JPH01208302A - Hydrogen generator of on-site type - Google Patents

Hydrogen generator of on-site type

Info

Publication number
JPH01208302A
JPH01208302A JP2875188A JP2875188A JPH01208302A JP H01208302 A JPH01208302 A JP H01208302A JP 2875188 A JP2875188 A JP 2875188A JP 2875188 A JP2875188 A JP 2875188A JP H01208302 A JPH01208302 A JP H01208302A
Authority
JP
Japan
Prior art keywords
hydrogen
fuel
tank
valve
stored
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2875188A
Other languages
Japanese (ja)
Inventor
Hiroshi Uchida
洋 内田
Youshiyuu Oota
太田 洋州
Yumito Kondo
近藤 弓人
Yoshiaki Amano
天野 義明
Akio Hanzawa
半澤 晨夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Tokyo Gas Co Ltd
Original Assignee
Hitachi Ltd
Tokyo Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd, Tokyo Gas Co Ltd filed Critical Hitachi Ltd
Priority to JP2875188A priority Critical patent/JPH01208302A/en
Publication of JPH01208302A publication Critical patent/JPH01208302A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • C01B3/34Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
    • C01B3/38Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts
    • C01B3/384Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts the catalyst being continuously externally heated

Abstract

PURPOSE:To contrive shortening of starting time, by providing a fuel tank and performing specific connection with a valved pipe, in the title device using catalytic burning method at reformer heating part. CONSTITUTION:A starting fuel tank 20, an equipment having a valve 21 to introduce a part of hydrogen from PSA 15 produced in the hydrogen generating device and a pipe having valves 22 and 23 introducing the hydrogen stored in the tank 20 to a heating part of reformer 8 are provided in a hydrogen generating device of on-site type. In operation, a part of produced hydrogen is stored in the tank 20 by opening the valve 21. At start, the hydrogen stored in the tank 20 is depressed by the depression valve 22 and supplied to the heating part of the reformer 8 via a piping path symboled as fuel 3, not illustrated, through a cross valve 23 as starting fuel. As hydrogen ignites at about 50 deg.C, the starting time is extremely reduced in comparison with conventional technique using methane igniting at about 350 deg.C as the starting fuel.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、触媒燃焼により発生する熱て炭化水素やアル
コール類を水蒸気改質して水素または水素リッチなガス
を製造するオンサイト型水素発生装置。
Detailed Description of the Invention (Field of Industrial Application) The present invention is an on-site hydrogen generation system that produces hydrogen or hydrogen-rich gas by steam reforming hot hydrocarbons and alcohols generated by catalytic combustion. Device.

(従来技術) 大型水素製造プラントで製造した水素をボンベやカード
ルに詰めて水素使用場所に輸送する代りに、水素使用場
所で必要時に必要な量だけ水素を   ・製造する据置
き式の水素発生装置はオンサイト型水素発生装置と呼ば
れており、この種の水素発生装置で製造した水素を使用
する装置の一例として、この水素または水素リッチなガ
スを燃料とする業務用燃料電池か挙げられる。業務用燃
料電池は大型発電所から送電線により供給される電力の
一部の代りに、ホテルや病院等のビル単位や地域単位の
需要場所て必要時に必要なだけの電力を発電するものと
して利用されている。
(Prior technology) Instead of packing the hydrogen produced at a large hydrogen production plant into cylinders or cards and transporting it to the hydrogen usage site, this is a stationary hydrogen generator that produces hydrogen in the required amount at the hydrogen usage site, when it is needed. is called an on-site hydrogen generator, and an example of a device that uses hydrogen produced by this type of hydrogen generator is a commercial fuel cell that uses this hydrogen or hydrogen-rich gas as fuel. Commercial fuel cells can be used to replace a portion of the electricity supplied from large power plants via power lines, and can be used to generate the amount of electricity needed when needed by buildings such as hotels and hospitals, or by regional demand locations. has been done.

従来のオンサイト型水素発生装置のシステム構成例を第
2図に示す。原料天然ガスは、脱硫塔lで硫黄分が取除
かれ、原料予熱器2で予熱された後、水蒸気を混合され
てリフオー78の反応部に供給され、ここで水素を豊富
に含むガスに改質される。リフオー78を出た改質ガス
は、プロセスボイラ9で冷却された後、シフトコンバー
タ10でガス中の一酸化炭素が水と反応し、二酸化炭素
と水素に転換される。続いてこのガスは原料予熱器2、
スチームスーパーヒーター7、ボイラ給水子熱器5、プ
ロセスガスクーラ11で冷却され。
FIG. 2 shows an example of the system configuration of a conventional on-site hydrogen generator. The raw natural gas has its sulfur content removed in the desulfurization tower 1, is preheated in the raw material preheater 2, is mixed with water vapor, and is supplied to the reaction section of the reflow 78, where it is converted into hydrogen-rich gas. questioned. The reformed gas that has exited the reflow 78 is cooled in the process boiler 9, and then in the shift converter 10, carbon monoxide in the gas reacts with water and is converted into carbon dioxide and hydrogen. Next, this gas is sent to the raw material preheater 2,
It is cooled by a steam super heater 7, a boiler water heater 5, and a process gas cooler 11.

プロセスガスクーラム12で水分が除去されて、コンプ
レッサー13で昇圧され、アフタークーラー14で再び
冷却されてPSA15に至り、PSAで純度の高い製品
水素と不純分を多く含んだパージガスとに分離される。
Moisture is removed in the process gas cooler 12, the pressure is increased by the compressor 13, and the gas is cooled again by the aftercooler 14 to reach the PSA 15, where it is separated into product hydrogen with high purity and purge gas containing many impurities.

パージガス中にはまだ可燃成分である水素や一酸化炭素
が残っているので、このパージガスはパージガスドラム
16に一旦貯えられた後、図中燃料3と記した図示しな
い経路て送られて燃料空気予熱器19で予熱されてリフ
オーマ8の加熱部の燃料として用いられる。
Since the purge gas still contains combustible components such as hydrogen and carbon monoxide, this purge gas is temporarily stored in the purge gas drum 16 and then sent through an unillustrated path marked as fuel 3 in the figure to preheat the fuel air. The fuel is preheated in a vessel 19 and used as fuel for the heating section of the reheater 8.

他方ブロワ17により昇圧された空気は、同じく燃料空
気予熱器19で予熱されリフオー78の加熱部の燃焼に
用いられる。リフオー78の加熱部には、PSA排ガス
のような低カロリーで圧力変動のあるガスを低NOxで
燃焼させることができ且つ燃焼部の容積の小さい触媒燃
焼方式が採用されている。リフオー78の起動時に必要
な加熱部の燃料および負荷増加時に不足する燃料として
は、原料天然ガスが用いられる(図示燃料1)。
On the other hand, the air pressurized by the blower 17 is similarly preheated by the fuel air preheater 19 and used for combustion in the heating section of the reflow 78. The heating section of the reflow 78 employs a catalytic combustion system that can burn low-calorie gas with pressure fluctuations, such as PSA exhaust gas, with low NOx and has a small volume of combustion section. Raw material natural gas is used as the fuel for the heating section that is necessary when starting the reflow 78 and the fuel that is insufficient when the load increases (fuel 1 in the figure).

リフオー78の起動時には、燃焼用空気はスタートアッ
プヒーター18により天然ガスのメタンの着火温度35
0℃以上に予熱される。水は、純水装置3からポンプ4
にて送り出され、ボイラ給水子熱器5て予熱され、プロ
セスガスボイラ9と補助ボイラ6により気化されて、ス
チームスーパーヒーター7により加熱され、原料天然ガ
スと混合される。
When starting up the reflow 78, the combustion air is heated to the ignition temperature of natural gas methane by the startup heater 18 at 35°C.
Preheated to 0°C or higher. Water is pumped from pure water device 3 to pump 4
The gas is sent out, preheated by the boiler feed water subheater 5, vaporized by the process gas boiler 9 and auxiliary boiler 6, heated by the steam super heater 7, and mixed with raw natural gas.

第4図は、水素または水素リッチなガスを燃料とする従
来の業務用燃料電池のシステム構成例を示す。
FIG. 4 shows an example of the system configuration of a conventional commercial fuel cell that uses hydrogen or hydrogen-rich gas as fuel.

天然ガス等の原料はエジェクタ24(または混合器)に
より水蒸気と混合されてリフオー78の反応部に供給さ
れ、ここで水素を豊富に含むガスに改質される。このガ
スは、続いてシフトコンバーター10に導かれ、・ガス
中の一酸化炭素が水と反応して二醜化炭素と水素に転換
される0次いてガス中に余分の水分がある場合はこれを
除去した後、燃料電池32のアノードAに導かれ、ここ
で約80%の水素が消費され、残り20%の水素を含む
アノード排ガスはりフォー78の加熱部BNRに戻され
、改質反応に必要な燃焼熱を発生するための燃料の一部
に用いられる。リフオー78の加熱部BNRには、前述
と同様の触媒燃焼方式が採用されている。
A raw material such as natural gas is mixed with water vapor by the ejector 24 (or mixer) and supplied to the reaction section of the reflow 78, where it is reformed into a hydrogen-rich gas. This gas is then led to the shift converter 10, where the carbon monoxide in the gas reacts with water and is converted into carbon dioxide and hydrogen.Then, if there is excess moisture in the gas, it is removed. After removal, it is led to the anode A of the fuel cell 32, where about 80% of the hydrogen is consumed, and the anode exhaust gas containing the remaining 20% hydrogen is returned to the heating section BNR of the Four 78, which is necessary for the reforming reaction. It is used as part of the fuel to generate significant combustion heat. The heating part BNR of the reflow 78 employs the same catalytic combustion method as described above.

空気はブロワ17により昇圧され、燃料電池32のカソ
ードにおよびリフオー78の加熱部BNRに供給される
Air is pressurized by the blower 17 and supplied to the cathode of the fuel cell 32 and the heating section BNR of the reflow 78.

燃料電池32のカソードKからの排出空気およびリフオ
ー78の加熱部BNRからの排ガスは合流して排ガス用
熱交換器31に導かれ、循環水等によって排ガス中の水
分が凝縮するまで冷却されて排熱回収が行なわれる0回
収された水分は水タンク29に導かれ再利用される。
The exhaust air from the cathode K of the fuel cell 32 and the exhaust gas from the heating part BNR of the reflow 78 are combined and guided to the exhaust gas heat exchanger 31, where they are cooled by circulating water or the like until the moisture in the exhaust gas is condensed, and then exhausted. The recovered moisture is led to the water tank 29 and reused.

冷却水は冷却水ポンプ27により昇圧され、燃料電池3
2の電池冷却装置に供給され、燃料電池32からの発生
熱を奪った後、蒸気発生器25でフラッシュされる。こ
こで冷却水の一部は水蒸気となり、エジェクタ24に導
かれる。残りは給水ポンプ28からの補給水と合流し、
再び冷却水ポンプ27に導かれる。この冷却水系で発生
した余剰の熱は冷却水用熱交換器26により温水等の系
て回収される。
The pressure of the cooling water is increased by the cooling water pump 27, and the pressure is increased by the cooling water pump 27.
After being supplied to the battery cooling device No. 2 and removing the heat generated from the fuel cell 32, it is flashed at the steam generator 25. Here, a part of the cooling water becomes water vapor and is guided to the ejector 24. The remaining water is combined with makeup water from the water supply pump 28,
The cooling water is guided to the cooling water pump 27 again. Excess heat generated in the cooling water system is recovered by the cooling water heat exchanger 26 as hot water or the like.

以上述べたようなオンサイト型水素製造装置や業務用燃
料電池はリフオーマの加熱部に触媒燃焼方式を用いれば
、PSA排ガスやアノード排ガスのような低カロリーの
ガスをリフオーマ加熱部の燃料として低NO,で 安定
に燃焼させることができ且つ燃焼部の容積も小さくでき
るものであるから、必要な場所で必要な量の水素や電力
を発生させてコストの合理化を図ろうとするオンサイト
型水素発生装置や業務用燃料電池の目的から見て、かか
る触媒燃焼方式のりフォーマ加熱部を採用することのメ
リットは大きい。
The on-site hydrogen production equipment and commercial fuel cells described above can use low-calorie gases such as PSA exhaust gas and anode exhaust gas as fuel for the re-o-o-mer heating part, with low NO, if a catalytic combustion method is used in the re-o-o-o-o-o-o-o-o-o-o-o-o-ma heating part. On-site hydrogen generation equipment aims to generate the required amount of hydrogen and electricity at the required location and to rationalize costs, as it is capable of stable combustion and the volume of the combustion part can be reduced. From the viewpoint of commercial fuel cells and commercial fuel cells, there are great advantages in adopting such a catalytic combustion type glue former heating section.

(発明が解決しようとする問題点) オンサイト型水素発生装置は、必要とする場所で必要と
する時に必要なだけの水素を製造することがてきるもの
であるから、迅速な起動および速い負荷応答性が求めら
れる。起動時間の決定要因はりフォーマの昇温時間であ
るが、前記従来技術のようにリフオーマの加熱部に触媒
燃焼方式を採用した場合、天然ガスの主成分であるメタ
ンの着火温度が350℃以上と高いため1着火するまて
に要する加熱時間が長くなり、起動までに時間がかかる
という問題がある。また、水素発生装置で製造した水素
または水素リッチなガスを燃料とする業務用燃料電池も
、必要とする場所て必要とする時に必要とする量の発電
をするものであるから、迅速な起動および負荷応答性が
求められる。
(Problems to be Solved by the Invention) On-site hydrogen generators can produce the required amount of hydrogen at the required location and at the required time, so they can be started up quickly and loaded quickly. Responsiveness is required. The determining factor for the start-up time is the heating time of the reformer, but when a catalytic combustion method is adopted for the heating section of the reformer as in the conventional technology, the ignition temperature of methane, the main component of natural gas, is 350°C or higher. Because of the high temperature, it takes a long time to heat up for one ignition, and there is a problem that it takes a long time to start up. In addition, commercial fuel cells that use hydrogen or hydrogen-rich gas produced by a hydrogen generator as fuel can generate the required amount of power at the required location and time, so they can be started up quickly and Load responsiveness is required.

したがって、その燃料である水素発生装置のりフォーマ
の加熱部に触媒燃焼方式を採用した場合、上述と同様の
問題がある。
Therefore, when a catalytic combustion method is adopted for the heating section of the fuel former of the hydrogen generator, problems similar to those described above arise.

本発明の目的は、リフオーマ加熱部に触媒燃焼方式を用
いたオンサイト型水素発生装M(それが水素を燃料とす
る燃料電池に利用される場合も含む)において上記問題
点を解決し、起動時間の短縮を図ることにある。
The purpose of the present invention is to solve the above-mentioned problems in an on-site hydrogen generation system M using a catalytic combustion method in the re-former heating section (including the case where it is used in a fuel cell that uses hydrogen as fuel), and to start up the system. The purpose is to save time.

(問題点を解決するための手段) 上記目的を解決するため、本発明は、炭化水素やアルコ
ール類を水蒸気改質するために必要な熱を与えるための
触媒燃焼方式の加熱部を有するリフオーマを備えたオン
サイト型水素発生装置において、起動用燃料タンクと、
該起動用燃料タンクに上記水素発生装置で発生された水
素の一部を導入する配管と、該起動用燃料タンク中に貯
えられた水素をリフオーマの加熱部に導く配管と、これ
ら配管中に設けられた開閉弁とを設けたことを特徴とす
るものである。
(Means for Solving the Problems) In order to solve the above object, the present invention provides a reformer having a catalytic combustion heating section for providing the heat necessary for steam reforming hydrocarbons and alcohols. In the on-site hydrogen generator equipped with a startup fuel tank,
A pipe for introducing a part of the hydrogen generated by the hydrogen generator into the start-up fuel tank, a pipe for guiding the hydrogen stored in the start-up fuel tank to the heating part of the reheater, and a pipe installed in these pipes. The invention is characterized in that it is provided with an on-off valve.

(作  用) 上記水素発生装置の運転中、該水素発生装置によって製
造された水素の一部を起動用燃料タンクに貯えておき、
水素発生装置の起動時には、起動用燃料タンク中に貯え
られた水素をリフオーマの加熱部に起動用燃料として供
給する。水素は約50″Cで着火するので、メタンを起
動用燃料とする従来技術に比べて起動時間は大幅に短縮
される。起動後、運転状態に入った後には、水素発生装
置によって製造された水素の一部を再び起動用燃料タン
クに貯えることによって起動時に消費した水素を補って
おく、こうすることにより、起動の都度、起動用燃料タ
ンク中の水素を起動用燃料として供給することができる
(Function) During operation of the hydrogen generator, a part of the hydrogen produced by the hydrogen generator is stored in a startup fuel tank,
When starting up the hydrogen generator, hydrogen stored in the starting fuel tank is supplied as starting fuel to the heating section of the reheater. Since hydrogen ignites at approximately 50"C, the start-up time is significantly reduced compared to conventional technology that uses methane as the start-up fuel. After start-up and operation, the hydrogen generated by the hydrogen generator is Part of the hydrogen is stored in the startup fuel tank again to replenish the hydrogen consumed during startup. By doing this, the hydrogen in the startup fuel tank can be supplied as startup fuel each time the vehicle is started. .

(実 施 例) 第1図は本発明によるオンサイト型水素発生装置の一実
施例のシステム構成を示すもので、第2図の従来例と異
なる点は、起動用燃料タンク20と、このタンク20に
水素発生装置により製造されたPSA15からの水素の
一部を導入するための弁21付き配管と、タンク20に
貯えられた水素なりフォー78の触媒燃焼方式の加熱部
に導くための弁22.23付き配管とを設けた点であり
、他の構成は第2図と同じである。
(Embodiment) FIG. 1 shows the system configuration of an embodiment of the on-site hydrogen generator according to the present invention.The difference from the conventional example shown in FIG. A pipe with a valve 21 for introducing a part of the hydrogen from the PSA 15 produced by the hydrogen generator into the tank 20, and a valve 22 for guiding the hydrogen stored in the tank 20 to the heating section of the catalytic combustion system of the Four 78. .23 piping is provided, and the other configurations are the same as in FIG. 2.

運転中、製造された水素の一部は弁21を開くことによ
って起動用燃料タンク20に貯えられる。起動時には、
タンク20に貯えられた水素な゛  減圧弁22て減圧
して、三方切換弁23を介して図中に燃料3と記した図
示しない配管路を経てリフオーマ8の加熱部に起動用燃
料として水素を供給する。水素は約50℃で着火するの
で、約350″Cで着火するメタンを起動用燃料とする
従来技術の場合に比べて起動時間は遥かに短かくなる。
During operation, a portion of the hydrogen produced is stored in the start-up fuel tank 20 by opening the valve 21. At startup,
The pressure of the hydrogen stored in the tank 20 is reduced by the pressure reducing valve 22, and hydrogen is supplied as starting fuel to the heating section of the reheater 8 via a three-way switching valve 23 and a piping path (not shown) marked as fuel 3 in the figure. supply Since hydrogen ignites at about 50°C, the start-up time is much shorter than in the prior art, where the start-up fuel is methane, which ignites at about 350"C.

リフオー78の加熱部の燃焼触媒で着火した後はタンク
20からの水素の供給を絞り1図中に燃料lと記した天
然ガスをリフオーマ8の加熱部に供給してリフオーマの
昇温を行う、系全体の動作が立ち上がり、水素が製造さ
れ始めたら三方切換弁23を切替え、PSA15のオフ
ガス(パージガス)をリフオー78の加熱部に燃料とし
て供給し、燃料の不足分は天然ガスで補う、これによっ
て前記第2図で説明したと同様の通常の運転状態になる
。運転中、弁21を開いて、発生した水素の余剰分を再
び起動用燃料20に貯える。
After ignition by the combustion catalyst in the heating section of the reflow 78, the hydrogen supply from the tank 20 is throttled, and natural gas, indicated as fuel l in Figure 1, is supplied to the heating section of the reflowr 8 to raise the temperature of the reflowr. When the operation of the entire system starts up and hydrogen begins to be produced, the three-way switching valve 23 is switched, the off-gas (purge gas) of the PSA 15 is supplied as fuel to the heating section of the reflow 78, and the shortage of fuel is made up with natural gas. The normal operating state is the same as that described in FIG. 2 above. During operation, the valve 21 is opened and the generated surplus hydrogen is stored again in the starting fuel 20.

なお、負荷増大時や装置の一時停止など、負荷である水
素需要装置への水素が不足する時には弁21を開いて起
動用燃料タンク20内の貯蔵水素を負荷である水素需要
装置に供給することかできる。この場合、タンク20内
の水素か一起動用としては不足することが考えられるが
、−時停止が短時間であれば、リフオーマ加熱部の燃焼
触媒の温度は十分高く保たれているとみてよいので、メ
タンを主成分とする天然ガスで充分起動できる。また、
負荷が急減した時には余った製造水素をタンク20に貯
蔵し、負荷が急増した場合には不足分の水素をタンク2
0から供給することによって、負荷追従性を改善するこ
とも可能である。
Note that when there is a shortage of hydrogen to the hydrogen demand device, which is the load, such as when the load increases or when the device is temporarily stopped, the valve 21 may be opened to supply the hydrogen stored in the startup fuel tank 20 to the hydrogen demand device, which is the load. I can do it. In this case, it is possible that the hydrogen in the tank 20 is insufficient for one start, but if the - time stop is short, it can be assumed that the temperature of the combustion catalyst in the re-boomer heating section is kept sufficiently high. Therefore, natural gas, whose main component is methane, is sufficient to start the process. Also,
When the load suddenly decreases, surplus produced hydrogen is stored in tank 20, and when the load suddenly increases, the hydrogen shortage is stored in tank 2.
It is also possible to improve load followability by supplying from zero.

本実施例は、起動用燃料として水素を用いためスタート
アップヒーター18の温度が低くなり、容量も小さくて
済むため、リフオーマ8の燃焼触媒を直接加熱すること
が容易となり、リフオーマの小型化と起動時間の短縮を
図ることができる。
In this embodiment, since hydrogen is used as the startup fuel, the temperature of the startup heater 18 is low and the capacity is also small, so it is easy to directly heat the combustion catalyst of the refoomer 8, which reduces the size of the refoomer and reduces the startup time. The time can be shortened.

起動用に水素を用いるだけなら、他所からボンベやカー
ドルに詰めて運ばれた水素を用いることも考えられるが
、それでは必要な場所で製造するというオンサイト形水
素製造装置の本来の意義が薄れる。これに対し、本発明
ではオンサイト型水素発生装置で製造した水素を起動用
に用いるのでこのような欠点は生じない。
If hydrogen is only used for startup, it may be possible to use hydrogen packed in cylinders or cards from elsewhere, but that would diminish the original significance of on-site hydrogen production equipment, which allows hydrogen to be produced where it is needed. On the other hand, in the present invention, such a drawback does not occur because hydrogen produced by an on-site hydrogen generator is used for startup.

第3図は、本発明によるオンサイト型水素発生装置を水
素を燃料とする業務用燃料電池システムに適用した実施
例を示すもので、第4図の従来例と異なる点は、起動用
燃料タンク20と、水素発生装置で発生させたシフトコ
ンバータから燃料電池32のアノードAに導かれる水素
の一部をタンク20に導く弁21付き配管と、タンク2
0内に貯えられた水素をリフオー78の触媒燃焼方式の
加熱部に導く弁22.23付き配管とを設けた点であり
、他の構成は第4図゛と同じである。
Figure 3 shows an embodiment in which the on-site hydrogen generator according to the present invention is applied to a commercial fuel cell system using hydrogen as fuel.The difference from the conventional example in Figure 4 is that the starting fuel tank 20, a pipe with a valve 21 that guides a part of the hydrogen that is generated by the hydrogen generator to the anode A of the fuel cell 32 from the shift converter to the tank 20, and the tank 2.
The other difference is that pipes with valves 22 and 23 are provided to guide the hydrogen stored in the reflow 78 to the catalytic combustion type heating section of the reflow 78, and other configurations are the same as in FIG.

運転中、リフオー78て製造されアノードAに向う水素
の一部を起動用燃料タンク20に貯えておき、その後の
起動時にはタンク20に貯えられた水素を起動用燃料と
してリフオー78の加熱部に導き、起動後は三方切替弁
23を切換えて、アノード排ガスをリフオー78の加熱
部に燃料として送って運転し運転時のり7オ一マ加熱部
の燃料不足分は天然ガスで補う、負荷変動時や一時停止
時における作動については第1図の実施例の場合と同じ
である。
During operation, a part of the hydrogen produced by the reflow 78 and destined for the anode A is stored in the startup fuel tank 20, and during subsequent startup, the hydrogen stored in the tank 20 is guided to the heating section of the reflow 78 as startup fuel. After startup, the three-way switching valve 23 is switched and the anode exhaust gas is sent as fuel to the heating section of the reflow 78 during operation, and the fuel shortage in the reflow 78 heating section is supplemented with natural gas. The operation during a temporary stop is the same as in the embodiment shown in FIG.

(発明の効果) 本発明によれば、触媒燃焼方式リフオーマ加熱部の持つ
特徴、すなわち、(1)低カロリーガス、低酸素濃度で
も安定した燃焼が容易にできる。(2)燃焼部分の容積
が小さくできる、(3)圧力変動の影響がない、(4)
No、の発生がすくない、という特徴を生かしながら、
パイロットバーナーも水素ボンベも用いず、スタートア
ップヒーターの容量を小さくした上で起動時間を短縮で
きる。また装置の短時間停止時の水素連続供給も可能と
なり、さらに、負荷変動を吸収するバッファの役目を果
たすこともでき、システムの負荷追従性を向上させるこ
もできる。
(Effects of the Invention) According to the present invention, the characteristics of the catalytic combustion type re-former heating section are as follows: (1) Stable combustion can be easily achieved even with low calorie gas and low oxygen concentration. (2) The volume of the combustion part can be reduced, (3) There is no effect of pressure fluctuations, (4)
While taking advantage of the feature that there are few No, occurrences,
It does not use a pilot burner or a hydrogen cylinder, reducing the capacity of the startup heater and shortening startup time. Furthermore, it is possible to continuously supply hydrogen when the device is stopped for a short time, and it can also serve as a buffer to absorb load fluctuations, thereby improving the load followability of the system.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明によるオンサイト型水素発生装置の一実
施例の概略系統図、第2図は従来のオンサイト型水素発
生装置の概略系統図、第3図は本発明によるオンサイト
型水素発生装置を用いた業務用燃料電池の概略系統図、
第4図は従来のオンサイト型水素発生装置を用いた業務
用燃料電池の概略系統図である。 l・・・脱硫塔、2・・・原料予熱器、3・・・純水装
置、4・・・ポンプ、5・・・ボイラ給水子熱器、6・
・・補助ボイラ、7・・・スチームスーパーヒーター、
8−・・リフオーマ、9・・・プロセスガスボイラ、1
0・・・シフトコンバーター、l l−・・プロセスガ
スクーラー、12・・・プロセスガスボイラ’ラム、1
3・・・コンプレッサー、14−・・アフタークーラー
、15・・・PSA、16−・・パージガスドラム、1
7・・・ブロワ、18・・・スタートアップヒーター、
19・・・燃料・空気予熱器、20・・・起動用燃料タ
ンク、21・・・貯蔵・供給用弁、22−・・減圧弁、
23・・・燃料切替弁、24・・・エジェクタ、25・
・・蒸気発生器、26・・・冷却水用熱交換器、27・
・・冷却水ポンプ、28・・・給水ポンプ、29−・・
水タンク、30・・・インバータ、31・・・排ガス用
熱交換器、32・・・燃料電池
Figure 1 is a schematic system diagram of an embodiment of an on-site hydrogen generator according to the present invention, Figure 2 is a schematic diagram of a conventional on-site hydrogen generator, and Figure 3 is an on-site hydrogen generator according to the present invention. Schematic diagram of a commercial fuel cell using a generator,
FIG. 4 is a schematic diagram of a commercial fuel cell using a conventional on-site hydrogen generator. 1... Desulfurization tower, 2... Raw material preheater, 3... Pure water device, 4... Pump, 5... Boiler feed water heater, 6...
...Auxiliary boiler, 7...Steam super heater,
8--Reformer, 9--Process gas boiler, 1
0...Shift converter, l l-...Process gas cooler, 12...Process gas boiler'ram, 1
3... Compressor, 14-... Aftercooler, 15-... PSA, 16-... Purge gas drum, 1
7... Blower, 18... Startup heater,
19... Fuel/air preheater, 20... Starting fuel tank, 21... Storage/supply valve, 22-... Pressure reducing valve,
23... Fuel switching valve, 24... Ejector, 25...
...Steam generator, 26...Cooling water heat exchanger, 27.
...Cooling water pump, 28...Water supply pump, 29-...
Water tank, 30... Inverter, 31... Exhaust gas heat exchanger, 32... Fuel cell

Claims (1)

【特許請求の範囲】[Claims]  炭化水素やアルコール類を水蒸気改質するのに必要な
熱を与えるための触媒燃焼方式の加熱部を有するリフォ
ーマを備えたオンサイト型水素発生装置において、起動
用燃料タンクと、該起動用燃料タンクに上記水素発生装
置で発生された水素の一部を導入する弁付き配管と、該
起動用燃料タンクに貯えられた水素をリフォーマの加熱
部に導く弁付き配管とを設けたことを特徴とするオンサ
イト型水素発生装置。
In an on-site hydrogen generator equipped with a reformer having a catalytic combustion type heating section for providing the heat necessary for steam reforming hydrocarbons and alcohols, a startup fuel tank and a startup fuel tank are provided. A valved pipe for introducing a part of the hydrogen generated by the hydrogen generator, and a valved pipe for guiding the hydrogen stored in the startup fuel tank to the heating section of the reformer are provided. On-site hydrogen generator.
JP2875188A 1988-02-12 1988-02-12 Hydrogen generator of on-site type Pending JPH01208302A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2875188A JPH01208302A (en) 1988-02-12 1988-02-12 Hydrogen generator of on-site type

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2875188A JPH01208302A (en) 1988-02-12 1988-02-12 Hydrogen generator of on-site type

Publications (1)

Publication Number Publication Date
JPH01208302A true JPH01208302A (en) 1989-08-22

Family

ID=12257113

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2875188A Pending JPH01208302A (en) 1988-02-12 1988-02-12 Hydrogen generator of on-site type

Country Status (1)

Country Link
JP (1) JPH01208302A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001520576A (en) * 1997-04-15 2001-10-30 インターナショナル フュエル セルズ コーポレイション Apparatus and method for producing gas
WO2004014788A1 (en) * 2002-08-09 2004-02-19 Honda Giken Kogyo Kabushiki Kaisha Hydrogen generating apparatus
JP2004352511A (en) * 2003-05-26 2004-12-16 Honda Motor Co Ltd Pure hydrogen production device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6110001A (en) * 1984-06-22 1986-01-17 Mitsubishi Heavy Ind Ltd Device for modifying fuel
JPS61197402A (en) * 1985-02-27 1986-09-01 Hitachi Ltd Apparatus for reforming fuel for fuel cell

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6110001A (en) * 1984-06-22 1986-01-17 Mitsubishi Heavy Ind Ltd Device for modifying fuel
JPS61197402A (en) * 1985-02-27 1986-09-01 Hitachi Ltd Apparatus for reforming fuel for fuel cell

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001520576A (en) * 1997-04-15 2001-10-30 インターナショナル フュエル セルズ コーポレイション Apparatus and method for producing gas
WO2004014788A1 (en) * 2002-08-09 2004-02-19 Honda Giken Kogyo Kabushiki Kaisha Hydrogen generating apparatus
JP2004352511A (en) * 2003-05-26 2004-12-16 Honda Motor Co Ltd Pure hydrogen production device

Similar Documents

Publication Publication Date Title
JP5282103B2 (en) Hydrogen recycling type MCFC power generation system
JP2002227730A (en) Gas engine
NO322669B1 (en) A high temperature fuel cell system and method for operating it
JP2010251309A (en) Solid oxide fuel cell system and cogeneration system including the same
JP2000357528A (en) Liquid fuel evaporation control method in fuel cell system
JP2662298B2 (en) Power plant with carbon dioxide separator
JPH01208302A (en) Hydrogen generator of on-site type
JPS6347228B2 (en)
JPS61218073A (en) Fuel cell system
JPH1167251A (en) Fuel cell power generating device
JP2005019245A (en) Hydrogen generating device
JPH0358154B2 (en)
JPS6264067A (en) Fuel battery system
JP7073049B2 (en) Fuel cell and combined cycle
JP2615790B2 (en) Phosphoric acid fuel cell power generation system
JP6933745B1 (en) Biogas utilization metanation system
JPH0963608A (en) Fuel cell power generating system
JPH10223236A (en) Fuel cell electricity-generating apparatus
JPH04243538A (en) Method and device for controlling catalyst layer temperature of fuel reformer for fuel battery use
JP3582131B2 (en) Molten carbonate fuel cell power generator
JPH1167252A (en) Fuel cell power generating device
JP3263936B2 (en) Fuel cell generator
JPH08339815A (en) Fuel cell power generation device
JPH07169474A (en) Methanol switching type fuel cell system
JPH10302820A (en) Fuel cell power generating facility