JP4196249B2 - Hydrogen generator - Google Patents
Hydrogen generator Download PDFInfo
- Publication number
- JP4196249B2 JP4196249B2 JP2001226489A JP2001226489A JP4196249B2 JP 4196249 B2 JP4196249 B2 JP 4196249B2 JP 2001226489 A JP2001226489 A JP 2001226489A JP 2001226489 A JP2001226489 A JP 2001226489A JP 4196249 B2 JP4196249 B2 JP 4196249B2
- Authority
- JP
- Japan
- Prior art keywords
- reformer
- water
- gas
- hydrogen
- steam
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P20/00—Technologies relating to chemical industry
- Y02P20/10—Process efficiency
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P20/00—Technologies relating to chemical industry
- Y02P20/10—Process efficiency
- Y02P20/129—Energy recovery, e.g. by cogeneration, H2recovery or pressure recovery turbines
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P20/00—Technologies relating to chemical industry
- Y02P20/50—Improvements relating to the production of bulk chemicals
Landscapes
- Separation Of Gases By Adsorption (AREA)
- Hydrogen, Water And Hydrids (AREA)
- Industrial Gases (AREA)
Description
【0001】
【発明の属する技術分野】
【0002】
この発明は、メタノール又は天然ガス,LNG,LPGなどの炭化水素を主成分とする原燃料ガスと水蒸気(スチーム)とから、水素を製造する水素発生装置に関する。
【従来の技術】
【0003】
雰囲気ガスとして水素を用いる工業用装置や燃料電池発電プラントなどにおいては、水素発生装置が必要である。従来、水素発生装置の一つとして、天然ガス,LNG,LPG,メタノールなどの原料ガスを水蒸気とともに触媒層を通過させることにより水素リッチな改質ガスを生成する改質器と、改質ガスから水素を分離精製する圧力スイング吸着装置(PSA)とで構成した水素発生装置が採用されている。
【0004】
この種の水素発生装置に関して、本件出願人は、水素負荷の変動に伴うスチーム供給制御の制御性の向上と、全体としてエネルギー効率の向上を図ることを目的とした装置を提案している(特願2000−242281参照)。
【0005】
図3は、上記特願2000−242281に記載された水素発生装置の概略システム系統図を示す。図3に示す水素発生装置は、まず触媒層を有する改質管1aとバーナ1bとを備えた改質器1と、改質ガスから水素を分離精製するPSA5と、PSA5において水素を分離除去処理した後のまだ水素を含む残ガスを前記改質器のバーナ1bに供給するための残ガス供給配管6を備える。
【0006】
改質原料ガスは水蒸気とともに、改質原料ガス導入配管9から改質器1の触媒層に導入され、触媒による改質反応によって水素リッチなガスに改質され、CO変成器10を経て、必要に応じて図示しない圧縮機により圧縮された後、PSA5により精製され、水素濃度が高められる。前記改質反応は吸熱反応のため、外部から熱を供給する必要があり、そのために、バーナの燃焼排ガスが加熱媒体として利用される。
【0007】
このバーナの燃焼燃料としては、主に、前記したPSA5において水素を分離除去処理した後のまだ水素を含む残ガスが用いられ、流量制御弁8を介して残ガスが、PSA5からバーナ1bに供給される。残ガスのみでは、熱量が不十分の場合には、補助燃料をバーナ用補助燃料配管7から供給して燃焼させる。また、必要に応じ、改質ガスの一部を燃焼ガスとして用いる場合もある。バーナ1bには、空気供給配管11から燃焼用空気が供給される。
【0008】
次に、水蒸気および原燃料供給系統について述べる。水蒸気分離器2で気液分離された蒸気は、スチーム供給ライン12に設けたスチーム流量制御弁13およびスチーム流量計(または圧力計)23を経て、エゼクタ4に導入され、原燃料ガス供給ライン14から天然ガスなどの原燃料(ガス)を前記水蒸気流のエゼクタ吸引力により吸引して、原燃料ガスと水蒸気の混合物を改質器1に導入する。原燃料は改質器における改質反応により水素リッチなガスに改質される。
【0009】
改質器1の燃焼排ガスラインには、改質器排熱回収用熱交換器40を設け、水蒸気分離器2内の水をポンプ32によりこの熱交換器40に送って、加熱により発生したスチームを水蒸気分離器2に還流するようにし、また、補助電気ヒータ50を上記水循環回路上に設け、水蒸気分離器2内の圧力を略一定に制御するための電力調整装置51を設けて、電気ヒータ50の出力を制御するようにしている。水蒸気分離器2内の圧力は、例えば、ゲージ圧で、略6.1kg/cm2(温度約160℃)に調整される。なお、水蒸気分離器2の下方もしくは、例えば水蒸気分離器2とポンプ32との間の循環水系配管に対して、水供給源35から、改質器1で消費された水蒸気に相当する量の補給水が供給される。
【0010】
原燃料ガス供給ライン14は、原燃料供給源15とエゼクタ4との間に、原燃料ガス流量計26、原燃料ガス流量制御弁16および脱硫器17を有し、原燃料ガス流量制御弁16により水素負荷に応じて燃料ガス供給量が調節される。都市ガスなどの原燃料は腐臭剤としてイオウ成分を含んでいるので、これを除去するために、脱硫器17が設けられている。
【0011】
原燃料ガスの一部は、原燃料ガス供給ライン14から分岐して、前述のようにバーナ用補助燃料配管7から改質器用バーナ1bに供給される。
【0012】
ところで、前述のように、原燃料ガス流量制御弁16により水素負荷に応じて燃料ガス供給量が調節されるが、原燃料ガスを増減するときは、スチーム流量も増減する必要がある。スチ−ム流量は、原燃料ガス組成によって予め設定したS/C(原燃料ガス中の炭素原子に対するスチームのモル数比)となるように決められる。図3における調節器20は、予め設定したS/Cとなるように、要求水素負荷に応じて、前記原燃料ガス流量制御弁16およびスチーム流量制御弁13の開度を調節する機能を有する。なお、上記S/Cは通常、都市ガスやLPGの場合には2.5〜4.0、メタノールの場合には1.3〜2.0程度の範囲に設定される。
【0013】
即ち、図3に示す水素発生装置は、要するに、改質器1と、圧力スイング吸着装置(PSA)5と、水蒸気分離器2と水加熱器とを有する水蒸気発生装置と、改質器に原燃料ガスおよび水蒸気を供給する各ラインに設けられた原燃料ガス流量制御弁16およびスチーム流量制御弁13と、予め設定したS/Cとなるように、水素負荷に応じて前記各流量制御弁の開度を調節する調節器20とを備え、さらに、前記水加熱器は、改質器の燃焼排ガスにより水蒸気分離器内の水を加熱するために設けた改質器排熱回収用熱交換器40と補助電気ヒータ50とからなるものとし、また、補助電気ヒータ50は、水蒸気分離器内の圧力を略一定に制御するための電力調整装置51を備えるものである。
【0014】
上記構成によれば、従来水加熱用の熱源として供給されていた加熱用蒸気が不要となり、その分、省エネルギとなる。また、水素負荷の増減に応じて原燃料ガス流量を増減し、これに伴い改質ガス量も増減するために、必然的に改質に必要な熱量が増減し、改質器排熱量も増減する。従って、水加熱器としての改質器排熱回収用熱交換器40における水蒸気発生量も追随して増減するので、水素負荷の増減と水蒸気発生量の増減とのマッチングにより、変動水蒸気分離器内の圧力変動が、従来装置より小となる。さらに、改質器排熱量では不足する加熱エネルギを、補助電気ヒータ50で補い圧力変動の微調整を行うことにより、制御性の向上を図ることができるとともに、全体として、エネルギー効率が向上する。
【発明が解決しようとする課題】
【0015】
上記のような水素発生装置においても、エネルギー効率の観点から下記のような問題があった。
【0016】
前記水素発生装置においては、前述のように、水蒸気分離器下方もしくは水蒸気分離器の循環水系配管に対して、改質器で消費された改質用水蒸気に相当する量の補給水が供給される。この場合、常温の補給水が供給されるので、高温の水蒸気分離器の循環水温度まで昇温させる必要があり、そのためのエネルギーが必要である。さらに、補給水と循環水との合流点の温度差に伴う熱応力の発生も、設備の信頼性の観点から好ましくない。
【0017】
この発明は、これらの上記に鑑みてなされたもので、この発明の課題は、補給水の昇温エネルギーの低減と、補給水と循環水との合流点の温度差に伴う熱応力の発生の抑制を図った水素発生装置を提供することにある。
【課題を解決するための手段】
【0018】
前述の課題を解決するため、この発明においては、メタノール又は炭化水素を主成分とする原燃料ガスを水蒸気(スチーム)により水素リッチなガスに改質する改質器と、この改質ガスから水素を分離精製する圧力スイング吸着装置(PSA)と、水蒸気分離器と、水蒸気分離器内の水を加熱して前記スチームを発生させる水加熱器とを備え、さらに、前記水加熱器は、前記改質器の燃焼排ガスにより水蒸気分離器内の水を加熱するために設けた改質器排熱回収用熱交換器と補助電気ヒータとからなる水素発生装置において、
前記改質器排熱回収用熱交換器から排出する前記改質器の燃焼排ガスにより、前記水蒸気分離器への補給水を予熱する給水予熱器を備えるものとする(請求項1の発明)。
【0019】
前記請求項1の発明の実施態様としては、下記が好適である。即ち、請求項1記載の水素発生装置において、補助電気ヒータは、前記水蒸気分離器内の圧力を略一定に制御するための電力調整装置を備えるものとする(請求項2の発明)。さらに、請求項1または2のいずれかに記載の水素発生装置において、PSAにおいて水素を分離精製処理した後の残ガスを、前記改質器に設けたバーナに供給して燃焼させるように構成したものとする(請求項3の発明)。
【0020】
前記請求項1の発明によれば、改質器排熱を、水蒸気分離器の水加熱および補給水予熱に有効に利用するので、ランニングコストが低減できる。また、請求項2および3の発明によれば、制御性の向上およびエネルギー効率のさらなる向上が図れる。
【0021】
さらに、前記請求項3に記載の水素発生装置において、前記改質器の燃焼排ガスを前記改質器排熱回収用熱交換器に供給するライン上に、前記バーナに供給する燃焼用空気を前記改質器の燃焼排ガスによって予熱するための空気予熱器と、前記PSA残ガスの一部を燃焼させる触媒燃焼器とを設け、この触媒燃焼器において前記空気予熱器から排出された燃焼排ガスに含まれる残留酸素によって前記PSA残ガスの一部を燃焼させ、この燃焼排ガスを前記改質器排熱回収用熱交換器に供給してなるものとする(請求項4の発明)。
【0022】
上記請求項4の発明によれば、改質器用バーナの燃焼排ガスと、触媒燃焼器における燃焼排ガスの双方が改質器排熱回収用熱交換器に導入され、エネルギー回収できるので、エネルギー効率がさらに向上する。なお、改質器用のバーナに供給される空気量は、通常、理論空燃比の1.2〜1.5倍の空気量が供給されるので、バーナの燃焼排ガス中には、余剰の酸素が残存し、これが触媒燃焼器における燃焼用に利用できる。
【発明の実施の形態】
【0023】
図面に基づき、本発明の実施の形態について以下にのべる。
【0024】
図1は、この発明に関わる実施例を示す水素発生装置の概略システム系統図で、図3に示す系統図と同一構成部材には同一番号を付して説明を省略する。
【0025】
図1と図3の主な相違点は、図1においては、改質器排熱回収用熱交換器40から排出する改質器の燃焼排ガスにより、水蒸気分離器2への補給水を予熱する給水予熱器64を備える点である。
【0026】
図1において、補給水は、補給水ライン60から給水予熱器64を経て、水蒸気分離器2とポンプ32との間の循環水系配管に対して、給水ポンプ62によって供給される。補給水ライン60は、水を純化するための水処理装置61と逆止弁63とを備える。
【0027】
上記構成によれば、補給水を予熱する分、エネルギー効率が向上する。
【0028】
図2は、図1とは異なる実施例に関わる水素発生装置の概略システム系統図を示す。図1と図2の主な相違点は、図2においては、触媒燃焼器70と空気予熱器72とを備える点である。
【0029】
前述のように、改質器の燃焼排ガスを改質器排熱回収用熱交換器40に供給するライン上に、改質器のバーナ1bに供給する燃焼用空気を前記改質器の燃焼排ガスによって予熱するための空気予熱器72を設け、この空気予熱器72から排出した改質器の燃焼排ガスと、PSA残ガスの一部を分岐ライン74から触媒燃焼器70に通流して燃焼させた燃焼排ガスとを、改質器排熱回収用熱交換器40に供給することにより、エネルギー効率がさらに向上する。
【0030】
なお、必要に応じて、触媒燃焼器70への空気供給ライン76を設ける。
【発明の効果】
【0031】
上記のとおり、この発明によれば、メタノール又は炭化水素を主成分とする原燃料ガスを水蒸気(スチーム)により水素リッチなガスに改質する改質器と、この改質ガスから水素を分離精製する圧力スイング吸着装置(PSA)と、水蒸気分離器と、水蒸気分離器内の水を加熱して前記スチームを発生させる水加熱器とを備え、さらに、前記水加熱器は、前記改質器の燃焼排ガスにより水蒸気分離器内の水を加熱するために設けた改質器排熱回収用熱交換器と補助電気ヒータとからなる水素発生装置において、
前記改質器排熱回収用熱交換器から排出する前記改質器の燃焼排ガスにより、前記水蒸気分離器への補給水を予熱する給水予熱器を備えるものとしたので、
補給水の昇温エネルギーの低減により、改良された従来の水素発生装置に比較して、エネルギー効率のさらなる向上を図ることができる。また、補給水と循環水との合流点の温度差に伴う熱応力の発生の抑制を図ることもできる。
【図面の簡単な説明】
【0032】
【図1】 この発明の実施例に関わる水素発生装置の概略システム系統図
【図2】 図1とは異なる実施例に関わる水素発生装置の概略システム系統図
【図3】 改良された従来の水素発生装置の概略システム系統図
【符号の説明】
【0033】
1:改質器、2:水蒸気分離器、4:エゼクタ、5:圧力スイング吸着装置(PSA)、6:残ガス供給配管、12:スチーム供給ライン、13:スチーム流量制御弁、14:原燃料ガス供給ライン、16:原燃料ガス流量制御弁、32:ポンプ、40:改質器排熱回収用熱交換器、50:補助電気ヒータ、51:電力調整装置、60:補給水ライン、64:給水予熱器、70:触媒燃焼器、72:空気予熱器。[0001]
BACKGROUND OF THE INVENTION
[0002]
The present invention, methanol or natural gas, LNG, because the raw fuel gas mainly composed of any hydrocarbon that LP G and water vapor (steam), relates to a hydrogen generating apparatus for producing hydrogen.
[Prior art]
[0003]
In an industrial device or a fuel cell power plant that uses hydrogen as an atmospheric gas, a hydrogen generator is required. Conventionally, as one of hydrogen generators, a reformer that generates a hydrogen-rich reformed gas by passing a raw material gas such as natural gas, LNG, LPG, or methanol together with water vapor through a catalyst layer, and a reformed gas A hydrogen generator composed of a pressure swing adsorption device (PSA) that separates and purifies hydrogen is employed.
[0004]
With regard to this type of hydrogen generator, the applicant of the present application has proposed a device that aims to improve the controllability of steam supply control accompanying fluctuations in hydrogen load and to improve overall energy efficiency (specialty). Application 2000-242281).
[0005]
FIG. 3 shows a schematic system diagram of the hydrogen generator described in Japanese Patent Application No. 2000-242281. The hydrogen generator shown in FIG. 3 first includes a
[0006]
The reforming raw material gas is introduced into the catalyst layer of the
[0007]
As the combustion fuel of this burner, the residual gas that still contains hydrogen after the separation and removal treatment of hydrogen in the aforementioned PSA 5 is used, and the residual gas is supplied from the PSA 5 to the
[0008]
Next, the steam and raw fuel supply system will be described. The vapor separated from the gas and liquid by the water vapor separator 2 is introduced into the ejector 4 through a steam
[0009]
The combustion exhaust gas line of the
[0010]
The raw fuel
[0011]
A portion of the raw fuel gas branches from the raw fuel
[0012]
As described above, the fuel gas supply amount is adjusted according to the hydrogen load by the raw fuel gas flow control valve 16, but when the raw fuel gas is increased or decreased, the steam flow rate must also be increased or decreased. The steam flow rate is determined so as to be preset S / C (ratio of moles of steam to carbon atoms in the raw fuel gas) according to the raw fuel gas composition. 3 has a function of adjusting the opening degree of the raw fuel gas flow rate control valve 16 and the steam flow
[0013]
That is, the hydrogen generator shown in FIG. 3 basically includes a
[0014]
According to the said structure, the steam for a heating conventionally supplied as a heat source for water heating becomes unnecessary, and becomes energy saving by that much. Also, since the raw fuel gas flow rate is increased or decreased according to the increase or decrease of the hydrogen load and the reformed gas amount is also increased or decreased accordingly, the amount of heat necessary for reforming inevitably increases or decreases, and the reformer exhaust heat amount also increases or decreases. To do. Therefore, since the amount of steam generated in the heat exchanger 40 for recovering exhaust heat from the reformer as a water heater also increases and decreases, matching between the increase and decrease in the hydrogen load and the increase and decrease in the amount of steam generated in the variable steam separator The pressure fluctuation is smaller than that of the conventional apparatus. Furthermore, the heating energy that is insufficient with the reformer exhaust heat amount is compensated by the auxiliary electric heater 50 to finely adjust the pressure fluctuation, thereby improving controllability and improving the energy efficiency as a whole.
[Problems to be solved by the invention]
[0015]
The hydrogen generator as described above also has the following problems from the viewpoint of energy efficiency.
[0016]
In the hydrogen generator, as described above, the amount of make-up water corresponding to the steam for reforming consumed in the reformer is supplied to the lower part of the steam separator or the circulating water system piping of the steam separator. . In this case, since supplementary water at normal temperature is supplied, it is necessary to raise the temperature to the circulating water temperature of the high-temperature steam separator, and energy for that is required. Furthermore, the generation of thermal stress accompanying the temperature difference at the confluence of makeup water and circulating water is also undesirable from the viewpoint of facility reliability.
[0017]
The present invention has been made in view of the above, and the object of the present invention is to reduce the temperature rise energy of make-up water and to generate thermal stress accompanying the temperature difference at the confluence of make-up water and circulating water. An object of the present invention is to provide a hydrogen generator that is suppressed.
[Means for Solving the Problems]
[0018]
To attain the above object, in the present invention, the raw fuel gas mainly composed of methanol or a hydrocarbon reformer for reforming the hydrogen-rich gas by steam (steam) from the reformed gas A pressure swing adsorption device (PSA) for separating and purifying hydrogen, a water vapor separator, and a water heater for heating the water in the water vapor separator to generate the steam, and the water heater further comprises: In a hydrogen generator comprising a heat exchanger for recovering exhaust heat from a reformer and an auxiliary electric heater provided to heat water in a steam separator with combustion exhaust gas from the reformer,
A feed water preheater that preheats make-up water to the steam separator with combustion exhaust gas from the reformer discharged from the reformer exhaust heat recovery heat exchanger is provided (invention of claim 1).
[0019]
As an embodiment of the invention of
[0020]
According to the first aspect of the invention, since the reformer exhaust heat is effectively used for water heating of the steam separator and preheating of make-up water, running cost can be reduced. Further, according to the inventions of claims 2 and 3, it is possible to improve controllability and further improve energy efficiency.
[0021]
Further, in the hydrogen generator according to claim 3, the combustion air supplied to the burner is provided on a line for supplying the combustion exhaust gas of the reformer to the heat exchanger for recovering the reformer exhaust heat. An air preheater for preheating with the combustion exhaust gas of the reformer and a catalyst combustor for burning a part of the PSA residual gas are provided, and included in the combustion exhaust gas discharged from the air preheater in this catalyst combustor A part of the residual PSA gas is combusted by the residual oxygen, and the combustion exhaust gas is supplied to the heat exchanger for recovering the reformer exhaust heat (invention of claim 4).
[0022]
According to the fourth aspect of the present invention, both the combustion exhaust gas of the reformer burner and the combustion exhaust gas in the catalytic combustor are introduced into the reformer exhaust heat recovery heat exchanger, and energy recovery is possible. Further improve. The amount of air supplied to the reformer burner is normally 1.2 to 1.5 times the stoichiometric air-fuel ratio, so excess oxygen is present in the burner flue gas. It remains and is available for combustion in the catalytic combustor.
DETAILED DESCRIPTION OF THE INVENTION
[0023]
Embodiments of the present invention will be described below based on the drawings.
[0024]
FIG. 1 is a schematic system diagram of a hydrogen generator showing an embodiment according to the present invention. The same components as those in the system diagram shown in FIG.
[0025]
The main difference between FIG. 1 and FIG. 3 is that in FIG. 1, makeup water to the steam separator 2 is preheated by the combustion exhaust gas of the reformer discharged from the heat exchanger 40 for recovering the reformer exhaust heat. It is a point provided with the feed water preheater 64.
[0026]
In FIG. 1, makeup water is supplied from a makeup water line 60 through a feed water preheater 64 to a circulating water system pipe between the steam separator 2 and the
[0027]
According to the above configuration, the energy efficiency is improved by preheating the makeup water.
[0028]
FIG. 2 shows a schematic system diagram of a hydrogen generator according to an embodiment different from FIG. The main difference between FIG. 1 and FIG. 2 is that a catalytic combustor 70 and an air preheater 72 are provided in FIG.
[0029]
As described above, the combustion air supplied to the
[0030]
Note that an air supply line 76 to the catalytic combustor 70 is provided as necessary.
【The invention's effect】
[0031]
As described above, according to the present invention, the separation a reformer for reforming the hydrogen-rich gas raw fuel gas mainly composed of methanol or hydrocarbons with steam (steam), the hydrogen from the reformed gas A pressure swing adsorption device (PSA) to be purified; a water vapor separator; and a water heater that heats water in the water vapor separator to generate the steam, and the water heater further includes the reformer. A hydrogen generator comprising a reformer exhaust heat recovery heat exchanger and an auxiliary electric heater provided to heat the water in the steam separator with the combustion exhaust gas of
Since the reformer exhaust gas recovered from the reformer exhaust heat recovery heat exchanger includes a feed water preheater that preheats makeup water to the steam separator,
By reducing the temperature rise energy of the make-up water, the energy efficiency can be further improved as compared with the improved conventional hydrogen generator. Moreover, generation | occurrence | production of the thermal stress accompanying the temperature difference of the confluence | merging point of makeup water and circulating water can also be aimed at.
[Brief description of the drawings]
[0032]
1 is a schematic system diagram of a hydrogen generator according to an embodiment of the present invention. FIG. 2 is a schematic system diagram of a hydrogen generator according to an embodiment different from FIG. 1. FIG. 3 is an improved conventional hydrogen. General system diagram of the generator [Explanation of symbols]
[0033]
1: reformer, 2: steam separator, 4: ejector, 5: pressure swing adsorption device (PSA), 6: residual gas supply pipe, 12: steam supply line, 13: steam flow control valve, 14: raw fuel Gas supply line 16: Raw fuel gas flow control valve 32: Pump 40: Reformer exhaust heat recovery heat exchanger 50: Auxiliary electric heater 51: Power regulator 60: Makeup water line 64: Feed water preheater, 70: catalytic combustor, 72: air preheater.
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001226489A JP4196249B2 (en) | 2001-07-26 | 2001-07-26 | Hydrogen generator |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001226489A JP4196249B2 (en) | 2001-07-26 | 2001-07-26 | Hydrogen generator |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2003040603A JP2003040603A (en) | 2003-02-13 |
JP4196249B2 true JP4196249B2 (en) | 2008-12-17 |
Family
ID=19059296
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2001226489A Expired - Lifetime JP4196249B2 (en) | 2001-07-26 | 2001-07-26 | Hydrogen generator |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4196249B2 (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5315801B2 (en) * | 2008-06-11 | 2013-10-16 | 株式会社Ihi | Reformer |
FR2966814B1 (en) * | 2010-10-28 | 2016-01-01 | IFP Energies Nouvelles | PROCESS FOR PRODUCING HYDROGEN BY VAPOREFORMING A PETROLEUM CUT WITH OPTIMIZED STEAM PRODUCTION |
CN109941965B (en) * | 2019-04-21 | 2023-05-26 | 苏州市泰利登净化设备有限公司 | Methanol hydrogen production equipment |
CN110156132B (en) * | 2019-06-19 | 2023-09-29 | 上海米勒缘生物科技有限公司 | Hydrogen-rich water generator |
CN114483290B (en) * | 2022-01-27 | 2023-08-01 | 西安交通大学 | Composite compressed air energy storage system and method for methanol reformer coupled internal combustion engine |
-
2001
- 2001-07-26 JP JP2001226489A patent/JP4196249B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JP2003040603A (en) | 2003-02-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
AU2018221479B2 (en) | Process for the synthesis of ammonia with low emissions of CO2 in atmosphere | |
US7467519B2 (en) | Electricity and synthesis gas generation method | |
US11654414B2 (en) | Hydrogen reforming system | |
KR20230029630A (en) | How to produce hydrogen | |
JP2008512336A (en) | Method for producing hydrogen and / or carbon monoxide | |
JP2007527837A (en) | Supply of steam and hydrogen to a synthesis gas production process or synthesis gas production plant | |
US20050176831A1 (en) | Steam reforming system | |
CN111479772A (en) | Process for producing hydrogen-containing synthesis gas | |
JP4196249B2 (en) | Hydrogen generator | |
CN114981206A (en) | Recombinational process integrated with gas turbine generator | |
KR101472767B1 (en) | Carbon monoxide gas generation apparatus and method | |
WO2024018169A1 (en) | Process for producing power in a gas turbine | |
JP6530123B1 (en) | Hydrogen production equipment | |
JP4116731B2 (en) | Hydrogen generator and operation method thereof | |
JP5348938B2 (en) | Carbon monoxide gas generator and method | |
JP4172740B2 (en) | Hydrogen generator and operation method thereof | |
JP2003128401A (en) | Apparatus for generating hydrogen and it's operating method | |
JP5285952B2 (en) | Carbon monoxide gas generator and method | |
JP2002053307A (en) | Device for generating hydrogen | |
EP4421027A1 (en) | Method for producing ammonia with reduced emissions and system thereof | |
JP4981421B2 (en) | Hydrogen production system | |
JP4496950B2 (en) | Reforming furnace system | |
JP2515854B2 (en) | Method for producing ammonia from natural gas | |
JP2024524582A (en) | Method for operating a fuel cell system in a fuel cell mode | |
BR112019016817B1 (en) | PROCESS FOR THE SYNTHESIS OF AMMONIA WITH LOW CO2 EMISSIONS INTO THE ATMOSPHERE |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20061017 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20080616 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20080703 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20080812 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20080904 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20080917 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111010 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 Ref document number: 4196249 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111010 Year of fee payment: 3 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313113 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111010 Year of fee payment: 3 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111010 Year of fee payment: 3 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111010 Year of fee payment: 3 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121010 Year of fee payment: 4 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131010 Year of fee payment: 5 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
EXPY | Cancellation because of completion of term |