JPH07267604A - Method for starting up reformer - Google Patents
Method for starting up reformerInfo
- Publication number
- JPH07267604A JPH07267604A JP6060570A JP6057094A JPH07267604A JP H07267604 A JPH07267604 A JP H07267604A JP 6060570 A JP6060570 A JP 6060570A JP 6057094 A JP6057094 A JP 6057094A JP H07267604 A JPH07267604 A JP H07267604A
- Authority
- JP
- Japan
- Prior art keywords
- air ratio
- reformer
- combustion
- gas
- temperature
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
Landscapes
- Fuel Cell (AREA)
- Hydrogen, Water And Hydrids (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、燃料電池用改質装置の
起動方法に関する。より詳しくは、本発明は燃料電池発
電プラントの起動時昇温過程において熱交換器型改質器
を迅速に所定温度まで昇温する方法に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for starting a reformer for a fuel cell. More specifically, the present invention relates to a method for rapidly raising the temperature of a heat exchanger type reformer to a predetermined temperature in the temperature raising process at the time of startup of a fuel cell power plant.
【0002】[0002]
【従来の技術】燃料電池発電は、発電効率が高く環境に
対する影響が少ない発電方式として注目されている。燃
料電池は、原理的には、水素と酸素とをそれぞれ燃料極
(水素極あるいはアノードとも呼ばれる)および空気極
(酸素極あるいはカソードとも呼ばれる)に連続的に供
給し、両極間に電解質を配置することによって、両極に
接続した外部回路に直流の電流を取り出すものである。2. Description of the Related Art Fuel cell power generation has been attracting attention as a power generation method that has high power generation efficiency and little influence on the environment. In principle, a fuel cell continuously supplies hydrogen and oxygen to a fuel electrode (also called hydrogen electrode or anode) and an air electrode (also called oxygen electrode or cathode), respectively, and arranges an electrolyte between both electrodes. By doing so, a direct current is taken out to an external circuit connected to both electrodes.
【0003】燃料電池には、電解質として何を用いるか
によって、アルカリ型(AFC)、リン酸型(PAF
C)、溶融炭酸塩型(MCFC)などの方式がある。こ
れらはいずれも燃料極に水素(純水素又は粗製水素)を
供給する点では同じであるが、当該水素に二酸化炭素あ
るいは一酸化炭素の混入が許されるかどうかという点に
おいて相違する。すなわち、アルカリ型の場合には、二
酸化炭素は電解質である水酸化カリウムの機能を低下さ
せ、一酸化炭素は触媒として用いられている白金を被毒
させることから、いずれも燃料電池の性能を劣化させる
ことになり、混入は許されない。このため、この型では
実質的に純水素を燃料ガスとして用いなくてはならない
という難点がある。一方、リン酸型の場合には、一酸化
炭素はやはり触媒として用いられている白金を被毒させ
るので混入が許されないが、二酸化炭素の混入は問題な
いため、一酸化炭素を一酸化炭素変成器でスチームと反
応させて二酸化炭素及び水素に変えることにより、粗製
水素が使用可能である。さらに、溶融炭酸塩型の場合に
は、白金触媒を用いないためいずれの混入も全く問題な
いばかりか、一酸化炭素はアノードで生成される水分と
上記一酸化炭素変成反応により水素を発生するので燃料
としても有効に利用される。また、溶融炭酸塩型は作動
温度が約650℃の高温型燃料電池であるため、その排
熱を単に熱として供給するだけでなく、その高温の排熱
を利用してボトミングサイクルにおける発電を行うこと
ができるため、全体としての発電効率をきわめて高いも
のにすることができる。なお燃料電池としては、上記以
外にも高温型の固体電解質型(SOFC)や低温型の高
分子型(PFC)などが知られており、それぞれ特徴を
持っているが基本的な原理は同じである。In the fuel cell, alkaline type (AFC) and phosphoric acid type (PAF) are used depending on what is used as the electrolyte.
C), molten carbonate type (MCFC) and the like. These are the same in that hydrogen (pure hydrogen or crude hydrogen) is supplied to the fuel electrode, but differ in whether or not carbon dioxide or carbon monoxide can be mixed in the hydrogen. That is, in the case of the alkaline type, carbon dioxide deteriorates the function of potassium hydroxide as an electrolyte, and carbon monoxide poisons platinum used as a catalyst, so that the performance of the fuel cell deteriorates. It will be allowed and mixing is not allowed. For this reason, this type has a drawback that substantially pure hydrogen must be used as the fuel gas. On the other hand, in the case of the phosphoric acid type, carbon monoxide poisons platinum, which is also used as a catalyst, so mixing is not allowed, but mixing of carbon dioxide is not a problem, so carbon monoxide is converted to carbon monoxide. Crude hydrogen can be used by reacting it with steam in a vessel to convert it to carbon dioxide and hydrogen. Further, in the case of the molten carbonate type, since no platinum catalyst is used, any mixing is not a problem at all, and carbon monoxide generates hydrogen due to the water produced at the anode and the carbon monoxide shift reaction. It is also effectively used as fuel. Further, since the molten carbonate type is a high temperature type fuel cell having an operating temperature of about 650 ° C., not only the exhaust heat thereof is supplied as heat, but also the high temperature exhaust heat is used for power generation in a bottoming cycle. Therefore, the overall power generation efficiency can be made extremely high. In addition to the above, high temperature solid electrolyte type (SOFC) and low temperature type polymer (PFC) are known as fuel cells, and each has its own characteristics, but the basic principle is the same. is there.
【0004】リン酸型や溶融炭酸塩型燃料電池のアノー
ドに供給される粗製水素は、一般に天然ガス(主成分は
メタン)を原料としてこれにスチームを反応させて作
る。このときの反応はたとえば次式(1)または(2)
に従うと考えられる。 CH4 + H2O → CO + 3H2 (1) CH4 + 2H2O → CO2 + 4H2 (2) これらの反応は吸熱反応であり、通常は触媒の存在下に
600℃〜1000℃で行われる。上記反応を行わせる
装置が改質器であり、一般に触媒を充填した反応管(触
媒管)に原料ガス(天然ガスとスチーム)を流通させ、
バーナーまたは触媒燃焼により生成した高温の燃焼ガス
で触媒管外部から加熱する熱交換器型の構造になってい
る。燃焼させるガスとしては、通常、燃料電池のアノー
ド側からの排ガス(電池反応では供給されたすべての水
素を利用できるわけではないので未利用の水素が残って
いる)を利用するが、水素含有量が少なく発熱量が低い
場合には自燃させることが困難なので通常のバーナー燃
焼でなく触媒燃焼が用いられる。The crude hydrogen supplied to the anode of a phosphoric acid type or molten carbonate type fuel cell is generally produced by reacting steam with natural gas (main component is methane) as a raw material. The reaction at this time is, for example, the following formula (1) or (2)
Believed to follow. CH 4 + H 2 O → CO + 3H 2 (1) CH 4 + 2H 2 O → CO 2 + 4H 2 (2) These reactions are endothermic reactions and are usually 600 ° C to 1000 ° C in the presence of a catalyst. Done in. A device for performing the above reaction is a reformer, and generally, a raw material gas (natural gas and steam) is circulated through a reaction tube (catalyst tube) filled with a catalyst,
It has a heat exchanger type structure in which high temperature combustion gas generated by burner or catalytic combustion is used to heat from the outside of the catalyst tube. Exhaust gas from the anode side of the fuel cell (not all hydrogen supplied can be used in the cell reaction, so unused hydrogen remains) is used as the gas to be burned. When the amount of heat generated is low and the amount of heat generated is low, it is difficult to cause self-combustion, so catalytic combustion is used instead of normal burner combustion.
【0005】図1は溶融炭酸塩型燃料電池発電システム
のフロースキームの一例を示す。燃料電池本体1はカソ
ード11、アノード12及び溶融炭酸塩(炭酸カリウム
と炭酸リチウムの共融組成物)を含浸保持する電解質板
13からなる。カソード11には空気(酸素を含む)が
コンプレッサー32により供給され、同時に燃焼排ガス
(二酸化炭素を含む)が改質器2から空気予熱器23を
経て供給される。またアノード12に供給される改質ガ
ス(水素を含む)は、脱硫器31で硫黄分を除去された
原料天然ガスと排熱回収ボイラー36で生成したスチー
ムとが、プロセスフィード予熱器41を経た後、改質器
の触媒管21内に導入され、そこで改質反応により製造
される。カソード11からのカソード排ガス(未反応分
の酸素及び二酸化炭素を含む)は溶融炭酸塩ミスト除去
のためのMCスクラバー14を通過した後、その一部が
カソード循環ブロワー16によりカソードへ循環され、
残りはボトミングサイクル用の補助燃焼バーナー33、
ガスタービン34(ジェネレーター35と直結してい
る)及び排熱回収ボイラー36を経て排出される。一
方、アノード12からのアノード排ガス(反応生成物の
スチーム及び二酸化炭素と未反応分の水素を含む)はM
Cスクラバー15を通過し、次いでプロセスフィード予
熱器41、ガス/ガス熱交換器42及びガス冷却器43
を通過して冷却され、セパレーター44で水分が分離除
去された後(分離された水分は純水装置46及び排熱回
収ボイラー36を経て改質ガス製造用スチームとな
る)、アノード排ガスブロワー45及びガス/ガス熱交
換器42を経て触媒燃焼器22に導入され、そこでコン
プレッサー32から空気予熱器23を経て供給される空
気と混合し燃焼して高温の燃焼ガスとなり、改質器2で
改質反応のための加熱用に用いられた後、さらに所定量
の空気と混合されて上記したように燃料電池1のカソー
ド11にリサイクルされる。このようにアノード排ガス
は改質器における加熱用燃料として用いられ、未反応水
素が有効利用される。またアノード排ガス中には二酸化
炭素が含まれるため、特に溶融炭酸塩型の場合には、そ
の燃焼排ガスをさらにカソードにリサイクルすることに
よってカソード反応に必要な二酸化炭素を供給すること
ができる。FIG. 1 shows an example of a flow scheme of a molten carbonate fuel cell power generation system. The fuel cell body 1 comprises a cathode 11, an anode 12, and an electrolyte plate 13 impregnated with molten carbonate (eutectic composition of potassium carbonate and lithium carbonate). Air (containing oxygen) is supplied to the cathode 11 by the compressor 32, and at the same time, combustion exhaust gas (containing carbon dioxide) is supplied from the reformer 2 via the air preheater 23. Further, the reformed gas (including hydrogen) supplied to the anode 12 was the raw material natural gas from which the sulfur content was removed by the desulfurizer 31 and the steam generated by the exhaust heat recovery boiler 36 passed through the process feed preheater 41. After that, it is introduced into the catalyst tube 21 of the reformer, where it is manufactured by the reforming reaction. The cathode exhaust gas (including unreacted oxygen and carbon dioxide) from the cathode 11 passes through the MC scrubber 14 for removing the molten carbonate mist, and then a part of it is circulated to the cathode by the cathode circulation blower 16,
The rest is auxiliary combustion burner 33 for bottoming cycle,
The gas is discharged through the gas turbine 34 (which is directly connected to the generator 35) and the exhaust heat recovery boiler 36. On the other hand, the anode exhaust gas (including the steam of the reaction product and carbon dioxide and unreacted hydrogen) from the anode 12 is M
Pass through C scrubber 15 and then process feed preheater 41, gas / gas heat exchanger 42 and gas cooler 43
After being cooled and passed through a separator 44 to separate and remove water (the separated water becomes steam for reforming gas production through the pure water device 46 and the exhaust heat recovery boiler 36), the anode exhaust gas blower 45 and The gas is introduced into the catalytic combustor 22 via the gas / gas heat exchanger 42, mixed therewith the air supplied from the compressor 32 via the air preheater 23, and burned to become high temperature combustion gas, which is reformed in the reformer 2. After being used for heating for reaction, it is further mixed with a predetermined amount of air and recycled to the cathode 11 of the fuel cell 1 as described above. In this way, the anode exhaust gas is used as the heating fuel in the reformer, and the unreacted hydrogen is effectively used. Further, since carbon dioxide is contained in the anode exhaust gas, particularly in the case of the molten carbonate type, it is possible to supply the carbon dioxide necessary for the cathode reaction by further recycling the combustion exhaust gas to the cathode.
【0006】上記燃料電池発電システムを起動するため
には、燃料電池本体を所定の運転温度(約650℃)に
まで昇温するとともに、改質器を改質反応が可能な温度
まで昇温しなければならない。図1に示すような往復流
型(例えばバヨネット型)の触媒管を有する改質器の場
合には、一般に触媒管入口部Aで300℃、触媒管先端
部Bで700℃というのが改質反応を開始するのに必要
な温度とされ、起動時においてはこの温度まで改質器を
迅速に昇温することが強く要望される。In order to start the fuel cell power generation system, the temperature of the fuel cell main body is raised to a predetermined operating temperature (about 650 ° C.) and the reformer is raised to a temperature at which the reforming reaction is possible. There must be. In the case of a reformer having a reciprocating flow type (for example, bayonet type) catalyst tube as shown in FIG. 1, it is generally 300 ° C. at the catalyst tube inlet A and 700 ° C. at the catalyst tube tip B. The temperature is set to the temperature required to start the reaction, and it is strongly desired to raise the temperature of the reformer rapidly to this temperature at the time of startup.
【0007】ここで、図1に即して従来の溶融炭酸塩型
燃料電池発電システムの起動時昇温過程を説明する。ま
ず窒素ガスを、アノード排ガスブロワー45からガス/
ガス熱交換器42、窒素ガス循環弁51、プロセスフィ
ード予熱器41、改質器触媒管21、アノードバイパス
弁52、プロセスフィード予熱器41、ガス/ガス熱交
換器42、ガス冷却器43、セパレーター44を経てア
ノード排ガスブロワー45に戻る流路を通して循環させ
る。一方、天然ガスを脱硫器31から天然ガス導入弁5
3を通して触媒燃焼器22に導入し、空気をコンプレッ
サー32から空気予熱器23を通してやはり触媒燃焼器
22に導入することにより、天然ガスを触媒燃焼させて
燃焼ガスを改質器2のシェル側に通す。この燃焼ガスは
改質器2から空気予熱器23、カソード11、MCスク
ラバー14、補助燃焼バーナー33、ガスタービン34
及び排熱回収ボイラーを経て排出される。かくして、燃
料電池本体やカソード/アノード排ガス系とともに、改
質器を中心とする燃料改質系が昇温される。The temperature rising process at startup of the conventional molten carbonate fuel cell power generation system will now be described with reference to FIG. First, nitrogen gas is supplied from the anode exhaust gas blower 45 as gas /
Gas heat exchanger 42, nitrogen gas circulation valve 51, process feed preheater 41, reformer catalyst tube 21, anode bypass valve 52, process feed preheater 41, gas / gas heat exchanger 42, gas cooler 43, separator It is circulated through a flow path returning to the anode exhaust gas blower 45 via 44. On the other hand, the natural gas is introduced from the desulfurizer 31 into the natural gas introduction valve 5
3 is introduced into the catalytic combustor 22 and air is also introduced into the catalytic combustor 22 from the compressor 32 through the air preheater 23 so that natural gas is catalytically burned and the combustion gas is passed to the shell side of the reformer 2. . This combustion gas flows from the reformer 2 to the air preheater 23, the cathode 11, the MC scrubber 14, the auxiliary combustion burner 33, the gas turbine 34.
And exhausted through the exhaust heat recovery boiler. Thus, the temperature of the fuel reforming system centered on the reformer is raised along with the fuel cell body and the cathode / anode exhaust gas system.
【0008】上記のように改質器の昇温に必要な熱は、
触媒燃焼器やバーナーなどの供熱装置で燃料ガスを空気
と混合して燃焼させ、その燃焼ガスを改質器のシェル側
に導入することにより供給する。このときの空気比(空
気/燃料ガスの混合比率)は通常運転時における燃焼ガ
ス温度を前提に当該供熱装置に対して設計された値であ
り、通常運転時においては触媒管内で改質反応(吸熱反
応)が生じていることを考慮して空気比(すなわち燃焼
ガスの温度及び流量)が設定されている。ところが、起
動時には未だ触媒管内には天然ガスは導入されておらず
従って改質反応も生じていないため、同一の条件では触
媒管(特に先端部)が過熱されることになるのである。
この過熱を防止するため、従来は触媒管先端部の温度が
設計温度に近付いた時点で燃焼量を下げて燃焼ガス流量
を絞っている。As described above, the heat required to raise the temperature of the reformer is
It is supplied by mixing the fuel gas with air in a heat supply device such as a catalytic combustor or a burner and burning it, and introducing the combustion gas into the shell side of the reformer. The air ratio (air / fuel gas mixture ratio) at this time is a value designed for the heat supply device on the assumption of the combustion gas temperature during normal operation, and during normal operation, the reforming reaction occurs in the catalyst tube. The air ratio (that is, the temperature and flow rate of the combustion gas) is set in consideration of the occurrence of (endothermic reaction). However, since natural gas is not yet introduced into the catalyst tube at the time of start-up and therefore no reforming reaction has occurred, the catalyst tube (particularly the tip portion) is overheated under the same conditions.
In order to prevent this overheating, conventionally, when the temperature of the tip of the catalyst tube approaches the design temperature, the combustion amount is reduced and the flow rate of combustion gas is throttled.
【0009】[0009]
【発明が解決しようとする課題】しかしながら、燃焼ガ
ス流量を絞った場合には触媒管、改質器各部及び改質器
入出力系への伝熱量が減少するので、特に触媒管の入口
部がなかなか昇温しないという難点がある。However, when the flow rate of the combustion gas is reduced, the heat transfer amount to the catalyst tube, each part of the reformer and the reformer input / output system is reduced. The problem is that the temperature does not rise easily.
【0010】[0010]
【課題を解決するための手段】そこで、本発明では、燃
焼量を下げる代わりに、改質器の起動工程初期には供熱
装置において通常運転時より高い空気比を採用して比較
的低温の燃焼ガスを大量に改質器に流すことにより、上
記難点を解決するものである。Therefore, in the present invention, instead of reducing the combustion amount, an air ratio higher than that in normal operation is adopted in the heat supply device in the early stage of the start-up process of the reformer, so that the temperature is maintained at a relatively low temperature. By flowing a large amount of combustion gas into the reformer, the above problems are solved.
【0011】[0011]
【作用および実施例】従来の方法及び本発明の方法で改
質器を昇温した場合の、触媒管入口及び触媒管先端部の
温度の推移の例をそれぞれ図2及び図3に示す。従来の
方法で昇温した場合では、図2に示すように、当初空気
比を1.5とし、約1時間後に触媒管先端部温度が70
0℃に達して燃焼量を下げた時点で空気比を設計値の2
に上げているが、実質的には一定の空気比で燃焼を行っ
ているといってよい。一方、本発明の方法で昇温した場
合では、図3に示すように、当初空気比を4.5とし、
約30分ごとに段階的に空気比を下げ、最終的には設計
値の2に落としている。このときの触媒管の温度上昇の
様子をみてみると、従来の方法では触媒管先端部温度は
急激に上昇するが触媒管入口温度はなかなか上昇せず、
結局、天然ガスとスチームとを触媒管に導入して改質運
転を開始したのは昇温開始から3時間20分ほど経過し
た時点である。これに対し、本発明の方法では触媒管先
端部と触媒管入口温度が同調して上昇し、約2時間で改
質運転を開始している。このように本発明の方法では、
改質器の起動工程の初期に比較的低温の燃焼ガスを大量
に流すことにより触媒管の先端部のみが集中的に加熱さ
れるのを防止し、触媒管各部の温度上昇を同調させて各
部がほぼ同時に所定温度に達するようにし、これにより
昇温に要する時間を短縮するのである。なお、起動工程
の終期において通常運転時の空気比に戻すのは、燃焼ガ
スの流量は落としても温度を上げることにより所定温度
への到達を早めるためである。2 and 3 show examples of changes in temperature at the catalyst pipe inlet and the catalyst pipe tip when the temperature of the reformer is raised by the conventional method and the method of the present invention, respectively. In the case of raising the temperature by the conventional method, as shown in FIG. 2, the air ratio was initially set to 1.5, and the temperature of the tip of the catalyst tube became 70 after about 1 hour.
When the combustion amount is reduced to 0 ° C and the combustion amount is reduced, the air ratio is set to 2
However, it can be said that combustion is performed at a substantially constant air ratio. On the other hand, when the temperature is raised by the method of the present invention, as shown in FIG. 3, the initial air ratio is 4.5,
The air ratio is gradually reduced about every 30 minutes, and finally it is reduced to the design value of 2. Looking at the temperature rise of the catalyst tube at this time, in the conventional method, the temperature of the tip of the catalyst tube rises sharply, but the catalyst tube inlet temperature does not rise easily,
After all, the natural gas and steam were introduced into the catalyst tube and the reforming operation was started at about 3 hours and 20 minutes after the start of temperature increase. On the other hand, in the method of the present invention, the temperature of the catalyst tube tip and the temperature of the catalyst tube inlet rise in synchronization with each other, and the reforming operation is started in about 2 hours. Thus, in the method of the present invention,
By flowing a large amount of relatively low temperature combustion gas in the early stage of the reformer start-up process, it is possible to prevent intensive heating of only the tip of the catalyst tube and to synchronize the temperature rise of each part of the catalyst tube. To reach a predetermined temperature almost at the same time, thereby shortening the time required to raise the temperature. It should be noted that the reason why the air ratio at the time of normal operation is restored at the end of the startup process is to speed up the reaching of the predetermined temperature by increasing the temperature even if the flow rate of the combustion gas is reduced.
【0012】本発明の方法では、改質器の起動工程の初
期には供熱装置において通常運転時より高い空気比(当
初は通常時の2〜5倍)を採用する。ここでいう起動工
程とは供熱装置での燃焼を開始する時点から改質器の触
媒管に原料天然ガスとスチームを導入して改質反応を開
始する時点までの期間をいう。通常運転時より高い空気
比を採用する当該初期の期間は起動工程全体の2分の1
以上であることが好ましく、3分の2以上であることが
より好ましく、4分の3以上であることが最も好まし
い。また、起動工程の終期において通常運転時の空気比
に戻す場合には、その終期の期間は10分以上でないと
効果が少ないが、40分を超えないことが好ましい。な
お、図3に示すように起動工程の開始から終了までの間
に段階的に空気比を下げていくことは好適な態様であ
る。In the method of the present invention, in the initial stage of the reformer start-up process, a higher air ratio (initially 2 to 5 times that in normal operation) is adopted in the heat supply device than in normal operation. The start-up step here means a period from the time of starting combustion in the heat supply device to the time of starting the reforming reaction by introducing the raw material natural gas and steam into the catalyst tube of the reformer. One half of the entire start-up process during the initial period when a higher air ratio is used than during normal operation.
It is preferably at least above, more preferably at least two thirds, most preferably at least three quarters. Further, when returning to the air ratio at the time of normal operation at the end of the start-up process, the effect is small unless the period of the end is 10 minutes or more, but it is preferable not to exceed 40 minutes. In addition, as shown in FIG. 3, it is a suitable mode that the air ratio is gradually reduced from the start to the end of the starting process.
【0013】本発明において、供熱装置において通常運
転時よりも高い空気比を採用するということは、当該高
い空気比で燃焼させることを意味するのみならず、燃焼
自体は通常運転時の空気比で行い、燃焼ガスに所定量の
空気を混合することも含む意味である。その場合には、
供熱装置が広範囲の空気比での燃焼に対応する必要がな
くなるため、設計が容易になる。In the present invention, adopting a higher air ratio in the heat supply apparatus than that in normal operation means not only combustion at the higher air ratio but also combustion itself in normal operation. And mixing a predetermined amount of air with the combustion gas. In that case,
The heating device does not need to support combustion in a wide range of air ratios, which facilitates design.
【0014】図1では改質器としてバヨネット型触媒管
のような往復流型の触媒管を有するものを用いている
が、本発明の方法で昇温する改質器は必ずしもこれに限
られるものではなく、供熱装置により生成した燃焼ガス
で触媒管を加熱する熱交換器型の改質器であれば各種の
ものに適用できる。また供熱装置としても、バーナーや
触媒燃焼器等の各種燃焼装置が採用できる。さらに供熱
装置で燃焼させるガスも、必ずしも天然ガスに限られる
ものではない。In FIG. 1, a reformer having a reciprocating flow type catalyst tube such as a bayonet type catalyst tube is used, but the reformer for raising the temperature by the method of the present invention is not limited to this. Instead, it can be applied to various types as long as it is a heat exchanger type reformer that heats the catalyst tube with the combustion gas generated by the heat supply device. Further, as the heat supply device, various combustion devices such as burners and catalytic combustors can be adopted. Furthermore, the gas burned in the heat supply device is not necessarily limited to natural gas.
【0015】なお、本発明は改質器(並びにそれに付随
する燃料改質系の機器及び配管)の昇温方法に関するも
のであり、燃料電池本体の昇温との時間的関係あるいは
系統的関係は一応問わないものである。燃料電池本体の
昇温は燃料電池の形式によって作動温度が異なり、また
燃料改質系と燃料電池本体との間のシステムフローも異
なるため、改質器の昇温との関係を一律に論ずることは
できない。また溶融炭酸塩型に絞っても、図1に示すよ
うに改質器からの燃焼排ガスをそのまま燃料電池本体の
カソードに供給して燃料電池本体の昇温を同時に並行し
て行う場合もあれば、燃料電池本体の昇温は別途設けた
供熱装置を用いて行う場合もある。本発明の方法はそれ
らのいずれの場合にも適用可能である。The present invention relates to a method for raising the temperature of a reformer (and associated fuel reforming system equipment and piping), and has no time relationship or systematic relationship with the temperature increase of the fuel cell body. It doesn't matter. Since the operating temperature of the fuel cell main unit depends on the type of fuel cell and the system flow between the fuel reforming system and the fuel cell main unit also differs, the relationship with the temperature rise of the reformer should be discussed uniformly. I can't. Even if the molten carbonate type is used, in some cases, as shown in FIG. 1, the combustion exhaust gas from the reformer is directly supplied to the cathode of the fuel cell body to simultaneously raise the temperature of the fuel cell body in parallel. In some cases, the temperature of the fuel cell main body is raised by using a separately provided heat supplying device. The method of the present invention is applicable to either of these cases.
【0016】[0016]
【発明の効果】本発明によれば、改質器触媒管及び改質
器入出力系(プロセスフィード予熱器、空気予熱器、出
口マニホールド等)の迅速な昇温を達成することができ
る。According to the present invention, rapid temperature rise of the reformer catalyst pipe and the reformer input / output system (process feed preheater, air preheater, outlet manifold, etc.) can be achieved.
【図1】溶融炭酸塩型燃料電池発電システムのフロース
キームの例を示す。FIG. 1 shows an example of a flow scheme of a molten carbonate fuel cell power generation system.
【図2】従来の方法による改質器の起動過程を示す。FIG. 2 shows a starting process of a reformer according to a conventional method.
【図3】本発明の方法による改質器の起動過程を示す。FIG. 3 shows a starting process of a reformer according to the method of the present invention.
1 燃料電池 11 カソード(空気極) 12 アノード(燃料極) 13 電解質板 14 MCスクラバー 15 MCスクラバー 16 カソード循環ブロワー 2 改質器 21 触媒管 22 触媒燃焼器 23 空気予熱器 31 脱硫器 32 空気コンプレッサー 33 補助燃焼バーナー 34 ガスタービン 35 ジェネレーター 36 排熱回収ボイラー 41 プロセスフィード予熱器 42 ガス/ガス熱交換器 43 ガス冷却器 44 セパレーター 45 アノード排ガスブロワー 46 純水装置 51 窒素循環弁 52 アノードバイパス弁 53 天然ガス導入弁 1 Fuel Cell 11 Cathode (Air Electrode) 12 Anode (Fuel Electrode) 13 Electrolyte Plate 14 MC Scrubber 15 MC Scrubber 16 Cathode Circulation Blower 2 Reformer 21 Catalyst Tube 22 Catalytic Combustor 23 Air Preheater 31 Desulfurizer 32 Air Compressor 33 Auxiliary combustion burner 34 Gas turbine 35 Generator 36 Exhaust heat recovery boiler 41 Process feed preheater 42 Gas / gas heat exchanger 43 Gas cooler 44 Separator 45 Anode exhaust gas blower 46 Pure water device 51 Nitrogen circulation valve 52 Anode bypass valve 53 Natural gas Introduction valve
Claims (12)
する燃料電池用熱交換器型改質器の起動方法において、
起動工程の初期には該供熱装置において通常運転時より
高い空気比を採用することを特徴とする方法。1. A method for starting a heat exchanger type reformer for a fuel cell, comprising a heat supply device for supplying a combustion gas for heating,
A method characterized in that an air ratio higher than that in normal operation is adopted in the heat supply device in the initial stage of the startup step.
を採用する請求項1記載の方法。2. The method according to claim 1, wherein the air ratio during normal operation is adopted at the end of the start-up process.
の1以上の期間である請求項1記載の方法。3. The method according to claim 1, wherein the initial stage of the starting step is a period of one half or more of the entire starting step.
の2以上の期間である請求項1記載の方法。4. The method according to claim 1, wherein the initial stage of the starting step is a period of two-thirds or more of the entire starting step.
の3以上の期間である請求項1記載の方法。5. The method of claim 1, wherein the initial of the start-up process is a period of three quarters or more of the entire start-up process.
求項2記載の方法。6. The method according to claim 2, wherein the end of the starting step is 10 minutes or more.
求項6記載の方法。7. The method according to claim 6, wherein the end of the starting step is 40 minutes or less.
気比を段階的に下げていく請求項1乃至7のいずれか記
載の方法。8. The method according to claim 1, wherein the air ratio is gradually reduced from the start to the end of the starting step.
請求項1乃至8のいずれか記載の方法。9. The method according to claim 1, wherein combustion is performed in a heat supply device at the air ratio.
の燃焼を行わせ、燃焼ガスに空気を混合して結果的に該
空気比に設定する請求項1乃至8のいずれか記載の方
法。10. The method according to claim 1, wherein combustion is performed in the heat supply device at an air ratio lower than the air ratio, and air is mixed with the combustion gas to set the air ratio as a result. Method.
1乃至10のいずれか記載の方法。11. The method according to claim 1, wherein the heat supply device is a catalytic combustor.
項1乃至11のいずれか記載の方法。12. The method according to claim 1, wherein the fuel cell is of the molten carbonate type.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP6060570A JP3042751B2 (en) | 1994-03-30 | 1994-03-30 | Starting method of reformer |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP6060570A JP3042751B2 (en) | 1994-03-30 | 1994-03-30 | Starting method of reformer |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH07267604A true JPH07267604A (en) | 1995-10-17 |
JP3042751B2 JP3042751B2 (en) | 2000-05-22 |
Family
ID=13146058
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP6060570A Expired - Fee Related JP3042751B2 (en) | 1994-03-30 | 1994-03-30 | Starting method of reformer |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3042751B2 (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2003086962A2 (en) * | 2002-04-18 | 2003-10-23 | Nissan Motor Co., Ltd. | Fuel reforming system and warmup method thereof |
JP2006228654A (en) * | 2005-02-21 | 2006-08-31 | Matsushita Electric Ind Co Ltd | Fuel cell generator, and operation method, program, and recording medium of the same |
JP2008007355A (en) * | 2006-06-28 | 2008-01-17 | Kansai Electric Power Co Inc:The | Dimethyl ether reformation power generation system |
WO2008126353A1 (en) * | 2007-03-14 | 2008-10-23 | Panasonic Corporation | Fuel cell system and fuel cell system operation method |
US8048577B2 (en) | 2006-06-15 | 2011-11-01 | Panasonic Corporation | Hydrogen generator with a combustor with a control unit |
JP2014216271A (en) * | 2013-04-26 | 2014-11-17 | 三菱重工業株式会社 | Power generation system and starting method of the same |
US9509006B2 (en) | 2005-02-18 | 2016-11-29 | Panasonic Intellectual Property Management Co., Ltd. | Fuel cell system |
-
1994
- 1994-03-30 JP JP6060570A patent/JP3042751B2/en not_active Expired - Fee Related
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2003086962A2 (en) * | 2002-04-18 | 2003-10-23 | Nissan Motor Co., Ltd. | Fuel reforming system and warmup method thereof |
WO2003086962A3 (en) * | 2002-04-18 | 2004-04-15 | Nissan Motor | Fuel reforming system and warmup method thereof |
CN100339297C (en) * | 2002-04-18 | 2007-09-26 | 日产自动车株式会社 | Fuel reforming system and warmup method thereof |
US7465325B2 (en) | 2002-04-18 | 2008-12-16 | Nissan Motor Co., Ltd. | Fuel reforming system and warmup method thereof |
US9509006B2 (en) | 2005-02-18 | 2016-11-29 | Panasonic Intellectual Property Management Co., Ltd. | Fuel cell system |
JP2006228654A (en) * | 2005-02-21 | 2006-08-31 | Matsushita Electric Ind Co Ltd | Fuel cell generator, and operation method, program, and recording medium of the same |
US8048577B2 (en) | 2006-06-15 | 2011-11-01 | Panasonic Corporation | Hydrogen generator with a combustor with a control unit |
JP2008007355A (en) * | 2006-06-28 | 2008-01-17 | Kansai Electric Power Co Inc:The | Dimethyl ether reformation power generation system |
WO2008126353A1 (en) * | 2007-03-14 | 2008-10-23 | Panasonic Corporation | Fuel cell system and fuel cell system operation method |
US8318365B2 (en) | 2007-03-14 | 2012-11-27 | Panasonic Corporation | Fuel cell system with bypass path and operation method for controlling bypass path of fuel cell system |
JP2014216271A (en) * | 2013-04-26 | 2014-11-17 | 三菱重工業株式会社 | Power generation system and starting method of the same |
US9638102B2 (en) | 2013-04-26 | 2017-05-02 | Mitsubishi Hitachi Power Systems, Ltd. | Power generation system and method for starting power generation system |
Also Published As
Publication number | Publication date |
---|---|
JP3042751B2 (en) | 2000-05-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5282103B2 (en) | Hydrogen recycling type MCFC power generation system | |
KR20060044624A (en) | Methods and systems for startup and transient operation of integrated fuel cell-gas turbine system | |
CN100459263C (en) | Fuel cell system | |
JP2003327405A (en) | Fuel reforming apparatus and method of starting same | |
KR101992791B1 (en) | Hydrogen and carbon monoxide generation using an rep with partial oxidation | |
KR20160143673A (en) | Fuel cell system with improved thermal management | |
US20190190050A1 (en) | Solid oxide fuel cell system | |
JP2017041309A (en) | Power generating system and operating method therefor | |
JPH07230816A (en) | Internally modified solid electrolyte fuel cell system | |
JP3042751B2 (en) | Starting method of reformer | |
US20070275278A1 (en) | Integrated catalytic and turbine system and process for the generation of electricity | |
JP4342172B2 (en) | Co-energy system | |
JP2000331697A (en) | Fuel cell generating device injecting vapor into anode exhaust gas line | |
JPH09237635A (en) | Solid electrolyte fuel cell | |
JP2003086210A (en) | Solid high-polymer type fuel cell power generator and its operation method | |
JP2000331698A (en) | Fuel cell generating device using gas turbine exhaust gas | |
KR100987824B1 (en) | Start-up protocol of Self-sustained Solid Oxide Fuel Cell System | |
JPH11149931A (en) | Starting method of reforming equipment for fuel cell | |
JP2001085039A (en) | Fuel cell system | |
JPH11135140A (en) | Combined power generating facilities recycling anode exhaust gas | |
JP3257604B2 (en) | Fuel cell generator | |
JP3872006B2 (en) | Fuel cell power generation system | |
JP2006294464A (en) | Fuel cell power generation system | |
JP4917791B2 (en) | Fuel cell system | |
JPH08339815A (en) | Fuel cell power generation device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20000216 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
LAPS | Cancellation because of no payment of annual fees |