JP4496950B2 - Reforming furnace system - Google Patents

Reforming furnace system Download PDF

Info

Publication number
JP4496950B2
JP4496950B2 JP2004362168A JP2004362168A JP4496950B2 JP 4496950 B2 JP4496950 B2 JP 4496950B2 JP 2004362168 A JP2004362168 A JP 2004362168A JP 2004362168 A JP2004362168 A JP 2004362168A JP 4496950 B2 JP4496950 B2 JP 4496950B2
Authority
JP
Japan
Prior art keywords
gas
exhaust
reforming
raw material
reforming furnace
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004362168A
Other languages
Japanese (ja)
Other versions
JP2005220007A (en
Inventor
泰二 乾
常久 川口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2004362168A priority Critical patent/JP4496950B2/en
Publication of JP2005220007A publication Critical patent/JP2005220007A/en
Application granted granted Critical
Publication of JP4496950B2 publication Critical patent/JP4496950B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency

Description

本発明は、ガスタービン排ガス利用の改質炉システムに係り、C2 以上の炭化水素を原料とする、水素,アンモニア,メタノール等製造プラントの予備改質器を具備した水蒸気改質炉システムに関する。 The present invention relates to a reforming furnace system using gas turbine exhaust gas, and more particularly to a steam reforming furnace system equipped with a pre-reformer of a production plant for hydrogen, ammonia, methanol, etc. using hydrocarbons of C 2 or higher as a raw material.

改質炉は、水素,アンモニア,メタノール等製造プロセスにおいて、これら製品を製造するための原料となる合成ガスを炭化水素原料から製造するために使用されている。原料は必要な圧力まで昇圧されたあと予熱,脱硫され、水蒸気と混合後改質炉の排ガスとの熱交換により500℃程度に加熱されて改質触媒が充填された改質炉の被加熱管に導入され
、改質炉燃焼ガスから熱を供給されて合成ガスに改質される。例えば20気圧程度の加圧下にて改質する場合、改質温度は800℃以上であり、従って大量の加熱用燃料を必要とする。
The reforming furnace is used for producing synthesis gas, which is a raw material for producing these products, from a hydrocarbon raw material in a production process of hydrogen, ammonia, methanol and the like. The raw material is preheated and desulfurized after the pressure is increased to the required pressure, heated to about 500 ° C. by heat exchange with steam and the exhaust gas of the reforming furnace, and then filled with the reforming catalyst. The heat is supplied from the reforming furnace combustion gas and reformed into synthesis gas. For example, when reforming under a pressure of about 20 atm, the reforming temperature is 800 ° C. or higher, and therefore a large amount of heating fuel is required.

この加熱用燃料を節減する方法として、例えば特開平06−207531号公報のように、改質炉とガスタービンを併用することにより電力を併産するとともに、そのガスタービンの高温排ガスを改質炉に支燃剤として導入するシステム(以下、ガスタービン排ガス利用改質炉システム)や、改質炉上流に予備改質器を設置して原料中の重質留分を予めメタンに改質することにより従来改質炉入口での原料の熱分解による炭素析出のトラブルを防ぐため約500℃以下に制限されていた改質炉入口温度を改質炉排ガスとの熱交換により550〜600℃まで昇温することによって改質炉の燃料使用量を低減するシステム
(以下予備改質器システム)が提案されている。
As a method for saving the heating fuel, for example, as disclosed in Japanese Patent Application Laid-Open No. 06-207531, a reformer and a gas turbine are used together to produce electric power, and the high-temperature exhaust gas from the gas turbine is converted into a reformer. By introducing a pre-reformer upstream of the reforming furnace and reforming the heavy fraction in the raw material to methane in advance. The temperature at the reforming furnace inlet, which has been limited to about 500 ° C. or lower in order to prevent trouble of carbon deposition due to thermal decomposition of the raw material at the reforming furnace inlet, is increased to 550 to 600 ° C. by heat exchange with the reforming furnace exhaust gas. A system for reducing the amount of fuel used in the reforming furnace (hereinafter referred to as a pre-reformer system) has been proposed.

特開平06−207531号公報では併設されているガスタービンの高温排ガスの一部が排ガス流路を経て加熱炉内に直接導入されると共に、ガスタービンの不時の停止に備えて常用又は非常用の送風機が備えられ、送風機からの空気を上記排ガス流路の途中に導入できるように構成されている。   In Japanese Patent Application Laid-Open No. 06-207531, a part of the high-temperature exhaust gas of the gas turbine provided together is directly introduced into the heating furnace through the exhaust gas flow path, and is used for emergency or emergency use in preparation for an emergency stop of the gas turbine. The air blower is provided so that the air from the air blower can be introduced into the exhaust gas flow path.

また、予備改質器システムの従来構成では、原料は予備改質器に導入される前に脱硫する必要があり、脱硫に必要な温度まで原料を予熱するために予熱炉が設置されている。予備改質のためには更に温度を上げる必要があるが、そのための熱源として改質炉の排ガスを用いている。すなわち、改質炉の対流部に加熱用コイルを挿入し、予備改質で必要とされる温度まで原料を加熱して予備改質器に導入するように構成されている。   In the conventional configuration of the pre-reformer system, the raw material needs to be desulfurized before being introduced into the pre-reformer, and a preheating furnace is installed to preheat the raw material to a temperature necessary for desulfurization. Although it is necessary to further raise the temperature for the preliminary reforming, the exhaust gas from the reforming furnace is used as a heat source for that purpose. That is, a heating coil is inserted into the convection section of the reforming furnace, and the raw material is heated to a temperature required for the pre-reforming and introduced into the pre-reformer.

特開平06−207531号公報Japanese Patent Laid-Open No. 06-207531

しかしながら、特開平06−207531号公報の技術では、改質炉の燃料削減効果は期待できるものの、改質炉の燃焼排ガス量の増加は平均燃焼排ガス温度の低下となり、改質炉の輻射熱吸収効率を低下させるため改質炉が大きくなってしまうという課題がある。また、ガスタービン排ガスの温度は500〜600℃と高温であるので、この高温排ガスを改質炉に導入するためには、この温度に耐える高温用排ガスダクトが必要になるため、設備コストを出来るだけ少なくしようとすれば改質炉とガスタービンを近接して設置する必要があり、その場合は配置の自由度が限定される。   However, in the technique of Japanese Patent Laid-Open No. 06-207531, although the fuel reduction effect of the reforming furnace can be expected, an increase in the amount of combustion exhaust gas in the reforming furnace results in a decrease in the average combustion exhaust gas temperature, and the radiant heat absorption efficiency of the reforming furnace There is a problem that the reforming furnace becomes large in order to reduce the temperature. Further, since the temperature of the gas turbine exhaust gas is as high as 500 to 600 ° C., in order to introduce the high temperature exhaust gas into the reforming furnace, a high temperature exhaust gas duct that can withstand this temperature is required, so that the equipment cost can be increased. In order to reduce as much as possible, it is necessary to install the reforming furnace and the gas turbine close to each other, in which case the degree of freedom of arrangement is limited.

予備改質器システムでは、従来蒸気発生用に使用されていた改質炉排熱の一部を予備改質に適した温度まで原料を昇温するための熱として回収するため、及び予備改質器を用いたことによる改質炉の燃料節減効果による改質炉排ガス熱量自体の減少のために、改質炉からの蒸気発生量が低下するという課題がある。   In the pre-reformer system, a part of the reformer exhaust heat conventionally used for steam generation is recovered as heat for raising the raw material to a temperature suitable for pre-reforming, and pre-reforming There is a problem that the amount of steam generated from the reforming furnace is reduced due to the reduction of the reformer exhaust gas heat quantity itself due to the fuel saving effect of the reforming furnace due to the use of the reactor.

本発明の目的は、改質炉のサイズを大きくすることなく、改質炉とガスタービンの設置の自由度失うことなく、また、改質炉からの蒸気発生量の減少を補うことができる、高熱効率な改質炉システムを提供することにある。   The object of the present invention is not to increase the size of the reforming furnace, without losing the freedom of installation of the reforming furnace and the gas turbine, and to compensate for the reduction in the amount of steam generated from the reforming furnace. The object is to provide a reforming furnace system with high thermal efficiency.

本発明では、燃料を燃焼して改質炉燃焼ガスを生成し、該改質炉燃焼ガスを熱源として改質を行なう改質炉に、ガスタービン及び排熱回収熱交換器を併設し、ガスタービンで発電すると共にガスタービンの排ガスを改質炉原料の予熱及び予備改質用の蒸気発生に用いている。具体的には、ガスタービン排ガス(500〜600℃)の下流流路に排熱回収熱交換器を設け、ガスタービンの高温排気と改質炉原料を熱交換することで、原料の気化,脱硫に適した温度への昇温、さらには予備改質に適した温度への昇温を行うとともに、ガスタービン排ガスの残りの熱を用いて予備改質に必要な蒸気の発生,過熱を行う。 In the present invention, a gas turbine and an exhaust heat recovery heat exchanger are provided together with a reforming furnace that burns fuel to generate reforming furnace combustion gas and performs reforming using the reforming furnace combustion gas as a heat source , In addition to generating electricity with the turbine, the exhaust gas from the gas turbine is used for preheating the reforming furnace raw material and generating steam for preliminary reforming. Specifically, a waste heat recovery heat exchanger is provided in the downstream flow path of the gas turbine exhaust gas (500 to 600 ° C.), and the raw material is vaporized and desulfurized by exchanging heat between the high-temperature exhaust of the gas turbine and the reforming furnace raw material. The temperature is raised to a temperature suitable for the pre-reforming and further raised to a temperature suitable for the pre-reforming, and the remaining heat of the gas turbine exhaust gas is used to generate and superheat steam necessary for the pre-reforming.

本発明では、ガスタービンからの高温排ガスを改質炉に直接導入しない為、改質炉の輻射熱吸収効率が低下せず、改質炉を大きくすること無しに燃料節減を可能とするという効果があり、また高温の排気ガスダクトの引き回しが不要であるため必ずしもガスタービンを改質炉近傍に設置する必要が無くプラント配置計画での自由度が高いという効果がある
In the present invention, since the high-temperature exhaust gas from the gas turbine is not directly introduced into the reforming furnace, the radiant heat absorption efficiency of the reforming furnace does not decrease, and the effect of enabling fuel saving without increasing the reforming furnace is achieved. In addition, since there is no need to route a high-temperature exhaust gas duct, there is no need to install a gas turbine near the reforming furnace, and there is an effect that the degree of freedom in plant layout planning is high.

更に、予備改質器のみを設けて改質炉の燃料を削減した場合、改質炉の排熱回収部からの蒸気発生量は減少するが、本発明ではその減少分を補い、且つこのプラントの必要電力を自己供給することが可能となるという効果がある。   Furthermore, when only the pre-reformer is provided and the fuel in the reforming furnace is reduced, the amount of steam generated from the exhaust heat recovery unit of the reforming furnace is reduced, but the present invention compensates for the decrease and this plant. There is an effect that it becomes possible to supply the necessary power of the self.

本発明は、ガスタービン排ガス利用の改質炉システムに係り、C2 以上の炭化水素を原料とする、水素,アンモニア,メタノール等製造プラントの予備改質器を具備した水蒸気改質炉システムにガスタービン発電設備を設けて発電すると共に、そのガスタービンの排ガスを原料予熱炉及び予備改質の熱源として利用することにより原料予熱炉及び水蒸気改質炉(以下改質炉と称す)の燃料を節減するシステムに関する。以下、本発明の実施例について図面を参照して説明する。 The present invention relates to a reforming furnace system using gas turbine exhaust gas, and gas is supplied to a steam reforming furnace system equipped with a pre-reformer of a production plant for hydrogen, ammonia, methanol, etc., using hydrocarbons of C 2 or higher as a raw material. Power is generated by installing a turbine power generation facility, and fuel in the raw material preheating furnace and steam reforming furnace (hereinafter referred to as the reforming furnace) is saved by using the exhaust gas from the gas turbine as a heat source for the raw material preheating furnace and pre-reforming. Related to the system. Embodiments of the present invention will be described below with reference to the drawings.

図1は本発明の第1の実施例であり、ナフサを原料とする従来の水素製造プラントに予備改質器及びガスタービンを併設する場合を示している。   FIG. 1 shows a first embodiment of the present invention, and shows a case where a prereformer and a gas turbine are provided in a conventional hydrogen production plant using naphtha as a raw material.

図1において、改質炉18に併設されたガスタービン7には燃料53が供給され、発電機8で発電するとともに、そのガスタービン排ガスはGT排ガスダクト27,排熱回収熱交換器6を経て、煙突17より排出される。GT排ガスダクト27はダンパー32と送風機30を具備している。   In FIG. 1, fuel 53 is supplied to a gas turbine 7 provided in the reforming furnace 18, and power is generated by a generator 8. The gas turbine exhaust gas passes through a GT exhaust gas duct 27 and an exhaust heat recovery heat exchanger 6. , Discharged from the chimney 17. The GT exhaust gas duct 27 includes a damper 32 and a blower 30.

排熱回収熱交換器6は給水加熱器13,蒸発器15,蒸気過熱器16,原料予熱器9,原料加熱器10,11等の熱交換器と汽水分離ドラム14及び補助燃焼器31で構成される。   The exhaust heat recovery heat exchanger 6 includes a heat exchanger such as a feed water heater 13, an evaporator 15, a steam superheater 16, a raw material preheater 9, a raw material heaters 10 and 11, a brackish water separation drum 14, and an auxiliary combustor 31. Is done.

排熱回収熱交換器6では、原料予熱器9及び原料加熱器10,11でガスタービン排ガスと改質炉原料の熱交換を行い、原料をそれぞれ脱硫塔3及び予備改質器12(断熱式予備改質器)の運転に必要な温度まで加熱を行う。原料予熱器9を出たガスタービン排ガスは更に蒸気過熱器16,蒸発器15及び給水加熱器13、との熱交換を行う。蒸気加熱器16での熱交換により過熱蒸気56を発生させる。蒸気56は必要に応じて、改質炉排熱回収部23で発生した過熱蒸気57より不足分を補って、予備改質に必要な蒸気59と改質に必要な蒸気58に分けられ、それぞれ原料加熱器10及び原料加熱器11の上流で原料ガス及び予備改質ガスに混入される。ガスタービンの不時の停止時にはダンパー32を閉止し、送風機30と補助燃焼器31を起動することで予備改質器12と改質炉18の運転継続を可能としている。また、ガスタービンの運転中に補助燃焼器31を燃焼させ、排熱回収熱交換器6の各部のガス温度を必要な原料予熱温度に応じて調整することも可能である。   In the exhaust heat recovery heat exchanger 6, the raw material preheater 9 and the raw material heaters 10 and 11 exchange heat between the gas turbine exhaust gas and the reforming furnace raw material, and the raw material is desulfurized tower 3 and the preliminary reformer 12 (adiabatic type), respectively. Heat to the temperature required for the operation of the pre-reformer). The gas turbine exhaust gas discharged from the raw material preheater 9 further exchanges heat with the steam superheater 16, the evaporator 15, and the feed water heater 13. Superheated steam 56 is generated by heat exchange in the steam heater 16. The steam 56 is divided into a steam 59 necessary for pre-reformation and a steam 58 necessary for reforming, as necessary, by making up for the deficiency of the superheated steam 57 generated in the reformer exhaust heat recovery unit 23. The raw material gas and the pre-reformed gas are mixed upstream of the raw material heater 10 and the raw material heater 11. When the gas turbine stops unexpectedly, the damper 32 is closed and the blower 30 and the auxiliary combustor 31 are started, so that the operation of the preliminary reformer 12 and the reforming furnace 18 can be continued. It is also possible to burn the auxiliary combustor 31 during operation of the gas turbine and adjust the gas temperature of each part of the exhaust heat recovery heat exchanger 6 according to the required raw material preheating temperature.

改質炉原料のナフサ50は原料ポンプ1で必要な圧力に昇圧されたあと循環水素51を加え、原料予熱器9に供給される。原料予熱器9で気化しさらに原料の脱硫に必要な温度例えば380℃まで過熱された原料は脱硫塔3に導入される。原料に含まれている硫黄分は脱硫塔3の水添脱硫層4で硫化水素に変換され、その下流にある吸着層5で吸着除去される。原料中の硫黄分は改質触媒の被毒となるためほぼ完全に除去される必要がある。硫黄分が除去された原料は予備改質に必要な量の蒸気59と混合され、原料加熱器10でガスタービンの高温排ガスと熱交換して予備改質に必要な温度例えば475℃程度に加熱され、予備改質器12に導入される。原料ナフサは予備改質触媒により全てメタン,水素,一酸化炭素及び炭酸ガスの混合ガスに改質される。   The reforming furnace raw material naphtha 50 is boosted to a necessary pressure by the raw material pump 1 and then added with circulating hydrogen 51 and supplied to the raw material preheater 9. The raw material vaporized by the raw material preheater 9 and further heated to a temperature necessary for desulfurization of the raw material, for example, 380 ° C., is introduced into the desulfurization tower 3. The sulfur content contained in the raw material is converted into hydrogen sulfide in the hydrodesulfurization layer 4 of the desulfurization tower 3, and is adsorbed and removed by the adsorption layer 5 downstream thereof. Since the sulfur content in the raw material becomes poisoning of the reforming catalyst, it needs to be almost completely removed. The raw material from which the sulfur content has been removed is mixed with an amount of steam 59 necessary for pre-reformation, and is heated to a temperature necessary for pre-reformation, for example, about 475 ° C., by exchanging heat with the high-temperature exhaust gas of the gas turbine by the raw material heater 10. And introduced into the pre-reformer 12. The raw material naphtha is all reformed into a mixed gas of methane, hydrogen, carbon monoxide and carbon dioxide by a pre-reforming catalyst.

メタンを主体とした予備改質ガスは、さらに改質に必要な量の蒸気58と混合されたあと原料加熱器11で加熱され、改質炉18の改質炉排熱回収部23の原料加熱器20で更に550〜600℃まで加熱されて改質炉18の触媒管19に導入され、改質炉燃焼ガスからの熱により800〜850℃で合成ガスに改質される。ナフサを予備改質しない場合は触媒管入口での炭素析出を避けるため触媒管入口温度は例えば500℃以下に制限されるが、メタンが主成分の予備改質ガスの場合は炭素の析出を危惧することなく550〜
600℃までの加熱が可能である。炭化水素の水蒸気改質反応は高温下で起こる吸熱反応であり、改質炉で燃料を燃焼させ、その燃焼熱を(1)原料の温度を反応に適した温度まで引き上げるための熱、及び(2)反応熱として利用しており、改質炉に導入される原料の温度が高くなれば(1)に要する熱が減少、その分改質炉での燃料使用量が少なくてすむ。本実施例によれば、ガスタービンの排熱を直接改質炉18に導入するのではなく、原料の改質炉導入温度を上昇させることに用いるため、高温のGT排ガスダクトの引き回しが不要であり、配置計画での自由度も高い。約800〜850℃で触媒管を出た合成ガスは排熱回収ボイラ25で蒸気を発生させることにより後続の高温CO変性器で必要な温度
、例えば450〜300℃程度まで冷却され後続装置に向かう。
The pre-reformed gas mainly composed of methane is further mixed with the steam 58 in an amount necessary for reforming and then heated by the raw material heater 11 to heat the raw material in the reforming furnace exhaust heat recovery unit 23 of the reforming furnace 18. The reactor 20 is further heated to 550 to 600 ° C., introduced into the catalyst tube 19 of the reforming furnace 18, and reformed into synthesis gas at 800 to 850 ° C. by heat from the reforming furnace combustion gas. When naphtha is not pre-reformed, the temperature at the catalyst tube inlet is limited to, for example, 500 ° C. or less in order to avoid carbon deposition at the catalyst tube inlet. However, in the case of a pre-reformed gas mainly composed of methane, there is a risk of carbon deposition. 550 without doing
Heating up to 600 ° C is possible. Hydrocarbon steam reforming reaction is an endothermic reaction that occurs at high temperature, fuel is burned in a reforming furnace, and (1) heat for raising the temperature of the raw material to a temperature suitable for the reaction, and ( 2) Utilized as reaction heat, if the temperature of the raw material introduced into the reforming furnace increases, the heat required for (1) decreases, and the amount of fuel used in the reforming furnace can be reduced accordingly. According to this embodiment, the exhaust heat of the gas turbine is not directly introduced into the reforming furnace 18, but is used to raise the reforming furnace introduction temperature of the raw material, so that it is not necessary to route a high-temperature GT exhaust gas duct. Yes, the degree of freedom in arrangement planning is high. The synthesis gas that has exited the catalyst tube at about 800 to 850 ° C. is cooled to a necessary temperature, for example, about 450 to 300 ° C. in the subsequent high-temperature CO reformer by generating steam in the exhaust heat recovery boiler 25, and is directed to the subsequent apparatus. .

次に、本実施例の作用を説明する。   Next, the operation of this embodiment will be described.

例えばナフサを原料とする150万Nm3/d の水素を生産する従来設備の場合、原料予熱は独立した原料予熱炉で行われ、その負荷は原料を脱硫に必要な温度例えば380℃まで昇温するとして4.7×106kcal/h、触媒管19の入口で例えば500℃まで昇温するとして、改質炉排熱回収部23の原料加熱器20の熱負荷は約10.0×106kcal/h、改質炉18の改質に必要な熱負荷はS/C比を例えば5.0 とすれば59.0×106kcal/h程度となり、必要蒸気量は約101t/h程度である。また、改質炉排熱回収部23及び排熱回収ボイラ25での蒸気発生量は例えば圧力36.5Mpa ,温度330℃の中圧蒸気を想定し、排熱回収ボイラ25出口の合成ガス温度を例えば380℃とするとおよそ114t/h程度である。従って、外部に供給できる蒸気の量はおよそ13t/hとなる。 For example, in the case of a conventional facility that produces 1.5 million Nm 3 / d hydrogen using naphtha as a raw material, raw material preheating is performed in an independent raw material preheating furnace, and the load is raised to a temperature required for desulfurization of the raw material, for example, 380 ° C. Assuming that the temperature rises to 4.7 × 10 6 kcal / h, for example, to 500 ° C. at the inlet of the catalyst tube 19, the heat load of the raw material heater 20 of the reformer exhaust heat recovery unit 23 is about 10.0 × 10 10. 6 kcal / h, the heat load required for reforming of the reforming furnace 18 is about 59.0 × 10 6 kcal / h when the S / C ratio is 5.0, for example, and the required steam amount is about 101 t / h. Degree. The amount of steam generated in the reformer exhaust heat recovery unit 23 and the exhaust heat recovery boiler 25 is assumed to be, for example, a pressure of 36.5 Mpa and a medium pressure steam at a temperature of 330 ° C., and the synthesis gas temperature at the exhaust heat recovery boiler 25 outlet is set to For example, when it is 380 ° C., it is about 114 t / h. Therefore, the amount of steam that can be supplied to the outside is approximately 13 t / h.

例えば上述した様な従来水素製造設備に、図1で示す様に予備改質器12,約29MW程度の出力を有するガスタービン7,発電機8、及び排熱回収熱交換器6を設置した場合
、予備改質器12で原料ナフサ50がメタンを主成分とするガスに改質されるため、触媒管19の入口温度を例えば600℃まで昇温したとして、水素生産量を上述の従来設備と等量になるよう改質した場合、触媒管入口温度が上昇したことにより改質炉18の熱負荷は53.7×106kcal/hと従来設備より約9%減少し、その分改質炉の燃料を節約できるという効果がある。また、必要水蒸気量については、予備改質器での蒸気消費が蒸気消費量増加分となるが予備改質の結果改質炉のS/C比が4.5 程度に減少するため、システム全体での蒸気消費量は101t/hと従来設備の場合と変わらない。
For example, when the pre-reformer 12, the gas turbine 7 having an output of about 29 MW, the generator 8 and the exhaust heat recovery heat exchanger 6 are installed in the conventional hydrogen production facility as described above, as shown in FIG. Since the raw material naphtha 50 is reformed into a gas containing methane as a main component by the pre-reformer 12, assuming that the inlet temperature of the catalyst tube 19 is raised to, for example, 600 ° C., the hydrogen production amount is compared with the above-described conventional equipment When reforming to an equal amount, the heat load of the reforming furnace 18 is reduced to 53.7 × 10 6 kcal / h by about 9% from the conventional equipment due to the rise of the catalyst tube inlet temperature. There is an effect that the fuel of the furnace can be saved. As for the required amount of steam, the steam consumption in the pre-reformer increases the steam consumption, but the S / C ratio of the reforming furnace decreases to about 4.5 as a result of the pre-reformation. The amount of steam consumed in the plant is 101 t / h, the same as in the case of conventional equipment.

また、ガスタービンに連結した発電機8により約29MWの電力を得ることにより、設備内の所要電力を自家供給するとともに余剰電力を外部に売電し、収支を改善する効果もある。   Moreover, by obtaining about 29 MW of electric power from the generator 8 connected to the gas turbine, there is an effect of improving the balance by supplying the necessary power in the facility in house and selling the surplus power to the outside.

原料ポンプ1で必要圧力例えば30MPa程度まで加圧されたナフサは常温で原料予熱器9に入り脱硫に必要な温度例えば380℃まで昇温される。従って従来設備の原料予熱炉は不要となり、そこでの燃料も全量節減されるという効果がある。脱硫塔3で脱硫された原料は、例えばS/C比1.6相当約32.2t/hの予備改質用水蒸気59と混合され
、原料加熱器10で予備改質に必要な温度例えば475℃程度まで昇温される。原料加熱器10で昇温された原料は、予備改質器12でメタンを主成分とするガスに改質されたあと、改質に必要な約69.2t/h の水蒸気58と混合される。水蒸気58と混合された予混合ガスは原料加熱器11に導かれ、ここで例えば約478℃まで加熱された後、改質炉排熱回収部23に供給される。原料加熱器20では、改質炉燃焼ガスによって更に、例えば600℃まで加熱されて触媒管19に導入され改質される。原料加熱器11と原料加熱器20の負荷比は実際の設備の特性に従い最適化される。なお、改質炉18には燃料
62が供給され燃焼されて高温の改質炉燃焼ガスを発生することにより改質用熱を供給する。また、改質炉燃焼ガスは改質用熱を与えた後改質炉排熱回収部23で更に排熱回収され煙突26から排出される構造となっている。
The naphtha pressurized to the required pressure, for example, about 30 MPa, by the raw material pump 1 enters the raw material preheater 9 at room temperature and is heated to a temperature required for desulfurization, for example, 380 ° C. Therefore, there is no need for the raw material preheating furnace of the conventional equipment, and there is an effect that the amount of fuel there is also reduced. The raw material desulfurized in the desulfurization tower 3 is mixed with, for example, pre-reforming steam 59 having an S / C ratio of 1.6 corresponding to about 32.2 t / h, and a temperature required for pre-reforming in the raw material heater 10, for example, 475. The temperature is raised to about ° C. The raw material heated by the raw material heater 10 is reformed into a gas mainly composed of methane by the pre-reformer 12, and then mixed with about 69.2 t / h of steam 58 necessary for the reforming. . The premixed gas mixed with the water vapor 58 is guided to the raw material heater 11, where it is heated to, for example, about 478 ° C. and then supplied to the reforming furnace exhaust heat recovery unit 23. The raw material heater 20 is further heated to, for example, 600 ° C. by the reforming furnace combustion gas and introduced into the catalyst tube 19 to be reformed. The load ratio between the raw material heater 11 and the raw material heater 20 is optimized according to the actual facility characteristics. The reforming furnace 18 is supplied with fuel 62 and burned to generate high-temperature reforming furnace combustion gas to supply heat for reforming. Further, after the reforming furnace combustion gas is given heat for reforming, it is further exhausted by the reforming furnace exhaust heat recovery unit 23 and discharged from the chimney 26.

一方、ガスタービン7からの排ガスは例えば約570℃で排熱回収熱交換器6に導入され順次原料ガスと熱交換することによりその温度を下げて行くが、原料予熱器9出口では約440℃とまだ十分な熱量を保有しており、さらに排熱回収ボイラとして蒸気過熱器
16,蒸発器15及び給水加熱器13で熱回収を行い、排熱回収ボイラ部出口では例えば温度215℃で煙突17に排出される。
On the other hand, the exhaust gas from the gas turbine 7 is introduced into the exhaust heat recovery heat exchanger 6 at about 570 ° C., for example, and the temperature is lowered by sequentially exchanging heat with the raw material gas. Still has a sufficient amount of heat, and further, heat recovery is performed by the steam superheater 16, the evaporator 15 and the feed water heater 13 as an exhaust heat recovery boiler, and a chimney 17 at a temperature of 215 ° C., for example, at the exhaust heat recovery boiler section outlet. To be discharged.

排熱回収ボイラ被加熱側入口に例えば温度125℃で入った給水55は、給水加熱器
13で例えば温度245℃まで加熱され、蒸発器15で例えば温度約245℃の飽和蒸気となる。また、給水55の一部は分岐して改質炉排熱回収部23の給水加熱器22に供給され、改質炉18の排熱によって加熱される。給水加熱器22で加熱された給水は、汽水分離ドラム24を経由して排熱回収ボイラ25に供給される。排熱回収ボイラ25では、改質炉18で改質された高温の合成ガス61から排熱回収を行い、蒸気を発生させている。その発生蒸気は汽水分離ドラム24に供給され、ここで給水と蒸気との分離が行われる。分離された蒸気は蒸気過熱器21によって過熱され過熱蒸気57となる。排熱回収熱交換器6の蒸発器15で発生した飽和蒸気は、蒸気過熱器16で例えば330℃に過熱され、改質炉排熱回収部23で発生した蒸気57と共に改質用蒸気として使用される。排熱回収熱交換器6で発生する蒸気は約32.6t/h でほぼ予備改質に必要な蒸気量に相当する。一方、改質炉排熱回収部23及び排熱回収ボイラ25で発生する蒸気は改質炉燃焼ガス量の減少により従来設備のそれより若干減少して約110t/hとなるが、改質に必要な蒸気量は約101t/hであるので、従来より約29t/h多い41.6t/h の外部への蒸気供給を可能にするという効果がある。
The feed water 55 that has entered the exhaust heat recovery boiler heated side inlet at, for example, a temperature of 125 ° C. is heated to, for example, a temperature of 245 ° C. by the feed water heater 13, and becomes saturated steam at a temperature of, for example, about 245 ° C. Further, a part of the feed water 55 is branched and supplied to the feed water heater 22 of the reforming furnace exhaust heat recovery unit 23 and heated by the exhaust heat of the reforming furnace 18. The feed water heated by the feed water heater 22 is supplied to the exhaust heat recovery boiler 25 via the brackish water separation drum 24. The exhaust heat recovery boiler 25 performs exhaust heat recovery from the high-temperature synthesis gas 61 reformed in the reforming furnace 18 to generate steam. The generated steam is supplied to the brackish water separation drum 24, where the feed water and the steam are separated. The separated steam is superheated by the steam superheater 21 to become superheated steam 57. The saturated steam generated in the evaporator 15 of the exhaust heat recovery heat exchanger 6 is superheated to, for example, 330 ° C. in the steam superheater 16 and used as reforming steam together with the steam 57 generated in the reformer exhaust heat recovery unit 23. Is done. The steam generated in the exhaust heat recovery heat exchanger 6 is about 32.6 t / h 2 and substantially corresponds to the amount of steam necessary for the pre-reformation. On the other hand, the steam generated in the reforming furnace exhaust heat recovery section 23 and the exhaust heat recovery boiler 25 is slightly reduced to about 110 t / h from the conventional equipment due to the reduction of the reforming furnace combustion gas amount. Since the required amount of steam is about 101 t / h, there is an effect of enabling steam supply to the outside of 41.6 t / h 2, which is about 29 t / h higher than before.

本実施例によれば、ガスタービンからの高温排ガスを改質炉に直接導入しない為、改質炉の輻射熱吸収効率が低下せず、改質炉を大きくすること無しに燃料節減を可能とするという効果があり、また高温の排気ガスダクトの引き回しが不要であるため必ずしもガスタービンを改質炉近傍に設置する必要が無くプラント配置計画での自由度が高いという効果がある。   According to the present embodiment, since high-temperature exhaust gas from the gas turbine is not directly introduced into the reforming furnace, the radiant heat absorption efficiency of the reforming furnace is not lowered, and fuel can be saved without enlarging the reforming furnace. In addition, since there is no need to route a high-temperature exhaust gas duct, there is no need to install a gas turbine in the vicinity of the reforming furnace, and there is a high degree of freedom in plant layout planning.

更に、予備改質器のみを設けて改質炉の燃料を削減した場合、改質炉の排熱回収部からの蒸気発生量は減少するが、本実施例ではその減少分を補い、且つこのプラントの必要電力を自己供給することが可能となるという効果がある。また、予熱炉及び改質炉双方の燃料使用量を削減すると共に、設置するガスタービンのサイズによっては蒸気,電力の外部への供給も可能になるという効果がある。また、ガスタービン排ガスを直接改質炉に導入する場合と異なり、本発明では改質炉容量に対してガスタービン容量の幅広い選択が可能になるという効果がある。   Furthermore, when only the pre-reformer is provided and the fuel in the reforming furnace is reduced, the amount of steam generated from the exhaust heat recovery unit of the reforming furnace is reduced, but this embodiment compensates for the decrease and this There is an effect that the necessary power of the plant can be supplied by itself. In addition, the fuel consumption of both the preheating furnace and the reforming furnace can be reduced, and depending on the size of the installed gas turbine, steam and electric power can be supplied to the outside. Further, unlike the case where the gas turbine exhaust gas is directly introduced into the reforming furnace, the present invention has an effect that a wide selection of the gas turbine capacity can be made with respect to the reforming furnace capacity.

本発明の第2の実施例について図2を参照して説明する。なお、第1の実施例と共通する部分については説明を省略する。   A second embodiment of the present invention will be described with reference to FIG. Note that description of parts common to the first embodiment is omitted.

本実施例では、図2に示すように第一の実施例の排熱回収熱交換器6を第1の排熱回収熱交換器28と、第2の排熱回収熱交換器としての排熱回収ボイラ29に分割して設置している。排熱回収熱交換器28は原料の予熱,加熱に、また排熱回収ボイラ29は蒸気発生に使用される。ガスタービン排ガスは、排熱回収熱交換器28の熱容量に応じて、GT排ガスダクト27のダンパー32及び、GT排ガスダクト34に設置されたダンパー33により分流される。また、排熱回収熱交換器28に分流するGT排ガスダクト27は送風機30を具備しており、排熱回収熱交換器28には補助燃焼器31が具備されている。排熱回収熱交換器28のバイパス経路として設置したGT排ガスダクト34は、排熱回収熱交換器28を経由した排ガスを排熱回収ボイラ29に供給するGT排ガスダクト36の途中に接続するように構成している。   In this embodiment, as shown in FIG. 2, the exhaust heat recovery heat exchanger 6 of the first embodiment is replaced with a first exhaust heat recovery heat exchanger 28 and exhaust heat as a second exhaust heat recovery heat exchanger. The recovery boiler 29 is divided and installed. The exhaust heat recovery heat exchanger 28 is used for preheating and heating the raw material, and the exhaust heat recovery boiler 29 is used for generating steam. The gas turbine exhaust gas is divided by a damper 32 of the GT exhaust gas duct 27 and a damper 33 installed in the GT exhaust gas duct 34 according to the heat capacity of the exhaust heat recovery heat exchanger 28. Further, the GT exhaust gas duct 27 that is divided into the exhaust heat recovery heat exchanger 28 includes a blower 30, and the exhaust heat recovery heat exchanger 28 includes an auxiliary combustor 31. The GT exhaust gas duct 34 installed as a bypass path of the exhaust heat recovery heat exchanger 28 is connected to the GT exhaust gas duct 36 that supplies exhaust gas that has passed through the exhaust heat recovery heat exchanger 28 to the exhaust heat recovery boiler 29. It is composed.

本第2の実施例では、第1の実施例で説明した効果に加え、下記の効果がある。   The second embodiment has the following effects in addition to the effects described in the first embodiment.

本第2の実施例では、通常運転時にはガスタービン排ガスの約60%が第1のGT排ガスダクト27を介して排熱回収熱交換器28に送られ、排熱回収された排ガスは排熱回収熱交換器28出口と排熱回収ボイラ29入口を接続する第2のGT排ガスダクト36を介して排熱回収ボイラ29に導入される。残りの40%のガスタービン排ガスは、排熱回収熱交換器28をバイパスする第3のGT排ガスダクト34を介して、排熱回収熱交換器
28を経由した第2のGT排ガスダクト36を流通する排ガスと合流し、排熱回収ボイラ29に導入される。原料の予熱,加熱はガスタービン排ガスの比較的高温部の熱量を必要とするため、排熱回収熱交換器28の排気温度は例えば350℃程度と十分高く、この保有熱量を有効に回収するため、この排ガスをガスタービン排ガスの残り40%と合流させ排熱回収ボイラ29に導入する。これにより排熱回収ボイラ29での蒸気発生量は第1の実施例と同じく32.6t/hとなる。
In the second embodiment, during normal operation, about 60% of the gas turbine exhaust gas is sent to the exhaust heat recovery heat exchanger 28 via the first GT exhaust gas duct 27, and the exhaust gas recovered as exhaust heat is recovered as exhaust heat. It is introduced into the exhaust heat recovery boiler 29 via a second GT exhaust gas duct 36 connecting the outlet of the heat exchanger 28 and the exhaust heat recovery boiler 29. The remaining 40% of the gas turbine exhaust gas flows through the second GT exhaust gas duct 36 via the exhaust heat recovery heat exchanger 28 via the third GT exhaust gas duct 34 that bypasses the exhaust heat recovery heat exchanger 28. It joins with the exhaust gas to be introduced and is introduced into the exhaust heat recovery boiler 29. Since the preheating and heating of the raw material require a heat quantity in a relatively high temperature portion of the gas turbine exhaust gas, the exhaust temperature of the exhaust heat recovery heat exchanger 28 is sufficiently high, for example, about 350 ° C., and this retained heat quantity is effectively recovered. The exhaust gas is combined with the remaining 40% of the gas turbine exhaust gas and introduced into the exhaust heat recovery boiler 29. As a result, the amount of steam generated in the exhaust heat recovery boiler 29 is 32.6 t / h, as in the first embodiment.

また、本第2の実施例では、ガスタービンが不時に停止した場合には、送風機30及び補助燃焼器31を緊急始動するとともに流量調節ダンパー32及び33を閉止する。送風機30及び補助燃焼器31の容量は外部より若干の予備改質用蒸気を導入することにより排熱回収熱交換器28の容量に合わせ実施例1のそれらの60%でよい。これにより万一ガスタービンが停止した場合でも実施例1に比べて少ない設備コスト,運転コストで予備改質器12経由で改質炉18の運転を継続できるという効果がある。また、改質炉容量に対してガスタービン容量の幅広い選択が可能になるという効果もある。   In the second embodiment, when the gas turbine stops unexpectedly, the blower 30 and the auxiliary combustor 31 are urgently started and the flow rate adjusting dampers 32 and 33 are closed. The capacity of the blower 30 and the auxiliary combustor 31 may be 60% of those of the first embodiment in accordance with the capacity of the exhaust heat recovery heat exchanger 28 by introducing some preliminary reforming steam from the outside. As a result, even if the gas turbine stops, there is an effect that the operation of the reforming furnace 18 can be continued via the preliminary reformer 12 with less equipment cost and operation cost than in the first embodiment. In addition, there is an effect that a wide selection of gas turbine capacities can be made with respect to the reforming furnace capacity.

本発明の第3の実施例について図3を参照して説明する。なお、第1,第2の実施例と共通する部分については説明を省略する。   A third embodiment of the present invention will be described with reference to FIG. Note that a description of portions common to the first and second embodiments is omitted.

本実施例では、排熱回収熱交換器28をバイパスしたガスタービン高温排ガスを直接排熱回収ボイラ29に導入し、排熱回収熱交換器28の排ガスは、この排熱回収熱交換器
28からの排ガスに近い温度が流通する部位(中間部分)で排熱回収ボイラ29に導入する。すなわち、第2のGT排ガスダクト36は排熱回収熱交換器28出口と排熱回収ボイラ29の排ガス流路途中とを接続し、第3のGT排ガスダクト34はガスタービン7出口(第1のGT排ガスダクト27途中)と排熱回収ボイラ29入口とを接続して排ガス経路を構成している。
In this embodiment, the gas turbine high-temperature exhaust gas bypassing the exhaust heat recovery heat exchanger 28 is directly introduced into the exhaust heat recovery boiler 29, and the exhaust gas of the exhaust heat recovery heat exchanger 28 is extracted from the exhaust heat recovery heat exchanger 28. Is introduced into the exhaust heat recovery boiler 29 at a portion (intermediate portion) through which the temperature close to the exhaust gas flows. That is, the second GT exhaust gas duct 36 connects the outlet of the exhaust heat recovery heat exchanger 28 and the exhaust gas passageway of the exhaust heat recovery boiler 29, and the third GT exhaust gas duct 34 connects the outlet of the gas turbine 7 (first The exhaust gas path is configured by connecting the GT exhaust gas duct 27) and the exhaust heat recovery boiler 29 inlet.

本第3の実施例では、第1及び第2の実施例で説明した効果に加え、下記の効果がある
The third embodiment has the following effects in addition to the effects described in the first and second embodiments.

本実施例では、排熱回収熱交換器28をバイパスした高温のガスタービン排ガスと比較的低温の排熱回収熱交換器28からの排ガスをダクトで合流させず、それぞれの温度に応じた部位で合流するように構成している。図示する本実施例では、排熱回収熱交換器28を経由した排ガスは、排熱回収ボイラ29の蒸発器15の途中位置でGT排ガスダクト
34から供給されたガスタービン排ガスと合流させている。なお、排熱回収熱ボイラ29での排ガス合流点は、GT排ガスダクト34でバイパスされた高温の排ガス(例えば570
℃)が排熱回収熱ボイラ29内で排熱回収され、排熱回収熱交換器28からの排ガス(例えば385℃)と同程度、若しくは所定の温度差となった排ガスが流通する位置に相当する排ガス流路で合流させれば良く、図3の構成に限定されるものではない。本実施例によれば蒸気発生量を変えずに、これらの温度差が大きい場合の熱応力によるダクトの変形等の問題を回避できる効果がある。
In the present embodiment, the high-temperature gas turbine exhaust gas bypassing the exhaust heat recovery heat exchanger 28 and the exhaust gas from the relatively low temperature exhaust heat recovery heat exchanger 28 are not merged in the ducts, but at portions corresponding to the respective temperatures. It is configured to merge. In the present embodiment shown in the figure, the exhaust gas that has passed through the exhaust heat recovery heat exchanger 28 is merged with the gas turbine exhaust gas supplied from the GT exhaust gas duct 34 in the middle of the evaporator 15 of the exhaust heat recovery boiler 29. The exhaust gas converging point in the exhaust heat recovery heat boiler 29 is a hot exhaust gas bypassed by the GT exhaust gas duct 34 (for example, 570).
Is equivalent to the position where the exhaust gas having the same temperature as the exhaust gas from the exhaust heat recovery heat exchanger 28 (for example, 385 ° C.) or having a predetermined temperature difference circulates. The exhaust gas flow path to be joined may be used, and is not limited to the configuration shown in FIG. According to the present embodiment, there is an effect that it is possible to avoid problems such as deformation of the duct due to thermal stress when these temperature differences are large, without changing the steam generation amount.

本発明の第4の実施例について図4を参照して説明する。尚、第1,第2及び第3の実施例と共通する部分については説明を省略する。   A fourth embodiment of the present invention will be described with reference to FIG. Note that a description of portions common to the first, second, and third embodiments is omitted.

本実施例は、既設の改質炉システムにガスタービン7,発電機8,排熱回収熱交換器6
、及び予備改質器12を追設する場合の実施例である。既設改質炉システムは、原料ポンプ1K,原料予熱炉2K,脱硫塔3K,改質炉18K,汽水分離ドラム24K,排熱回収ボイラ25K,煙突26K、を含むシステムで、また改質炉18Kは触媒管19Kを含む輻射部と原料加熱器20K,蒸気過熱器21K,給水加熱器22Kを備えた改質炉熱回収部23Kより構成されている。
In this embodiment, an existing reformer system is added to a gas turbine 7, a generator 8, an exhaust heat recovery heat exchanger 6.
This is an embodiment in the case where the preliminary reformer 12 is additionally provided. The existing reforming furnace system includes a raw material pump 1K, a raw material preheating furnace 2K, a desulfurization tower 3K, a reforming furnace 18K, a brackish water separation drum 24K, an exhaust heat recovery boiler 25K, and a chimney 26K. A reformer heat recovery section 23K including a radiation section including the catalyst tube 19K, a raw material heater 20K, a steam superheater 21K, and a feed water heater 22K is configured.

本第4の実施例では下記の効果がある。   The fourth embodiment has the following effects.

既設の改質炉システムにガスタービン7及び排熱回収熱交換器6を追設したことにより
、原料の脱硫用予熱は原料予熱器9によって行われるため、既設原料予熱炉2Kは不要となり、既設原料予熱炉2Kで消費されていた燃料4.7×106kcal/hが全量節約されるという効果がある。なお、図4ではガスタービン7,排熱回収熱交換器6の追設によって既設原料予熱炉2Kを撤去する例を示しているが、既設原料予熱炉2Kを残して、原料の予熱を既設原料予熱炉2Kと、排熱回収熱交換器6の原料予熱器9との両方で行うように構成しても良い。
Since the gas turbine 7 and the exhaust heat recovery heat exchanger 6 are additionally installed in the existing reformer system, the raw material desulfurization preheating is performed by the raw material preheater 9, so that the existing raw material preheating furnace 2K is not necessary, The fuel 4.7 × 10 6 kcal / h consumed in the raw material preheating furnace 2K is effectively saved. FIG. 4 shows an example in which the existing raw material preheating furnace 2K is removed by additionally installing the gas turbine 7 and the exhaust heat recovery heat exchanger 6, but the existing raw material preheating furnace 2K is left and the preheating of the raw material is performed. You may comprise so that it may carry out by both the preheating furnace 2K and the raw material preheater 9 of the waste heat recovery heat exchanger 6.

また、既設改質炉に予備改質器システムを適用した場合、少なくとも原料予熱コイルの増設のため既設改質炉の熱回収部の一部改造が必要となり、且つ既設改質炉からの蒸気回収量が減少するが、本第4の実施例では、既設原料加熱器20Kを改造することなく、原料を既設原料加熱器20K出口で例えば600℃に加熱できるように原料加熱器11を設計することが可能であり、このことにより既設改質触媒の交換は必要なものの、既設改質炉の熱回収部を改造することなく予備改質器システムを既設改質炉に導入することが出来るという効果がある。   In addition, when the pre-reformer system is applied to the existing reformer, it is necessary to partially modify the heat recovery section of the existing reformer to increase the raw material preheating coil, and to recover the steam from the existing reformer. In the fourth embodiment, the raw material heater 11 is designed so that the raw material can be heated to, for example, 600 ° C. at the outlet of the existing raw material heater 20K without modifying the existing raw material heater 20K. This makes it possible to introduce the pre-reformer system into the existing reforming furnace without modifying the heat recovery section of the existing reforming furnace, although it is necessary to replace the existing reforming catalyst. There is.

また、既設では改質用S/Cが5の場合、外部へ送出できる蒸気量は13t/h程度であるが、排熱回収熱交換器6で32.6t/h の蒸気も発生することから、外部への送気量を約41.6t/h と大幅に増加でき、既設ボイラの一部停止による全体の熱効率向上が期待できるという効果がある。   In addition, when the reforming S / C is 5, the amount of steam that can be sent to the outside is about 13 t / h, but the exhaust heat recovery heat exchanger 6 also generates 32.6 t / h of steam. The amount of air sent to the outside can be greatly increased to about 41.6 t / h, and the overall thermal efficiency can be improved by partially stopping the existing boiler.

本第4の実施例では、従来のガスタービン排ガス利用改質炉システムと異なり、ガスタービン排ガスを直接既設改質炉に導入しないため、改質炉の空気ダクト,バーナー等の改質炉本体の改造が不要であり、また上記で述べた様に既設改質炉熱回収部の改造も不要となることから、プラントの改造費,改造時間ともに大幅に減少/短縮する効果がある。   In the fourth embodiment, unlike the conventional gas turbine exhaust gas reforming system, the gas turbine exhaust gas is not directly introduced into the existing reforming furnace, so that the reforming furnace main body such as an air duct and a burner of the reforming furnace is not used. There is no need for modification, and as mentioned above, modification of the existing reforming furnace heat recovery section is also unnecessary, so there is an effect of significantly reducing / shortening both the modification cost and the modification time of the plant.

また、ガスタービン排ガスを直接既設改質炉に導入しないため、ガスタービン,予備改質器等の新設機器の設置場所に制約がなく、既設改質炉まわりにスペースの無い既設設備にも適用できるという効果がある。   In addition, because gas turbine exhaust gas is not directly introduced into the existing reforming furnace, there is no restriction on the installation location of new equipment such as a gas turbine and a pre-reformer, and it can be applied to existing equipment that has no space around the existing reforming furnace. There is an effect.

第2,第3の実施例は新設の改質炉システムに限らず、第4の実施例である既設改質炉システムへの適用も可能であり、第2,第3の実施例で述べた効果は既設改質炉システムに適用した場合でも変わらない。   The second and third embodiments are not limited to the newly installed reforming furnace system, but can be applied to the existing reforming furnace system as the fourth embodiment, and are described in the second and third embodiments. The effect does not change even when applied to an existing reformer system.

本発明の第1の実施例を示す概略構成図。1 is a schematic configuration diagram showing a first embodiment of the present invention. 本発明の第2の実施例を示す概略構成図。The schematic block diagram which shows the 2nd Example of this invention. 本発明の第3の実施例を示す概略構成図。The schematic block diagram which shows the 3rd Example of this invention. 本発明の第4の実施例を示す概略構成図。The schematic block diagram which shows the 4th Example of this invention.

符号の説明Explanation of symbols

1…原料ポンプ、3…脱硫塔、4…水添脱硫層、5…吸着層、6…排熱回収熱交換器、7…ガスタービン、8…発電機、9…原料予熱器、10,11,20…原料加熱器、12…予備改質器、13,22…給水加熱器、14…汽水分離ドラム,15…蒸発器、16,21…蒸気過熱器,17,26…煙突、18…改質炉、19…触媒管、23…改質炉排熱回収部、24…汽水分離ドラム、25,29…排熱回収ボイラ、27,34,36…GT排ガスダクト、28…排熱回収熱交換器、30…送風機、31…補助燃焼器、32,33ダンパー、1K…既設原料ポンプ、2K…既設原料予熱炉、3K…既設脱硫塔、18K…既設改質炉、19K…既設触媒管,20K…既設原料加熱器、21K…既設蒸気過熱器、22K…既設給水加熱器、23K…既設改質炉排熱回収部、24K…既設汽水分離ドラム
、25K…既設排熱回収ボイラ、50…原料ナフサ,51…循環水素、52,53,62…燃料、54…空気、55…給水、56,57,58,59,60…蒸気、61…合成ガス。
DESCRIPTION OF SYMBOLS 1 ... Raw material pump, 3 ... Desulfurization tower, 4 ... Hydrodesulfurization layer, 5 ... Adsorption layer, 6 ... Waste heat recovery heat exchanger, 7 ... Gas turbine, 8 ... Generator, 9 ... Raw material preheater, 10, 11 , 20 ... Raw material heater, 12 ... Pre-reformer, 13, 22 ... Feed water heater, 14 ... Steam separator drum, 15 ... Evaporator, 16, 21 ... Steam superheater, 17, 26 ... Chimney, 18 ... Kai Quality furnace, 19 ... catalyst tube, 23 ... reforming furnace exhaust heat recovery section, 24 ... brackish water separation drum, 25,29 ... exhaust heat recovery boiler, 27,34,36 ... GT exhaust gas duct, 28 ... exhaust heat recovery heat exchange 30 ... Blower, 31 ... Auxiliary combustor, 32, 33 damper, 1K ... Existing material pump, 2K ... Existing material preheating furnace, 3K ... Existing desulfurization tower, 18K ... Existing reforming furnace, 19K ... Existing catalyst tube, 20K ... Existing raw material heater, 21K ... Existing steam superheater, 22K ... Existing feed water heater, 23 ... existing reformer exhaust heat recovery section, 24K ... existing steam separation drum, 25K ... existing exhaust heat recovery boiler, 50 ... raw material naphtha, 51 ... circulating hydrogen, 52, 53, 62 ... fuel, 54 ... air, 55 ... water supply 56, 57, 58, 59, 60 ... steam, 61 ... synthesis gas.

Claims (15)

脱硫後の原料からメタンを主成分とする予備改質ガスを生成する予備改質器と、
燃料を燃焼して改質炉燃焼ガスを生成し、該改質炉燃焼ガスを熱源として、前記予備改質ガスを主として水素と一酸化炭素からなる合成ガスに改質する改質炉とを備えた改質炉システムであって、
ガスタービンと、
該ガスタービンの排熱を利用して、前記予備改質器に導かれる原料及び前記予備改質器から改質炉に供給される前記予備改質ガスを加熱し、前記予備改質器で原料の予備改質に用いる水蒸気を発生させる排熱回収熱交換器を設けたことを特徴とする改質炉システム。
A pre-reformer that generates pre-reformed gas mainly composed of methane from the raw material after desulfurization;
A reforming furnace for generating reforming furnace combustion gas by burning fuel, and reforming the preliminary reforming gas into a synthesis gas mainly composed of hydrogen and carbon monoxide using the reforming furnace combustion gas as a heat source; Reforming furnace system,
A gas turbine,
Using the exhaust heat of the gas turbine, the raw material led to the pre-reformer and the pre-reformed gas supplied from the pre-reformer to the reforming furnace are heated, and the raw material is fed by the pre-reformer. A reformer furnace system provided with an exhaust heat recovery heat exchanger that generates water vapor used for preliminary reforming of the furnace.
脱硫後の原料からメタンを主成分とする予備改質ガスを生成する予備改質器と、
燃料を燃焼して改質炉燃焼ガスを生成し、該改質炉燃焼ガスを熱源として、前記予備改質ガスを主として水素と一酸化炭素からなる合成ガスに改質する改質炉とを
備えた改質炉システムであって、
ガスタービンと、
該ガスタービンの排熱を利用して、前記予備改質器に導かれる原料及び前記予備改質器から改質炉に供給される前記予備改質ガスを加熱する排熱回収熱交換器と、前記予備改質器で原料の予備改質に用いる水蒸気を発生させる排熱回収熱ボイラを設けたことを特徴とする改質炉システム。
A pre-reformer that generates pre-reformed gas mainly composed of methane from the raw material after desulfurization;
A reforming furnace for generating reforming furnace combustion gas by burning fuel, and reforming the preliminary reforming gas into a synthesis gas mainly composed of hydrogen and carbon monoxide using the reforming furnace combustion gas as a heat source; Reforming furnace system,
A gas turbine,
An exhaust heat recovery heat exchanger that heats the raw material guided to the pre-reformer and the pre-reformed gas supplied from the pre-reformer to the reforming furnace using the exhaust heat of the gas turbine; A reforming furnace system comprising an exhaust heat recovery heat boiler that generates steam used for preliminary reforming of a raw material in the preliminary reformer.
炭化水素の原料を脱硫する脱硫塔と、
脱硫後の原料からメタンを主成分とする予備改質ガスを生成する予備改質器と、
燃料を燃焼して改質炉燃焼ガスを生成し、該改質炉燃焼ガスを熱源として、前記予備改質ガスを主として水素と一酸化炭素からなる合成ガスに改質する改質炉とを備えた改質炉システムであって、
ガスタービンと、
該ガスタービンの排熱を利用して、前記脱硫塔で脱硫する原料、前記予備改質器に導かれる脱硫された原料及び前記予備改質器から改質炉に供給される前記予備改質ガスを加熱し、前記予備改質器で原料の予備改質に用いる水蒸気を発生させる排熱回収熱交換器を設けたことを特徴とする改質炉システム。
A desulfurization tower for desulfurizing hydrocarbon raw materials;
A pre-reformer that generates pre-reformed gas mainly composed of methane from the raw material after desulfurization;
A reforming furnace for generating reforming furnace combustion gas by burning fuel, and reforming the preliminary reforming gas into a synthesis gas mainly composed of hydrogen and carbon monoxide using the reforming furnace combustion gas as a heat source; Reforming furnace system,
A gas turbine,
Utilizing the exhaust heat of the gas turbine, the raw material to be desulfurized in the desulfurization tower, the desulfurized raw material led to the preliminary reformer, and the preliminary reformed gas supplied from the preliminary reformer to the reforming furnace And a waste heat recovery heat exchanger for generating steam used for pre-reforming of the raw material in the pre-reformer.
前記ガスタービンの排ガスを前記排熱回収熱交換器に供給する第1の排ガスダクトと、
前記排熱回収熱交換器出口の排ガスを前記排熱回収ボイラ入口に供給する第2の排ガスダクトと、前記排熱回収熱交換器に供給する排ガスの一部をバイパスさせ、前記第2の排ガスダクトを流通する排ガスに合流させる第3の排ガスダクトを備えたことを特徴とする請求項2に記載の改質炉システム。
A first exhaust gas duct for supplying exhaust gas from the gas turbine to the exhaust heat recovery heat exchanger;
A second exhaust gas duct for supplying the exhaust gas from the exhaust heat recovery heat exchanger outlet to the exhaust heat recovery boiler inlet; and a part of the exhaust gas supplied to the exhaust heat recovery heat exchanger is bypassed, and the second exhaust gas The reforming furnace system according to claim 2, further comprising a third exhaust gas duct that joins the exhaust gas flowing through the duct.
前記ガスタービンの排ガスを前記排熱回収熱交換器に供給する第1の排ガスダクトと、
前記排熱回収熱交換器出口の排ガスを前記排熱回収ボイラに導く第2の排ガスダクトと、
前記排熱回収熱交換器に供給する排ガスの一部をバイパスさせて前記排熱回収熱ボイラ入口に供給する第3の排ガスダクトを備え、前記第2の排ガスダクトは前記排熱回収熱交換器を経由した排ガスを、前記第3の排ガスダクトを介して前記排熱回収ボイラに導かれた排ガスと、該排熱回収ボイラの排ガス流路の途中部分で合流させるように接続したことを特徴とする請求項2に記載の改質炉システム。
A first exhaust gas duct for supplying exhaust gas from the gas turbine to the exhaust heat recovery heat exchanger;
A second exhaust gas duct for guiding exhaust gas at the exhaust heat recovery heat exchanger outlet to the exhaust heat recovery boiler;
A third exhaust gas duct that bypasses a part of the exhaust gas supplied to the exhaust heat recovery heat exchanger and supplies the exhaust heat recovery heat boiler to the inlet of the exhaust heat recovery heat boiler is provided, wherein the second exhaust gas duct is the exhaust heat recovery heat exchanger. The exhaust gas passing through the exhaust gas is connected to the exhaust gas guided to the exhaust heat recovery boiler via the third exhaust gas duct so as to be merged in the middle of the exhaust gas flow path of the exhaust heat recovery boiler. The reforming furnace system according to claim 2.
補助燃焼器を前記排熱回収熱交換器に設置し、前記補助燃焼器に空気を供給する送風機を設けたことを特徴とする請求項1,2,3に記載の改質炉システム。   The reforming furnace system according to claim 1, 2 or 3, wherein an auxiliary combustor is installed in the exhaust heat recovery heat exchanger, and a blower for supplying air to the auxiliary combustor is provided. 前記第1及び第2の排ガスダクトに、各々の排ガスダクトを流通させる排ガス流量を調整するダンパーを設けたことを特徴とする請求項4,5に記載の改質炉システム。   The reforming furnace system according to claim 4 or 5, wherein a damper for adjusting an exhaust gas flow rate through which each exhaust gas duct is circulated is provided in the first and second exhaust gas ducts. ガスタービンの排熱を利用して、予備改質する原料及び燃料を燃焼して改質炉燃焼ガスを生成し、該改質炉燃焼ガスを熱源として改質を行なう改質炉に供給される予備改質した予備改質ガスを加熱すると共に、前記原料の予備改質に用いる水蒸気を発生させるように構成したことを特徴とする改質炉システムに用いる排熱回収熱交換器。 Using the exhaust heat of the gas turbine, the raw material and fuel to be pre-reformed are burned to generate a reforming furnace combustion gas, and the reforming furnace combustion gas is used as a heat source and supplied to the reforming furnace. An exhaust heat recovery heat exchanger for use in a reforming furnace system configured to heat the pre-reformed pre-reformed gas and generate steam used for pre-reforming of the raw material. ガスタービンの排熱を利用して、予備改質する原料及び燃料を燃焼して改質炉燃焼ガスを生成し、該改質炉燃焼ガスを熱源として改質を行なう改質炉に供給される予備改質した予備改質ガスを加熱する第1の排熱回収熱交換器と、
前記ガスタービンの排ガスから排熱回収して前記原料の予備改質に用いる水蒸気を発生させる第2の排熱回収熱交換器を設けたことを特徴とする改質炉システムに用いる排熱回収熱交換器。
Using the exhaust heat of the gas turbine, the raw material and fuel to be pre-reformed are burned to generate a reforming furnace combustion gas, and the reforming furnace combustion gas is used as a heat source and supplied to the reforming furnace. A first exhaust heat recovery heat exchanger for heating the pre-reformed pre-reformed gas;
Exhaust heat recovery heat used in a reforming furnace system provided with a second exhaust heat recovery heat exchanger that recovers exhaust heat from exhaust gas of the gas turbine and generates steam used for preliminary reforming of the raw material Exchanger.
予備改質する原料及び燃料を燃焼して改質炉燃焼ガスを生成し、該改質炉燃焼ガスを熱源として改質を行なう改質炉に供給される予備改質した予備改質ガスを加熱すると共に、前記原料の予備改質に用いる水蒸気を発生させる熱源としてその排熱を利用するようにしたことを特徴とする改質炉システムに用いるガスタービン。 The raw material and fuel to be pre-reformed are burned to generate a reformer combustion gas, and the pre-reformed pre-reformed gas supplied to the reformer that performs reforming using the reformer combustion gas as a heat source is heated. In addition, a gas turbine used in a reforming furnace system is characterized in that the exhaust heat is used as a heat source for generating steam used for preliminary reforming of the raw material. 脱硫する原料を予熱する原料予熱器と、
該原料予熱器で予熱された炭化水素の原料を脱硫する脱硫塔と、
脱硫後の原料を、燃料を燃焼して改質炉燃焼ガスを生成し、該改質炉燃焼ガスを熱源として改質する改質炉とを備えた既設改質炉システムの改造方法であって、
ガスタービンと、前記ガスタービンの排熱を利用する排熱回収熱交換器と、脱硫後の原料からメタンを主成分とする予備改質ガスを生成する予備改質器を追設し、
前記排熱回収熱交換器にて前記脱硫塔で脱硫する原料の予熱を行い、前記予備改質器に導かれる脱硫された原料及び前記予備改質器から改質炉に供給される前記予備改質ガスを加熱し、更に排熱回収して発生させた水蒸気を前記予備改質器で原料の予備改質に用いるように改造することを特徴とする既設改質炉システムの改造方法。
A raw material preheater for preheating the raw material to be desulfurized;
A desulfurization tower for desulfurizing a hydrocarbon raw material preheated by the raw material preheater;
A reforming method for an existing reforming furnace system comprising a raw material after desulfurization , generating a reforming furnace combustion gas by burning fuel, and reforming using the reforming furnace combustion gas as a heat source. ,
A gas turbine, an exhaust heat recovery heat exchanger that uses the exhaust heat of the gas turbine, and a pre-reformer that generates pre-reformed gas mainly composed of methane from the raw material after desulfurization,
The raw heat to be desulfurized in the desulfurization tower is preheated by the exhaust heat recovery heat exchanger, and the desulfurized raw material led to the prereformer and the preliminary reformer supplied from the prereformer to the reforming furnace. A method for remodeling an existing reforming furnace system, wherein a steam generated by heating a quality gas and recovering exhaust heat is remodeled so as to be used for a pre-reformation of a raw material in the pre-reformer.
脱硫する原料を予熱する原料予熱器と、
該原料予熱器で予熱された炭化水素の原料を脱硫する脱硫塔と、
脱硫後の原料を、燃料を燃焼して改質炉燃焼ガスを生成し、該改質炉燃焼ガスを熱源として改質する改質炉とを備えた既設改質炉システムの改造方法であって、
ガスタービンと、前記ガスタービンの排熱を利用する排熱回収熱交換器及び排熱回収ボイラと、脱硫後の原料からメタンを主成分とする予備改質ガスを生成する予備改質器を追設し、
前記排熱回収熱交換器にて前記脱硫塔で脱硫する原料の予熱を行い、前記予備改質器に導かれる脱硫された原料及び前記予備改質器から改質炉に供給される前記予備改質ガスを加熱し、更に前記排熱回収ボイラで発生させた水蒸気を前記予備改質器で原料の予備改質に用いるように改造することを特徴とする既設改質炉システムの改造方法。
A raw material preheater for preheating the raw material to be desulfurized;
A desulfurization tower for desulfurizing a hydrocarbon raw material preheated by the raw material preheater;
A reforming method for an existing reforming furnace system comprising a raw material after desulfurization , generating a reforming furnace combustion gas by burning fuel, and reforming using the reforming furnace combustion gas as a heat source. ,
A gas turbine, an exhaust heat recovery heat exchanger and an exhaust heat recovery boiler that use the exhaust heat of the gas turbine, and a pre-reformer that generates pre-reform gas mainly composed of methane from the raw material after desulfurization are added. Set up
The raw heat to be desulfurized in the desulfurization tower is preheated by the exhaust heat recovery heat exchanger, and the desulfurized raw material led to the prereformer and the preliminary reformer supplied from the prereformer to the reforming furnace. A method for remodeling an existing reformer system, wherein a gas is heated and the steam generated by the exhaust heat recovery boiler is remodeled so as to be used for pre-reformation of the raw material by the pre-reformer.
脱硫後の原料からメタンを主成分とする予備改質ガスを生成する予備改質器と、
燃料を燃焼して改質炉燃焼ガスを生成し、該改質炉燃焼ガスを熱源として前記予備改質ガスを主として水素と一酸化炭素からなる合成ガスに改質する改質炉と、
ガスタービンと、
該ガスタービンの排ガスから排熱回収する排熱回収熱交換器とを備え、
前記排熱回収熱交換器では前記ガスタービンの排熱を利用して、前記予備改質器に導かれる原料及び前記予備改質器から改質炉に供給される前記予備改質ガスを加熱すると共に、前記予備改質器で原料の予備改質に用いる水蒸気を発生させることを特徴とする改質炉システムの運転方法。
A pre-reformer that generates pre-reformed gas mainly composed of methane from the raw material after desulfurization;
A reforming furnace that burns fuel to generate a reforming furnace combustion gas, and reforms the preliminary reforming gas into a synthesis gas mainly composed of hydrogen and carbon monoxide using the reforming furnace combustion gas as a heat source ;
A gas turbine,
An exhaust heat recovery heat exchanger for recovering exhaust heat from the exhaust gas of the gas turbine,
The exhaust heat recovery heat exchanger uses the exhaust heat of the gas turbine to heat the raw material guided to the preliminary reformer and the preliminary reformed gas supplied from the preliminary reformer to the reforming furnace. A method for operating the reforming furnace system is characterized in that steam used for preliminary reforming of the raw material is generated in the preliminary reformer.
脱硫後の原料からメタンを主成分とする予備改質ガスを生成する予備改質器と、
燃料を燃焼して改質炉燃焼ガスを生成し、該改質炉燃焼ガスを熱源として前記予備改質ガスを主として水素と一酸化炭素からなる合成ガスに改質する改質炉と、
ガスタービンと、
該ガスタービンの排ガスから排熱回収する排熱回収熱交換器及び排熱回収ボイラとを備え、前記ガスタービンの排熱を利用して、前記予備改質器に導かれる原料及び前記予備改質器から改質炉に供給される前記予備改質ガスを前記排熱回収熱交換器で加熱し、前記予備改質器で原料の予備改質に用いる水蒸気を前記排熱回収ボイラで発生させることを特徴とする改質炉システムの運転方法。
A pre-reformer that generates pre-reformed gas mainly composed of methane from the raw material after desulfurization;
A reforming furnace that burns fuel to generate a reforming furnace combustion gas, and reforms the preliminary reforming gas into a synthesis gas mainly composed of hydrogen and carbon monoxide using the reforming furnace combustion gas as a heat source ;
A gas turbine,
An exhaust heat recovery heat exchanger and an exhaust heat recovery boiler for recovering exhaust heat from the exhaust gas of the gas turbine, and using the exhaust heat of the gas turbine, the raw material led to the preliminary reformer and the preliminary reforming Heating the preliminary reformed gas supplied from the furnace to the reforming furnace with the exhaust heat recovery heat exchanger, and generating steam with the exhaust heat recovery boiler for the preliminary reforming of the raw material in the preliminary reformer A method of operating a reforming furnace system characterized by the above.
炭化水素の原料を脱硫する脱硫塔と、
脱硫後の原料からメタンを主成分とする予備改質ガスを生成する予備改質器と、
燃料を燃焼して改質炉燃焼ガスを生成し、該改質炉燃焼ガスを熱源として前記予備改質ガスを主として水素と一酸化炭素からなる合成ガスに改質する改質炉と、
ガスタービンと、
該ガスタービンの排ガスから排熱回収する排熱回収熱交換器とを備え、
前記排熱回収熱交換器では前記ガスタービンの排熱を利用して、前記脱硫塔で脱硫する原料を予熱し、前記予備改質器に導かれる原料及び前記予備改質器から改質炉に供給される前記予備改質ガスを加熱すると共に、前記予備改質器で原料の予備改質に用いる水蒸気を発生させることを特徴とする改質炉システムの運転方法。
A desulfurization tower for desulfurizing hydrocarbon raw materials;
A pre-reformer that generates pre-reformed gas mainly composed of methane from the raw material after desulfurization;
A reforming furnace that burns fuel to generate a reforming furnace combustion gas, and reforms the preliminary reforming gas into a synthesis gas mainly composed of hydrogen and carbon monoxide using the reforming furnace combustion gas as a heat source ;
A gas turbine,
An exhaust heat recovery heat exchanger for recovering exhaust heat from the exhaust gas of the gas turbine,
The exhaust heat recovery heat exchanger preheats the raw material to be desulfurized in the desulfurization tower using the exhaust heat of the gas turbine, and feeds the raw material guided to the preliminary reformer and the preliminary reformer to the reforming furnace. A method for operating a reforming furnace system, wherein the supplied pre-reformed gas is heated and steam used for pre-reforming of a raw material is generated in the pre-reformer.
JP2004362168A 2004-01-09 2004-12-15 Reforming furnace system Expired - Fee Related JP4496950B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004362168A JP4496950B2 (en) 2004-01-09 2004-12-15 Reforming furnace system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004003581 2004-01-09
JP2004362168A JP4496950B2 (en) 2004-01-09 2004-12-15 Reforming furnace system

Publications (2)

Publication Number Publication Date
JP2005220007A JP2005220007A (en) 2005-08-18
JP4496950B2 true JP4496950B2 (en) 2010-07-07

Family

ID=34995931

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004362168A Expired - Fee Related JP4496950B2 (en) 2004-01-09 2004-12-15 Reforming furnace system

Country Status (1)

Country Link
JP (1) JP4496950B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080289364A1 (en) * 2007-05-23 2008-11-27 Pinkham Jr Daniel Method and system for preheating glass batch or ingredient(s)
DE102009053920A1 (en) * 2009-11-19 2011-05-26 Sms Siemag Ag Method and device for reducing the metallurgical energy requirement of closed electric melting and / or reduction furnaces

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001283882A (en) * 2000-03-29 2001-10-12 Osaka Gas Co Ltd Generating device utilizing fuel cell
JP2002504111A (en) * 1997-06-13 2002-02-05 インペリアル・ケミカル・インダストリーズ・ピーエルシー Production of methanol

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60122702A (en) * 1983-12-01 1985-07-01 Jgc Corp Method for reforming hydrocarbon with steam
JP2554060B2 (en) * 1986-09-27 1996-11-13 三菱重工業株式会社 Combined generation system
SE468910B (en) * 1989-04-18 1993-04-05 Gen Electric POWER SUPPLY UNIT, BY WHICH THE CONTENT OF DAMAGE POLLUTANTS IN THE EXHAUSTS IS REDUCED
JPH05332167A (en) * 1992-05-29 1993-12-14 Ishikawajima Harima Heavy Ind Co Ltd Fuel reformation type gas turbine power generating device
JP3690833B2 (en) * 1995-03-24 2005-08-31 三菱重工業株式会社 Power generation method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002504111A (en) * 1997-06-13 2002-02-05 インペリアル・ケミカル・インダストリーズ・ピーエルシー Production of methanol
JP2001283882A (en) * 2000-03-29 2001-10-12 Osaka Gas Co Ltd Generating device utilizing fuel cell

Also Published As

Publication number Publication date
JP2005220007A (en) 2005-08-18

Similar Documents

Publication Publication Date Title
US7707837B2 (en) Steam reforming system
US7096672B1 (en) Fluid heating and gas turbine integration method
AU2005217234B2 (en) Supply of steam and hydrogen to a process or plant producing synthesis gas
EP2044644B1 (en) Steam reforming method for fuel cells
US9011562B2 (en) Method for operating a reformer furnace and reforming plant
JPH0333002A (en) Hydrogen producing device
WO2014077156A1 (en) Power generation system and method for operating power generation system
JP2003197243A (en) Unified fuel processing equipment for rapid starting and operation control
MX2011000820A (en) Low energy process for the production of ammonia or methanol.
JP4427173B2 (en) Syngas production method
JP2007066551A (en) Fuel cell system and control method of fuel cell system
US10727510B2 (en) Method of starting-up a fuel cell arrangement and fuel cell arrangement
JP4496950B2 (en) Reforming furnace system
JP2001313053A (en) Fuel cell system
JP4196249B2 (en) Hydrogen generator
JP2001143731A (en) Fuel cell system
JP4578787B2 (en) Hybrid fuel cell system
JPH07208200A (en) Combustion equipment for turbine compressor and method thereof
US20230072910A1 (en) Method and apparatus for improving a reforming process by using renewable electrical energy as a heating input to the reforming process
JP2000340243A (en) Fuel cell power generating system
JP2006294464A (en) Fuel cell power generation system
JP4424467B2 (en) Hydrogen production system
JPH04243538A (en) Method and device for controlling catalyst layer temperature of fuel reformer for fuel battery use
JPH10302820A (en) Fuel cell power generating facility
JP2008273795A (en) Hydrogen production apparatus and hydrogen production method

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060425

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070604

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091116

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091124

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100121

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100323

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100405

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130423

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4496950

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130423

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140423

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees