン発電系と、このガスタービン発
電系からの高温排ガスを流通させる排気本管と、
この排気本管の上流端部と下流端部との間を連結
して設けられた排気分岐管と、上記排気本管内に
おける上記排気分岐管入口と出口との間に配設さ
れた蒸気発生器と、この蒸気発生器より発生した
高圧蒸気により駆動される蒸気タービン発電系
と、上記排気分岐管内に配設され上記ガスタービ
ン発電系に供給される燃料を上記排気分岐管を流
通する排ガスの熱エネルギにより化学的に反応さ
せて燃焼エネルギの高い二次燃料に変換する燃料
クラツキング反応器とを具備したことを特徴とす
る燃料クラツキング複合発電システム。
1. A gas turbine power generation system, an exhaust main pipe through which high-temperature exhaust gas from the gas turbine power generation system flows,
An exhaust branch pipe connected between the upstream end and the downstream end of the exhaust main pipe, and a steam generator disposed between the exhaust branch pipe inlet and outlet in the exhaust main pipe. , a steam turbine power generation system driven by high pressure steam generated from the steam generator, and a fuel disposed in the exhaust branch pipe to be supplied to the gas turbine power generation system by the heat of the exhaust gas flowing through the exhaust branch pipe. A fuel cracking combined power generation system characterized by comprising a fuel cracking reactor that chemically reacts with energy and converts it into a secondary fuel with high combustion energy.
JP21591482A 1982-12-09 1982-12-09 Compound electric power generating system by fuel cracking Granted JPS59105909A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21591482A JPS59105909A (en) 1982-12-09 1982-12-09 Compound electric power generating system by fuel cracking

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21591482A JPS59105909A (en) 1982-12-09 1982-12-09 Compound electric power generating system by fuel cracking

Publications (2)

Publication Number Publication Date
JPS59105909A JPS59105909A (en) 1984-06-19
JPS6310287B2 true JPS6310287B2 (en) 1988-03-05

Family

ID=16680338

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21591482A Granted JPS59105909A (en) 1982-12-09 1982-12-09 Compound electric power generating system by fuel cracking

Country Status (1)

Country Link
JP (1) JPS59105909A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2706235B2 (en) * 1986-05-01 1998-01-28 三菱重工業株式会社 Combined prime mover
EP1065347B1 (en) * 1999-07-01 2007-03-07 General Electric Company Method for fuel gas moisturization and heating

Also Published As

Publication number Publication date
JPS59105909A (en) 1984-06-19

Similar Documents

Publication Publication Date Title
JP2581825B2 (en) Power plant
US5669216A (en) Process and device for generating mechanical energy
JP2680782B2 (en) Coal-fired combined power plant combined with fuel reformer
US7926292B2 (en) Partial oxidation gas turbine cooling
JP5951408B2 (en) Heat recovery from gasification system
JP5951204B2 (en) Fuel heating system
PL165321B1 (en) Method of and system for generating mechanical energy
WO2006060883A1 (en) Process and installation for producing electric power
US4478039A (en) Utilization of coal in a combined cycle powerplant
CN112188925A (en) Carbon capture system including gas turbine
US4387560A (en) Utilization of coal in a combined cycle powerplant
RU2624690C1 (en) Gaz turbine installation and method of functioning of gas turbine installation
JP2662298B2 (en) Power plant with carbon dioxide separator
JP2554060B2 (en) Combined generation system
JPS6310287B2 (en)
US4387561A (en) Utilization of coal powering a gas turbine engine
US11913360B2 (en) Method for operating a power plant in order to generate electrical energy by combustion of a carbonaceous combustible, and corresponding system for operating a power plant
GB2331128A (en) Gas-fuelled gas turbine power generation apparatus
JP2011163294A (en) Coal-gasified gas supply plant
RU2395703C2 (en) General-purpose air-turbine power plant
JPH11257093A (en) Power generation plant and method of operation
KR102410340B1 (en) High-temperature and high-pressure operable supercritical CO2 cycle-based heat engine and method for operating the same heat engine
JPS59108809A (en) Complex prime mover system
JPS59115405A (en) Fuel cracking composite power generating system
SU1638320A1 (en) Combination steam-gas unit with coal gasification