JPS6347228B2 - - Google Patents

Info

Publication number
JPS6347228B2
JPS6347228B2 JP57048003A JP4800382A JPS6347228B2 JP S6347228 B2 JPS6347228 B2 JP S6347228B2 JP 57048003 A JP57048003 A JP 57048003A JP 4800382 A JP4800382 A JP 4800382A JP S6347228 B2 JPS6347228 B2 JP S6347228B2
Authority
JP
Japan
Prior art keywords
inert gas
purge
fuel
fuel cell
procedure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP57048003A
Other languages
Japanese (ja)
Other versions
JPS58164167A (en
Inventor
Minoru Tada
Tsutomu Toida
Toshihide Nogi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kansai Electric Power Co Inc
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Kansai Denryoku KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd, Kansai Denryoku KK filed Critical Fuji Electric Co Ltd
Priority to JP57048003A priority Critical patent/JPS58164167A/en
Publication of JPS58164167A publication Critical patent/JPS58164167A/en
Publication of JPS6347228B2 publication Critical patent/JPS6347228B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04223Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids during start-up or shut-down; Depolarisation or activation, e.g. purging; Means for short-circuiting defective fuel cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04223Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids during start-up or shut-down; Depolarisation or activation, e.g. purging; Means for short-circuiting defective fuel cells
    • H01M8/04225Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids during start-up or shut-down; Depolarisation or activation, e.g. purging; Means for short-circuiting defective fuel cells during start-up
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04223Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids during start-up or shut-down; Depolarisation or activation, e.g. purging; Means for short-circuiting defective fuel cells
    • H01M8/04228Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids during start-up or shut-down; Depolarisation or activation, e.g. purging; Means for short-circuiting defective fuel cells during shut-down
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/043Processes for controlling fuel cells or fuel cell systems applied during specific periods
    • H01M8/04302Processes for controlling fuel cells or fuel cell systems applied during specific periods applied during start-up
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/043Processes for controlling fuel cells or fuel cell systems applied during specific periods
    • H01M8/04303Processes for controlling fuel cells or fuel cell systems applied during specific periods applied during shut-down
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Description

【発明の詳細な説明】 本発明は、天然ガス等の原料を水蒸気改質およ
び一酸化炭素変成等のごとく改質・変成して水素
ガス等の燃料を生成する燃料処理装置と、生成さ
れた燃料および空気等の酸化剤の供給を受けて発
電を行う燃料電池ならびにその補機を含めた燃料
電池装置とからなる燃料電池発電システム、とく
にその起動過程における停止方法に関するもので
ある。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a fuel processing device for reforming and converting raw materials such as natural gas through steam reforming, carbon monoxide conversion, etc. to produce fuels such as hydrogen gas; The present invention relates to a fuel cell power generation system comprising a fuel cell device that generates power by receiving supply of fuel and an oxidizing agent such as air, and a fuel cell device including its auxiliary equipment, and particularly relates to a method of stopping the system during its startup process.

一般に、プラント運転中にプラントを停止させ
る場合には、停止させる理由や条件にもとづいて
停止モードを変える場合が少なくないが、プラン
トの起動過程において各構成部分の有機的な起動
操作が満足されない場合には、運転中と異なりま
だ初期段階ということで単一の停止モードにて停
止操作が行なわれるのが通常である。
Generally, when stopping a plant during plant operation, the stop mode is often changed based on the reason and conditions for the stop, but when the organic start-up operation of each component is not satisfied during the start-up process of the plant, Unlike during operation, the engine is still in its early stages, so it is normal to perform a stop operation in a single stop mode.

ところで可燃性ガスを取扱う燃料発電システム
においては、停止操作時に系内の不活性ガスによ
るパージないし置換操作が実施されるが、起動過
程時にも系内を不活性ガスにて予備加熱する操作
が行なわれる。このため、起動過程においてシス
テムを停止させる場合に、単一の停止モードを採
用すると、不活性ガスを予備加熱のために注入し
てパージしたのち、直ちに停止のための不活性ガ
スを再注入するなどのむだな操作が行なわれた
り、停止時間が最長の条件に合わせられて不必要
に長引いたりする欠点がある。
By the way, in a fuel power generation system that handles flammable gas, the system is purged or replaced with an inert gas when it is shut down, but the system is also preheated with an inert gas during the startup process. It will be done. Therefore, when the system is stopped during the startup process, if a single stop mode is used, inert gas is injected for preheating, purged, and then inert gas is immediately reinjected for shutdown. There are disadvantages in that unnecessary operations such as these are performed, and that the stop time is unnecessarily prolonged based on the longest conditions.

また、燃料処理装置と燃料電池装置とで停止モ
ードを複数用意して個別に停止させようとする場
合には、両装置における停止条件が異なるため
に、一連の停止動作をプログラムする際、操作順
序と時間との関連づけが複雑となつて、条件の重
複や欠落等が生じやすくなり、プログラム作成が
非常に面倒になる。
In addition, when preparing multiple stop modes for the fuel processing device and the fuel cell device and trying to stop them individually, the stop conditions for both devices are different, so when programming a series of stop operations, it is necessary to The relationship between time and time becomes complicated, and conditions tend to be duplicated or missing, making program creation extremely troublesome.

そこで本発明は冒頭に述べた様式の燃料電池発
電システムを起動過程において停止させる際に、
従来よりも短時間かつむだな操作を要せずに停止
させることができ、かつ停止動作プログラムがよ
り簡単となる停止方法を提供することを目的とす
るものである。
Therefore, the present invention provides the following advantages when stopping the fuel cell power generation system of the type described at the beginning during the startup process.
It is an object of the present invention to provide a stopping method that can be stopped in a shorter time and without requiring unnecessary operations than in the past, and that allows a simpler stopping operation program.

この目的は、本発明によれば、燃料処理装置と
燃料電池装置の停止モードをそれぞれ二つずつの
特定停止モードに分け、各装置毎に個有の切換条
件をもとにこれらの特定停止モードを自動的に選
択させる停止方法によつて達成されるものであつ
て、即ち、この発明方法によれば、不活性ガスパ
ージ手段と、水蒸気パージ手段と、起動用不活性
ガス予熱手段とを有し、原燃料を改質・変成して
燃料を生成する燃料処理装置と、不活性ガスパー
ジ手段と、起動用不活性ガス予熱および酸化剤ガ
ス加熱手段とを有し、前記燃料と酸化剤の供給を
受けて発電を行う燃料電池装置とを備えた燃料電
池発電システムの運転方法であつて、該システム
の定常運転後の停止手順として、前記燃料処理装
置は水蒸気パージ後に不活性ガスパージを行つた
後所定の弁操作を行い、前記燃料電池装置は、酸
化剤ガス加熱停止後に不活性ガスパージを行つた
後所定の弁操作を行う手順を含み、前記システム
の起動手順として、前記燃料処理装置は不活性ガ
ス予熱後に水蒸気パージを行い、前記燃料電池装
置は、前記加熱手段による加熱後に改質ガスを供
給する手順を含む燃料電池発電システムの運転方
法において、前記燃料処理装置の起動過程におけ
る停止手順を前記水蒸気パージ開始前後の条件で
切換え、水蒸気パージ開始前は不活性ガス予熱手
順を停止し、水蒸気パージ開始後は定常運転後の
停止手順と同様に水蒸気パージ後に不活性ガスパ
ージを行つた後所定の弁操作を行う手順とし、前
記燃料電池装置の起動過程における停止手順を前
記加熱手段による加熱開始前後の条件で切換え、
加熱開始前は所定の弁操作を行い、加熱開始後は
定常運転後の停止手順と同様に酸化剤ガス加熱停
止後に不活性ガスパージを行つた後所定の弁操作
を行う手順とすることとする。
According to the present invention, the purpose of this is to divide the stop modes of the fuel processing device and the fuel cell device into two specific stop modes each, and select these specific stop modes based on switching conditions specific to each device. This is achieved by a stopping method that automatically selects the stoppage method. That is, according to the method of the present invention, the method includes an inert gas purge means, a water vapor purge means, and an inert gas preheating means for starting. , a fuel processing device for reforming and converting raw fuel to produce fuel, an inert gas purge means, and a start-up inert gas preheating and oxidizing gas heating means, and supplying the fuel and the oxidizing agent. 2. A method of operating a fuel cell power generation system comprising a fuel cell device that receives electricity and generates electricity, wherein as a stop procedure after steady operation of the system, the fuel processing device performs a water vapor purge, then an inert gas purge, and then performs a predetermined operation. The fuel cell device performs a predetermined valve operation after stopping the oxidizing gas heating, performs an inert gas purge, and then performs a predetermined valve operation, and as a startup procedure of the system, the fuel processing device In the operating method of a fuel cell power generation system including a step of performing a steam purge after preheating, and supplying reformed gas after heating by the heating means, the fuel cell device performs a stop procedure in the startup process of the fuel processing device using the steam purge. Switching is done depending on the conditions before and after the start of purge. Before the start of steam purge, the inert gas preheating procedure is stopped, and after the start of steam purge, the inert gas purge is performed after steam purge, and then the specified valve operation is performed in the same way as the stop procedure after steady operation. and switching the stopping procedure in the startup process of the fuel cell device depending on the conditions before and after the start of heating by the heating means,
Before the start of heating, a predetermined valve operation is performed, and after the start of heating, the procedure is to perform an inert gas purge after stopping the oxidant gas heating, and then perform a predetermined valve operation, similar to the stop procedure after steady operation.

これにより同一のシステム停止命令によりシス
テム全体を効率よく停止させることが可能とな
る。
This makes it possible to efficiently stop the entire system with the same system stop command.

本発明のその他の目的ないしは好適な実施態様
は以下に述べる本発明の実施例の説明において明
らかにする。
Other objects or preferred embodiments of the invention will become apparent in the following description of embodiments of the invention.

第1図は本発明の一実施例の基本系統図であ
る。
FIG. 1 is a basic system diagram of an embodiment of the present invention.

第1図において、図面の右方に示す10は水素
―酸素(空気)型の燃料電池で、燃料室11、酸
化剤(空気)室12、電極13および14ならび
に電解液室ないしは電解液含浸マトリツクス15
から構成されている。空気室12には、空気源1
6からブロア17を介して空気が給送される。
100番台,200番台および300番台の符号を付した
ものは弁であり、動作は後述する。空気は燃料電
池起動時および必要に応じて運転時にブロア18
および起動用空気加熱器19を介して一部循環さ
せられて所定の温度に保持される。前記起動用空
気加熱器19は、起動用不活性ガス予熱および酸
化剤ガス加熱手段に相当するものであつて、不活
性ガスパージがなされた状態で起動する際には、
該加熱器19のバーナが点火され、不活性ガスを
予熱し、ほどなく空気が導入されて空気が加熱さ
れる。燃料室11には原料ガスを水蒸気改質して
得た水素を多量に含む燃料ガスが供給される。改
質プロセスは次のとおりである。
In FIG. 1, numeral 10 shown on the right side of the drawing is a hydrogen-oxygen (air) type fuel cell, which includes a fuel chamber 11, an oxidizer (air) chamber 12, electrodes 13 and 14, and an electrolyte chamber or an electrolyte-impregnated matrix. 15
It consists of The air chamber 12 includes an air source 1
Air is supplied from 6 through a blower 17.
Items numbered in the 100s, 200s, and 300s are valves, and their operations will be described later. Air is supplied by blower 18 when starting up the fuel cell and when operating as necessary.
A part of the air is circulated through the startup air heater 19 and maintained at a predetermined temperature. The startup air heater 19 corresponds to inert gas preheating and oxidant gas heating means for startup, and when starting with the inert gas purged,
The burner of the heater 19 is ignited to preheat the inert gas, and soon air is introduced and heated. The fuel chamber 11 is supplied with a fuel gas containing a large amount of hydrogen obtained by steam reforming the raw material gas. The modification process is as follows.

まず原料ガスとしては、メタンガスを主成分と
する天然ガスが用いられるが、改質用の触媒の活
性低下の原因となる硫黄分を除去するために、原
料ガス源21からの原料ガスに水素(たとえば後
述する気水分離器49からの水素含有ガスの一
部)を添加して、脱硫反応器24に送り込む。脱
硫反応器24において硫黄分を除去されて原料ガ
スは、水蒸気発生装置25からの水蒸気とともに
改質装置30に送られる。改質装置30はたとえ
ば外部加熱形の多管式反応炉として構成され、メ
タンガスと水蒸気とをたとえばニツケル系触媒に
より反応させて、一酸化炭素と水素とを生成す
る。改質装置30には、燃料電池の空気室12か
らの排出ガスを配管32を介して供給するととも
に、燃料電池の燃料室11からの排出ガスを、場
合によつては補助燃料としての原料ガスの一部と
混合したうえで配管34を介して供給し、改質装
30内のバーナで燃焼させる。
First, natural gas containing methane gas as a main component is used as the raw material gas, but in order to remove the sulfur content that causes a decrease in the activity of the reforming catalyst, hydrogen ( For example, a portion of hydrogen-containing gas from a steam/water separator 49 (to be described later) is added and sent to the desulfurization reactor 24. The raw material gas from which sulfur content has been removed in the desulfurization reactor 24 is sent to the reformer 30 together with steam from the steam generator 25 . The reformer 30 is configured as, for example, an externally heated multitubular reactor, and reacts methane gas and steam using, for example, a nickel-based catalyst to generate carbon monoxide and hydrogen. The reformer 30 is supplied with exhaust gas from the air chamber 12 of the fuel cell via a pipe 32, and also with exhaust gas from the fuel chamber 11 of the fuel cell, and in some cases with raw material gas as auxiliary fuel. After being mixed with a portion of the fuel, it is supplied through the pipe 34 and burned in the burner in the reformer 30 .

さて、改質装置30を通過して水蒸気改質され
た原料ガスは、燃料電池10の電極13を劣化さ
せる一酸化炭素を含んでいるので、一酸化炭素変
成器40に送られ、そこで一酸化炭素を二酸化炭
素に変成する。
Now, the raw material gas that has passed through the reformer 30 and been reformed by steam contains carbon monoxide that degrades the electrodes 13 of the fuel cell 10 , so it is sent to the carbon monoxide shift converter 40, where it is oxidized by monoxide. Converts carbon into carbon dioxide.

かくして精製された水素を含む燃料ガスは冷却
器48にて冷却されたのち、気水分離器49にて
水分を分離され、リザーバタンク50を介して燃
料電池10の燃料室11に供給される。燃料ガス
は、燃料室に供給される前に適当な方法で所定の
温度に予熱される。
The hydrogen-containing fuel gas purified in this manner is cooled in a cooler 48 , water is separated in a steam separator 49 , and then supplied to the fuel chamber 11 of the fuel cell 10 via a reservoir tank 50 . The fuel gas is preheated to a predetermined temperature by a suitable method before being supplied to the fuel chamber.

燃料電池10の出力は直流(DC)であるので、
サイリスタ変換装置60にて交流(AC)に変換
して最終的な出力とされる。
Since the output of the fuel cell 10 is direct current (DC),
The thyristor converter 60 converts it into alternating current (AC) and makes it the final output.

なお、図において黒く塗り潰した配管系統は燃
料ガスの主経路、二本の線で管状に示されている
配管系統は空気ガスの主径路である。
In the figure, the piping system shaded in black is the main route for fuel gas, and the piping system shown in a tubular shape with two lines is the main route for air gas.

次に起動過程の停止方法を説明する前に、今ま
で述べた部分についての停止時の系統内ガスの排
出ないし置換方法の実施例を説明する。図におい
て100番台の符号を付した弁は遮断弁であり、理
解を容易にするために弁記号を黒く塗り潰してあ
る。200番台の符号を付しかつ黒く塗り潰してい
ない弁は、次の機能を有する。
Next, before explaining the method for stopping the startup process, an example of a method for discharging or replacing gas in the system at the time of stopping the parts described so far will be described. In the figure, the valves numbered in the 100s are shutoff valves, and the valve symbols are blacked out to make it easier to understand. Valves numbered in the 200s and not shaded out have the following functions:

すなわち、奇数番号である201,203,2
05,207,209および211を付された弁
は不活性ガスたとえば窒素(以下N2で示す)送
入弁で、送入を意味する内向きの矢印が付されて
いる。
That is, the odd numbers 201, 203, 2
Valves labeled 05, 207, 209 and 211 are inert gas, such as nitrogen (hereinafter referred to as N2 ), inlet valves and are marked with inward arrows indicating inlet.

また、偶数番号である200,202,20
4,206,208および210を付された弁は
ベント(排出)弁で、排出を意味する外向きの矢
印が付されている。
Also, even numbers 200, 202, 20
Valves labeled 4, 206, 208, and 210 are vent valves with outward arrows indicating venting.

さて、これらの弁により、図の実施例ではシス
テムの配管系統は次の6系統に分割される。すな
わち第1の系統は、遮断弁101と遮断弁111
との間の補助燃料系統で、N2送入弁203より
N2を送入しベント弁204より排出する。第2
の系統は、遮断弁102と遮断弁104との間の
脱硫系統で、N2送入弁201よりN2を送入しベ
ント弁202より排出する。第3の系統は、遮断
弁104と遮断弁109との間の改質装置30
一酸化炭素変成器40、気水分離器49、リザー
バタンク50を含む燃料改質・変成系統で、当初
は遮断弁105とベント弁200を開いて系内を
水蒸気でパージし、次いで遮断弁105を閉じ
N2送入弁211からN2を送入する。N2送入弁2
11を省略する場合には、遮断弁104を開いて
N2送入弁201からのN2によりN2パージおよび
置換を行なう。第4の系統は、遮断弁108と遮
断弁110との間の燃料電池の燃料室11を含む
系統で、N2送入弁207からN2を送入し、ベン
ト弁208より排出する。第5の系統は、遮断弁
109,110と遮断弁111,114との間の
燃料電池燃料排ガスを改質装置バーナへ送る系統
で、N2送入弁205からN2を送入しベント弁2
06より排出する。最後に第6の系統は、遮断弁
115、遮断弁116との間の燃料電池の空気室
12を含む系統で、N2送入弁209からN2を送
入しベント弁210より排出する。
Now, with these valves, the piping system of the system is divided into the following six systems in the illustrated embodiment. That is, the first system includes the cutoff valve 101 and the cutoff valve 111.
from the N2 inlet valve 203 in the auxiliary fuel system between the
N 2 is introduced and discharged from the vent valve 204. Second
The system is a desulfurization system between the cutoff valve 102 and the cutoff valve 104, in which N2 is fed through the N2 feed valve 201 and discharged through the vent valve 202. The third system includes a reformer 30 between the cutoff valve 104 and the cutoff valve 109;
A fuel reforming/transforming system including a carbon monoxide shift converter 40, a steam separator 49, and a reservoir tank 50. Initially, the shutoff valve 105 and vent valve 200 are opened to purge the system with steam, and then the shutoff valve 105 close
N2 is supplied from the N2 supply valve 211. N 2 Inlet valve 2
If step 11 is omitted, open the shutoff valve 104.
N2 purging and replacement are performed with N2 from the N2 inlet valve 201. The fourth system is a system that includes the fuel chamber 11 of the fuel cell between the cutoff valve 108 and the cutoff valve 110, in which N2 is fed in from the N2 feed valve 207 and discharged from the vent valve 208. The fifth system is a system that sends the fuel cell fuel exhaust gas between the cutoff valves 109 and 110 and the cutoff valves 111 and 114 to the reformer burner, and feeds N2 from the N2 feed valve 205 to the vent valve. 2
Discharge from 06. Finally, the sixth system is a system including the air chamber 12 of the fuel cell between the shutoff valve 115 and the shutoff valve 116, in which N2 is fed through the N2 inlet valve 209 and discharged through the vent valve 210.

以上のように系統分割を行なうことにより、サ
ーマルシヨツクを軽減し触媒を保護するために、
第3の系統は他の系統と切り離して水蒸気パージ
を実行でき、第1,第2,第4および第5の系統
は、その間にN2による可燃性ガスパージが可能
であり、第6の系統も同時にN2置換を行うこと
により、第4の系統との間の、すなわち燃料電池
の両電極間の差圧調整および電池スタツク内部保
護を行うことができるなどの効果が得られる。
By dividing the system as described above, in order to reduce thermal shock and protect the catalyst,
The third system can perform steam purge separately from other systems, the first, second, fourth and fifth systems can perform flammable gas purge with N2 between them, and the sixth system can also perform a flammable gas purge with N2 . By performing N2 substitution at the same time, effects such as being able to adjust the differential pressure with the fourth system, that is, between both electrodes of the fuel cell and protect the inside of the cell stack, can be obtained.

以上述べた不活性ガス置換方法は、既に本出願
人等により特願昭56―97121号として提案されて
いるものである。
The inert gas replacement method described above has already been proposed by the present applicant in Japanese Patent Application No. 1987-97121.

次に本発明の目的とする起動過程時に関与する
構成機器について説明する。
Next, the component devices involved in the startup process, which is the object of the present invention, will be explained.

まず、燃料処理装置(24,30,40などか
らなる)に対しては、起動用循環機70、配管8
1および遮断弁301,302が関与する。起動
時には起動用循環機70により別途図示しない起
動用不活性ガス予熱手段により予熱された不活性
ガス(N2ガス)が遮断弁301,302の開路
により脱硫器24,改質装置30、一酸化炭素変
成器40等に循環供給される。燃料生成に入れる
程度に上記系内が加熱されると、遮断弁301,
302は閉じられる。その後、水蒸気パージ手段
を構成する水蒸気発生装置25からの水蒸気がし
や断弁105を開路することにより系内に送入さ
れ蒸気によるパージが行なわれる。したがつてし
や断弁105を開く前は燃料処理装置の系内には
N2ガスが充満しており、しや断弁105を開い
た後は水蒸気が一部または全部送入された状態と
なる。それゆえ、しや断弁105の開路直前が一
つの切換信号としての意味を持つ。
First, for the fuel processing device (consisting of 24, 30, 40, etc.), the starting circulator 70, the piping 8
1 and shutoff valves 301 and 302 are involved. At startup, the inert gas (N 2 gas) preheated by the startup inert gas preheating means (not shown separately) by the startup circulator 70 is supplied to the desulfurizer 24, reformer 30 , and monoxide by opening the shutoff valves 301 and 302. It is circulated and supplied to the carbon transformer 40 and the like. When the inside of the system is heated to the extent that it can be used for fuel production, the shutoff valve 301,
302 is closed. Thereafter, steam from the steam generator 25 constituting the steam purging means is introduced into the system by opening the shutoff valve 105, and purging is performed by steam. Therefore, before opening the valve 105, there is no air in the fuel processing system.
It is filled with N 2 gas, and after opening the cut-off valve 105, some or all of the water vapor is supplied. Therefore, the moment immediately before the opening of the bow valve 105 has a meaning as a switching signal.

次に燃料電池装置(10,19などを含む)に
対しては、原料ガス源21から遮断弁303およ
び配管82を介して起動用不活性ガス予熱および
酸化剤ガス加熱手段である起動用空気加熱器19
に原料ガスが送られ該加熱器19のバーナが点火
されブロア18により空気室12、したがつて燃
料電池10全体が加熱空気により昇温される。燃
料電池は約200℃近辺の作動温度に保たれる必要
があるから、起動用空気加熱器19のバーナ点火
は燃料電池が発電準備態勢に入るか否かの分れ目
となる。それゆえこれが一つの切換信号としての
意味を持つことになる。
Next, for the fuel cell device (including 10 , 19, etc.), starting inert gas preheating and starting air heating, which is an oxidant gas heating means, are carried out from the raw material gas source 21 through the shutoff valve 303 and piping 82. vessel 19
The raw material gas is sent to , the burner of the heater 19 is ignited, and the temperature of the air chamber 12 and therefore the entire fuel cell 10 is raised by the heated air by the blower 18 . Since the fuel cell needs to be maintained at an operating temperature of about 200° C., ignition of the burner of the startup air heater 19 is the deciding factor whether the fuel cell is ready to generate power or not. Therefore, this has a meaning as a switching signal.

かくして燃料処理装置側の停止モードは、遮断
弁105が開かれる前と後とで即ち、水蒸気パー
ジ開始前後の条件を切換条件として二つの特定停
止モードに分別される。
Thus, the stop mode on the fuel processing device side is divided into two specific stop modes before and after the cutoff valve 105 is opened, that is, with the conditions before and after the start of steam purge as switching conditions.

燃料処理装置の第1の特定停止モードでは、遮
断弁101,111,114,301,および3
02が閉じられ起動用循環機70が停止させられ
る。図では説明の便宜上最少限の弁や補機しか示
されていないが、原則として停止信号検出前に操
作された機器や弁は起動前の状態にリセツトされ
る。
In the first specific stop mode of the fuel processor, shutoff valves 101, 111, 114, 301, and 3
02 is closed and the starting circulator 70 is stopped. Although only the minimum number of valves and auxiliary equipment are shown in the figure for convenience of explanation, as a general rule, equipment and valves that were operated before the stop signal was detected are reset to the state before activation.

燃料処理装置の第2の特定停止モードでは、遮
断弁101,111,114,102,104お
よび109が閉じられ、遮断弁105を通しての
水蒸気による系内パージを実施したのち遮断弁1
05を閉じ、ベント弁202,204および20
6を開きN2送入弁201,203および205
を開く。また遮断弁105を閉じた直後にベント
弁200を開きN2送入弁211を開く。パージ
終了後、遮断弁104とN2送入弁201のみを
開いて系内を昇圧したのちこれらを閉じる。
In the second specific stop mode of the fuel processing device, the cutoff valves 101, 111, 114, 102, 104, and 109 are closed, and after the system is purged with water vapor through the cutoff valve 105, the cutoff valve 1 is closed.
05 and vent valves 202, 204 and 20.
6 open N2 inlet valves 201, 203 and 205
open. Immediately after closing the cutoff valve 105, the vent valve 200 is opened and the N2 supply valve 211 is opened. After the purge is completed, only the shutoff valve 104 and the N 2 feed valve 201 are opened to increase the pressure in the system, and then these are closed.

これらの二つの特定停止モードを、遮断弁10
5が開かれる直前の信号を切換条件として選択
し、システム停止命令が出た際に上記切換条件が
未成立であれば第1の特定停止モードを、成立し
ていれば第2の特定停止モードを選択して装置を
停止させる。
These two specific stop modes are controlled by the shutoff valve 10.
5 is opened as the switching condition, and if the above switching condition is not satisfied when a system stop command is issued, the first specific stop mode is selected, and if it is, the second specific stop mode is selected. Select to stop the device.

次に燃料電池装置側の停止モードは、起動用空
気加熱器19のバーナが点火される前と後とで即
ち、起動用不活性ガス予熱および酸化剤ガス加熱
手段による加熱開始前後の条件を切換条件として
二つの特定停止モードに分別される。
Next, the stop mode on the fuel cell device side switches the conditions before and after the burner of the startup air heater 19 is ignited, that is, the conditions before and after the startup inert gas preheating and heating by the oxidizing gas heating means are started. The conditions are classified into two specific stop modes.

燃料電池装置の第1の特定停止モードでは、ブ
ロア18が停止させられる。この場合にも図では
説明の便宜上最少限の弁や補機しか示していない
が、原則として停止信号検出前に操作された機器
や弁は起動前の状態にリセツトされる。
In the first specific stop mode of the fuel cell device, the blower 18 is stopped. In this case as well, only the minimum number of valves and auxiliary equipment are shown in the figure for convenience of explanation, but as a general rule, equipment and valves that were operated before the stop signal was detected are reset to the state before activation.

燃料電池装置の第2の特定停止モードでは、遮
断弁108,110,115,116,303が
閉じられ、ブロア17,18が停止させられ、次
いでベント弁208,210およびN2送入弁2
07,209が開かれる。パージ終了後ベント弁
208,210およびN2送入弁207,209
が閉じられる。
In the second specific stop mode of the fuel cell device, the isolation valves 108, 110, 115, 116, 303 are closed, the blowers 17, 18 are stopped, and then the vent valves 208, 210 and the N2 inlet valve 2 are closed.
07,209 will be held. Vent valves 208, 210 and N2 inlet valves 207, 209 after purging
is closed.

これらの二つの特定停止モードを、起動用空気
加熱器19のバーナ点火確認信号を切換条件とし
て選択し、システム停止命令(燃料処理装置に対
するものと同一)が出た際に、上記切換条件が未
成立であれば第1の特定停止モードを、成立して
いれば第2の特定停止モードを選択して装置を停
止させる。
These two specific stop modes are selected using the burner ignition confirmation signal of the startup air heater 19 as a switching condition, and when a system stop command (same as that for the fuel processing device) is issued, the above switching conditions are not met. If it is true, the first specific stop mode is selected, and if it is true, the second specific stop mode is selected to stop the device.

以上の実施例で述べた二つの切換条件は最良の
切換条件であるが、これ以外の切換条件を適宜選
定することもシステムによつては可能であろう。
Although the two switching conditions described in the above embodiments are the best switching conditions, it may be possible to appropriately select other switching conditions depending on the system.

それゆえ本発明の特徴は、燃料処理装置と燃料
電池装置の各々に対し二つの特定停止モードを選
定し、同一のシステム停止命令に対して各装置個
有の切換条件を基にそれぞれの特定停止モードを
選択して、システムを停止させるところに存し、
これにより、系内に不活性ガスが充満している時
点で停止命令が出た場合には、不活性ガスのパー
ジ再注入などのむだな操作と不活性ガスの浪費を
避けることができ、また各装置ともその時点での
最短かつ有効なる停止操作を行なうことができる
ため、システム停止に要する時間を従来より短く
することが可能となり、さらに停止プログラムも
簡明となるので全体としての効率ならびに費用低
減に多大に寄与するものである。
Therefore, a feature of the present invention is to select two specific stop modes for each of the fuel processing device and the fuel cell device, and to select two specific stop modes for each of the fuel processing devices and fuel cell devices, and to select the specific stop modes for each device based on the switching conditions unique to each device in response to the same system stop command. It consists of selecting a mode and stopping the system.
As a result, if a stop command is issued while the system is full of inert gas, wasteful operations such as purging and reinjecting inert gas and waste of inert gas can be avoided. Since each device can be stopped in the shortest and most effective manner at that time, the time required to stop the system can be shorter than before, and the stop program can also be simplified, reducing overall efficiency and costs. This contributes greatly to the

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例を説明するための系統
図である。 10…燃料電池、19…起動用空気加熱器、
0…改質装置、40…一酸化炭素変成器、70…
起動用循環機、101〜117,301〜303
…遮断弁、201,203,205,207,2
09,211…N2送入弁、200,202,2
04,206,208,210…ベント弁。
FIG. 1 is a system diagram for explaining an embodiment of the present invention. 10 ...fuel cell, 19...starting air heater, 3
0... Reformer, 40... Carbon monoxide shift converter, 70...
Starting circulation machine, 101-117, 301-303
...Shutoff valve, 201, 203, 205, 207, 2
09,211...N 2 inlet valve, 200,202,2
04,206,208,210...Vent valve.

Claims (1)

【特許請求の範囲】[Claims] 1 不活性ガスパージ手段と、水蒸気パージ手段
と、起動用不活性ガス予熱手段とを有し、原燃料
を改質・変成して燃料を生成する燃料処理装置
と、不活性ガスパージ手段と、起動用不活性ガス
予熱および酸化剤ガス加熱手段とを有し、前記燃
料と酸化剤の供給を受けて発電を行う燃料電池装
置とを備えた燃料電池発電システムの運転方法で
あつて、該システムの定常運転後の停止手順とし
て、前記燃料処理装置は水蒸気パージ後に不活性
ガスパージを行つた後所定の弁操作を行い、前記
燃料電池装置は、酸化剤ガス加熱停止後に不活性
ガスパージを行つた後所定の弁操作を行う手順を
含み、前記システムの起動手順として、前記燃料
処理装置は不活性ガス予熱後に水蒸気パージを行
い、前記燃料電池装置は、前記加熱手段による加
熱後に改質ガスを供給する手順を含む燃料電池発
電システムの運転方法において、前記燃料処理装
置の起動過程における停止手順を前記水蒸気パー
ジ開始前後の条件で切換え、水蒸気パージ開始前
は不活性ガス予熱手順を停止し、水蒸気パージ開
始後は定常運転後の停止手順と同様に水蒸気パー
ジ後に不活性ガスパージを行つた後所定の弁操作
を行う手順とし、前記燃料電池装置の起動過程に
おける停止手順を前記加熱手段による加熱開始前
後の条件で切換え、加熱開始前は所定の弁操作を
行い、加熱開始後は定常運転後の停止手順と同様
に酸化剤ガス加熱停止後に不活性ガスパージを行
つた後所定の弁操作を行う手順とすることを特徴
とする燃料電池発電システムの運転方法。
1 A fuel processing device that has an inert gas purge means, a water vapor purge means, and an inert gas preheating means for starting, and generates fuel by reforming and converting raw fuel, an inert gas purge means, and an inert gas preheating means for starting. A method of operating a fuel cell power generation system comprising a fuel cell device having inert gas preheating and oxidizing gas heating means and generating power by receiving the fuel and oxidizing agent, the method comprising: As a shutdown procedure after operation, the fuel processing device performs a steam purge, an inert gas purge, and then performs a predetermined valve operation, and the fuel cell device performs an inert gas purge after stopping oxidizing gas heating, and then performs a predetermined valve operation. As a startup procedure of the system, the fuel processing device performs a steam purge after preheating an inert gas, and the fuel cell device includes a procedure of supplying reformed gas after heating by the heating means. In the method of operating a fuel cell power generation system, the stopping procedure in the startup process of the fuel processing device is switched depending on the conditions before and after the start of the steam purge, the inert gas preheating procedure is stopped before the start of the steam purge, and the inert gas preheating procedure is stopped after the start of the steam purge. Similar to the stop procedure after steady operation, the procedure is to perform a steam purge, an inert gas purge, and then operate a predetermined valve, and the stop procedure in the startup process of the fuel cell device is switched depending on the conditions before and after the start of heating by the heating means. , before the start of heating, a predetermined valve operation is performed, and after the start of heating, the procedure is to perform an inert gas purge after stopping the oxidizing gas heating, and then perform a predetermined valve operation, similar to the stop procedure after steady operation. How to operate a fuel cell power generation system.
JP57048003A 1982-03-25 1982-03-25 Stopping method of fuel cell power generating system during starting process Granted JPS58164167A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57048003A JPS58164167A (en) 1982-03-25 1982-03-25 Stopping method of fuel cell power generating system during starting process

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57048003A JPS58164167A (en) 1982-03-25 1982-03-25 Stopping method of fuel cell power generating system during starting process

Publications (2)

Publication Number Publication Date
JPS58164167A JPS58164167A (en) 1983-09-29
JPS6347228B2 true JPS6347228B2 (en) 1988-09-21

Family

ID=12791125

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57048003A Granted JPS58164167A (en) 1982-03-25 1982-03-25 Stopping method of fuel cell power generating system during starting process

Country Status (1)

Country Link
JP (1) JPS58164167A (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6222374A (en) * 1985-07-19 1987-01-30 Sanyo Electric Co Ltd Method for starting pressure-type fuel cell
JPH088111B2 (en) * 1987-12-10 1996-01-29 富士電機株式会社 Fuel cell automatic start control method
JP4909339B2 (en) * 2002-02-18 2012-04-04 大阪瓦斯株式会社 Operation method of hydrogen-containing gas generator
JP5145630B2 (en) * 2005-08-23 2013-02-20 日産自動車株式会社 Fuel cell system
JP2008081326A (en) * 2006-09-25 2008-04-10 Idemitsu Kosan Co Ltd Co converting apparatus and method, and fuel cell system and method for controlling the same
JP5406426B2 (en) 2006-09-28 2014-02-05 アイシン精機株式会社 Fuel cell system
JP2008207990A (en) * 2007-02-26 2008-09-11 Idemitsu Kosan Co Ltd Co converting apparatus and method, and fuel cell system and method for controlling the same
JP5384154B2 (en) * 2009-03-17 2014-01-08 本田技研工業株式会社 Fuel cell system

Also Published As

Publication number Publication date
JPS58164167A (en) 1983-09-29

Similar Documents

Publication Publication Date Title
US20030039871A1 (en) Method of controlling a fuel cell system
JPS6347228B2 (en)
KR101983305B1 (en) Fuel cell system with waste heat recovery for production of high pressure steam
JPH06203865A (en) Fuel cell system
JPS62190660A (en) Suspending method for fuel cell power generating plant
JPH02168570A (en) Method of generating
JPS622432B2 (en)
JP4442163B2 (en) Fuel cell system
JPH07267604A (en) Method for starting up reformer
JPH053043A (en) Fuel cell device
JPH07208200A (en) Combustion equipment for turbine compressor and method thereof
JPH0845527A (en) Operating method of fuel cell power generation device
JPS6341191B2 (en)
JP4049526B2 (en) Method for starting reformer for fuel cell
JP4172740B2 (en) Hydrogen generator and operation method thereof
JPH0878030A (en) Fuel cell power generating device
JPH10223236A (en) Fuel cell electricity-generating apparatus
JPH0757755A (en) Starting of fuel cell power generator
JPH05303971A (en) Molten carbonate fuel cell generating system
JP2004164868A (en) Hot water storage method in co-generation system, and its device
JPH1167252A (en) Fuel cell power generating device
JPH11354143A (en) Fuel cell power generating set with anode circulation line
JPH01208302A (en) Hydrogen generator of on-site type
JPH11354144A (en) Fuel cell power generating set with methanol cracker
JPH0778623A (en) Starting temperature raising method for fuel cell power generating system