JP4172740B2 - Hydrogen generator and operation method thereof - Google Patents

Hydrogen generator and operation method thereof Download PDF

Info

Publication number
JP4172740B2
JP4172740B2 JP2000266966A JP2000266966A JP4172740B2 JP 4172740 B2 JP4172740 B2 JP 4172740B2 JP 2000266966 A JP2000266966 A JP 2000266966A JP 2000266966 A JP2000266966 A JP 2000266966A JP 4172740 B2 JP4172740 B2 JP 4172740B2
Authority
JP
Japan
Prior art keywords
exhaust gas
burner
hydrogen
reformer
combustion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000266966A
Other languages
Japanese (ja)
Other versions
JP2002068708A (en
Inventor
英雄 西垣
義行 十河
晋 高見
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Osaka Gas Co Ltd
Original Assignee
Osaka Gas Co Ltd
Fuji Electric Holdings Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Gas Co Ltd, Fuji Electric Holdings Ltd filed Critical Osaka Gas Co Ltd
Priority to JP2000266966A priority Critical patent/JP4172740B2/en
Publication of JP2002068708A publication Critical patent/JP2002068708A/en
Application granted granted Critical
Publication of JP4172740B2 publication Critical patent/JP4172740B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)
  • Hydrogen, Water And Hydrids (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、水素発生装置とその運転方法に関する。
【0002】
【従来の技術】
雰囲気ガスとして水素を用いる工業用装置や燃料電池発電プラントなどにおいては、水素発生装置が必要である。
【0003】
従来、水素発生装置の一つとして、天然ガス,LNG,LPG,メタノールなどの炭化水素系原燃料と水蒸気とを触媒の存在下で反応させて水素リッチな改質ガスを生成するための触媒層と、燃焼排ガスを前記改質反応の加熱媒体として利用するためのバーナとを備えた改質器と、前記水蒸気を改質器に供給するために設けた水蒸気分離器と、この水蒸気分離器内の水を前記バーナの燃焼排ガスにより加熱し水蒸気を発生させるための排ガス冷却器と、前記改質ガスまたは改質原燃料を加圧するための圧縮機と、加圧された改質ガスから水素を分離精製する圧力スイング吸着装置(PSA)と、このPSAにおいて水素を分離除去処理した後の残ガスを前記改質器用バーナに供給して燃焼させるように構成した水素発生装置が知られている。
【0004】
図3は、上記従来の水素発生装置の概略構成を示すもので、バーナ1aと触媒層1bとを備えた改質器1と、改質ガスを加圧するための圧縮機2と、改質ガスから水素を分離精製するPSA3と、PSAにおいて水素を分離除去処理した後のまだ水素を含む残ガスを前記改質器のバーナ1aに供給するための残ガス供給配管10と、水蒸気を改質器1に供給するために設けた水蒸気分離器4と、この水蒸気分離器4内の水を前記バーナの燃焼排ガスにより加熱し水蒸気を発生させるための排ガス冷却器7と、水循環用のポンプ5とを備える。
【0005】
また、図3においては燃焼器6を備えており、改質反応に必要な熱量に対する余剰分の前記PSAの残ガスをこの燃焼器6で燃焼させた後に大気に放出する構成としている。この燃焼器6および改質器用バーナ1aには、燃焼用空気が、図示しないブロワー等により導入される。
【0006】
改質原燃料は水蒸気とともに、その導入配管から改質器1の触媒層1bに導入され、触媒による改質反応によって、水素,二酸化炭素,一酸化炭素を含む水素リッチなガスに改質される。この改質ガス中の一酸化炭素は、図示しない一酸化炭素変成器により、二酸化炭素と水素とに変成する。変成後の改質ガスの組成は、水素濃度70%余り、二酸化炭素約20%で、残余は、水蒸気,メタンと若干の一酸化炭素である。
【0007】
この改質ガスは圧縮機2により0.6〜0.9MPa(G)程度に圧縮された後、PSAにより精製され、水素濃度が高められる。図3においては、改質器1を略大気圧で運転し、PSA3に投入する改質ガスを圧縮機2により加圧する方式を示したが、原燃料を加圧して、高圧の水蒸気とともに改質器1に供給し、改質器1を加圧状態で運転することもできる。この場合は、改質ガス圧縮機2は不要になるが、原燃料を加圧する手段が必要となる。
【0008】
PSAは、複数の容器に活性炭やゼオライト等の吸着剤を充填し、圧力を変動させることで特定のガス種を吸着分離する装置であり、その運転条件や性能によって異なるが、投入された水素に対して、略65〜75%が分離精製されて利用される。残余の水素および他の成分は下流に排出される。下流に放出されるこのPSAの残ガスは、水素,メタン,一酸化炭素の可燃成分を多量に含んでいる。一方、前記改質反応は吸熱反応のため、外部から熱を供給する必要があり、そのために、バーナの燃焼排ガスが加熱媒体として利用され、このバーナの燃焼ガスとして、主に、前記したPSA3において水素を分離除去処理した後のまだ水素を含む残ガスが用いられ、図示しない流量制御弁を介して残ガスが、PSA3からバーナ1aに供給される。
【0009】
なお、改質器1における改質反応に必要な水蒸気量は、前記排ガス冷却器7において発生する水蒸気量のみでは不足する。そこで、必要な水蒸気量を確保するために、前記水蒸気分離器4は、電気ヒータまたはボイラー等の図示しない追加の熱源を備え、水蒸気分離器4内の圧力を検出し、この圧力が所定の圧力を維持するように追加の熱源の発生熱量を制御するようにしている。また、水蒸気分離器4には、図示しない補給水供給配管が接続されており、水蒸気使用量に見合う水が補給される。
【0010】
【発明が解決しようとする課題】
上記従来の水素発生装置においては、下記のような問題があった。
【0011】
近年、改質器は需要地設置型(オンサイト型)の水素供給源として開発が進められ、伝熱の改善により中小容量でもエネルギー効率が向上している。一方、オンサイト型水素発生装置に使用するPSAの水素収率(分離回収した水素量/PSA投入ガス中の水素量)は、65〜75%程度であり、PSA残ガスには、メタン,一酸化炭素に加えて水素も多く残っており、改質器の吸熱反応に必要な燃料量に対して過剰となる傾向が強まっている。
【0012】
前述のように、従来の水素発生装置においては、改質反応に必要な熱量に対する余剰分の前記PSAの残ガスは、燃焼器で燃焼させた後に大気に放出するか、もしくは、安全な環境の場合には、燃焼器を経由せずに、残ガスをそのまま大気に放出する構成としており、PSAの残ガスがもつエネルギーが有効利用されていない問題があった。
【0013】
この発明は、上記のような問題点を解決するためになされたもので、この発明の課題は、水素精製後のPSA残ガスを無駄に放出することなく、安全かつ合理的にエネルギー回収が可能な水素発生装置とその運転方法を提供することにある。
【0014】
【課題を解決するための手段】
前述の課題を解決するため、この発明においては、炭化水素系原燃料と水蒸気とを触媒の存在下で反応させて水素リッチな改質ガスを生成するための触媒層と、燃焼排ガスを前記改質反応の加熱媒体として利用するためのバーナとを備えた改質器と、前記水蒸気を改質器に供給するために設けた水蒸気分離器と、この水蒸気分離器内の水を前記バーナの燃焼排ガスにより加熱し水蒸気を発生させるための排ガス冷却器と、前記改質ガスまたは改質原燃料を加圧するための圧縮機と、加圧された改質ガスから水素を分離精製する圧力スイング吸着装置(PSA)と、このPSAにおいて水素を分離除去処理した後の残ガスを前記改質器用バーナに供給して燃焼させるように構成し、さらに、前記残ガスの一部を前記バーナとは別途供給して燃焼させる触媒燃焼器を設け、この触媒燃焼器における燃焼排ガスを前記バーナの燃焼排ガスとともに前記排ガス冷却器に導入してなる水素発生装置であって、前記改質器用バーナの燃焼排ガスを排ガス冷却器に供給するライン上に、前記バーナに供給する燃焼用空気を前記バーナの燃焼排ガスによって予熱するための空気予熱器と、前記触媒燃焼器とを設け、この触媒燃焼器において前記空気予熱器から排出された燃焼排ガスに含まれる残留酸素によって前記PSAの残ガスを燃焼させ、この燃焼排ガスを前記排ガス冷却器に供給してなるものとする(請求項1の発明)。
【0015】
上記請求項1の発明によれば、改質器用バーナの燃焼排ガスと、燃焼器における燃焼排ガスの双方が排ガス冷却器に導入され、エネルギー回収できるので、後に詳述するように、従来装置に比べてエネルギー効率が大幅に向上する。
【0016】
また、請求項1の発明においては、残ガスの一部を前記バーナとは別途供給して燃焼させる燃焼器を触媒燃焼器としたので、下記の観点から好適である。PSAの水素分離機能は、外気温,改質ガス組成の変化,経時的な特性変化等によって変化し、PSA残ガスの組成や流量が変化する。そのためバーナ式の燃焼器では、安定した燃焼が困難となる。これに対して、燃焼器として、触媒燃焼器を使用した場合には、PSA残ガスの組成や流量の変化に追随して安定した燃焼が可能である。
【0017】
上記利点はあるものの、触媒燃焼器を使用した場合、パイロットバーナ(種火)がないので、PSA残ガスが改質反応に100%消費されて、長時間、触媒燃焼器にPSA残ガスが導入されない場合には、まれに燃焼不能になる場合が考えられる。さらに、触媒燃焼温度が高すぎると、触媒の寿命が低下する問題もある
【0018】
これらの問題を解消するために上記請求項1の発明においては、前記改質器用バーナの燃焼排ガスを排ガス冷却器に供給するライン上に、前記バーナに供給する燃焼用空気を前記バーナの燃焼排ガスによって予熱するための空気予熱器と、前記触媒燃焼器とを設け、この触媒燃焼器において前記空気予熱器から排出された燃焼排ガスに含まれる残留酸素によって前記PSAの残ガスを燃焼させ、この燃焼排ガスを前記排ガス冷却器に供給してなるものとした。これにより、PSA残ガスの組成や流量の変化に関わらず安定した燃焼を可能とすることができる。
【0019】
さらに、前記請求項記載の水素発生装置において、前記触媒燃焼器は、冷却用の空気導入ラインを備えたものとする(請求項の発明)により、触媒燃焼温度を所望の温度以下に抑えることができる。詳細は後述する。
【0020】
水素発生装置の運転方法としては、触媒燃焼器における触媒燃焼温度を所望の温度以下に抑えるため、また、改質器における改質反応を適正に行うため、さらに適正な水蒸気発生量を得るために、請求項、請求項および請求項の発明が好適である。
【0021】
即ち、請求項記載の水素発生装置の運転方法において、前記触媒燃焼器の温度を検出し、この温度が所定の設定温度となった際に冷却用の空気を導入することとする(請求項の発明)。また、請求項1または2記載の水素発生装置の運転方法であって、前記改質器における改質反応に必要な熱量を確保するために、前記改質器の温度を検出し、この温度が所定の設定温度となるように、前記バーナおよび触媒燃焼器への残ガスの流量を制御することとする(請求項の発明)。さらに、請求項1または2記載の水素発生装置の運転方法において、前記水蒸気分離器は電気ヒータまたはボイラーの追加の熱源を備え、前記改質器における改質反応に必要な水蒸気量を確保するために、前記水蒸気分離器内の圧力を検出し、この圧力が所定の圧力を維持するように前記追加の熱源の発生熱量を制御することとする(請求項の発明)。
【0022】
【発明の実施の形態】
図面に基づき、本発明の実施の形態について以下にのべる。
【0023】
図2は、この発明の実施例を示す概略構成図である。図1は、図2の実施例に至る前の図3よりは改善された構成例を示す概略構成図である。図1および2において、図3の従来装置と同一部材については同一の符合を付して説明を省略する。
【0024】
1と図3との相違点は、図1においては、PSA残ガスの一部を改質器用バーナ1aとは別途供給して燃焼させる燃焼器6における燃焼排ガスを、バーナの燃焼排ガスとともに排ガス冷却器7に導入するための燃焼器排ガス供給ライン12を設けた点である。
【0025】
PSA残ガスの余剰分をバーナ式もしくは触媒燃焼式の燃焼器6で燃焼させ、改質器1の燃焼排ガスと混合させて排ガス冷却器7に導入する。PSA残ガスの内、改質器1の反応熱供給用と余剰分として燃焼器6へ送る分との振り分けは、改質器1の図示しない温度検出手段による測定結果と、その目標値に制御する手段としての制御弁および制御装置により調節される。
【0026】
上記構成によれば、改質器用バーナの燃焼排ガスと、燃焼器における燃焼排ガスの双方が排ガス冷却器に導入され、エネルギー回収できるので、従来装置に比べてエネルギー効率が大幅に向上する。表1は、燃焼排ガスから回収できるエネルギー量およびそれが改質用蒸気発生エネルギーに占める割合について、図3に係る従来装置と図1に係る装置とを比較した計算結果を示す。
【0027】
【表1】

Figure 0004172740
【0028】
表1によれば、図1の構成によれば、従来装置に比べてエネルギー効率が大幅に向上することが明らかである。なお、表1は、水素製造能力が100Nm3/hの装置を対象とした。
【0029】
図2は、発明に関わる実施例である。図1と図2との相違点は、図2においては、改質器バーナ1aの燃焼排ガスを排ガス冷却器7に供給するライン13上に、バーナ1aに供給する燃焼用空気を前記バーナの燃焼排ガスによって予熱するための空気予熱器8を設け、さらにその下流に、触媒燃焼器6を設け、この触媒燃焼器6において、空気予熱器8から排出された燃焼排ガスに含まれる残留酸素によって前記PSAの残ガスを燃焼させ、この燃焼排ガスを排ガス冷却器7に供給する構成とした点である。
【0030】
予熱空気供給ライン14から改質器バーナ1aに供給される空気量は、通常、理論空燃比の1.2〜1.5倍の空気量が供給されるので、バーナの燃焼排ガス中には、余剰の酸素が残存し、これが触媒燃焼器6における燃焼用に利用できる。この構成により、特別な制御手段を設けることなしに、触媒燃焼器6の触媒温度を、少なくとも200〜300℃に維持することができ、余剰のPSA残ガスがゼロまで減少しても、その後PSA残ガスが投入されれば、確実に燃焼させることが可能となる。さらに、触媒燃焼器における冷却時の凝縮水の発生を防止できる。
【0031】
また、図2の実施例においては、空気を冷却用として触媒燃焼器6に供給する冷却空気供給配管15を設けている。この冷却空気は、触媒燃焼器6の加熱防止用であり、図示しない温度センサにより、触媒燃焼器6の温度を検出し、この温度が所定の設定温度となった際に冷却用の空気を導入する。
【0032】
ところで、触媒燃焼器6の加熱防止が必要な理由は以下のとおりである。触媒燃焼器における燃焼触媒の許容上限温度は、通常約600℃であり、一般に550〜600℃の範囲で使用されるのが望ましい。600℃を超えると直ちにダメージを受けるわけではないが、触媒寿命上好ましくない。PSA残ガスの組成は、PSAの水素収率によって変動し、PSA残ガスを触媒燃焼させる際の燃焼触媒温度もこの水素収率によって変動する。例えば、水素収率が73%においては、触媒温度が571℃に対して、水素収率が70%の場合、触媒温度は677℃となる。このように、燃焼触媒温度は、運転条件の僅かな変化に対して敏感に変化する。
【0033】
前記のように、冷却用の空気を触媒燃焼器に導入する効果について、水素製造能力が100Nm3/hの装置で、水素収率が73%の場合について試算した結果によれば、冷却用空気量1.5kg-mol/hの場合、燃焼触媒温度は617℃が551℃に低下する。即ち、比較的少量の冷却用空気を触媒燃焼器に通流することにより、燃焼触媒温度を所望の温度以下に維持できる。
【0034】
【発明の効果】
上記のように、この発明によれば、天然ガス,LNG,LPG,メタノールなどの炭化水素系原燃料と水蒸気とを触媒の存在下で反応させて水素リッチな改質ガスを生成するための触媒層と、燃焼排ガスを前記改質反応の加熱媒体として利用するためのバーナとを備えた改質器と、前記水蒸気を改質器に供給するために設けた水蒸気分離器と、この水蒸気分離器内の水を前記バーナの燃焼排ガスにより加熱し水蒸気を発生させるための排ガス冷却器と、前記改質ガスまたは改質原燃料を加圧するための圧縮機と、加圧された改質ガスから水素を分離精製する圧力スイング吸着装置(PSA)と、このPSAにおいて水素を分離除去処理した後の残ガスを前記改質器用バーナに供給して燃焼させるように構成し、さらに、前記残ガスの一部を前記バーナとは別途供給して燃焼させる触媒燃焼器を設け、この触媒燃焼器における燃焼排ガスを前記バーナの燃焼排ガスとともに前記排ガス冷却器に導入してなる水素発生装置であって、前記改質器用バーナの燃焼排ガスを排ガス冷却器に供給するライン上に、前記バーナに供給する燃焼用空気を前記バーナの燃焼排ガスによって予熱するための空気予熱器と、前記触媒燃焼器とを設け、この触媒燃焼器において前記空気予熱器から排出された燃焼排ガスに含まれる残留酸素によって前記PSAの残ガスを燃焼させ、この燃焼排ガスを前記排ガス冷却器に供給してなるものとすることにより、改質器用バーナの燃焼排ガスと、燃焼器における燃焼排ガスの双方の排ガスエネルギーが回収でき、従来装置に比べてエネルギー効率が大幅に向上する。
【0035】
また、PSA残ガスの組成や流量の変化ならびに余剰残ガスの程度に関わらず安定した燃焼を可能とすることができる。
【図面の簡単な説明】
【図1】 この発明の実施例に至る前の、図3の従来装置よりは改善された構成例を示す水素発生装置の概略構成図である。
【図2】 この発明の実施例を示す水素発生装置の概略構成図である。
【図3】 従来例の水素発生装置の概略構成図である。
【符号の説明】
1:改質器、1a:バーナ、1b:触媒層、2:圧縮機、3:圧力スイング吸着装置(PSA)、4:水蒸気分離器、6:燃焼器、7:排ガス冷却器、8:空気予熱器。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a hydrogen generator and an operation method thereof.
[0002]
[Prior art]
In an industrial device or a fuel cell power plant that uses hydrogen as an atmospheric gas, a hydrogen generator is required.
[0003]
Conventionally, as one of the hydrogen generators, a catalyst layer for producing a hydrogen-rich reformed gas by reacting a hydrocarbon-based raw fuel such as natural gas, LNG, LPG, and methanol with water vapor in the presence of a catalyst. A reformer provided with a burner for using combustion exhaust gas as a heating medium for the reforming reaction, a steam separator provided for supplying the steam to the reformer, and the inside of the steam separator An exhaust gas cooler for heating water with the combustion exhaust gas of the burner to generate water vapor, a compressor for pressurizing the reformed gas or reformed raw fuel, and hydrogen from the pressurized reformed gas There are known a pressure swing adsorption device (PSA) for separation and purification, and a hydrogen generator configured to burn the residual gas after hydrogen is separated and removed in the PSA by supplying it to the reformer burner.
[0004]
FIG. 3 shows a schematic configuration of the conventional hydrogen generator, a reformer 1 having a burner 1a and a catalyst layer 1b, a compressor 2 for pressurizing the reformed gas, and a reformed gas. PSA3 for separating and purifying hydrogen from the residue, residual gas supply pipe 10 for supplying residual gas still containing hydrogen after separation and removal of hydrogen in PSA, and steam to the reformer A steam separator 4 provided for supplying to the steam generator 1, an exhaust gas cooler 7 for heating the water in the steam separator 4 with the combustion exhaust gas of the burner to generate steam, and a pump 5 for water circulation Prepare.
[0005]
Further, in FIG. 3, a combustor 6 is provided, and the PSA residual gas corresponding to the amount of heat necessary for the reforming reaction is burned by the combustor 6 and then released to the atmosphere. Combustion air is introduced into the combustor 6 and the reformer burner 1a by a blower (not shown) or the like.
[0006]
The reformed raw fuel is introduced into the catalyst layer 1b of the reformer 1 from its introduction pipe together with water vapor, and is reformed into a hydrogen-rich gas containing hydrogen, carbon dioxide, and carbon monoxide by a reforming reaction by the catalyst. . Carbon monoxide in the reformed gas is converted into carbon dioxide and hydrogen by a carbon monoxide converter (not shown). The composition of the reformed gas after the transformation is about 70% hydrogen concentration and about 20% carbon dioxide, and the remainder is water vapor, methane and some carbon monoxide.
[0007]
The reformed gas is compressed to about 0.6 to 0.9 MPa (G) by the compressor 2 and then purified by PSA to increase the hydrogen concentration. FIG. 3 shows a system in which the reformer 1 is operated at substantially atmospheric pressure, and the reformed gas charged into the PSA 3 is pressurized by the compressor 2, but the raw fuel is pressurized and reformed together with high-pressure steam. The reformer 1 can also be operated in a pressurized state by supplying to the reactor 1. In this case, the reformed gas compressor 2 is not necessary, but means for pressurizing the raw fuel is required.
[0008]
PSA is a device that adsorbs and separates specific gas species by filling a plurality of containers with adsorbents such as activated carbon and zeolite, and changing the pressure. Depending on the operating conditions and performance, On the other hand, approximately 65 to 75% is separated and purified. The remaining hydrogen and other components are discharged downstream. The residual gas of this PSA released downstream contains a large amount of combustible components of hydrogen, methane, and carbon monoxide. On the other hand, since the reforming reaction is an endothermic reaction, it is necessary to supply heat from the outside. For this reason, the combustion exhaust gas of the burner is used as a heating medium, and the combustion gas of the burner is mainly used in the PSA 3 described above. The residual gas that still contains hydrogen after separation and removal of hydrogen is used, and the residual gas is supplied from the PSA 3 to the burner 1a via a flow control valve (not shown).
[0009]
Note that the amount of water vapor necessary for the reforming reaction in the reformer 1 is insufficient with only the amount of water vapor generated in the exhaust gas cooler 7. Therefore, in order to secure a necessary amount of water vapor, the water vapor separator 4 includes an additional heat source (not shown) such as an electric heater or a boiler, detects the pressure in the water vapor separator 4, and this pressure is a predetermined pressure. The amount of heat generated by the additional heat source is controlled so as to maintain the above. The steam separator 4 is connected to a supply water supply pipe (not shown) so that water corresponding to the amount of steam used is supplied.
[0010]
[Problems to be solved by the invention]
The conventional hydrogen generator has the following problems.
[0011]
In recent years, reformers have been developed as demand-source (on-site) hydrogen supply sources, and energy efficiency is improved even in small and medium capacities due to improved heat transfer. On the other hand, the hydrogen yield of PSA used in the on-site hydrogen generator (the amount of separated and recovered hydrogen / the amount of hydrogen in the PSA input gas) is about 65 to 75%. In addition to carbon oxide, a large amount of hydrogen remains, and the tendency to become excessive with respect to the amount of fuel required for the endothermic reaction of the reformer is increasing.
[0012]
As described above, in the conventional hydrogen generator, the excess PSA residual gas with respect to the amount of heat required for the reforming reaction is discharged to the atmosphere after being combusted in the combustor, or in a safe environment. In this case, there is a problem that the residual gas is discharged as it is to the atmosphere without going through the combustor, and the energy of the residual gas of the PSA is not effectively used.
[0013]
The present invention has been made to solve the above-described problems, and an object of the present invention is to enable safe and rational energy recovery without wasteful release of PSA residual gas after hydrogen purification. Is to provide a simple hydrogen generator and its operation method.
[0014]
[Means for Solving the Problems]
In order to solve the above-described problems, in the present invention, a catalyst layer for reacting a hydrocarbon-based raw fuel and steam in the presence of a catalyst to generate a hydrogen-rich reformed gas, and a combustion exhaust gas are modified. A reformer provided with a burner for use as a heating medium for quality reaction, a steam separator provided for supplying the steam to the reformer, and combustion of the water in the steam separator into the burner An exhaust gas cooler for heating with exhaust gas to generate water vapor, a compressor for pressurizing the reformed gas or reformed raw fuel, and a pressure swing adsorption device for separating and purifying hydrogen from the pressurized reformed gas and (PSA), the residual gas after separating and removing processes of hydrogen in the PSA configured to feeding and burning the reformer burner, furthermore, separately supplied and the burner a portion of the residual gas Then burn The catalytic combustor is provided which provides a hydrogen generating apparatus comprising introducing combustion exhaust gas to the exhaust gas cooler with flue gases of the burner in the catalytic combustor, the combustion exhaust gas of the reformer burner exhaust gas cooler An air preheater for preheating combustion air to be supplied to the burner with the combustion exhaust gas of the burner and the catalytic combustor are provided on the supply line, and the catalyst combustor is discharged from the air preheater. The residual gas of the PSA is burned with residual oxygen contained in the combustion exhaust gas, and this combustion exhaust gas is supplied to the exhaust gas cooler (invention of claim 1).
[0015]
According to the first aspect of the present invention, both the combustion exhaust gas of the reformer burner and the combustion exhaust gas in the combustor are introduced into the exhaust gas cooler and can recover the energy. Energy efficiency.
[0016]
In the invention of claim 1, since the part of the residual gas burner for burning separately supplied to the burner as a catalyst combustor is preferable in view of the following. The hydrogen separation function of PSA changes depending on the outside air temperature, the reformed gas composition change, the characteristic change over time, and the like, and the composition and flow rate of the PSA residual gas change. Therefore, stable combustion becomes difficult in the burner type combustor. On the other hand, when a catalytic combustor is used as the combustor, stable combustion is possible following changes in the composition and flow rate of the PSA residual gas.
[0017]
Despite the above advantages, when a catalytic combustor is used, there is no pilot burner, so 100% of the PSA residual gas is consumed in the reforming reaction and the PSA residual gas is introduced into the catalytic combustor for a long time. If this is not the case, it may be impossible to combust in rare cases. Furthermore, when the catalyst combustion temperature is too high, there is a problem that the life of the catalyst is lowered .
[0018]
In order to solve these problems, in the first aspect of the present invention, the combustion air supplied to the burner is disposed on the line for supplying the combustion exhaust gas of the reformer burner to the exhaust gas cooler. An air preheater for preheating by the above and the catalytic combustor are provided, and in this catalytic combustor, the residual gas of the PSA is burned by residual oxygen contained in the combustion exhaust gas discharged from the air preheater, and this combustion The exhaust gas was supplied to the exhaust gas cooler . As a result, stable combustion can be achieved regardless of changes in the composition and flow rate of the PSA residual gas.
[0019]
Furthermore, in the hydrogen generator according to claim 1 , the catalytic combustor is provided with a cooling air introduction line (invention of claim 2 ), so that the catalytic combustion temperature is kept below a desired temperature. be able to. Details will be described later.
[0020]
As a method of operating the hydrogen generator, in order to keep the catalyst combustion temperature in the catalytic combustor below a desired temperature, and to properly perform the reforming reaction in the reformer, in order to obtain a more appropriate amount of steam generation The inventions of claims 3 , 4 and 5 are preferred.
[0021]
That is, in the method of operating the hydrogen generating apparatus according to claim 2, wherein said detecting the temperature of the catalytic combustor, the temperature and the introduction of cooling air when reaches a predetermined set temperature (claim Invention of 3 ). The operation method of the hydrogen generator according to claim 1 or 2 , wherein the temperature of the reformer is detected in order to ensure the amount of heat necessary for the reforming reaction in the reformer, and this temperature is The flow rate of the residual gas to the burner and the catalytic combustor is controlled so as to reach a predetermined set temperature (invention of claim 4 ). Further, in the method of operating the hydrogen generating apparatus according to claim 1 or 2, wherein the steam separator comprises an additional heat source of an electric heater or boiler, to ensure amount of steam required for the reforming reaction in the reformer Therefore, the pressure in the water vapor separator is detected, and the amount of heat generated by the additional heat source is controlled so that this pressure maintains a predetermined pressure (invention of claim 5 ).
[0022]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below based on the drawings.
[0023]
Figure 2 is a schematic diagram showing a real施例of the present invention. FIG. 1 is a schematic configuration diagram showing a configuration example improved from FIG. 3 before reaching the embodiment of FIG. 1 and 2, the same members as those in the conventional apparatus of FIG. 3 are denoted by the same reference numerals and description thereof is omitted.
[0024]
The difference between FIG . 1 and FIG. 3 is that in FIG. 1, the combustion exhaust gas in the combustor 6 in which a part of the PSA residual gas is supplied separately from the reformer burner 1 a and combusted is combined with the combustion exhaust gas of the burner. A combustor exhaust gas supply line 12 for introduction into the cooler 7 is provided.
[0025]
Excess PSA residual gas is burned by a burner type or catalytic combustion type combustor 6, mixed with the combustion exhaust gas of the reformer 1, and introduced into the exhaust gas cooler 7. Among the PSA residual gas, the distribution of the reaction heat supply of the reformer 1 and the amount to be sent to the combustor 6 as surplus are controlled by the measurement result by the temperature detection means (not shown) of the reformer 1 and its target value. It is regulated by a control valve and a control device as a means for performing.
[0026]
According to the above configuration, both the combustion exhaust gas of the reformer burner and the combustion exhaust gas in the combustor are introduced into the exhaust gas cooler and energy can be recovered, so that the energy efficiency is greatly improved as compared with the conventional apparatus. Table 1 shows the calculation results comparing the conventional apparatus according to FIG . 3 and the apparatus according to FIG. 1 with respect to the amount of energy that can be recovered from the combustion exhaust gas and the ratio of the energy amount to the reforming steam generation energy.
[0027]
[Table 1]
Figure 0004172740
[0028]
According to Table 1, it is clear that according to the configuration of FIG. 1, the energy efficiency is significantly improved as compared with the conventional device. Incidentally, Table 1, hydrogen production capacity intended for device 100 Nm 3 / h.
[0029]
Figure 2 is a real施例that involved in the present invention. The difference between FIG. 1 and FIG. 2 is that in FIG. 2, the combustion air supplied to the burner 1a is burned by the burner on the line 13 for supplying the combustion exhaust gas of the reformer burner 1a to the exhaust gas cooler 7. An air preheater 8 for preheating with exhaust gas is provided, and further, a catalytic combustor 6 is provided downstream thereof. In the catalytic combustor 6, the PSA is obtained by residual oxygen contained in the combustion exhaust gas discharged from the air preheater 8. The remaining gas is combusted and this combustion exhaust gas is supplied to the exhaust gas cooler 7.
[0030]
Since the amount of air supplied from the preheated air supply line 14 to the reformer burner 1a is usually 1.2 to 1.5 times the stoichiometric air-fuel ratio, Excess oxygen remains and can be used for combustion in the catalytic combustor 6. With this configuration, the catalyst temperature of the catalytic combustor 6 can be maintained at least 200 to 300 ° C. without providing any special control means, and even if the excess PSA residual gas is reduced to zero, the PSA is thereafter If the residual gas is input, it is possible to reliably burn. Furthermore, the generation of condensed water during cooling in the catalytic combustor can be prevented.
[0031]
Further, in the embodiment of FIG. 2, a cooling air supply pipe 15 for supplying air to the catalytic combustor 6 for cooling is provided. This cooling air is for preventing the catalyst combustor 6 from being heated. The temperature of the catalyst combustor 6 is detected by a temperature sensor (not shown), and when this temperature reaches a predetermined set temperature, the cooling air is introduced. To do.
[0032]
By the way, the reason why it is necessary to prevent the catalytic combustor 6 from being heated is as follows. The allowable upper limit temperature of the combustion catalyst in the catalytic combustor is usually about 600 ° C., and it is generally desirable to use within the range of 550 to 600 ° C. If it exceeds 600 ° C., it is not immediately damaged, but it is not preferable for the catalyst life. The composition of the PSA residual gas varies depending on the hydrogen yield of the PSA, and the combustion catalyst temperature when the PSA residual gas is catalytically combusted also varies depending on the hydrogen yield. For example, when the hydrogen yield is 73%, the catalyst temperature is 677 ° C. when the hydrogen yield is 70% with respect to the catalyst temperature of 571 ° C. Thus, the combustion catalyst temperature changes sensitively to slight changes in operating conditions.
[0033]
As described above, the effect of introducing cooling air into the catalytic combustor is calculated based on the result of trial calculation for a hydrogen yield of 73% in an apparatus having a hydrogen production capacity of 100 Nm 3 / h. When the amount is 1.5 kg-mol / h, the combustion catalyst temperature decreases from 617 ° C. to 551 ° C. That is, the combustion catalyst temperature can be maintained at or below a desired temperature by passing a relatively small amount of cooling air through the catalyst combustor.
[0034]
【The invention's effect】
As described above, according to the present invention, a catalyst for producing a hydrogen-rich reformed gas by reacting a hydrocarbon-based raw fuel such as natural gas, LNG, LPG, or methanol with water vapor in the presence of the catalyst. A reformer comprising a layer and a burner for using combustion exhaust gas as a heating medium for the reforming reaction, a steam separator provided for supplying the steam to the reformer, and the steam separator An exhaust gas cooler for heating water in the combustion exhaust gas of the burner to generate water vapor, a compressor for pressurizing the reformed gas or reformed raw fuel, and hydrogen from the pressurized reformed gas the pressure swing adsorption apparatus for separating purification (PSA), constitutes the remaining gas after separating and removing processes of hydrogen in the PSA as feeding and burning the reformer burner, furthermore, the residual gas one In front Burner supplied separately to provided a catalytic combustor for burning said, a hydrogen generating apparatus comprising introducing into the exhaust gas cooler flue gas together with the combustion exhaust gas of the burner in the catalytic combustor, said reformer burner An air preheater for preheating the combustion air to be supplied to the burner with the combustion exhaust gas of the burner and the catalytic combustor are provided on a line for supplying the exhaust gas to the exhaust gas cooler. The residual gas of the PSA is combusted by residual oxygen contained in the combustion exhaust gas discharged from the air preheater, and the combustion exhaust gas is supplied to the exhaust gas cooler. The exhaust gas energy of both the combustion exhaust gas and the combustion exhaust gas in the combustor can be recovered, and the energy efficiency is greatly improved compared to conventional devices. .
[0035]
In addition , stable combustion can be achieved regardless of changes in the composition and flow rate of the PSA residual gas and the degree of excess residual gas.
[Brief description of the drawings]
1 is a real施例before reaching the schematic configuration view of a hydrogen generating apparatus illustrating an example of a structure in which the improvement over conventional apparatus of FIG. 3 of the present invention.
2 is a schematic configuration view of a hydrogen generating apparatus according to the actual施例of the present invention.
FIG. 3 is a schematic configuration diagram of a conventional hydrogen generator.
[Explanation of symbols]
1: reformer, 1a: burner, 1b: catalyst layer, 2: compressor, 3: pressure swing adsorption device (PSA), 4: steam separator, 6: combustor, 7: exhaust gas cooler, 8: air Preheater.

Claims (5)

炭化水素系原燃料と水蒸気とを触媒の存在下で反応させて水素リッチな改質ガスを生成するための触媒層と、燃焼排ガスを前記改質反応の加熱媒体として利用するためのバーナとを備えた改質器と、前記水蒸気を改質器に供給するために設けた水蒸気分離器と、この水蒸気分離器内の水を前記バーナの燃焼排ガスにより加熱し水蒸気を発生させるための排ガス冷却器と、前記改質ガスまたは改質原燃料を加圧するための圧縮機と、加圧された改質ガスから水素を分離精製する圧力スイング吸着装置(PSA)と、このPSAにおいて水素を分離除去処理した後の残ガスを前記改質器用バーナに供給して燃焼させるように構成し、さらに、前記残ガスの一部を前記バーナとは別途供給して燃焼させる触媒燃焼器を設け、この触媒燃焼器における燃焼排ガスを前記バーナの燃焼排ガスとともに前記排ガス冷却器に導入してなる水素発生装置であって、
前記改質器用バーナの燃焼排ガスを排ガス冷却器に供給するライン上に、前記バーナに供給する燃焼用空気を前記バーナの燃焼排ガスによって予熱するための空気予熱器と、前記触媒燃焼器とを設け、この触媒燃焼器において前記空気予熱器から排出された燃焼排ガスに含まれる残留酸素によって前記PSAの残ガスを燃焼させ、この燃焼排ガスを前記排ガス冷却器に供給してなることを特徴とする水素発生装置。
A catalyst layer for producing a hydrogen-rich reformed gas by reacting a hydrocarbon-based raw fuel with water vapor in the presence of a catalyst, and a burner for using combustion exhaust gas as a heating medium for the reforming reaction. A reformer provided, a steam separator provided for supplying the steam to the reformer, and an exhaust gas cooler for generating steam by heating the water in the steam separator with the combustion exhaust gas of the burner A compressor for pressurizing the reformed gas or reformed raw fuel, a pressure swing adsorption device (PSA) for separating and purifying hydrogen from the pressurized reformed gas, and a process for separating and removing hydrogen in the PSA the residual gas after constituted as feeding and burning the reformer burner, further provided with a catalytic combustor for combusting a portion of the residual gas separately supplied to the burner, the catalytic combustion In vessel A hydrogen generating apparatus comprising introducing baked exhaust to the exhaust gas cooler with flue gases of the burner,
An air preheater for preheating the combustion air supplied to the burner with the combustion exhaust gas of the burner, and the catalytic combustor are provided on a line for supplying the combustion exhaust gas of the reformer burner to the exhaust gas cooler. In the catalyst combustor, hydrogen remaining in the PSA is burned by residual oxygen contained in the combustion exhaust gas discharged from the air preheater, and the combustion exhaust gas is supplied to the exhaust gas cooler. Generator.
請求項記載の水素発生装置において、前記触媒燃焼器は、冷却用の空気導入ラインを備えたことを特徴とする水素発生装置。In the hydrogen generating apparatus according to claim 1, wherein the catalytic burner, the hydrogen generating apparatus characterized by comprising an air inlet line for cooling. 請求項記載の水素発生装置の運転方法において、前記触媒燃焼器の温度を検出し、この温度が所定の設定温度となった際に冷却用の空気を導入することを特徴とする水素発生装置の運転方法。 3. The operation method of the hydrogen generator according to claim 2 , wherein the temperature of the catalytic combustor is detected, and cooling air is introduced when the temperature reaches a predetermined set temperature. Driving method. 請求項1または2記載の水素発生装置の運転方法であって、前記改質器における改質反応に必要な熱量を確保するために、前記改質器の温度を検出し、この温度が所定の設定温度となるように、前記バーナおよび触媒燃焼器への残ガスの流量を制御することを特徴とする水素発生装置の運転方法。A claim 1 or the method of operating the hydrogen generating apparatus of the second aspect, in order to secure the amount of heat required for the reforming reaction in the reformer to detect a temperature of the reformer, the temperature is predetermined A method for operating a hydrogen generator, comprising controlling a flow rate of residual gas to the burner and the catalytic combustor so as to reach a set temperature. 請求項1または2記載の水素発生装置の運転方法において、前記水蒸気分離器は電気ヒータまたはボイラーの追加の熱源を備え、前記改質器における改質反応に必要な水蒸気量を確保するために、前記水蒸気分離器内の圧力を検出し、この圧力が所定の圧力を維持するように前記追加の熱源の発生熱量を制御することを特徴とする水素発生装置の運転方法。According to claim 1 or 2 the method of operating a hydrogen generating apparatus, wherein the steam separator comprises an additional heat source of an electric heater or boiler, in order to secure the amount of steam required for the reforming reaction in the reformer A method for operating a hydrogen generator, comprising: detecting a pressure in the water vapor separator and controlling the amount of heat generated by the additional heat source so that the pressure maintains a predetermined pressure.
JP2000266966A 2000-09-04 2000-09-04 Hydrogen generator and operation method thereof Expired - Fee Related JP4172740B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000266966A JP4172740B2 (en) 2000-09-04 2000-09-04 Hydrogen generator and operation method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000266966A JP4172740B2 (en) 2000-09-04 2000-09-04 Hydrogen generator and operation method thereof

Publications (2)

Publication Number Publication Date
JP2002068708A JP2002068708A (en) 2002-03-08
JP4172740B2 true JP4172740B2 (en) 2008-10-29

Family

ID=18753960

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000266966A Expired - Fee Related JP4172740B2 (en) 2000-09-04 2000-09-04 Hydrogen generator and operation method thereof

Country Status (1)

Country Link
JP (1) JP4172740B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004247290A (en) * 2003-01-21 2004-09-02 Honda Motor Co Ltd Hydrogen feeder
JP4098167B2 (en) 2003-06-16 2008-06-11 本田技研工業株式会社 Fuel gas generation method and apparatus
JP4612322B2 (en) * 2004-03-31 2011-01-12 本田技研工業株式会社 Fuel gas production system and operation method thereof

Also Published As

Publication number Publication date
JP2002068708A (en) 2002-03-08

Similar Documents

Publication Publication Date Title
US6878362B2 (en) Fuel processor apparatus and method based on autothermal cyclic reforming
US6767530B2 (en) Method for producing hydrogen
JP2008512336A (en) Method for producing hydrogen and / or carbon monoxide
US20100284892A1 (en) Process For The Purification Of A Carbon Dioxide Stream With Heating Value And Use Of This Process In Hydrogen Producing Processes
JP2007254180A (en) Self-sustained lower hydrocarbon direct decomposition process and process system thereof
KR20230029630A (en) How to produce hydrogen
KR100286620B1 (en) Steam reforming type hydrogen production method and apparatus
NO176339B (en) Procedure for converting fuel to electricity
WO2006080544A1 (en) Apparatus and method for hydrogen generation
JP4172740B2 (en) Hydrogen generator and operation method thereof
JPH111301A (en) Production of hydrogen
JP4116731B2 (en) Hydrogen generator and operation method thereof
TW202408660A (en) Process
JP5348938B2 (en) Carbon monoxide gas generator and method
JP4196249B2 (en) Hydrogen generator
JP4147446B2 (en) Hydrogen generator
JPH0648701A (en) Steam-reforming reactor
JPS6347228B2 (en)
JP5285952B2 (en) Carbon monoxide gas generator and method
JP2003128401A (en) Apparatus for generating hydrogen and it's operating method
JPS6264067A (en) Fuel battery system
JP2016513004A (en) Method and apparatus for separating carbon dioxide from spent gas
WO2017130758A1 (en) Combustion gas supply system
JP4049526B2 (en) Method for starting reformer for fuel cell
KR102555438B1 (en) Solid oxide fuel cell system having plural reformers

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051227

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080516

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080522

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080708

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080807

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080811

R150 Certificate of patent or registration of utility model

Ref document number: 4172740

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110822

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110822

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110822

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110822

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110822

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110822

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120822

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120822

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130822

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees