JP2004352511A - Pure hydrogen production device - Google Patents

Pure hydrogen production device Download PDF

Info

Publication number
JP2004352511A
JP2004352511A JP2003148361A JP2003148361A JP2004352511A JP 2004352511 A JP2004352511 A JP 2004352511A JP 2003148361 A JP2003148361 A JP 2003148361A JP 2003148361 A JP2003148361 A JP 2003148361A JP 2004352511 A JP2004352511 A JP 2004352511A
Authority
JP
Japan
Prior art keywords
gas
hydrogen
reformer
tank
pure hydrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003148361A
Other languages
Japanese (ja)
Other versions
JP4199593B2 (en
Inventor
Hikari Okada
光 岡田
Nobuyuki Kawasaki
暢之 川崎
Atsushi Machida
淳 町田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2003148361A priority Critical patent/JP4199593B2/en
Publication of JP2004352511A publication Critical patent/JP2004352511A/en
Application granted granted Critical
Publication of JP4199593B2 publication Critical patent/JP4199593B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

<P>PROBLEM TO BE SOLVED: To provide a pure hydrogen production device capable of swift starting by using pure gaseous hydrogen obtained by a PSA (pressure swing adsorption) apparatus and the off gas and/or residual gas thereof. <P>SOLUTION: The device where hydrogen-containing reformed gas obtained by the reforming of fuel containing hydrogen atoms is refined by a pressure swing adsorption method to produce pure hydrogen is provided with: (a) an evaporator 1 incorporating a catalyst combustor 15; (b) a reformer 3 connected to the downstream of the evaporator 1; (c) the PSA apparatus 7 connected to the downstream of the reformer 3; (d) a pulsation relaxation hydrogen tank 8 storing pure gaseous hydrogen obtained from the PSA apparatus; and (e) an off gas tank incorporating off gas discharged from the PSA apparatus. Then, the pulsation relaxation hydrogen tank 8 and the off gas tank 9 are connected to the catalyst combustor 15 and the reformer 3, respectively, and on starting of the pure hydrogen production device, the pure gaseous hydrogen in the pulsation relaxation hydrogen tank 8 and the off gas in the off gas tank 9 are fed to the catalyst combustor 15 and the reformer 3 in such a manner that they are appropriately switched so as to cause catalytic combustion. Thus, the catalyst combustor 15, the evaporator 1 and the reformer 3 are heated. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、炭化水素等の水素原子含有燃料を改質することにより得た水素リッチな改質ガスをPSA装置により精製して純水素ガスを製造する装置に関し、特に炭酸ガスの排出量を抑制しつつ、一酸化炭素、未燃焼炭化水素、NOx等の不純物をほとんど発生させずに素早く起動することができる純水素製造装置に関する。
【0002】
【従来の技術】
固体高分子電解質膜を燃料極(アノード)と酸素極(カソード)とで両側から挟み込んで形成されたセルを複数積層して構成された固体高分子膜型燃料電池では、燃料極に燃料として水素が供給され、酸素極に酸化剤として空気が供給されて、燃料極で触媒反応により発生した水素イオンが固体高分子電解質膜を通過して酸素極まで移動し、酸素極で酸素と電気化学反応を起こして発電する。このような燃料電池に燃料として供給する水素ガスを、炭化水素等の液体燃料(メタノールやガソリン等)や気体燃料(メタンやエタン等)を改質することにより生成する燃料電池システムが知られている。
【0003】
例えば、特開平8−225302号(特許文献1)に開示された水素製造装置は、脱硫装置、高温改質器、高温変成装置及びPSA(Pressure Swing Adsorption)装置を備えている。このうち、PSA装置は、水素以外の成分を高圧下で選択的に吸着し、減圧下で脱着する吸着剤を充填した1つ又は2つ以上の吸着塔を有する。各吸着塔にそれぞれ吸着−脱着−置換−昇圧からなる運転を循環的に行わせることにより、水素を取り出して他の成分をパージガスとして排出するように構成されている。水蒸気改質での混合ガス中で一酸化炭素は吸着し難い成分である。従って、PSA装置を経済的かつコンパクトに構成するために、PSA装置に入る混合ガス中の一酸化炭素の濃度を極力小さく抑える必要がある。そのために、PSA装置の上流にCO変性装置を配置し、CO変性反応(CO+HO→H+CO)によりCO濃度を低下させるとともに、水素濃度をできるだけ上昇させている。
【0004】
しかしながら、炭化水素燃料を改質してなる水素リッチガスからPSA装置により純水素ガスを分離して、燃料電池に供給するシステムでは、電力負荷変動に対し改質リッチガスの供給元である改質システムの負荷変動が追従できず、水素を負荷変動に対してレスポンス良く燃料電池に投入するのは困難である。
【0005】
一方、燃料電池システムの起動時において、改質器の改質触媒を所定の活性温度まで昇温させる動作として、例えば始動燃焼器においてメタノール等の始動用燃料を燃焼させ、得られた燃焼ガスにより改質器を加熱する方法[特開2000−723163号(特許文献2)]が知られている。
【0006】
その他の燃料電池システムの起動動作として、例えば改質器の上流に配置された触媒燃焼器に空気と、例えばメタノール等の燃料とを供給し、バーナにより触媒を活性化させた後メタノールと空気を直接投入し、次いで、過剰量の液体燃料を供給して蒸発させ、さらに水蒸気を混合して得た改質用原料ガスを改質器に供給する方法[特開2000−191304号(特許文献3)]も知られている。
【0007】
しかしながら、上記方式ではいずれも、メタノール等の燃料が触媒燃焼やバーナ燃焼するので、COの排出があるのみならず、未燃焼の燃料やCO等の不純物ガスの排出もあり、環境上好ましくない。その上、メタノール等の燃料を触媒燃焼させることにより改質器や蒸発器を昇温させるのに要する時間は比較的長いので、装置の起動時間が長くなるという問題もある。
【0008】
特開2002−20102号(特許文献4)は、原料炭化水素の硫黄分を除去する脱硫部と、上記脱硫部で脱硫された原料炭化水素に水蒸気を加えて水蒸気改質することで水素含有ガスを生成する水蒸気改質部と、上記水素含有ガス中の一酸化炭素と水蒸気を二酸化炭素及び水素に転換するガス変成部と、前記ガス変成部でガス変成された水素含有ガスを高純度水素に精製するPSA部と、水素含有の可燃性ガスと空気中の酸素とを燃焼反応させて、上記水蒸気改質部を加熱する触媒燃焼部とを備えた水素製造装置の起動方法において、上記触媒燃焼部に高純度水素と空気とを供給して触媒燃焼反応を起こさせることで上記水蒸気改質部を昇温させ、前記水蒸気改質部の温度が水蒸気改質の開始温度に達したとき、上記水蒸気および上記原料炭化水素の供給を開始する水素製造装置の起動方法を開示している。高純度水素はPSA部に接続した水素貯蔵タンクから触媒燃焼部に供給される。
【0009】
この水素製造装置の起動方法では、PSA部から得られた高純度水素の触媒燃焼反応により触媒燃焼部を加熱するので、排気ガスはクリーンである。しかしながら、PSA部から出たオフガスの利用については言及していない。
【0010】
一方本出願人は、水素原子を含む燃料ガスを改質触媒の水素リッチなガスに改質する装置と、前記改質ガス中の不純物ガスを吸着して純水素ガスを分離する複数の吸着塔を具備する圧力スイング吸着装置と、前記改質ガスを加圧して前記吸着塔に供給する改質ガス供給手段と、前記吸着塔に吸着した前記不純物ガスを脱着させてなるオフガスを貯溜するオフガスタンクと、前記オフガスタンクから供給される前記オフガスを燃焼可能な触媒燃焼器と、前記触媒燃焼器に触媒により燃焼可能な燃料を供給する手段とを具備する純水素製造装置であって、前記純水素製造装置の始動時に、前記オフガスタンクに貯溜されている前記オフガスを前記触媒燃焼器に供給し、前記触媒燃焼器での前記オフガスの燃焼熱により前記改質器を昇温し、前記触媒燃焼器の前記燃焼触媒が所定の活性状態に到達したときに前記触媒燃焼器への前記オフガスの供給を停止し、前記燃料供給手段により前記燃料を前記触媒燃焼器に供給し、前記改質器が所定の作動開始状態に到達したときに前記触媒燃焼器への前記燃料の供給を停止することを特徴とする純水素製造装置を先に提案した(特願2003−090573号)。
【0011】
燃料電池システムの起動時にオフガスにより燃焼触媒を所定の活性状態まで加熱する上記システムは、オフガスを有効利用するという利点があるものの、触媒燃焼器でオフガスを燃焼させると、排気ガス中に炭酸ガスが含まれるだけでなく、未燃焼の燃料や一酸化炭素、NOx等も含まれ、発電システムとしてのクリーンさが幾分低下するという問題がある。
【0012】
【特許文献1】
特開平8−225302号公報
【特許文献2】
特開2000−723163号公報
【特許文献3】
特開2000−191304号公報
【特許文献4】
特開2002−20102号公報
【0013】
【発明が解決しようとする課題】
従って、本発明の目的は、PSA装置による改質ガスの精製を利用して装置全体を小型化するとともに、PSA装置により得られた純水素ガスとともに、PSA装置のオフガス及び/又は残留ガスを使用することにより、素早くかつ効率良く起動し得る純水素製造装置を提供することである。
【0014】
【課題を解決するための手段】
すなわち、本発明の純水素製造装置は、水素原子を含む燃料の改質により得られた水素含有改質ガスを圧力スイング吸着法により精製して純水素を製造するもので、(a) 燃焼触媒を有する触媒燃焼器が内蔵された蒸発器と、(b) 前記蒸発器の下流に接続され、前記蒸発器により生成した水蒸気及び燃料から水素リッチな改質ガスを生成する改質触媒を有する改質器と、(c) 前記改質器の下流に接続され、前記改質ガスを精製して純水素ガスを得る圧力スイング吸着装置と、(d) 前記圧力スイング吸着装置から得られた脈動を有する純水素ガスを貯蔵する脈動緩和水素タンクと、(e) 前記圧力スイング吸着装置から出たオフガスを貯蔵するオフガスタンクとを具備し、前記脈動緩和水素タンク及び前記オフガスタンクはそれぞれ前記触媒燃焼器及び前記改質器に接続しており、前記純水素製造装置の起動時に、前記脈動緩和水素タンクの純水素ガス及び前記オフガスタンクのオフガスを適宜切り換えて前記触媒燃焼器及び前記改質器に送給して触媒燃焼させ、もって前記触媒燃焼器、前記蒸発器及び前記改質器を昇温させることを特徴とする。
【0015】
前記純水素ガス及び前記オフガスの切り換えはそれぞれ前記脈動緩和水素タンク及び前記オフガスタンクの残圧に基づき決定するのが好ましい。
【0016】
本発明の好ましい実施例では、前記圧力スイング吸着装置も前記触媒燃焼器及び前記改質器に接続している。この場合、前記純水素製造装置の起動時に、前記圧力スイング吸着装置の残留ガス、前記脈動緩和水素タンクの純水素ガス及び前記オフガスタンクのオフガスを適宜切り換えて前記触媒燃焼器及び前記改質器に送給して触媒燃焼させ、もって前記触媒燃焼器及び前記改質器を昇温させる。前記純水素ガス、前記オフガス及び前記残留ガスの切り換えもそれぞれ前記脈動緩和水素タンク、前記オフガスタンク及び前記圧力スイング吸着装置の残圧に基づき決定するのが好ましい。
【0017】
前記脈動緩和水素タンクの純水素ガスを最初に前記触媒燃焼器及び前記改質器に送給するのが好ましい。
【0018】
前記改質器と前記圧力スイング吸着装置との間に冷却器及び気水分離器が設けられており、もって前記改質器から出た改質ガスから水蒸気を液化して分離するのが好ましい。
【0019】
前記脈動緩和水素タンクに固体高分子電解質型燃料電池、水素貯蔵装置及び水素ディスペンサが接続しているのが好ましい。
【0020】
前記蒸発器及び前記改質器に燃料燃焼バーナが接続しており、前記圧力スイング吸着装置中の残留ガス、前記オフガスタンク中のオフガス及び前記脈動緩和水素タンク中の純水素ガスの総熱量が前記蒸発器及び前記改質器を所定の温度に加熱するのに要する熱量に達しない場合に、前記バーナで燃料を燃焼させ、その燃焼ガスを前記蒸発器及び前記改質器に送給するのが好ましい。
【0021】
【発明の実施の形態】
[1] 第一の実施例
(A) 純水素製造装置の構造
図1は本発明の第一の実施例による純水素製造装置の全体構成を概略的に示す。この純水素製造装置は、水及び燃料を蒸発するための蒸発器1と、熱交換部2を介して蒸発器1に接続した改質器3と、冷却器4及び気水分離器5及び圧縮機6を介して改質器3に接続したPSA装置7と、PSA装置7により精製された純水素ガスを貯蔵する脈動緩和水素タンク8と、PSA装置7により純水素ガスを分離した後のオフガスを貯蔵するオフガスタンク9と、脈動緩和水素タンク8に流量調整弁V1を介して接続した固体高分子電解質型燃料電池(PEFC)10と、脈動緩和水素タンク8に流量調整弁V2及び圧縮機11を介して接続した高圧水素タンク12と、高圧水素タンク12に接続した水素ディスペンサ13とを有する。
【0022】
蒸発器1にはそれを加熱するための触媒燃焼器15が内蔵されている。触媒燃焼器15は燃焼触媒として例えばPt系又はPd系の触媒を含有している。脈動緩和水素タンク8及びオフガスタンク9はそれぞれ遮断弁V3,V4を介して始動用ガスラインTLに接続しており、始動用ガスラインTLはそれぞれ噴射手段(流量制御手段)INJ−1及びINJ−2を介して改質器3及び触媒燃焼器15に接続している。この例では、触媒燃焼器15及び改質器3にそれぞれ燃料燃焼バーナ18,19が接続しており、各バーナ18,19の燃料供給ラインには遮断弁V5,V6が設けられている。
【0023】
改質器3は、Rh系、Ru系等の改質触媒を有し、改質触媒の作用により燃料を改質用空気で部分的に酸化するとともに、燃料を水蒸気で改質することにより水素リッチな改質ガスを生成する。この改質反応は吸熱反応であるが、これに必要な熱量は酸化反応により補給される。例えば燃料としてメタンを使用した場合、メタン、空気中の酸素及び水蒸気により、CH+2O → CO+2HO(発熱反応)と、CH+2HO → CO+4H(吸熱反応)とが同時に起こる。このようなオートサーマル(ATR)方式の改質器3は、外部加熱手段が不要であるので構成が簡素であり、昇温(暖機)時間が短い。
【0024】
PSA装置7は、改質器3により生成した水素リッチな改質ガスから水素ガスのみ分離するものであり、例えば図2に示す構造を有する。このPSA装置7は、第一〜第三の吸着塔71a,71b,71cと、第一〜第三の三方切換弁72a,72b,72cと、第一〜第三の均圧制御弁73a,73b,73cとを具備する。各吸着塔71a,71b,71cには、例えば活性炭やゼオライト等の吸着剤が充填されている。
【0025】
圧縮機6は、各三方切換弁72a,72b,72cを介して各吸着塔71a,71b,71cに接続しており、改質ガスは圧縮機6で加圧されて、各吸着塔71a,71b,71cに供給される。各吸着塔71a,71b,71cは改質ガスに含まれる一酸化炭素や窒素等の不純物ガスを吸着剤により吸着し、吸着されなかった純水素ガスは各吸着搭71a,71b,71cに接続した脈動緩和水素タンク8へ流通する。第一〜第三の切換制御弁72a,72b,72cのいずれか1つは、圧縮機6から各吸着塔71a,71b,71cへ向かう流通方向FINに設定されている。
【0026】
各吸着塔71a,71b,71cは、各切換制御弁72a,72b,72cを介してオフガスタンク9に接続している。第一〜第三の吸着塔71a,71b,71cのいずれかから排出された純水素ガスが洗浄ガスとして各吸着塔71a,71b,71cを流通すると、各吸着塔71a,71b,71c内の吸着剤に吸着されていた一酸化炭素や窒素等の不純物ガスが脱着して、オフガスタンク9に排出され、各吸着塔71a,71b,71c内は洗浄される。第一〜第三の切換制御弁72a,72b,72cのいずれか一つは、各吸着塔71a,71b,71cからオフガスタンク9へ向かう流通方向FOUTに設定されている。
【0027】
各吸着塔71a,71b,71cは三方切換弁73a,73b,73c介して均圧制御用流路76に接続しており、各均圧制御弁73a,73b,73cは各吸着塔71a,71b,71cから均圧制御用流路76へ向かう流通方向OUT、又は均圧制御用流路76から各吸着塔71a,71b,71cへ向かう流通方向INへの切換が可能である。
【0028】
均圧入及び均圧出の処理において、第一〜第三の均圧制御弁73a,73b,73cの1つを閉じ、もう一つを均圧制御用流路76ヘ向かう流通方向OUTに設定し、最後の一つを各吸着塔71a,71b,71cへ向かう流通方向1Nに設定すると、第一〜第三の吸着塔71a,71b,71cのいずれか2つの内圧が同じになる。
【0029】
各切換制御弁72a,72b,72c及び各均圧制御弁73a,73b,73cにより流通方向の切換を制御することにより、図3に示すように順次吸着、均圧出、減圧、洗浄、均圧入、昇圧からなる一連の処理を繰り返し、改質ガスから純水素ガスを連続的に分離する。
【0030】
第一〜第三の吸着塔71a,71b,71c、第一〜第三の切換制御弁72a,72b,72c、及び第一〜第三の均圧制御弁73a,73b,73cの制御によるPSA装置7の運転は図3に示す通りである。
【0031】
上記以外の装置については、特に断らない限り従来のものと同じでよい。
【0032】
(B) 純水素製造装置の操作
(1) 改質システムの始動
図4は改質システム(蒸発器1及び改質器3を含む)の始動の一例を示す。図4では、触媒燃焼器15の燃焼触媒の温度T及び改質器3の改質触媒の温度Tを上昇させるために脈動緩和水素タンク8の純水素ガスを使用する工程だけを示しているが、勿論本発明ではさらにオフガスタンク9のオフガスも使用する。さらにPSA装置7の残留ガス(主として水素ガス)を使用することもできる。
【0033】
純水素ガスの他にオフガス及び残留ガスを使用する場合、これらのガスの切り換えを、PSA装置7、脈動緩和水素タンク8及びオフガスタンク7の残圧に基づき決定する。この場合、純水素ガス、オフガス及び残留ガスを触媒燃焼器15及び改質器3に送給する順序は適宜設定することができる。
【0034】
図4のフローチャートは便宜上触媒燃焼器15の昇温を先に示しているが、これは触媒燃焼器15の昇温を先にすべきことを意味している訳ではなく、勿論触媒燃焼器15及び改質器3の昇温を同時に行うこともできる。しかしながら、いずれの場合も触媒燃焼器15及び改質器3に脈動緩和水素タンク8の純水素ガスを最初に送給するのが好ましい。
【0035】
図4のフローチャートの手順に従って改質システムを起動するには、まず触媒燃焼器15の燃焼触媒の温度T及び改質器3の改質触媒の温度Tを検知する(工程A2)。次いで脈動緩和水素タンク8の内圧Pが定格以上か否かを判定し(工程A3)、定格以上の場合には脈動緩和水素タンク8の内圧P及び燃焼触媒温度Tより触媒燃焼器15に供給する水素の噴射量を決定する(工程A4)。また触媒燃焼器15に始動用空気を噴射するとともに(工程A5)、脈動緩和水素タンク8より触媒燃焼器15に水素を噴射し、燃焼触媒を昇温させる(工程A6)。
【0036】
燃焼触媒温度Tが所定の温度Tc(例えば540℃)以上か否かを判定し(工程A7)、所定の温度Tc未満の場合には、工程A6を繰り返す。また所定の温度Tc以上の場合には、脈動緩和水素タンク8の内圧P及び改質触媒温度Tより、改質触媒への水素の噴射量を決定し(工程A8)、改質触媒への始動用空気を噴射する(工程A9)。
【0037】
脈動緩和水素タンク8より改質触媒に水素を噴射して、改質触媒を昇温させ(工程A10)、改質触媒の温度Tが所定の温度Tc(例えば540℃)以上か否かを判定する(工程A11)。所定の温度Tc未満の場合には、工程A10を繰り返す。また所定の温度Tc以上の場合には、改質器の昇温を完了する。
【0038】
また工程A3で、脈動緩和水素タンク8の内圧Pが定格未満であると判定された場合、燃焼触媒温度T及び改質触媒温度Tより各燃料燃焼バーナ18,19に供給する燃料の流量を決定する(工程A4’)。バーナ18を作動して(工程A5’)、燃焼触媒温度Tが所定の温度Tc(例えば540℃)以上か否かを判定し(工程A6’)、所定の温度Tc未満の場合には、工程A5’を繰り返す。また所定の温度Tc以上の場合には、同様にバーナ19を作動して(工程A7’)、改質触媒温度Tが所定の温度Tc(例えば540℃)以上か否かを判定する(工程A8’)。所定の温度Tc未満の場合には、工程A7’を繰り返す。また所定の温度Tc以上の場合には、改質器の昇温を完了する。
【0039】
上記工程A4’〜工程A8’では各燃料燃焼バーナ18,19による燃焼ガスにより蒸発器1及び改質器3を昇温しているが、勿論オフガス及び/又は残留ガスを使用して昇温させることもできる。バーナ18,19の燃焼ガスによりどの程度まで蒸発器1及び改質器3を昇温させるかは、PSA装置7、脈動緩和水素タンク8及びオフガスタンク7の残圧に基づき決定する。
【0040】
(2) 燃料投入量の決定
図5に示すように、改質システムの昇温の完了後、脈動緩和水素タンク8の内圧P及び高圧水素タンク12の内圧Pにより、改質負荷(燃料の供給量等)を表に従って決定する(工程B4)。工程B4で設定した改質負荷で改質器3を運転し(工程B5)、発電負荷をモニターし、定格以下か否かを判定する(工程B6)。発電負荷が定格超の場合には工程B5を繰り返し、定格以下の場合には脈動緩和水素タンク8の内圧Pが定格以上か否かを判定する(工程B7)。Pが定格未満の場合には工程B5を繰り返し、定格以上の場合には改質負荷表に従い、改質負荷をPSA装置7と連動させながら段階的に低下させ、最終的に定格条件下で改質器3を運転する(工程B8)。
【0041】
(3) 発電負荷への追従
図6に示すように、改質システムの昇温の完了後、PEFCの発電量をモニターし(工程C2)、発電量に応じてPEFCの上流に設けられた流量調整弁Vの開度をフィードバック制御する(工程C3)。これにより、発電負荷に応じた量の純水素ガスをPEFCに供給する。
【0042】
(4) 高圧水素の製造
家庭等での負荷は時間により変動するので、PEFCはその負荷(発電負荷)に追随して発電する必要がある。すなわち、変動する発電負荷に応じた水素ガスをPEFCに供給しなければならない。この発電負荷の変動に改質器3は追随できないので、図7に示すように、改質器3の定格運転中、脈動緩和水素タンク8が発電負荷に追従して、PEFCに必要量の水素ガスを供給するようになっている(工程D2)。次いで、発電負荷が定格の所定割合(例えば70%)以下か否かを判定し(工程D3)、所定割合超の場合には発電システムの運転を継続する。また所定割合以下の場合、脈動緩和水素タンク8の内圧Pが所定値(例えば500 kPa)以上か否かを判定し(工程D4)、Pが所定値未満のときには発電システムの運転を継続する。
【0043】
が所定値以上の場合、高圧水素タンク12の内圧Pが所定値(例えば30 MPa)以下か否かを判定し(工程D5)、Pが所定値超のときには発電システムの運転を継続する。またPが所定値以下の場合、発電負荷、脈動緩和水素タンク8の内圧P及び高圧水素タンク12の内圧Pより、高圧水素タンク12の上流に設けられた流量調整弁Vの開度を算出する(工程D6)。工程D6の算出値に基づいて圧縮機11を作動し、高圧水素タンク12に水素ガスを充填する(工程D7)。脈動緩和水素タンク8の内圧Pが所定値P(例えば500 kPa)未満であるか、高圧水素タンク12の内圧Pが所定値P(例えば35 MPa)超であるか、いずれかの条件を満たす場合、高圧水素タンク12用の圧縮機11の運転を停止する(工程D8)。
【0044】
(5) 定格運転中に改質器に投入する燃料の流量の決定
図8に示すように、改質器3の定格運転中、発電負荷に追従して発電システムを運転する(工程E2)。発電負荷が定格の所定割合(例えば70%)以上か否かを判定し(工程E3)、所定割合未満の場合には工程E2に戻って、発電システムの運転を継続する。また発電負荷が定格の所定割合以下の場合、脈動緩和水素タンク8の内圧Pが所定値(例えば500 kPa)以下か否かを判定し(工程E4)、Pが所定値超のときには発電システムの運転を継続する。
【0045】
が所定値以下の場合、脈動緩和水素タンク8の内圧P及び高圧水素タンク12の内圧Pより、改質負荷を決定し(工程E5)、PSA装置7と連動しながら段階的に改質用燃料の流量を増大させる(工程E6)。発電負荷が定格以下か否かを判定し(工程E7)、発電負荷が定格超の場合には工程E6を繰り返す。また発電負荷が定格以下の場合、脈動緩和水素タンク8の内圧Pが所定値P(例えば500 kPa)以上であるか否かを判定する(工程E8)。Pが所定値P未満の場合、工程E6を繰り返す。またPが所定値P以上の場合、改質負荷表に従って、PSA装置7と連動しながら段階的に改質負荷を低下させ、定格運転に収束させる(工程E9)。
【0046】
[2] 第二の実施例
(A) 純水素製造装置の構造
図9は本発明の第二の実施例による純水素製造装置の全体構成を概略的に示す。なお第一の実施例における装置と同じ装置には同じ参照番号を付してある。
【0047】
改質器3と冷却器4との間に三方切換弁Vが設けられており、三方切換弁Vは循環ラインRに接続している。PSA装置7と脈動緩和水素タンク8との間に三方切換弁Vが設けられており、三方切換弁Vと始動用ガスラインTLとはPSA残留ガスラインZにより接続している。高圧水素タンク12と始動用ガスラインTLとの間に非常用水素タンク20が設けられており、非常用水素タンク20の両側に遮断弁V13,V14が設けられている。非常用水素タンク20はシステム設置時に一度目の始動するためにも必要なエネルギーとしての水素を充填したタンクであり、始動用に使用した場合は運転時に高圧水素タンク12から補充する。
【0048】
PEFC10のカソードは循環ラインR及び触媒燃焼器15に接続している。なおV15は圧力調整弁である。またV15も圧力調整弁で、循環ラインRの圧力を調整する。上記以外の構成については、実質的に第一の実施例による純水素製造装置と同じであるので、説明を省略する。
【0049】
(B) 純水素製造装置の操作
(1) 改質システムの昇温
図10に示すように、改質システムの起動信号に応じて、三方切換弁Vを循環ラインRに接続する(工程F2)。燃焼触媒温度T及び改質触媒温度Tを検出し、噴射手段INJ−1及びINJ−2の噴射量及び蒸発器1の温度Tから、燃焼触媒温度T及び改質触媒温度Tを所定温度(例えば550℃)まで昇温させるのに必要な熱量Vを算出するとともに、触媒温度(例えば550℃)から、改質システム全体を昇温させるのに必要なオフガスの熱量VC、並びに始動用空気、加熱空気及び改質用空気の流量を算出する(工程F3)。さらに、PSA装置7の内圧P、オフガスタンク9の内圧P及び脈動緩和水素タンク8の内圧Pを検出し、各タンク中の水素の熱量PQ,PQ,PQを算出する(工程F4)。
【0050】
Q<V+VCの条件を満たすか否かを判定し(工程F5)、満たさない場合にはフローAに進み、満たす場合にはPQ>VCの条件を満たすか否かを判定する(工程F6)。PQ>VCの条件を満たさない場合には工程F18に進み、PQ+PQ+PQ>V+VCの条件を満たすか否かを判定する。PQ+PQ+PQ>V+VCの条件を満たす場合には、PQ>Vの条件を満たすか否かを判定する工程F7に進み、また満たさない場合にはフローBに進む。また工程F6の判定でPQ>VCの条件を満たす場合、工程F7に進み、PQ>Vの条件を満たさない場合には、PQ+PQ>Vの条件を満たすか否かを判定する工程F19に進み、満たさない場合にはフローBに進む。また工程F7の判定及び工程F19の判定を満たす場合には、いずれも改質システムの昇温を開始する(それぞれ工程F8,F20)。
【0051】
三方切換弁VをラインZに接続し(工程F9)、改質触媒温度Tが目標値(例えば550℃)となるように、PSA装置7の残留ガスを噴射手段INJ−1より改質器3に噴射し、改質器3を昇温する(工程F10)。そのとき、始動用空気も改質器3に供給する。また循環ラインRの圧力を例えば5 kPaとして、PSA装置7の残留ガスを噴射手段INJ−2より触媒燃焼器15に噴射し、燃焼触媒温度Tの目標値を例えば550℃として、蒸発器1を昇温させる(工程F11)。
【0052】
燃焼触媒温度T及び改質触媒温度Tがいずれも所定値(例えば540℃)を超えたか否かを判定し(工程F12)、超えていない場合には工程F10に戻り、超えた場合には蒸発器1の温度Tが所定温度H℃を超えたか否かを判定する(工程F13)。所定温度H℃は、システム全体の昇温が完了したか否かを判定できる部位に設置した温度センサにより測定する。例えば三方切換弁Vの配管壁面の温度をH℃として、それが150℃(改質ガス露点温度に安全率を設定)になった時点で筐体の昇温が完了したと判定する。しかし、設置場所についてはシステム昇温が判断できる部位ならどこでも構わない。
【0053】
>H℃の条件が満たされた場合には、改質システムの昇温が完了し(工程F14)、改質を開始する(工程F15)。また満たされない場合には、三方切換弁Vを閉じ、遮断弁V12を開放して、オフガスタンク9のオフガスを噴射手段INJ−2より触媒燃焼器15に噴射し、燃焼触媒を昇温する(工程F16)。燃焼触媒温度T及び改質触媒温度Tの目標値を例えば550℃として、噴射手段INJ−1及びINJ−2より蒸発器1及び改質器3を昇温し(工程F17)、工程F13に戻る。
【0054】
改質システムの昇温を開始する工程F20以降としては、まず三方切換弁VをPSA残留ガスラインZに接続し(工程F21)、改質触媒温度Tの目標値を例えば550℃として、PSA装置7の残留ガスを噴射手段INJ−1より改質器3に噴射し、改質器3を昇温する(工程F22)。始動用ガスラインTLの圧力Paが圧力調整弁V15の調整圧と同じまで降下したとき、三方切換弁Vを閉じ、遮断弁V11を開放して脈動緩和水素タンク8のラインXを始動用ガスラインTLに接続する(工程F23)。改質触媒温度Tの目標値を例えば550℃として、脈動緩和水素タンク8内の純水素ガスの一部を噴射手段INJ−1より改質触媒に噴射して、改質器3を昇温する(工程F24)。また循環ラインRの圧力を例えば5 kPaとし、かつ燃焼触媒温度Tの目標値を例えば550℃として、脈動緩和水素タンク8内の純水素ガスの一部を噴射手段INJ−2より触媒燃焼器15に噴射し、蒸発器1を昇温させる(工程F25)。
【0055】
燃焼触媒温度T及び改質触媒温度Tがいずれも所定値(例えば540℃)を超えたか否かを判定し(工程F26)、超えていない場合には工程F22に戻り、超えた場合にはフローCに進む。
【0056】
図11に示すフローAでは、改質システムの昇温を開始する。まず三方切換弁VをPSA残留ガスラインZに接続し(工程F28)、改質触媒温度Tの目標値を例えば550℃として、噴射手段INJ−1よりPSA残留ガスを改質器3に供給するとともに、改質用空気も供給し、改質器3を昇温する(工程F29)。また循環ラインRの圧力を例えば5 kPaとし、かつ燃焼触媒温度Tの目標値を例えば550℃として、噴射手段INJ−2を作動し、PSA残留ガス及び始動用空気を触媒燃焼器15に供給して、蒸発器1を昇温する(工程F30)。燃焼触媒温度T及び改質触媒温度Tがともに例えば540℃超であるか否かを判定し(工程F31)、540℃以下である場合には工程F29に戻る。また燃焼触媒温度T及び改質触媒温度Tがともに540℃超の場合、さらに蒸発器1の温度Tが所定温度H℃を超えたか否かを判定する(工程F32)。温度TがH℃を超えていない場合には工程F30に戻り、超えた場合には改質システムの昇温は完了し(工程F33)、改質を開始する(工程F34)。
【0057】
図12に示すフローBは非常用シーケンスである。まず非常用水素タンク20の圧力Pから貯蔵された水素の熱量Vを算出する(工程F35)。VがVを超えているか否かを判定し(工程F36)、VがV以下の場合には警報を発令し、起動を中止する。またVがVを超えた場合にはPQ+PQ+PQ+V>V+VCの条件を満たすか否かを判定する(工程F37)。この条件を満たさない場合には、警報を発令し、起動を中止する。また満たす場合には遮断弁V13を開放して非常用水素タンク20を始動用ガスラインTLに接続するとともに、改質用空気を改質器3に供給する(工程F38)。改質触媒温度Tの目標値を例えば550℃として、噴射手段INJ−1より水素ガスを噴射して、改質器3を昇温する(工程F39)。また循環ラインRの圧力を例えば5 kPaとし、かつ燃焼触媒温度Tの目標値を例えば550℃として、噴射手段INJ−2を作動し、非常用水素タンク20から水素ガスを触媒燃焼器15に供給して、蒸発器1を昇温する(工程F40)。
【0058】
燃焼触媒温度T及び改質触媒温度Tがともに例えば540℃超であるか否かを判定し(工程F41)、540℃以下である場合には工程F39に戻る。また燃焼触媒温度T及び改質触媒温度Tがともに540℃超の場合、さらに蒸発器1の温度Tが所定温度H℃未満であるか否かを判定する(工程F42)。
【0059】
温度TがH℃未満の場合には、始動用ガスラインTLの圧力Paが圧力調整弁V15の調整圧と同じまで降下したときに遮断弁V13を閉じ、三方切換弁VをラインZに接続し、PSA装置7の残留ガスを噴射手段INJ−2より触媒燃焼器15に噴射して、燃焼触媒温度Tを上昇させる。さらに始動用ガスラインTLの圧力Paの監視を継続しながら、ラインY→ラインXの順に始動用ガスラインTLに接続して、触媒燃焼器15にオフガス及び純水素ガスを順に噴射し、燃焼触媒温度Tを上昇させる(工程F43)。次いで、工程F42に戻って、蒸発器1の温度Tが所定温度H℃未満であるか否かを判定する。このサイクルを繰り返し、温度TがH℃以上になった時に改質システムの昇温を完了し(工程F44)、改質を開始する(工程F45)。
【0060】
図13に示すフローCでは、蒸発器1の温度Tが所定温度H℃未満であるか否かを判定し(工程F46)、H℃以上の場合には改質システムの昇温は完了し(工程F47)、改質を開始する(工程F48)。またH℃未満の場合には、始動用ガスラインTLの圧力Paが圧力調整弁V15の調整圧と同じまで降下したときに三方切換弁V11を閉じ、遮断弁V12を開放してオフガスタンク9のラインYを始動用ガスラインTLに接続する(工程F49)。燃焼触媒温度T及び改質触媒温度Tの目標値を例えば550℃として、触媒燃焼器15及び改質器3にそれぞれ噴射手段INJ−1,INJ−1よりオフガスを噴射し、蒸発器1及び改質器3を昇温する(工程F50)。
【0061】
蒸発器1の温度Tが所定温度H℃を超えたか否かを判定する(工程F51)。温度TがH℃を超えていない場合には工程F39に戻り、超えた場合には改質システムの昇温は完了し(工程F52)、改質を開始する(工程F53)。
【0062】
以上、第一及び第二の実施例を別々に説明したが、これは勿論各々の操作に限定する意図ではなく、必要に応じて第一及び第二の実施例の手順を組合せて行うことができると理解すべきである。
【0063】
第二の実施例の純水素製造装置を用いて、室温(24℃)でPSA装置7に残留する水素ガスを改質器3内の改質触媒に供給し、触媒燃焼により改質触媒温度Tを上昇させた。次いで循環ラインRの圧力が5 kPaに上昇した時点で触媒燃焼器15内の燃焼触媒に水素ガスを供給し、燃焼触媒温度Tを上昇させた。各触媒温度が540℃になった時点で、水素ガスの代わりにオフガスを改質器3及び触媒燃焼器15に供給し、オフガスを触媒燃焼させた。このときの燃焼触媒温度T及び改質触媒温度T、並びに三方切換弁V内の温度を測定した。結果を図14に示す。この改質システムの昇温性を、三方切換弁V内の温度がH℃(150℃)に達する時間により評価した。その結果、この改質システムは55秒で必要な温度に到達することが分かった。これから、本発明の純水素製造装置の起動時間は1分以内であることが分かる。
【0064】
図15は上記の手順で起動した時に触媒燃焼器15から出る排気ガス中の不純物成分を示す。水素燃焼中はCO,総炭化水素成分及びNOXの排出量は0であり、オフガス燃焼に切り換えた後は、若干であるがCO及び総炭化水素成分が微量排出した。この結果から、本発明による改質システムの昇温では、全体として排気ガスは非常にクリーンであることが分かった。
【0065】
【発明の効果】
天然ガス、LPG等の水素原子含有燃料を改質してなる水素リッチガスからPSA装置により高純度水素を分離する方式を採用しているので、PSA装置に接続した脈動緩和水素タンクの水素を燃料電池に送給するのみならず、高圧水素タンクにも高圧充填することができる。
【0066】
始動時に、脈動緩和水素タンクに貯蔵された水素ガス及び/又はPSA装置に残留するガス(主として水素ガスからなる)を蒸発器に付属した触媒燃焼器及び改質器に供給するので、低温で迅速に水素の触媒燃焼が起こる。また所定の温度(例えば540℃)になった時に水素ガスからオフガスに切り換えることにより、オフガスを蒸発器及び改質器の昇温に有効利用できる。このような昇温システムにより、低温からの蒸発器及び改質器の昇温が迅速であり、純水素製造装置の起動時間が短いだけでなく、排気ガスも比較的クリーンである。
【0067】
特に純水素燃料電池搭載車両(FCV)への水素の充填を家庭で行うHRS(Home Refueling System)に用いる改質システムでは、起動・停止が頻繁に行われるため、効率を阻害する昇温用エネルギーを最小でかつコンパクトな始動デバイスが要求されるが、本発明の純水素製造装置は起動が迅速であるので、好適である。
【図面の簡単な説明】
【図1】本発明の一実施例による純水素製造装置を示す概略図である。
【図2】PSA装置の詳細な構造を示すブロック図である。
【図3】PSA装置における各吸着搭の作動を示す図である。
【図4】昇温した改質器に投入する燃料の量を決定するフローチャートである。
【図5】発電量に応じて固体高分子電解質型燃料電池に投入する水素ガスの量を制御するフローチャートである。
【図6】改質システムの昇温プロセスの一例を示すフローチャートである。
【図7】高圧水素の製造プロセスの一例を示すフローチャートである。
【図8】定格運転時に改質器に投入する燃料の量を決定するフローチャートである。
【図9】本発明の別の実施例による純水素製造装置を示す概略図であり、
【図10】改質システムの昇温プロセスの別の例を示すフローチャートである。
【図11】図10の改質システムの一部を示すフローチャートである。
【図12】図10の改質システムの一部を示すフローチャートである。
【図13】図10の改質システムの一部を示すフローチャートである。
【図14】改質触媒及び燃焼触媒にそれぞれ水素ガス及びオフガスを送給したときの昇温パターンを示すグラフである。
【図15】触媒燃焼器に送給した水素ガス及びオフガスが触媒燃焼したときに出る排気ガス中の不純物濃度を示すグラフである。
【符号の説明】
1・・・蒸発器
2・・・熱交換器
3・・・ATR改質器
4・・・冷却器
5・・・気水分離器
6・・・圧縮機
7・・・PSA装置
8・・・脈動緩和水素タンク
9・・・オフガスタンク
10・・・PEFC
11・・・圧縮機
12・・・高圧水素タンク
13・・・水素ディスペンサ
15・・・触媒燃焼器
20・・・非常用水素タンク
71a,71b,71c・・・吸着塔
72a,72b,72c・・・三方切換弁
73a,73b,73c・・・均圧制御弁
74・・・水素貯蔵部
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an apparatus for producing a pure hydrogen gas by purifying a hydrogen-rich reformed gas obtained by reforming a fuel containing hydrogen atoms such as hydrocarbons by a PSA apparatus, and in particular, suppressing the emission of carbon dioxide gas. The present invention relates to a pure hydrogen production apparatus that can be started quickly without generating impurities such as carbon monoxide, unburned hydrocarbons, and NOx.
[0002]
[Prior art]
In a solid polymer electrolyte membrane fuel cell comprising a plurality of cells formed by sandwiching a polymer electrolyte membrane between a fuel electrode (anode) and an oxygen electrode (cathode) from both sides, hydrogen is used as a fuel on the fuel electrode. Is supplied to the oxygen electrode, and air is supplied as an oxidizing agent.Hydrogen ions generated by a catalytic reaction at the fuel electrode pass through the solid polymer electrolyte membrane to the oxygen electrode, and undergo an electrochemical reaction with oxygen at the oxygen electrode. To generate electricity. There is known a fuel cell system that generates hydrogen gas to be supplied as a fuel to such a fuel cell by reforming a liquid fuel such as hydrocarbon (methanol or gasoline) or a gaseous fuel (methane or ethane or the like). I have.
[0003]
For example, the hydrogen production apparatus disclosed in Japanese Patent Application Laid-Open No. 8-225302 (Patent Document 1) includes a desulfurization apparatus, a high-temperature reformer, a high-temperature shift apparatus, and a PSA (Pressure Swing Adsorption) apparatus. Among them, the PSA apparatus has one or two or more adsorption towers filled with an adsorbent that selectively adsorbs components other than hydrogen under high pressure and desorbs under reduced pressure. By causing each adsorption tower to perform an operation consisting of adsorption-desorption-substitution-pressure increase in a cyclic manner, hydrogen is taken out and other components are discharged as a purge gas. Carbon monoxide is a component that is difficult to adsorb in the mixed gas in steam reforming. Therefore, in order to make the PSA device economical and compact, it is necessary to minimize the concentration of carbon monoxide in the mixed gas entering the PSA device. For this purpose, a CO denaturation device is arranged upstream of the PSA device, and a CO denaturation reaction (CO + H 2 O → H 2 + CO 2 ) Reduces the CO concentration and increases the hydrogen concentration as much as possible.
[0004]
However, in a system in which pure hydrogen gas is separated by a PSA device from a hydrogen-rich gas obtained by reforming hydrocarbon fuel and supplied to a fuel cell, the reforming system, which is a source of the reformed rich gas, responds to power load fluctuations. Load fluctuations cannot be followed, and it is difficult to supply hydrogen to the fuel cell with good response to load fluctuations.
[0005]
On the other hand, at the time of starting the fuel cell system, as an operation of raising the temperature of the reforming catalyst of the reformer to a predetermined activation temperature, for example, starting fuel such as methanol is burned in a starting combustor, and the obtained combustion gas A method of heating a reformer [JP-A-2000-723163 (Patent Document 2)] is known.
[0006]
As another starting operation of the fuel cell system, for example, air and a fuel such as methanol are supplied to a catalytic combustor arranged upstream of the reformer, and methanol and air are supplied after activating the catalyst by a burner. A method in which the raw material gas is directly supplied, then an excess amount of liquid fuel is supplied and evaporated, and a raw material gas for reforming obtained by further mixing steam is supplied to a reformer [Japanese Patent Application Laid-Open No. 2000-191304 (Patent Document 3)]. )] Is also known.
[0007]
However, in any of the above methods, since fuel such as methanol performs catalytic combustion or burner combustion, CO 2 Is not only environmentally unfavorable, but also emission of unburned fuel and impurity gas such as CO. In addition, since the time required to raise the temperature of the reformer or the evaporator by catalytically burning a fuel such as methanol is relatively long, there is also a problem that the start-up time of the apparatus becomes long.
[0008]
Japanese Patent Application Laid-Open No. 2002-20102 (Patent Literature 4) discloses a desulfurization unit that removes the sulfur content of a raw material hydrocarbon, and a hydrogen-containing gas obtained by adding steam to the raw material hydrocarbon desulfurized in the desulfurization unit and performing steam reforming. A gas reforming unit that converts carbon monoxide and steam in the hydrogen-containing gas into carbon dioxide and hydrogen, and converts the hydrogen-containing gas gas-converted in the gas converting unit into high-purity hydrogen. The method for starting a hydrogen production apparatus, comprising: a PSA section to be purified; and a combustion reaction between a hydrogen-containing combustible gas and oxygen in the air to heat the steam reforming section. The steam reforming section is heated by supplying high-purity hydrogen and air to the section to cause a catalytic combustion reaction, and when the temperature of the steam reforming section reaches the steam reforming start temperature, Steam and the above raw materials It discloses a method of starting the hydrogen production apparatus starts supplying hydrogen. High-purity hydrogen is supplied to the catalytic combustion section from a hydrogen storage tank connected to the PSA section.
[0009]
In this method of starting the hydrogen production apparatus, the catalytic combustion section is heated by the catalytic combustion reaction of high-purity hydrogen obtained from the PSA section, so that the exhaust gas is clean. However, it does not mention the use of off-gas from the PSA section.
[0010]
On the other hand, the present applicant has a device for reforming a fuel gas containing hydrogen atoms into a hydrogen-rich gas of a reforming catalyst, and a plurality of adsorption towers for adsorbing impurity gas in the reformed gas to separate pure hydrogen gas. A pressure swing adsorption device comprising: a reformed gas supply unit for supplying the reformed gas to the adsorption tower by pressurizing the reformed gas; and an off-gas tank for storing an off-gas obtained by desorbing the impurity gas adsorbed on the adsorption tower. A pure hydrogen producing apparatus comprising: a catalytic combustor capable of burning the off-gas supplied from the off-gas tank; and means for supplying fuel combustible by the catalyst to the catalytic combustor. When the manufacturing apparatus is started, the off-gas stored in the off-gas tank is supplied to the catalytic combustor, and the temperature of the reformer is raised by the combustion heat of the off-gas in the catalytic combustor. When the combustion catalyst of the combustor reaches a predetermined active state, the supply of the off-gas to the catalyst combustor is stopped, and the fuel is supplied to the catalyst combustor by the fuel supply means. Has previously proposed a pure hydrogen production apparatus characterized in that the supply of the fuel to the catalytic combustor is stopped when a predetermined operation start state is reached (Japanese Patent Application No. 2003-090573).
[0011]
The above-described system in which the combustion catalyst is heated to a predetermined active state by the off-gas at the time of starting the fuel cell system has an advantage of effectively using the off-gas, but when the off-gas is burned by the catalytic combustor, the carbon dioxide is contained in the exhaust gas. It contains not only fuel but also unburned fuel, carbon monoxide, NOx, and the like, which causes a problem that the cleanliness of the power generation system is somewhat reduced.
[0012]
[Patent Document 1]
JP-A-8-225302
[Patent Document 2]
JP 2000-723163 A
[Patent Document 3]
JP 2000-191304 A
[Patent Document 4]
JP-A-2002-20102
[0013]
[Problems to be solved by the invention]
Therefore, an object of the present invention is to reduce the size of the entire apparatus by utilizing the purification of the reformed gas by the PSA apparatus, and to use the off gas and / or residual gas of the PSA apparatus together with the pure hydrogen gas obtained by the PSA apparatus. Accordingly, it is an object of the present invention to provide a pure hydrogen production apparatus that can be started quickly and efficiently.
[0014]
[Means for Solving the Problems]
That is, the pure hydrogen production apparatus of the present invention produces pure hydrogen by purifying a hydrogen-containing reformed gas obtained by reforming a fuel containing hydrogen atoms by a pressure swing adsorption method. And (b) a reforming catalyst connected downstream of the evaporator and configured to generate a hydrogen-rich reformed gas from steam and fuel generated by the evaporator. A pressure swing adsorption device connected downstream of the reformer to obtain the pure hydrogen gas by purifying the reformed gas; and (d) a pulsation obtained from the pressure swing adsorption device. A pulsation-mitigating hydrogen tank for storing pure hydrogen gas, and (e) an off-gas tank for storing off-gas discharged from the pressure swing adsorption device, wherein the pulsation-reducing hydrogen tank and the off-gas tank are respectively provided. The pure hydrogen gas is connected to the catalytic combustor and the reformer, and the pure hydrogen gas in the pulsation mitigation hydrogen tank and the off gas in the off gas tank are appropriately switched when the pure hydrogen production device is started. The catalytic combustor, the evaporator, and the reformer are heated by being fed to a reformer and catalytically combusted.
[0015]
It is preferable that the switching between the pure hydrogen gas and the off-gas is determined based on the residual pressures of the pulsation reducing hydrogen tank and the off-gas tank, respectively.
[0016]
In a preferred embodiment of the present invention, the pressure swing adsorption device is also connected to the catalytic combustor and the reformer. In this case, when the pure hydrogen production device is started, the residual gas of the pressure swing adsorption device, the pure hydrogen gas of the pulsation mitigation hydrogen tank and the off gas of the off gas tank are appropriately switched to the catalytic combustor and the reformer. The catalyst is burned by feeding, and the temperature of the catalyst combustor and the reformer is raised. It is preferable that the switching between the pure hydrogen gas, the off gas, and the residual gas is also determined based on the residual pressures of the pulsation reducing hydrogen tank, the off gas tank, and the pressure swing adsorption device, respectively.
[0017]
Preferably, pure hydrogen gas in the pulsation reducing hydrogen tank is firstly supplied to the catalytic combustor and the reformer.
[0018]
It is preferable that a cooler and a steam separator are provided between the reformer and the pressure swing adsorption device, so that steam is liquefied and separated from the reformed gas discharged from the reformer.
[0019]
It is preferable that a solid polymer electrolyte fuel cell, a hydrogen storage device, and a hydrogen dispenser are connected to the pulsation reducing hydrogen tank.
[0020]
A fuel combustion burner is connected to the evaporator and the reformer, and the total heat of the residual gas in the pressure swing adsorption device, the offgas in the offgas tank, and the pure hydrogen gas in the pulsation reducing hydrogen tank is When the amount of heat required to heat the evaporator and the reformer to a predetermined temperature is not reached, burning the fuel with the burner and feeding the combustion gas to the evaporator and the reformer are performed. preferable.
[0021]
BEST MODE FOR CARRYING OUT THE INVENTION
[1] First embodiment
(A) Structure of pure hydrogen production equipment
FIG. 1 schematically shows an entire configuration of a pure hydrogen production apparatus according to a first embodiment of the present invention. This pure hydrogen production apparatus includes an evaporator 1 for evaporating water and fuel, a reformer 3 connected to the evaporator 1 via a heat exchange unit 2, a cooler 4, a steam-water separator 5, and a compressor. PSA device 7 connected to reformer 3 via reformer 6, pulsation-mitigating hydrogen tank 8 for storing pure hydrogen gas purified by PSA device 7, and off-gas after pure hydrogen gas is separated by PSA device 7. , A solid polymer electrolyte fuel cell (PEFC) 10 connected to the pulsation reducing hydrogen tank 8 via a flow control valve V1, and a flow control valve V2 and a compressor 11 connected to the pulsation reducing hydrogen tank 8. And a hydrogen dispenser 13 connected to the high-pressure hydrogen tank 12.
[0022]
The evaporator 1 has a built-in catalytic combustor 15 for heating it. The catalytic combustor 15 contains, for example, a Pt-based or Pd-based catalyst as a combustion catalyst. The pulsation mitigation hydrogen tank 8 and the off-gas tank 9 are connected to the starting gas line TL via shut-off valves V3 and V4, respectively, and the starting gas line TL is respectively provided with injection means (flow control means) INJ-1 and INJ-. 2 and connected to the reformer 3 and the catalytic combustor 15. In this example, fuel combustion burners 18 and 19 are connected to the catalytic combustor 15 and the reformer 3, respectively, and the fuel supply lines of the burners 18 and 19 are provided with shut-off valves V5 and V6.
[0023]
The reformer 3 has a reforming catalyst such as a Rh-based catalyst or a Ru-based reforming catalyst. The reformer 3 partially oxidizes the fuel with the reforming air by the action of the reforming catalyst and reforms the fuel with steam to produce hydrogen. Generates rich reformed gas. This reforming reaction is an endothermic reaction, and the amount of heat required for this is supplied by an oxidation reaction. For example, when methane is used as a fuel, CH4 is generated by methane, oxygen in air, and water vapor. 4 + 2O 2 → CO 2 + 2H 2 O (exothermic reaction) and CH 4 + 2H 2 O → CO 2 + 4H 2 (Endothermic reaction) occur simultaneously. Such an auto-thermal (ATR) reformer 3 has a simple configuration because no external heating means is required, and has a short temperature rise (warm-up) time.
[0024]
The PSA device 7 separates only hydrogen gas from the hydrogen-rich reformed gas generated by the reformer 3, and has, for example, a structure shown in FIG. The PSA device 7 includes first to third adsorption towers 71a, 71b, 71c, first to third three-way switching valves 72a, 72b, 72c, and first to third equalization control valves 73a, 73b. , 73c. Each of the adsorption towers 71a, 71b, 71c is filled with an adsorbent such as activated carbon or zeolite.
[0025]
The compressor 6 is connected to each of the adsorption towers 71a, 71b, 71c via each of the three-way switching valves 72a, 72b, 72c, and the reformed gas is pressurized by the compressor 6, and each of the adsorption towers 71a, 71b. , 71c. Each of the adsorption towers 71a, 71b, 71c adsorbs an impurity gas such as carbon monoxide or nitrogen contained in the reformed gas by an adsorbent, and the unadsorbed pure hydrogen gas is connected to each adsorption tower 71a, 71b, 71c. It circulates to the pulsation reducing hydrogen tank 8. Any one of the first to third switching control valves 72a, 72b, 72c has a flow direction F from the compressor 6 toward each of the adsorption towers 71a, 71b, 71c. IN Is set to
[0026]
Each of the adsorption towers 71a, 71b, 71c is connected to the off-gas tank 9 via each switching control valve 72a, 72b, 72c. When pure hydrogen gas discharged from any of the first to third adsorption towers 71a, 71b, 71c flows through each of the adsorption towers 71a, 71b, 71c as a cleaning gas, the adsorption in each of the adsorption towers 71a, 71b, 71c is performed. Impurity gases such as carbon monoxide and nitrogen adsorbed on the agent are desorbed and discharged to the off-gas tank 9, and the inside of each of the adsorption towers 71a, 71b and 71c is washed. Any one of the first to third switching control valves 72a, 72b, 72c has a flow direction F from each of the adsorption towers 71a, 71b, 71c toward the off-gas tank 9. OUT Is set to
[0027]
Each of the adsorption towers 71a, 71b, 71c is connected to a pressure equalization control flow path 76 through three-way switching valves 73a, 73b, 73c, and each of the pressure equalization control valves 73a, 73b, 73c is connected to each of the adsorption towers 71a, 71b, 73c. It is possible to switch the flow direction OUT from the pressure equalizing control flow path 76 to the pressure equalizing control flow path 76 or the flow direction IN from the pressure equalizing control flow path 76 to each of the adsorption towers 71a, 71b, and 71c.
[0028]
In the equalizing injection and equalizing output processing, one of the first to third equalizing control valves 73a, 73b, and 73c is closed, and the other is set in the flow direction OUT toward the equalizing control flow path 76. When the last one is set in the flow direction 1N toward each of the adsorption towers 71a, 71b, 71c, any two internal pressures of the first to third adsorption towers 71a, 71b, 71c become the same.
[0029]
By controlling the switching of the flow direction by the switching control valves 72a, 72b, 72c and the equalizing control valves 73a, 73b, 73c, as shown in FIG. , A series of processes including pressure increase is repeated to continuously separate pure hydrogen gas from the reformed gas.
[0030]
PSA device controlled by controlling first to third adsorption towers 71a, 71b, 71c, first to third switching control valves 72a, 72b, 72c, and first to third equalizing control valves 73a, 73b, 73c. The operation of 7 is as shown in FIG.
[0031]
Devices other than those described above may be the same as conventional devices unless otherwise specified.
[0032]
(B) Operation of pure hydrogen production equipment
(1) Starting the reforming system
FIG. 4 shows an example of starting the reforming system (including the evaporator 1 and the reformer 3). In FIG. 4, the temperature T of the combustion catalyst of the catalytic combustor 15 is shown. 1 And the temperature T of the reforming catalyst of the reformer 3 2 Only the step of using pure hydrogen gas in the pulsation reducing hydrogen tank 8 to raise the pressure is shown, but in the present invention, of course, the off gas in the off gas tank 9 is also used. Further, the residual gas (mainly hydrogen gas) of the PSA device 7 can be used.
[0033]
When using an off-gas and a residual gas in addition to the pure hydrogen gas, the switching of these gases is determined based on the residual pressures of the PSA device 7, the pulsation reducing hydrogen tank 8, and the off-gas tank 7. In this case, the order in which the pure hydrogen gas, the off gas, and the residual gas are supplied to the catalytic combustor 15 and the reformer 3 can be set as appropriate.
[0034]
Although the flow chart of FIG. 4 shows the temperature rise of the catalytic combustor 15 for convenience, this does not mean that the temperature rise of the catalytic combustor 15 should be performed first. And the temperature of the reformer 3 can be simultaneously increased. However, in any case, it is preferable that pure hydrogen gas in the pulsation mitigation hydrogen tank 8 is first supplied to the catalytic combustor 15 and the reformer 3.
[0035]
In order to start the reforming system according to the procedure of the flowchart of FIG. 1 And the temperature T of the reforming catalyst of the reformer 3 2 Is detected (step A2). Next, the internal pressure P of the pulsation reducing hydrogen tank 8 3 It is determined whether or not the pressure is higher than the rating (Step A3). 3 And combustion catalyst temperature T 1 The injection amount of hydrogen supplied to the catalytic combustor 15 is determined (step A4). Further, while starting air is injected into the catalytic combustor 15 (step A5), hydrogen is injected from the pulsation reducing hydrogen tank 8 into the catalytic combustor 15 to raise the temperature of the combustion catalyst (step A6).
[0036]
Combustion catalyst temperature T 1 Is determined to be equal to or higher than a predetermined temperature Tc (for example, 540 ° C.) (Step A7), and if it is lower than the predetermined temperature Tc, Step A6 is repeated. When the temperature is equal to or higher than the predetermined temperature Tc, the internal pressure P 3 And reforming catalyst temperature T 2 Then, the amount of hydrogen injected into the reforming catalyst is determined (step A8), and the starting air is injected into the reforming catalyst (step A9).
[0037]
Hydrogen is injected into the reforming catalyst from the pulsation reducing hydrogen tank 8 to raise the temperature of the reforming catalyst (step A10), and the temperature T of the reforming catalyst is increased. 2 Is higher than or equal to a predetermined temperature Tc (for example, 540 ° C.) (step A11). If the temperature is lower than the predetermined temperature Tc, the step A10 is repeated. If the temperature is equal to or higher than the predetermined temperature Tc, the temperature rise of the reformer is completed.
[0038]
In step A3, the internal pressure P of the pulsation reducing hydrogen tank 8 is increased. 3 Is determined to be less than the rating, the combustion catalyst temperature T 1 And reforming catalyst temperature T 2 Then, the flow rate of the fuel supplied to each of the fuel combustion burners 18 and 19 is determined (step A4 '). By operating the burner 18 (step A5 '), the combustion catalyst temperature T 1 Is determined to be equal to or higher than a predetermined temperature Tc (for example, 540 ° C.) (step A6 ′). If the temperature is lower than the predetermined temperature Tc, step A5 ′ is repeated. If the temperature is equal to or higher than the predetermined temperature Tc, the burner 19 is operated in the same manner (step A7 ′) to change the reforming catalyst temperature Tc. 2 Is higher than or equal to a predetermined temperature Tc (for example, 540 ° C.) (step A8 ′). If the temperature is lower than the predetermined temperature Tc, the step A7 'is repeated. If the temperature is equal to or higher than the predetermined temperature Tc, the temperature rise of the reformer is completed.
[0039]
In the above steps A4 'to A8', the temperature of the evaporator 1 and the reformer 3 is increased by the combustion gas from the fuel combustion burners 18 and 19, but of course, the temperature is increased by using off-gas and / or residual gas. You can also. The extent to which the evaporator 1 and the reformer 3 are heated by the combustion gas of the burners 18 and 19 is determined based on the residual pressures of the PSA device 7, the pulsation mitigation hydrogen tank 8 and the off-gas tank 7.
[0040]
(2) Determination of fuel input
As shown in FIG. 5, after completion of the temperature rise of the reforming system, the internal pressure P of the pulsation reducing hydrogen tank 8 is increased. 3 And the internal pressure P of the high-pressure hydrogen tank 12 4 Thus, the reforming load (fuel supply amount, etc.) is determined according to the table (step B4). The reformer 3 is operated with the reforming load set in the step B4 (step B5), and the power generation load is monitored to determine whether or not the load is below the rating (step B6). If the power generation load exceeds the rating, the process B5 is repeated, and if the power generation load is less than the rating, the internal pressure P of the pulsation reducing hydrogen tank 8 is reduced. 3 Is higher than or equal to the rating (step B7). P 3 If the value is less than the rating, the process B5 is repeated. If the value is more than the rating, the reforming load is reduced stepwise according to the reforming load table in conjunction with the PSA device 7, and finally reformed under the rated condition. The vessel 3 is operated (Step B8).
[0041]
(3) Follow generation load
As shown in FIG. 6, after the completion of the temperature rise of the reforming system, the power generation amount of the PEFC is monitored (step C2), and the flow control valve V provided upstream of the PEFC in accordance with the power generation amount. 1 Is feedback-controlled (step C3). As a result, an amount of pure hydrogen gas corresponding to the power generation load is supplied to the PEFC.
[0042]
(4) Production of high-pressure hydrogen
Since the load at home or the like fluctuates with time, the PEFC needs to generate power following the load (power generation load). That is, a hydrogen gas corresponding to the fluctuating power generation load must be supplied to the PEFC. Since the reformer 3 cannot follow the fluctuation of the power generation load, as shown in FIG. 7, during the rated operation of the reformer 3, the pulsation mitigation hydrogen tank 8 follows the power generation load and the required amount of hydrogen is supplied to the PEFC. Gas is supplied (step D2). Next, it is determined whether or not the power generation load is equal to or less than a predetermined ratio (for example, 70%) (step D3). If the power generation load exceeds the predetermined ratio, the operation of the power generation system is continued. When the pressure is less than the predetermined ratio, the internal pressure P 3 Is determined to be not less than a predetermined value (for example, 500 kPa) (step D4), and P 3 Is less than the predetermined value, the operation of the power generation system is continued.
[0043]
P 3 Is higher than a predetermined value, the internal pressure P of the high-pressure hydrogen tank 12 4 Is determined to be less than or equal to a predetermined value (for example, 30 MPa) (step D5). 4 Is greater than the predetermined value, the operation of the power generation system is continued. Also P 4 Is less than a predetermined value, the power generation load and the internal pressure P of the pulsation reducing hydrogen tank 8 3 And the internal pressure P of the high-pressure hydrogen tank 12 4 The flow control valve V provided upstream of the high-pressure hydrogen tank 12 2 Is calculated (step D6). The compressor 11 is operated based on the calculated value in the step D6, and the high-pressure hydrogen tank 12 is filled with hydrogen gas (step D7). Internal pressure P of pulsation mitigation hydrogen tank 8 3 Is the predetermined value P B (For example, 500 kPa) or the internal pressure P of the high-pressure hydrogen tank 12. 4 Is the predetermined value P H If it exceeds (for example, 35 MPa) or any of the conditions is satisfied, the operation of the compressor 11 for the high-pressure hydrogen tank 12 is stopped (step D8).
[0044]
(5) Determination of the flow rate of fuel to be input to the reformer during rated operation
As shown in FIG. 8, during the rated operation of the reformer 3, the power generation system is operated following the power generation load (step E2). It is determined whether the power generation load is equal to or higher than a predetermined ratio (for example, 70%) (step E3). If the power generation load is lower than the predetermined ratio, the process returns to step E2 to continue the operation of the power generation system. When the power generation load is equal to or less than the predetermined ratio, the internal pressure P of the pulsation reducing hydrogen tank 8 is reduced. 3 Is determined to be less than or equal to a predetermined value (for example, 500 kPa) (step E4). 3 Is greater than the predetermined value, the operation of the power generation system is continued.
[0045]
P 3 Is less than a predetermined value, the internal pressure P of the pulsation reducing hydrogen tank 8 3 And the internal pressure P of the high-pressure hydrogen tank 12 4 Thus, the reforming load is determined (step E5), and the flow rate of the reforming fuel is increased stepwise in conjunction with the PSA device 7 (step E6). It is determined whether or not the power generation load is equal to or less than the rating (step E7). If the power generation load exceeds the rating, the process E6 is repeated. When the power generation load is below the rated value, the internal pressure P of the pulsation reducing hydrogen tank 8 is reduced. 3 Is the predetermined value P B (For example, 500 kPa) or more is determined (step E8). P 3 Is the predetermined value P B If less, repeat step E6. Also P 3 Is the predetermined value P B In the above case, according to the reforming load table, the reforming load is reduced step by step in conjunction with the PSA device 7 to converge on the rated operation (step E9).
[0046]
[2] Second embodiment
(A) Structure of pure hydrogen production equipment
FIG. 9 schematically shows an entire configuration of a pure hydrogen production apparatus according to a second embodiment of the present invention. The same devices as those in the first embodiment are denoted by the same reference numerals.
[0047]
A three-way switching valve V between the reformer 3 and the cooler 4 7 Is provided, and the three-way switching valve V 7 Is connected to the circulation line R. Three-way switching valve V between PSA device 7 and pulsation reducing hydrogen tank 8 8 Is provided, and the three-way switching valve V 8 And the starting gas line TL are connected by a PSA residual gas line Z. An emergency hydrogen tank 20 is provided between the high-pressure hydrogen tank 12 and the starting gas line TL. Thirteen , V 14 Is provided. The emergency hydrogen tank 20 is a tank filled with hydrogen as energy necessary for the first start when the system is installed, and when used for the start, is replenished from the high-pressure hydrogen tank 12 during operation.
[0048]
The cathode of the PEFC 10 is connected to the circulation line R and the catalytic combustor 15. Note that V Fifteen Is a pressure regulating valve. Also V Fifteen The pressure in the circulation line R is also adjusted by a pressure adjusting valve. The configuration other than the above is substantially the same as that of the pure hydrogen production apparatus according to the first embodiment, and a description thereof will be omitted.
[0049]
(B) Operation of pure hydrogen production equipment
(1) Heating of reforming system
As shown in FIG. 10, according to the start signal of the reforming system, the three-way switching valve V 7 Is connected to the circulation line R (step F2). Combustion catalyst temperature T 1 And reforming catalyst temperature T 2 Is detected, and the injection amount of the injection means INJ-1 and INJ-2 and the temperature T of the evaporator 1 are detected. 3 From the combustion catalyst temperature T 1 And reforming catalyst temperature T 2 Calorie V required to raise the temperature of the reforming system to a predetermined temperature (for example, 550 ° C.), and calorie VC of off-gas required for raising the temperature of the entire reforming system from the catalyst temperature (for example, 550 ° C.), and The flow rates of the starting air, the heated air, and the reforming air are calculated (step F3). Furthermore, the internal pressure P of the PSA device 7 1 , The internal pressure P of the off-gas tank 9 2 And the internal pressure P of the pulsation reducing hydrogen tank 8 3 And the heat quantity P of hydrogen in each tank 1 Q, P 2 Q, P 3 Q is calculated (Step F4).
[0050]
P 1 It is determined whether or not the condition of Q <V + VC is satisfied (step F5). 2 It is determined whether the condition of Q> VC is satisfied (step F6). P 2 If the condition of Q> VC is not satisfied, the process proceeds to step F18, where P 1 Q + P 2 Q + P 3 It is determined whether or not the condition of Q> V + VC is satisfied. P 1 Q + P 2 Q + P 3 If the condition of Q> V + VC is satisfied, P 3 The process proceeds to step F7 to determine whether or not the condition of Q> V is satisfied. If not, the process proceeds to flow B. In addition, P is determined in step F6. 2 If the condition of Q> VC is satisfied, the process proceeds to step F7, 3 If the condition of Q> V is not satisfied, P 1 Q + P 3 The process proceeds to step F19 to determine whether or not the condition of Q> V is satisfied. If not, the process proceeds to flow B. In addition, when both the determination in step F7 and the determination in step F19 are satisfied, the temperature rise of the reforming system is started (steps F8 and F20, respectively).
[0051]
Three-way switching valve V 8 To the line Z (step F9), and the reforming catalyst temperature T 2 The residual gas of the PSA device 7 is injected into the reformer 3 from the injection means INJ-1 so that the target gas reaches a target value (for example, 550 ° C.), and the temperature of the reformer 3 is raised (step F10). At that time, the starting air is also supplied to the reformer 3. Further, the pressure of the circulation line R is set to, for example, 5 kPa, and the residual gas of the PSA device 7 is injected into the catalytic combustor 15 from the injection means INJ-2, and the combustion catalyst temperature T 1 Is set to, for example, 550 ° C., and the temperature of the evaporator 1 is raised (step F11).
[0052]
Combustion catalyst temperature T 1 And reforming catalyst temperature T 2 Are determined to exceed a predetermined value (for example, 540 ° C.) (step F12). If not, the process returns to step F10. If not, the temperature T of the evaporator 1 is exceeded. 3 Is higher than a predetermined temperature H ° C. (step F13). The predetermined temperature H ° C. is measured by a temperature sensor installed at a site where it can be determined whether or not the temperature rise of the entire system is completed. For example, a three-way switching valve V 7 The temperature of the pipe wall surface is set to H ° C., and when the temperature reaches 150 ° C. (a safety factor is set to the dew point temperature of the reformed gas), it is determined that the temperature rise of the housing is completed. However, the installation location may be any location where the temperature rise of the system can be determined.
[0053]
T 3 When the condition of> H ° C. is satisfied, the temperature rise of the reforming system is completed (Step F14), and the reforming is started (Step F15). If not satisfied, the three-way switching valve V 8 And shut off valve V 12 Is released, and the off-gas in the off-gas tank 9 is injected from the injection means INJ-2 into the catalytic combustor 15 to raise the temperature of the combustion catalyst (step F16). Combustion catalyst temperature T 1 And reforming catalyst temperature T 2 Is set to, for example, 550 ° C., the evaporator 1 and the reformer 3 are heated by the injection means INJ-1 and INJ-2 (step F17), and the process returns to step F13.
[0054]
In step F20 and thereafter for starting the temperature rise of the reforming system, first, the three-way switching valve V 8 Is connected to the PSA residual gas line Z (step F21), and the reforming catalyst temperature T 2 Is set to, for example, 550 ° C., the residual gas of the PSA device 7 is injected from the injection means INJ-1 to the reformer 3, and the temperature of the reformer 3 is raised (step F22). The pressure Pa of the starting gas line TL is equal to the pressure regulating valve V Fifteen When the pressure drops to the same level as the adjustment pressure of 8 And shut off valve V 11 And the line X of the pulsation reducing hydrogen tank 8 is connected to the starting gas line TL (step F23). Reforming catalyst temperature T 2 Is set to, for example, 550 ° C., a part of the pure hydrogen gas in the pulsation mitigation hydrogen tank 8 is injected from the injection means INJ-1 to the reforming catalyst, and the temperature of the reformer 3 is raised (step F24). Further, the pressure in the circulation line R is set to, for example, 5 kPa, and the combustion catalyst temperature T 1 Is set to, for example, 550 ° C., a part of the pure hydrogen gas in the pulsation reducing hydrogen tank 8 is injected into the catalytic combustor 15 from the injection means INJ-2, and the temperature of the evaporator 1 is raised (step F25).
[0055]
Combustion catalyst temperature T 1 And reforming catalyst temperature T 2 Are determined to exceed a predetermined value (for example, 540 ° C.) (step F26), and if not, the process returns to the step F22.
[0056]
In the flow A shown in FIG. 11, the temperature rise of the reforming system is started. First, the three-way switching valve V 8 Is connected to the PSA residual gas line Z (step F28), and the reforming catalyst temperature T 2 Is set to, for example, 550 ° C., the PSA residual gas is supplied from the injection means INJ-1 to the reformer 3, and the reforming air is also supplied to raise the temperature of the reformer 3 (step F29). Further, the pressure in the circulation line R is set to, for example, 5 kPa, and the combustion catalyst temperature T 1 Is set to, for example, 550 ° C., the injection means INJ-2 is operated, the PSA residual gas and the starting air are supplied to the catalytic combustor 15, and the temperature of the evaporator 1 is raised (step F30). Combustion catalyst temperature T 1 And reforming catalyst temperature T 2 Are both higher than 540 ° C., for example (step F31), and if it is lower than 540 ° C., the process returns to step F29. Also, the combustion catalyst temperature T 1 And reforming catalyst temperature T 2 Are more than 540 ° C., the temperature T of the evaporator 1 is further increased. 3 Is higher than the predetermined temperature H ° C. (step F32). Temperature T 3 If the temperature does not exceed H ° C., the process returns to step F30. If the temperature exceeds H ° C., the temperature rise of the reforming system is completed (step F33), and the reforming is started (step F34).
[0057]
Flow B shown in FIG. 12 is an emergency sequence. First, the pressure P of the emergency hydrogen tank 20 5 Calorie V of hydrogen stored from B Is calculated (step F35). V B Is determined whether or not exceeds V (step F36). B Is less than V, an alarm is issued and the start is stopped. Also V B If V exceeds V 1 Q + P 2 Q + P 3 Q + V B It is determined whether or not the condition of> V + VC is satisfied (step F37). If this condition is not satisfied, an alarm is issued and the activation is stopped. If it is satisfied, shut off valve V Thirteen And the emergency hydrogen tank 20 is connected to the starting gas line TL, and the reforming air is supplied to the reformer 3 (step F38). Reforming catalyst temperature T 2 Is set to, for example, 550 ° C., hydrogen gas is injected from the injection means INJ-1 to raise the temperature of the reformer 3 (step F39). Further, the pressure in the circulation line R is set to, for example, 5 kPa, and the combustion catalyst temperature T 1 Is set to, for example, 550 ° C., the injection means INJ-2 is operated, hydrogen gas is supplied from the emergency hydrogen tank 20 to the catalytic combustor 15, and the temperature of the evaporator 1 is raised (step F40).
[0058]
Combustion catalyst temperature T 1 And reforming catalyst temperature T 2 Are both higher than 540 ° C., for example (step F41), and if it is lower than 540 ° C., the process returns to step F39. Also, the combustion catalyst temperature T 1 And reforming catalyst temperature T 2 Are more than 540 ° C., the temperature T of the evaporator 1 is further increased. 3 Is lower than the predetermined temperature H ° C. (step F42).
[0059]
Temperature T 3 Is less than H ° C., the pressure Pa of the starting gas line TL is Fifteen When the pressure drops to the same as the adjustment pressure of Thirteen And close the three-way switching valve V 8 Is connected to the line Z, and the residual gas of the PSA device 7 is injected from the injection means INJ-2 to the catalytic combustor 15 so that the combustion catalyst temperature T 1 To rise. Further, while continuously monitoring the pressure Pa of the starting gas line TL, the starting gas line TL is connected to the starting gas line TL in the order of line Y to line X, and the offgas and the pure hydrogen gas are injected into the catalytic combustor 15 in order, and the combustion catalyst Temperature T 1 Is raised (step F43). Next, returning to step F42, the temperature T 3 Is lower than the predetermined temperature H ° C. This cycle is repeated until the temperature T 3 Is higher than H ° C., the temperature rise of the reforming system is completed (step F44), and the reforming is started (step F45).
[0060]
In the flow C shown in FIG. 3 Is lower than a predetermined temperature H ° C (step F46), and when it is higher than H ° C, the temperature rise of the reforming system is completed (step F47) and reforming is started (step F48). When the temperature is lower than H ° C., the pressure Pa of the starting gas line TL is Fifteen The three-way switching valve V 11 And shut off valve V 12 And the line Y of the off-gas tank 9 is connected to the starting gas line TL (step F49). Combustion catalyst temperature T 1 And reforming catalyst temperature T 2 Is set to, for example, 550 ° C., off-gas is injected from the injection means INJ-1 and INJ-1 to the catalytic combustor 15 and the reformer 3, respectively, and the evaporator 1 and the reformer 3 are heated (step F50). ).
[0061]
Temperature T of evaporator 1 3 Is higher than a predetermined temperature H ° C. (step F51). Temperature T 3 If the temperature does not exceed H ° C., the process returns to step F39. If the temperature exceeds H ° C., the temperature rise of the reforming system is completed (step F52), and reforming is started (step F53).
[0062]
As described above, the first and second embodiments have been described separately. However, this is not intended to limit the operation to each operation, and the procedures of the first and second embodiments may be combined as needed. You should understand that you can.
[0063]
The hydrogen gas remaining in the PSA device 7 is supplied to the reforming catalyst in the reformer 3 at room temperature (24 ° C.) using the pure hydrogen production device of the second embodiment, and the reforming catalyst temperature T 2 Was raised. Next, when the pressure of the circulation line R rises to 5 kPa, hydrogen gas is supplied to the combustion catalyst in the catalyst combustor 15 and the combustion catalyst temperature T 1 Was raised. When each catalyst temperature reached 540 ° C., off gas was supplied to the reformer 3 and the catalyst combustor 15 instead of hydrogen gas, and the off gas was catalytically burned. The combustion catalyst temperature T at this time 1 And reforming catalyst temperature T 2 , And three-way switching valve V 8 The temperature inside was measured. FIG. 14 shows the results. The three-way switching valve V 8 The evaluation was based on the time at which the temperature inside reached H ° C (150 ° C). As a result, the reforming system was found to reach the required temperature in 55 seconds. From this, it can be seen that the startup time of the pure hydrogen production apparatus of the present invention is within one minute.
[0064]
FIG. 15 shows impurity components in the exhaust gas emitted from the catalytic combustor 15 at the time of starting according to the above procedure. During hydrogen combustion, CO, total hydrocarbon components and N OX Was zero, and after switching to off-gas combustion, a small amount of CO and total hydrocarbon components were slightly emitted. From this result, it was found that when the temperature of the reforming system according to the present invention was raised, the exhaust gas was very clean as a whole.
[0065]
【The invention's effect】
The system uses a PSA device to separate high-purity hydrogen from a hydrogen-rich gas obtained by reforming a fuel containing hydrogen atoms such as natural gas and LPG, so the hydrogen in the pulsation-mitigating hydrogen tank connected to the PSA device is used as a fuel cell. As well as high pressure filling in a high pressure hydrogen tank.
[0066]
At start-up, the hydrogen gas stored in the pulsation-mitigating hydrogen tank and / or the gas remaining in the PSA device (mainly consisting of hydrogen gas) is supplied to the catalytic combustor and reformer attached to the evaporator, so that it can be operated quickly at low temperature. Then, catalytic combustion of hydrogen occurs. By switching from hydrogen gas to off gas when the temperature reaches a predetermined temperature (for example, 540 ° C.), the off gas can be effectively used for raising the temperature of the evaporator and the reformer. With such a temperature raising system, the temperature of the evaporator and the reformer is quickly raised from a low temperature, and not only is the startup time of the pure hydrogen production apparatus short, but also the exhaust gas is relatively clean.
[0067]
In particular, in a reforming system used for a home refueling system (HRS) that fills a pure hydrogen fuel cell-equipped vehicle (FCV) with hydrogen at home, the starting and stopping are frequently performed, and thus the energy for heating up which hinders efficiency. Although a minimum and compact starting device is required, the pure hydrogen production apparatus of the present invention is preferable because the starting is quick.
[Brief description of the drawings]
FIG. 1 is a schematic diagram showing a pure hydrogen production apparatus according to one embodiment of the present invention.
FIG. 2 is a block diagram showing a detailed structure of a PSA device.
FIG. 3 is a diagram showing the operation of each adsorption tower in the PSA device.
FIG. 4 is a flow chart for determining an amount of fuel to be supplied to a heated reformer.
FIG. 5 is a flowchart for controlling the amount of hydrogen gas to be supplied to the polymer electrolyte fuel cell according to the amount of power generation.
FIG. 6 is a flowchart illustrating an example of a temperature raising process of the reforming system.
FIG. 7 is a flowchart illustrating an example of a process for producing high-pressure hydrogen.
FIG. 8 is a flowchart for determining the amount of fuel to be charged into the reformer during rated operation.
FIG. 9 is a schematic diagram showing a pure hydrogen production apparatus according to another embodiment of the present invention,
FIG. 10 is a flowchart showing another example of the temperature raising process of the reforming system.
FIG. 11 is a flowchart showing a part of the reforming system of FIG.
FIG. 12 is a flowchart showing a part of the reforming system of FIG.
FIG. 13 is a flowchart showing a part of the reforming system of FIG.
FIG. 14 is a graph showing a heating pattern when hydrogen gas and off-gas are supplied to the reforming catalyst and the combustion catalyst, respectively.
FIG. 15 is a graph showing impurity concentrations in exhaust gas emitted when hydrogen gas and off-gas supplied to a catalytic combustor are subjected to catalytic combustion.
[Explanation of symbols]
1 ... Evaporator
2 ... heat exchanger
3 ... ATR reformer
4 ・ ・ ・ Cooler
5 ... steam-water separator
6 ... Compressor
7 PSA device
8 ... Pulsation mitigation hydrogen tank
9 ... Off-gas tank
10 ... PEFC
11 ・ ・ ・ Compressor
12 ・ ・ ・ High pressure hydrogen tank
13 ... hydrogen dispenser
15 ・ ・ ・ Catalyst combustor
20 ・ ・ ・ Emergency hydrogen tank
71a, 71b, 71c ... adsorption tower
72a, 72b, 72c ... three-way switching valve
73a, 73b, 73c ... equalizing pressure control valve
74 ... hydrogen storage unit

Claims (8)

水素原子を含む燃料の改質により得られた水素含有改質ガスを圧力スイング吸着法により精製して純水素を製造する装置であって、(a) 燃焼触媒を有する触媒燃焼器が内蔵された蒸発器と、(b) 前記蒸発器の下流に接続され、前記蒸発器により生成した水蒸気及び燃料から水素リッチな改質ガスを生成する改質触媒を有する改質器と、(c) 前記改質器の下流に接続され、前記改質ガスを精製して純水素ガスを得る圧力スイング吸着装置と、(d) 前記圧力スイング吸着装置から得られた脈動を有する純水素ガスを貯蔵する脈動緩和水素タンクと、(e) 前記圧力スイング吸着装置から出たオフガスを貯蔵するオフガスタンクとを具備し、前記脈動緩和水素タンク及び前記オフガスタンクはそれぞれ前記触媒燃焼器及び前記改質器に接続しており、前記純水素製造装置の起動時に、前記脈動緩和水素タンクの純水素ガス及び前記オフガスタンクのオフガスを適宜切り換えて前記触媒燃焼器及び前記改質器に送給して触媒燃焼させ、もって前記触媒燃焼器、前記蒸発器及び前記改質器を昇温させることを特徴とする純水素製造装置。An apparatus for producing pure hydrogen by purifying a hydrogen-containing reformed gas obtained by reforming a fuel containing hydrogen atoms by a pressure swing adsorption method, wherein (a) a catalytic combustor having a combustion catalyst is incorporated. An evaporator, (b) a reformer connected downstream of the evaporator and having a reforming catalyst for generating a hydrogen-rich reformed gas from steam and fuel generated by the evaporator, and (c) the reformer. A pressure swing adsorption device connected downstream of a reformer for purifying the reformed gas to obtain pure hydrogen gas, and (d) pulsation mitigation for storing pulsating pure hydrogen gas obtained from the pressure swing adsorption device. A hydrogen tank, and (e) an off-gas tank for storing off-gas discharged from the pressure swing adsorption device, wherein the pulsation reducing hydrogen tank and the off-gas tank are the catalyst combustor and the reformer, respectively. When the pure hydrogen production apparatus is started, pure hydrogen gas in the pulsation mitigation hydrogen tank and off gas in the off gas tank are appropriately switched and supplied to the catalytic combustor and the reformer to perform catalytic combustion. A pure hydrogen production apparatus wherein the temperature of the catalytic combustor, the evaporator, and the reformer is increased. 請求項1に記載の純水素製造装置において、前記純水素ガス及び前記オフガスの切り換えをそれぞれ前記脈動緩和水素タンク及び前記オフガスタンクの残圧に基づき決定することを特徴とする純水素製造装置。2. The pure hydrogen production apparatus according to claim 1, wherein the switching between the pure hydrogen gas and the off gas is determined based on the residual pressures of the pulsation reducing hydrogen tank and the off gas tank, respectively. 請求項1に記載の純水素製造装置において、前記圧力スイング吸着装置も前記触媒燃焼器及び前記改質器に接続しており、前記純水素製造装置の起動時に、前記圧力スイング吸着装置の残留ガス、前記脈動緩和水素タンクの純水素ガス及び前記オフガスタンクのオフガスを適宜切り換えて前記触媒燃焼器及び前記改質器に送給して触媒燃焼させ、もって前記触媒燃焼器及び前記改質器を昇温させることを特徴とする純水素製造装置。The pure hydrogen production device according to claim 1, wherein the pressure swing adsorption device is also connected to the catalytic combustor and the reformer, and the residual gas of the pressure swing adsorption device is activated when the pure hydrogen production device is started. The pure hydrogen gas in the pulsation mitigation hydrogen tank and the off-gas in the off-gas tank are appropriately switched and supplied to the catalytic combustor and the reformer to perform catalytic combustion, thereby raising the catalytic combustor and the reformer. Pure hydrogen production equipment characterized by heating. 請求項3に記載の純水素製造装置において、前記残留ガス、前記純水素ガス及び前記オフガスの切り換えをそれぞれ前記圧力スイング吸着装置、前記脈動緩和水素タンク及び前記オフガスタンクの残圧に基づき決定することを特徴とする純水素製造装置。4. The pure hydrogen production apparatus according to claim 3, wherein switching between the residual gas, the pure hydrogen gas, and the off gas is determined based on residual pressures of the pressure swing adsorption device, the pulsation reducing hydrogen tank, and the off gas tank, respectively. 5. Pure hydrogen production equipment characterized by the following. 請求項1〜4のいずれかに記載の純水素製造装置において、前記脈動緩和水素タンクの純水素ガスを最初に前記触媒燃焼器及び前記改質器に送給することを特徴とする純水素製造装置。5. The pure hydrogen production apparatus according to claim 1, wherein pure hydrogen gas in the pulsation mitigation hydrogen tank is first supplied to the catalytic combustor and the reformer. 6. apparatus. 請求項1〜5のいずれかに記載の純水素製造装置において、前記改質器と前記圧力スイング吸着装置との間に冷却器及び気水分離器が設けられており、もって前記改質器から出た改質ガスから水蒸気を液化して分離することを特徴とする純水素製造装置。The pure hydrogen production device according to any one of claims 1 to 5, wherein a cooler and a steam separator are provided between the reformer and the pressure swing adsorption device, and thus the reformer is A pure hydrogen production apparatus characterized in that water vapor is liquefied from separated reformed gas and separated. 請求項1〜6のいずれかに記載の純水素製造装置において、前記脈動緩和水素タンクに固体高分子電解質型燃料電池及び水素貯蔵装置及び水素ディスペンサが接続していることを特徴とする純水素製造装置。7. The pure hydrogen production apparatus according to claim 1, wherein a solid polymer electrolyte fuel cell, a hydrogen storage device, and a hydrogen dispenser are connected to the pulsation reducing hydrogen tank. apparatus. 請求項1〜7のいずれかに記載の純水素製造装置において、前記蒸発器及び前記改質器に燃料燃焼バーナが接続しており、前記圧力スイング吸着装置中の残留ガス、前記オフガスタンク中のオフガス及び前記脈動緩和水素タンク中の純水素ガスの総熱量が前記蒸発器及び前記改質器を所定の温度に加熱するのに要する熱量に達しない場合に、前記バーナで燃料を燃焼させ、その燃焼ガスを前記蒸発器及び前記改質器に送給することを特徴とする純水素製造装置。The pure hydrogen production apparatus according to any one of claims 1 to 7, wherein a fuel combustion burner is connected to the evaporator and the reformer, and a residual gas in the pressure swing adsorption device, a residual gas in the off-gas tank. When the total amount of heat of off-gas and pure hydrogen gas in the pulsation reducing hydrogen tank does not reach the amount of heat required to heat the evaporator and the reformer to a predetermined temperature, the fuel is burned by the burner, An apparatus for producing pure hydrogen, wherein combustion gas is supplied to the evaporator and the reformer.
JP2003148361A 2003-05-26 2003-05-26 Pure hydrogen production equipment Expired - Fee Related JP4199593B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003148361A JP4199593B2 (en) 2003-05-26 2003-05-26 Pure hydrogen production equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003148361A JP4199593B2 (en) 2003-05-26 2003-05-26 Pure hydrogen production equipment

Publications (2)

Publication Number Publication Date
JP2004352511A true JP2004352511A (en) 2004-12-16
JP4199593B2 JP4199593B2 (en) 2008-12-17

Family

ID=34044794

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003148361A Expired - Fee Related JP4199593B2 (en) 2003-05-26 2003-05-26 Pure hydrogen production equipment

Country Status (1)

Country Link
JP (1) JP4199593B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006318870A (en) * 2005-05-16 2006-11-24 Toyota Motor Corp Fuel cell system and fuel cell
JP2008130492A (en) * 2006-11-24 2008-06-05 Toyota Motor Corp Fuel cell system and fuel cell vehicle
JP2008520524A (en) * 2004-11-16 2008-06-19 レール・リキード−ソシエテ・アノニム・プール・レテュード・エ・レクスプロワタシオン・デ・プロセデ・ジョルジュ・クロード Method and apparatus for combined hydrogen and carbon dioxide production
JP2008530756A (en) * 2005-02-11 2008-08-07 エクソンモービル リサーチ アンド エンジニアリング カンパニー Fuel cell fuel processing system for buffering hydrogen
JP2018162197A (en) * 2017-03-27 2018-10-18 東京瓦斯株式会社 Hydrogen manufacturing device
JP2020100529A (en) * 2018-12-21 2020-07-02 東京瓦斯株式会社 Hydrogen production apparatus, cleaning method of hydrogen production apparatus, hydrogen production apparatus control program, and hydrogen production system
US11273405B2 (en) 2016-08-23 2022-03-15 Japan Blue Energy Co., Ltd. Method for recovering hydrogen from biomass pyrolysis gas

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5756302A (en) * 1980-08-11 1982-04-03 Kiyatarisutsu Ando Chem Yuurop Metal reforming method and device
JPH01208302A (en) * 1988-02-12 1989-08-22 Tokyo Gas Co Ltd Hydrogen generator of on-site type
JPH02160601A (en) * 1988-12-15 1990-06-20 Kawasaki Heavy Ind Ltd Production of hydrogen by methanol reforming and apparatus therefor
JPH04164802A (en) * 1990-10-29 1992-06-10 Kawasaki Heavy Ind Ltd Hydrogen production apparatus and starting thereof
JPH11335101A (en) * 1998-03-27 1999-12-07 Osaka Gas Co Ltd Apparatus for producing hydrogen
JP2000220805A (en) * 1998-11-09 2000-08-08 Nippon Soken Inc Catalyst combustion heating device
JP2002020102A (en) * 2000-06-30 2002-01-23 Mitsubishi Kakoki Kaisha Ltd Method for starting and method for stopping hydrogen producing device
JP2002241772A (en) * 2001-02-20 2002-08-28 Denaro:Kk Gas station
JP2002329517A (en) * 2001-05-01 2002-11-15 Honda Motor Co Ltd Warm-up device for reforming device used in fuel cell system
JP2004116544A (en) * 2002-09-24 2004-04-15 Mitsubishi Kakoki Kaisha Ltd Hydrogen supplying station and its control method

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5756302A (en) * 1980-08-11 1982-04-03 Kiyatarisutsu Ando Chem Yuurop Metal reforming method and device
JPH01208302A (en) * 1988-02-12 1989-08-22 Tokyo Gas Co Ltd Hydrogen generator of on-site type
JPH02160601A (en) * 1988-12-15 1990-06-20 Kawasaki Heavy Ind Ltd Production of hydrogen by methanol reforming and apparatus therefor
JPH04164802A (en) * 1990-10-29 1992-06-10 Kawasaki Heavy Ind Ltd Hydrogen production apparatus and starting thereof
JPH11335101A (en) * 1998-03-27 1999-12-07 Osaka Gas Co Ltd Apparatus for producing hydrogen
JP2000220805A (en) * 1998-11-09 2000-08-08 Nippon Soken Inc Catalyst combustion heating device
JP2002020102A (en) * 2000-06-30 2002-01-23 Mitsubishi Kakoki Kaisha Ltd Method for starting and method for stopping hydrogen producing device
JP2002241772A (en) * 2001-02-20 2002-08-28 Denaro:Kk Gas station
JP2002329517A (en) * 2001-05-01 2002-11-15 Honda Motor Co Ltd Warm-up device for reforming device used in fuel cell system
JP2004116544A (en) * 2002-09-24 2004-04-15 Mitsubishi Kakoki Kaisha Ltd Hydrogen supplying station and its control method

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008520524A (en) * 2004-11-16 2008-06-19 レール・リキード−ソシエテ・アノニム・プール・レテュード・エ・レクスプロワタシオン・デ・プロセデ・ジョルジュ・クロード Method and apparatus for combined hydrogen and carbon dioxide production
JP2008530756A (en) * 2005-02-11 2008-08-07 エクソンモービル リサーチ アンド エンジニアリング カンパニー Fuel cell fuel processing system for buffering hydrogen
JP2006318870A (en) * 2005-05-16 2006-11-24 Toyota Motor Corp Fuel cell system and fuel cell
JP2008130492A (en) * 2006-11-24 2008-06-05 Toyota Motor Corp Fuel cell system and fuel cell vehicle
US8741497B2 (en) 2006-11-24 2014-06-03 Toyota Jidosha Kabushiki Kaisha Fuel cell system and fuel cell hybrid vehicle
US11273405B2 (en) 2016-08-23 2022-03-15 Japan Blue Energy Co., Ltd. Method for recovering hydrogen from biomass pyrolysis gas
JP2018162197A (en) * 2017-03-27 2018-10-18 東京瓦斯株式会社 Hydrogen manufacturing device
JP2020100529A (en) * 2018-12-21 2020-07-02 東京瓦斯株式会社 Hydrogen production apparatus, cleaning method of hydrogen production apparatus, hydrogen production apparatus control program, and hydrogen production system
JP7129329B2 (en) 2018-12-21 2022-09-01 東京瓦斯株式会社 Hydrogen production device, hydrogen production device cleaning method, hydrogen production device control program, and hydrogen production system

Also Published As

Publication number Publication date
JP4199593B2 (en) 2008-12-17

Similar Documents

Publication Publication Date Title
US9112201B2 (en) Hydrogen production apparatus, fuel cell system and operation method thereof
US20070178337A1 (en) System and method of fuel cell power generation
JP3686062B2 (en) Fuel cell power generation system and fuel cell power generation stop method
JP2007254251A (en) Operation stopping method of reforming device
JP2005008434A (en) Method and apparatus for producing fuel gas
CA2431221A1 (en) Process for air enrichment in producing hydrogen for use with fuel cells
JP2003229149A (en) Fuel cell generating system and fuel cell generating method
JP2010212141A (en) Fuel cell generator
JP2009179487A (en) Hydrogen production system
JP4199593B2 (en) Pure hydrogen production equipment
JP2001189165A (en) Fuel cell system, method of stopping and starting the same
JP4531800B2 (en) Hydrogen production power generation system and method for stopping the same
JP4272922B2 (en) Pure hydrogen production equipment
JP2007157407A (en) Fuel reforming system
JP2002008701A (en) Method for starting and stopping solid polymer fuel cell
JP2004292293A (en) Apparatus for generating hydrogen and method of its operation
JP5045045B2 (en) Hydrogen generator and fuel cell system
JP2008066096A (en) Fuel cell system
JP4041085B2 (en) Fuel gas production system and method for stopping the same
JP2004217435A (en) Method for stopping hydrogen-containing gas generation equipment, and hydrogen-containing gas generation equipment
JP4523313B2 (en) Hydrogen gas production power generation system and operation method thereof
JP2005285626A (en) Fuel gas manufacturing power generation system
JPH09115541A (en) Fuel cell system and operation method thereof
JP2004296102A (en) Fuel cell system and fuel cell system stopping method
JP4357979B2 (en) Starting method of fuel gas production apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051202

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080917

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080924

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081003

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111010

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees