JPH0963608A - Fuel cell power generating system - Google Patents

Fuel cell power generating system

Info

Publication number
JPH0963608A
JPH0963608A JP7210347A JP21034795A JPH0963608A JP H0963608 A JPH0963608 A JP H0963608A JP 7210347 A JP7210347 A JP 7210347A JP 21034795 A JP21034795 A JP 21034795A JP H0963608 A JPH0963608 A JP H0963608A
Authority
JP
Japan
Prior art keywords
fuel cell
gas
hot air
power generation
generating furnace
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7210347A
Other languages
Japanese (ja)
Other versions
JP3564812B2 (en
Inventor
Hajime Saito
一 斉藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP21034795A priority Critical patent/JP3564812B2/en
Publication of JPH0963608A publication Critical patent/JPH0963608A/en
Application granted granted Critical
Publication of JP3564812B2 publication Critical patent/JP3564812B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

PROBLEM TO BE SOLVED: To keep the temperature of a fuel cell in a prescribed range without requiring an excess amount of a fuel, remarkably lower the energy loss due to condensation by suppressing refrigeration and condensation of a waste gas to the minimum level, and miniaturize a system for which appliances necessary for refrigeration and condensation are not required. SOLUTION: A fuel cell power generating system is provided with a heating apparatus 16b to heat a cathode gas of a fuel cell 11 indirectly, a hot air generating furnace 18 to supply a high temperature gas to the heating apparatus, and a waste gas line 21 to supply a combustion gas 5 discharged out of a combustion chamber of a reforming apparatus 10 to the hot air generating furnace. The combustion gas 5 is supplied to the heating apparatus 16a through the hot air generating furnace after power generation is started.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、溶融炭酸塩型燃料
電池を用いた燃料電池発電設備に関する。
The present invention relates to a fuel cell power generation facility using a molten carbonate fuel cell.

【0002】[0002]

【従来の技術】溶融炭酸塩型燃料電池は、高効率、かつ
環境への影響が少ないなど、従来の発電装置にはない特
徴を有しており、水力・火力・原子力に続く発電システ
ムとして注目を集め、現在世界各国で鋭意研究開発が行
われている。特に天然ガスを燃料とする溶融炭酸塩型燃
料電池を用いた発電設備では、図2に示すように天然ガ
ス等の燃料ガス1を水素を含むアノードガス2に改質す
る改質器10と、アノードガス2と酸素を含むカソード
ガス3とから発電する燃料電池11とを備えており、改
質器10で作られたアノードガス2は燃料電池に供給さ
れ、燃料電池内でその大部分(例えば80%)を消費し
た後、アノード排ガス4として改質器の燃焼室Coに供
給される。改質器10ではアノード排ガス中の可燃成分
(水素、一酸化炭素、メタン等)がカソード排ガスによ
り燃焼し、高温の燃焼ガスにより改質室Reを加熱し改
質室の燃料を改質する。改質室を出た燃焼排ガス5は空
気予熱器13b、凝縮器16a、気水分離器15を通っ
て水分を除去され、低温ブロア17cで加圧され、ター
ビン圧縮機12から供給される加圧空気6と合流してカ
ソードガス3となり、燃料電池のカソード側に電池反応
に必要な二酸化炭素を供給する。燃料電池内でその一部
が反応したカソードガス(カソード排ガス7)は、高温
ブロア17bにより燃料電池の上流側に一部が循環さ
れ、残りの一部7aは改質器に燃焼用空気として供給さ
れ、残り7bはタービン圧縮機12で圧力を回収され、
排熱回収装置19による熱回収後に系外に排出される。
なお、図2において、13aは燃料予熱器、14は脱硫
器、16bは加熱器、17dは空気ブロア、18は熱風
発生炉である。
2. Description of the Related Art Molten carbonate fuel cells have features that are not found in conventional power generation devices, such as high efficiency and little impact on the environment, and have attracted attention as power generation systems following hydro, thermal and nuclear power. Are being researched and developed in various countries around the world. Particularly in a power generation facility using a molten carbonate fuel cell using natural gas as a fuel, a reformer 10 for reforming a fuel gas 1 such as natural gas into an anode gas 2 containing hydrogen as shown in FIG. The reformer 10 is provided with a fuel cell 11 that generates electric power from an anode gas 2 and a cathode gas 3 containing oxygen. The anode gas 2 produced in the reformer 10 is supplied to the fuel cell, and most of it (for example, in the fuel cell) (for example, After consuming 80%), the anode exhaust gas 4 is supplied to the combustion chamber Co of the reformer. In the reformer 10, combustible components (hydrogen, carbon monoxide, methane, etc.) in the anode exhaust gas are burned by the cathode exhaust gas, and the high temperature combustion gas heats the reforming chamber Re to reform the fuel in the reforming chamber. The combustion exhaust gas 5 that has exited the reforming chamber passes through the air preheater 13b, the condenser 16a, and the steam separator 15 to remove moisture, is pressurized by the low temperature blower 17c, and is supplied from the turbine compressor 12. It joins with the air 6 to become the cathode gas 3, and supplies the carbon dioxide necessary for the cell reaction to the cathode side of the fuel cell. A part of the cathode gas (cathode exhaust gas 7), a part of which has reacted in the fuel cell, is circulated upstream of the fuel cell by the high temperature blower 17b, and the remaining part 7a is supplied to the reformer as combustion air. The remaining 7b is pressure-recovered by the turbine compressor 12,
After the heat recovery by the exhaust heat recovery device 19, it is discharged to the outside of the system.
In FIG. 2, 13a is a fuel preheater, 14 is a desulfurizer, 16b is a heater, 17d is an air blower, and 18 is a hot air generating furnace.

【0003】[0003]

【発明が解決しようとする課題】従来、かかる燃料電池
発電設備の起動は、内部に窒素ガスを充填した状態
で、熱風発生炉18により加熱器16bに熱風を供給
し、加熱器16bで内部を循環する窒素ガスを加熱し、
この窒素ガスの循環により、燃料電池11と改質器1
0を加熱し、これらが所定の温度に達したときに、ター
ビン圧縮機12から空気を導入して、燃料電池11を介
して改質器10の燃焼室Coに空気を供給し、次いで
水蒸気8と燃料ガス1を改質器に供給して、燃料電池1
1を介して改質器10の燃焼室Coに燃料ガスを供給し
て燃焼させ、その熱で改質室Reを流れる燃料ガス1を
改質して改質ガス(アノードガス2)を燃料電池11に
供給し発電を開始する。
Conventionally, such a fuel cell power generation facility is started up by supplying hot air to the heater 16b by the hot air generating furnace 18 with the inside filled with nitrogen gas, and then heating the inside by the heater 16b. Heat the circulating nitrogen gas,
By circulating this nitrogen gas, the fuel cell 11 and the reformer 1
0 are heated, and when they reach a predetermined temperature, air is introduced from the turbine compressor 12 to supply air to the combustion chamber Co of the reformer 10 via the fuel cell 11, and then steam 8 And the fuel gas 1 are supplied to the reformer, and the fuel cell 1
Fuel gas is supplied to the combustion chamber Co of the reformer 10 through 1 to burn the fuel gas, and the heat of the fuel gas reforms the fuel gas 1 flowing in the reforming chamber Re to generate the reformed gas (anode gas 2) as a fuel cell. 11 and power generation is started.

【0004】熱風発生炉18は、発電開始後は熱風の供
給を停止し、燃料電池の温度制御は高温ブロア17bに
よるカソードガスの循環により行うようになっている。
しかし、実際には燃料電池の運転中も加熱器16bや循
環ラインからの放熱が大きく、燃料電池の反応熱だけで
は燃料電池の温度が維持できない問題点があった。その
ため、発電開始後であっても、熱風発生炉18を運転し
て熱風を供給する必要があり、余分な燃料を必要とし、
プラント効率が悪化する問題点があった。
The hot air generating furnace 18 stops the supply of hot air after the start of power generation, and the temperature of the fuel cell is controlled by circulating the cathode gas by the high temperature blower 17b.
However, in reality, the heat radiated from the heater 16b and the circulation line is large even during the operation of the fuel cell, and there is a problem that the temperature of the fuel cell cannot be maintained only by the reaction heat of the fuel cell. Therefore, even after the start of power generation, it is necessary to operate the hot air generating furnace 18 to supply hot air, which requires extra fuel,
There was a problem that the plant efficiency deteriorated.

【0005】また、従来の燃料電池発電設備では、上述
したように、改質器10を出た燃焼排ガスを冷却・凝縮
して水分を除去しているため、例えば空気予熱器13
b、凝縮器16a、気水分離器15等を必要するとと共
に、凝縮熱によるヒートロスが大きく、プラント効率の
向上を妨げる一因となっていた。
Further, in the conventional fuel cell power generation facility, as described above, the combustion exhaust gas discharged from the reformer 10 is cooled and condensed to remove water, so that, for example, the air preheater 13 is used.
b, the condenser 16a, the steam separator 15 and the like are required, and the heat loss due to the heat of condensation is large, which is one of the factors that hinder the improvement of plant efficiency.

【0006】本発明はかかる問題点を解決するために創
案されたものである。すなわち、本発明の目的は、余分
な燃料を用いることなく、燃料電池の温度を所定範囲に
維持することができ、かつ排ガスの冷却・凝縮を最小限
に抑えて凝縮熱によるヒートロスを大幅に低減すると共
に、冷却・凝縮に必要な機器をなくし、設備のコンパク
ト化を図ることができる燃料電池発電設備を提供するこ
とにある。
The present invention has been made to solve such a problem. That is, the object of the present invention is to maintain the temperature of the fuel cell within a predetermined range without using extra fuel, and to minimize the cooling / condensation of exhaust gas to significantly reduce the heat loss due to the heat of condensation. At the same time, it is an object of the present invention to provide a fuel cell power generation facility in which equipment required for cooling / condensing is eliminated and the equipment can be made compact.

【0007】[0007]

【課題を解決するための手段】本発明によれば、燃料電
池のカソードガスを間接加熱する加熱器と、該加熱器に
高温ガスを供給する熱風発生炉と、該熱風発生炉に改質
器の燃焼室を出た燃焼排ガスを供給する排ガスライン
と、を備え、発電開始後に燃焼排ガスを熱風発生炉を通
して前記加熱器に供給する、ことを特徴とする燃料電池
発電設備が提供される。この構成により、燃焼室を出た
燃焼排ガスによりカソードガスを間接加熱することがで
き、余分な燃料を用いることなく、燃料電池の温度を所
定範囲に維持することができ、かつ燃焼排ガスの冷却・
凝縮によるヒートロスをなくし、プラント効率を大幅に
向上することができる。
According to the present invention, a heater for indirectly heating cathode gas of a fuel cell, a hot air generating furnace for supplying high temperature gas to the heater, and a reformer for the hot air generating furnace. An exhaust gas line for supplying the combustion exhaust gas that has left the combustion chamber, and the combustion exhaust gas is supplied to the heater through a hot air generating furnace after the start of power generation. With this configuration, the cathode gas can be indirectly heated by the combustion exhaust gas that has left the combustion chamber, the temperature of the fuel cell can be maintained within a predetermined range without using extra fuel, and the combustion exhaust gas can be cooled and cooled.
Heat loss due to condensation can be eliminated, and plant efficiency can be significantly improved.

【0008】本発明の好ましい実施形態によれば、ター
ビン圧縮機で加圧された空気を前記熱風発生炉に供給す
る空気供給ラインと、該空気供給ラインに設けられた空
気ブロアと、外気を空気ブロアに導く逆止弁と、を備え
る。この構成により、内圧が低い起動時には、空気ブロ
アにより逆止弁を通して外気を熱風発生炉に供給するこ
とができ、タービン圧縮機が駆動され内圧が高まってき
た段階では、タービン圧縮機で加圧された空気を空気ブ
ロアにより更に高圧にして熱風発生炉に供給することが
でき、起動から加圧運転時まで熱風発生炉に効率的に空
気を供給することができる。
According to a preferred embodiment of the present invention, an air supply line for supplying the air pressurized by the turbine compressor to the hot air generating furnace, an air blower provided in the air supply line, and the outside air as air. And a check valve leading to the blower. With this configuration, at startup when the internal pressure is low, the outside air can be supplied to the hot air generating furnace by the air blower through the check valve, and when the turbine compressor is driven and the internal pressure increases, it is pressurized by the turbine compressor. The generated air can be supplied to the hot air generating furnace with a higher pressure by an air blower, and the air can be efficiently supplied to the hot air generating furnace from start-up to pressurization operation.

【0009】また、排気用開閉弁を有し、加熱器を通過
した高温ガスをタービン圧縮機のタービン上流側に導く
排気ラインと、循環用開閉弁を有し、前記高温ガスを燃
料電池の上流側のカソードガスに導入する循環ライン
と、を備え、起動時には排気用開閉弁のみを開いて高温
ガスにより、タービン圧縮機を駆動し、発電開始後には
循環用開閉弁のみを開いて燃焼排ガスをカソードガスに
導入する、ことが好ましい。この構成により、起動時
に、高温ガスによりタービン圧縮機を駆動して空気を内
部に導入することができ、発電開始後にはCO2 ガスを
含む燃焼排ガスをカソードガスに導入して電池反応に用
いることができる。なお、燃焼排ガスが混入されたカソ
ードガスは、燃料電池を通過後にその一部がタービン圧
縮機に供給されるため、発電開始後もタービン圧縮機に
より空気が導入される。
[0009] Further, the exhaust gas has an on-off valve for exhausting the high-temperature gas passing through the heater to the upstream side of the turbine of the turbine compressor, and an on-off valve for circulation. A circulation line that is introduced into the cathode gas on the side of the turbine, and at startup, only the exhaust on-off valve is opened to drive the turbine compressor with high-temperature gas. It is preferably introduced into the cathode gas. With this configuration, the turbine compressor can be driven by the high temperature gas at the time of start-up to introduce the air into the inside, and after the power generation is started, the combustion exhaust gas containing the CO 2 gas is introduced into the cathode gas for use in the cell reaction. You can The cathode gas mixed with the combustion exhaust gas is partly supplied to the turbine compressor after passing through the fuel cell, so that air is introduced by the turbine compressor even after the start of power generation.

【0010】[0010]

【発明の実施の形態】以下、本発明の好ましい実施形態
を図面を参照して説明する。なお、各図において共通す
る部分には同一の符号を付して使用する。図1は、本発
明による燃料電池発電設備の全体構成図である。この図
において、燃料電池発電設備は、燃料電池11のカソー
ドガス3を間接加熱する加熱器16bと、加熱器16b
に高温ガスを供給する熱風発生炉18と、熱風発生炉1
8に改質器10の燃焼室Coを出た燃焼排ガス5を供給
する排ガスライン21と、を備え、発電開始後に燃焼排
ガス5を熱風発生炉18を通して加熱器16bに供給す
るようになっている。すなわち、本発明の燃料電池発電
設備には、図2の従来例に示した空気予熱器13b,凝
縮器16a,気水分離器15等がなく、燃焼室Coを出
た燃焼排ガス5が排ガスライン21を介して熱風発生炉
18に直接供給されるようになっている。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Preferred embodiments of the present invention will be described below with reference to the drawings. In the drawings, common parts are denoted by the same reference numerals. FIG. 1 is an overall configuration diagram of a fuel cell power generation facility according to the present invention. In this figure, the fuel cell power generation facility includes a heater 16b for indirectly heating the cathode gas 3 of the fuel cell 11 and a heater 16b.
Hot air generating furnace 18 for supplying high temperature gas to the hot air generating furnace 1
8 is provided with an exhaust gas line 21 for supplying the combustion exhaust gas 5 exiting the combustion chamber Co of the reformer 10, and the combustion exhaust gas 5 is supplied to the heater 16b through the hot air generating furnace 18 after the start of power generation. . That is, in the fuel cell power generation equipment of the present invention, the air preheater 13b, the condenser 16a, the steam separator 15 and the like shown in the conventional example of FIG. 2 are not provided, and the combustion exhaust gas 5 exiting the combustion chamber Co is the exhaust gas line. It is adapted to be directly supplied to the hot air generating furnace 18 via 21.

【0011】この構成により、燃焼室Coを出た燃焼排
ガス5によりカソードガス3を間接加熱することがで
き、余分な燃料を用いることなく、燃料電池11の温度
を所定範囲に維持することができ、かつ燃焼排ガス5の
冷却・凝縮によるヒートロスをなくし、プラント効率を
大幅に向上することができる。
With this configuration, the cathode gas 3 can be indirectly heated by the combustion exhaust gas 5 exiting the combustion chamber Co, and the temperature of the fuel cell 11 can be maintained within a predetermined range without using extra fuel. In addition, heat loss due to cooling and condensation of the combustion exhaust gas 5 can be eliminated, and plant efficiency can be significantly improved.

【0012】また、図1の燃料電池発電設備は、タービ
ン圧縮機12で加圧された空気6を熱風発生炉18に供
給する空気供給ライン23と、空気供給ライン23に設
けられた空気ブロア17dと、外気を空気ブロア17d
に導く逆止弁22と、を備えている。この構成により、
内圧が低い起動時には、空気ブロア17dにより逆止弁
22を通して外気を熱風発生炉18に供給することがで
き、タービン圧縮機12が駆動され内圧が高まってきた
段階では、タービン圧縮機12で加圧された空気を空気
ブロア17dにより更に高圧にして熱風発生炉18に供
給することができ、起動から加圧運転時まで熱風発生炉
18に効率的に空気を供給することができる。
Further, in the fuel cell power generation facility of FIG. 1, an air supply line 23 for supplying the air 6 pressurized by the turbine compressor 12 to the hot air generating furnace 18 and an air blower 17d provided in the air supply line 23. And the outside air to the air blower 17d
And a check valve 22 that leads to. With this configuration,
At the time of starting when the internal pressure is low, the outside air can be supplied to the hot air generating furnace 18 through the check valve 22 by the air blower 17d, and when the turbine compressor 12 is driven and the internal pressure increases, the turbine compressor 12 pressurizes. The generated air can be further increased in pressure by the air blower 17d and supplied to the hot air generating furnace 18, and the air can be efficiently supplied to the hot air generating furnace 18 from startup to the pressurizing operation.

【0013】更に、この発電設備は、加熱器16bを通
過した高温ガスをタービン圧縮機12のタービン上流側
に導く排気ライン25と、高温ガスを燃料電池11の上
流側のカソードガス3に導入する循環ライン26と、を
備えている。また、排気ライン25と循環ライン26に
はそれぞれのラインを開閉させる排気用開閉弁20bと
循環用開閉弁20aが設けられている。なお、この図で
20cは、遮断弁であり、24は、発電開始後の燃焼排
ガス5の流れを容易にするためのオリフィスである。
Further, the power generation equipment introduces the high temperature gas, which has passed through the heater 16b, to the upstream side of the turbine of the turbine compressor 12, and the high temperature gas to the cathode gas 3 on the upstream side of the fuel cell 11. And a circulation line 26. The exhaust line 25 and the circulation line 26 are provided with an exhaust on-off valve 20b and a circulation on-off valve 20a for opening and closing the respective lines. In this figure, 20c is a shutoff valve, and 24 is an orifice for facilitating the flow of the combustion exhaust gas 5 after the start of power generation.

【0014】この構成により、起動時には排気用開閉弁
20bのみを開いて高温ガスにより、タービン圧縮機1
2を駆動し空気6を内部に導入することができ、発電開
始後には循環用開閉弁20aのみを開いてCO2 ガスを
含む燃焼排ガス5をカソードガス3に導入して電池反応
に用いることができる。その他の構成は、図2と同様で
ある。
With this configuration, at the time of startup, only the exhaust on-off valve 20b is opened and the high temperature gas allows the turbine compressor 1
2 can be driven to introduce air 6 into the interior, and after the start of power generation, only the circulation on-off valve 20a is opened to introduce the combustion exhaust gas 5 containing CO 2 gas into the cathode gas 3 for use in the cell reaction. it can. Other configurations are similar to those in FIG.

【0015】なお、本発明は上述した実施形態に限定さ
れず、本発明の要旨を逸脱しない範囲で種々変更できる
ことは勿論である。
The present invention is not limited to the above-mentioned embodiments, and it goes without saying that various modifications can be made without departing from the gist of the present invention.

【0016】[0016]

【発明の効果】上述したように、本発明の燃料電池発電
設備は、余分な燃料を用いることなく、燃料電池の温度
を所定範囲に維持することができ、かつ排ガスの冷却・
凝縮を最小限に抑えて凝縮熱によるヒートロスを大幅に
低減すると共に、冷却・凝縮に必要な機器をなくし設備
のコンパクト化を図ることができる、等の優れた効果を
有する。
As described above, the fuel cell power generation facility of the present invention can maintain the temperature of the fuel cell within a predetermined range without using extra fuel, and can cool exhaust gas.
Condensation is minimized to significantly reduce heat loss due to condensation heat, and the equipment required for cooling / condensation can be eliminated and equipment can be made compact.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明による燃料電池発電設備の全体構成図で
ある。
FIG. 1 is an overall configuration diagram of a fuel cell power generation facility according to the present invention.

【図2】従来の燃料電池発電設備の全体構成図である。FIG. 2 is an overall configuration diagram of a conventional fuel cell power generation facility.

【符号の説明】[Explanation of symbols]

1 燃料ガス 2 アノードガス 3 カソードガス 4 アノード排ガス 5 燃焼排ガス 6 空気 7 カソード排ガス 8 水蒸気 10 改質器 11 燃料電池 12 タービン圧縮機 13a 燃料予熱器 13b 空気予熱器 14 脱硫器 15 気水分離器 16a 凝縮器 16b 加熱器 17a 燃料ブロア 17b 高温ブロア 17c 低温ブロア 17d 空気ブロア 18 熱風発生炉 20a 循環用開閉弁 20b 排気用開閉弁 20c 遮断弁 21 排ガスライン 22 逆止弁 23 空気供給ライン 24 オリフィス 25 排気ライン 26 循環ライン 1 Fuel Gas 2 Anode Gas 3 Cathode Gas 4 Anode Exhaust Gas 5 Combustion Exhaust Gas 6 Air 7 Cathode Exhaust Gas 8 Steam 10 Reformer 11 Fuel Cell 12 Turbine Compressor 13a Fuel Preheater 13b Air Preheater 14 Desulfurizer 15 Air Water Separator 16a Condenser 16b Heater 17a Fuel blower 17b High temperature blower 17c Low temperature blower 17d Air blower 18 Hot air generator 20a Circulation on / off valve 20b Exhaust on / off valve 20c Shutoff valve 21 Exhaust gas line 22 Check valve 23 Air supply line 24 Orifice 25 Exhaust line 26 Circulation line

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 燃料電池のカソードガスを間接加熱する
加熱器と、該加熱器に高温ガスを供給する熱風発生炉
と、該熱風発生炉に改質器の燃焼室を出た燃焼排ガスを
供給する排ガスラインと、を備え、発電開始後に燃焼排
ガスを熱風発生炉を通して前記加熱器に供給する、こと
を特徴とする燃料電池発電設備。
1. A heater for indirectly heating a cathode gas of a fuel cell, a hot air generating furnace for supplying a high temperature gas to the heater, and a combustion exhaust gas discharged from a combustion chamber of a reformer for the hot air generating furnace. And a flue gas line for supplying combustion flue gas to the heater through a hot air generating furnace after power generation is started.
【請求項2】 タービン圧縮機で加圧された空気を前記
熱風発生炉に供給する空気供給ラインと、該空気供給ラ
インに設けられた空気ブロアと、外気を空気ブロアに導
く逆止弁と、を備えたことを特徴とする請求項1に記載
の燃料電池発電設備。
2. An air supply line for supplying air pressurized by a turbine compressor to the hot air generating furnace, an air blower provided in the air supply line, and a check valve for guiding outside air to the air blower. The fuel cell power generation facility according to claim 1, further comprising:
【請求項3】 排気用開閉弁を有し、加熱器を通過した
高温ガスをタービン圧縮機のタービン上流側に導く排気
ラインと、循環用開閉弁を有し、前記高温ガスを燃料電
池の上流側のカソードガスに導入する循環ラインと、を
備え、起動時には排気用開閉弁のみを開いて高温ガスに
より、タービン圧縮機を駆動し、発電開始後には循環用
開閉弁のみを開いて燃焼排ガスをカソードガスに導入す
る、ことを特徴とする請求項1に記載の燃料電池発電設
備。
3. An exhaust line having an exhaust on-off valve for guiding the high-temperature gas passing through the heater to a turbine upstream side of a turbine compressor, and a circulation on-off valve for transferring the high-temperature gas to an upstream side of a fuel cell. A circulation line that is introduced into the cathode gas on the side of the turbine, and at startup, only the exhaust on-off valve is opened to drive the turbine compressor with high-temperature gas. The fuel cell power generation facility according to claim 1, wherein the fuel cell power generation facility is introduced into the cathode gas.
JP21034795A 1995-08-18 1995-08-18 Fuel cell power generation equipment Expired - Fee Related JP3564812B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21034795A JP3564812B2 (en) 1995-08-18 1995-08-18 Fuel cell power generation equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21034795A JP3564812B2 (en) 1995-08-18 1995-08-18 Fuel cell power generation equipment

Publications (2)

Publication Number Publication Date
JPH0963608A true JPH0963608A (en) 1997-03-07
JP3564812B2 JP3564812B2 (en) 2004-09-15

Family

ID=16587902

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21034795A Expired - Fee Related JP3564812B2 (en) 1995-08-18 1995-08-18 Fuel cell power generation equipment

Country Status (1)

Country Link
JP (1) JP3564812B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1670090A1 (en) * 2004-12-13 2006-06-14 Ngk Insulators, Ltd. Molten carbonate fuel cell, operating method thereof, sintering furnace, and power generator
CN100440596C (en) * 2004-12-13 2008-12-03 日本碍子株式会社 Fuel cell, operating method thereof, sintering furnace, and power generator
JP2009107915A (en) * 2007-10-30 2009-05-21 Samsung Sdi Co Ltd Fuel reforming device and fuel cell system
USD922746S1 (en) 2019-12-06 2021-06-22 Nike, Inc. Shoe
USD965262S1 (en) 2020-03-24 2022-10-04 Nike, Inc. Shoe

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1670090A1 (en) * 2004-12-13 2006-06-14 Ngk Insulators, Ltd. Molten carbonate fuel cell, operating method thereof, sintering furnace, and power generator
JP2006332017A (en) * 2004-12-13 2006-12-07 Ngk Insulators Ltd Fuel cell and its operation method, baking furnace, and power generator
CN100440596C (en) * 2004-12-13 2008-12-03 日本碍子株式会社 Fuel cell, operating method thereof, sintering furnace, and power generator
JP2009107915A (en) * 2007-10-30 2009-05-21 Samsung Sdi Co Ltd Fuel reforming device and fuel cell system
USD922746S1 (en) 2019-12-06 2021-06-22 Nike, Inc. Shoe
USD965262S1 (en) 2020-03-24 2022-10-04 Nike, Inc. Shoe

Also Published As

Publication number Publication date
JP3564812B2 (en) 2004-09-15

Similar Documents

Publication Publication Date Title
KR100907690B1 (en) Combined Cycle Power Plant
JP2015503830A (en) Fuel cell hybrid system
WO2001095409A3 (en) Joint-cycle high-efficiency fuel cell system with power generating turbine
JP2002298889A (en) Solid electrolyte fuel cell system
JP4154680B2 (en) Fuel cell power generator that injects steam into the anode exhaust gas line
JPH0963608A (en) Fuel cell power generating system
JPH11238520A (en) Fuel cell power generating apparatus
JP3331576B2 (en) Fuel cell power generation equipment
JP3573239B2 (en) Fuel cell power generator
JP2000348749A (en) Starting method of fuel cell power generation plant
JPH11273701A (en) Fuel cell power generating apparatus
JPH1167251A (en) Fuel cell power generating device
JP3865167B2 (en) Fuel cell power generator with carbon dioxide recovery device
JPH0757755A (en) Starting of fuel cell power generator
JP3589363B2 (en) How to start the fuel cell power plant
JPH1167252A (en) Fuel cell power generating device
JP3137143B2 (en) Temperature control method for fuel cell power plant and fuel cell power plant equipped with temperature control device
JP3561706B2 (en) Polymer electrolyte fuel cell power generator
JPH03108270A (en) Power generating system for fuel cell
JP3413925B2 (en) Fuel cell power generation equipment
JPH11354143A (en) Fuel cell power generating set with anode circulation line
JPH10302820A (en) Fuel cell power generating facility
JPH11354144A (en) Fuel cell power generating set with methanol cracker
JP3741288B2 (en) Method and apparatus for controlling cathode temperature of molten carbonate fuel cell power generation facility
JPH0992313A (en) Fuel cell power generating facilities

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040428

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040518

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080618

Year of fee payment: 4

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080618

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees