JP4147446B2 - Hydrogen generator - Google Patents

Hydrogen generator Download PDF

Info

Publication number
JP4147446B2
JP4147446B2 JP2001255741A JP2001255741A JP4147446B2 JP 4147446 B2 JP4147446 B2 JP 4147446B2 JP 2001255741 A JP2001255741 A JP 2001255741A JP 2001255741 A JP2001255741 A JP 2001255741A JP 4147446 B2 JP4147446 B2 JP 4147446B2
Authority
JP
Japan
Prior art keywords
gas
combustor
burner
exhaust gas
hydrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001255741A
Other languages
Japanese (ja)
Other versions
JP2003063802A (en
Inventor
治正 竹田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Holdings Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Holdings Ltd filed Critical Fuji Electric Holdings Ltd
Priority to JP2001255741A priority Critical patent/JP4147446B2/en
Publication of JP2003063802A publication Critical patent/JP2003063802A/en
Application granted granted Critical
Publication of JP4147446B2 publication Critical patent/JP4147446B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
この発明は、改質ガスから水素を分離精製する圧力スイング吸着装置(PSA)を備える水素発生装置に関する。
【0002】
【従来の技術】
雰囲気ガスとして水素を用いる工業用装置や燃料電池発電プラントなどにおいては、水素発生装置が必要である。
【0003】
従来、水素発生装置の一つとして、天然ガス,LNG,LPG,メタノールなどの炭化水素系原燃料と水蒸気とを触媒の存在下で反応させて水素リッチな改質ガスを生成するための触媒層と、燃焼排ガスを前記改質反応の加熱媒体として利用するためのバーナとを備えた改質器と、前記水蒸気を改質器に供給するために設けた水蒸気分離器と、この水蒸気分離器内の水を前記バーナの燃焼排ガスにより加熱し水蒸気を発生させるための排ガス冷却器と、前記改質ガスまたは改質原燃料を加圧するための圧縮機と、加圧された改質ガスから水素を分離精製する圧力スイング吸着装置(PSA)と、このPSAにおいて水素を分離除去処理した後の残ガスを前記改質器用バーナに供給して燃焼させるように構成した水素発生装置が知られている。
【0004】
この種の水素発生装置に関して、本件出願人は、水素精製後のPSA残ガスを無駄に放出することなく、安全かつ合理的にエネルギー回収が可能とすることを目的とした装置を提案している(特願2000−266966参照)。図3および図4は、上記特願2000−266966に記載された水素発生装置の概略システム系統図を示す。
【0005】
図3に示す水素発生装置は、まず、バーナ1aと触媒層1bとを備えた改質器1と、改質ガスを加圧するための圧縮機2と、改質ガスから水素を分離精製するPSA3と、PSAにおいて水素を分離除去処理した後のまだ水素を含む残ガスを前記改質器のバーナ1aに供給するための残ガス供給配管10と、水蒸気を改質器1に供給するために設けた水蒸気分離器4と、この水蒸気分離器4内の水を前記バーナの燃焼排ガスにより加熱し水蒸気を発生させるための排ガス冷却器7と、水循環用のポンプ5とを備える。
【0006】
さらに、図3においては燃焼器6を備え、改質反応に必要な熱量に対する余剰分の前記PSAの残ガスをこの燃焼器6で燃焼させた後に、この燃焼排ガスを、バーナの燃焼排ガスとともに排ガス冷却器7に導入するための燃焼器排ガス供給ライン12を設けている。この燃焼器6および改質器用バーナ1aには、燃焼用空気が、図示しないブロワー等により導入される。従来は、燃焼器6で燃焼させ燃焼排ガスを、大気に放出していたが、図3の構成により、改質器用バーナの燃焼排ガスと、燃焼器における燃焼排ガスの双方が排ガス冷却器に導入され、エネルギー回収できるので、従来装置に比べてエネルギー効率が大幅に向上する。
【0007】
図3において、改質原燃料は水蒸気とともに、その導入配管から改質器1の触媒層1bに導入され、触媒による改質反応によって、水素,二酸化炭素,一酸化炭素を含む水素リッチなガスに改質される。この改質ガス中の一酸化炭素は、図示しない一酸化炭素変成器により、二酸化炭素と水素とに変成する。変成後の改質ガスの組成は、水素濃度70%余り、二酸化炭素約20%で、残余は、水蒸気,メタンと若干の一酸化炭素である。
【0008】
この改質ガスは圧縮機2により0.6〜0.9MPa(G)程度に圧縮された後、PSAにより精製され、水素濃度が高められる。図3においては、改質器1を略大気圧で運転し、PSA3に投入する改質ガスを圧縮機2により加圧する方式を示したが、原燃料を加圧して、高圧の水蒸気とともに改質器1に供給し、改質器1を加圧状態で運転することもできる。この場合は、改質ガス圧縮機2は不要になるが、原燃料を加圧する手段が必要となる。
【0009】
PSAは、複数の容器に活性炭やゼオライト等の吸着剤を充填し、圧力を変動させることで特定のガス種を吸着分離する装置であり、その運転条件や性能によって異なるが、投入された水素に対して、略65〜75%が分離精製されて利用される。残余の水素および他の成分は下流に排出される。下流に放出されるこのPSAの残ガスは、水素,メタン,一酸化炭素の可燃成分を多量に含んでいる。一方、前記改質反応は吸熱反応のため、外部から熱を供給する必要があり、そのために、バーナの燃焼排ガスが加熱媒体として利用され、このバーナの燃焼ガスとして、主に、前記したPSA3において水素を分離除去処理した後のまだ水素を含む残ガスが用いられ、図示しない流量制御弁を介して残ガスが、PSA3からバーナ1aに供給される。
【0010】
なお、改質器1における改質反応に必要な水蒸気量は、前記排ガス冷却器7において発生する水蒸気量のみでは不足する。そこで、必要な水蒸気量を確保するために、前記水蒸気分離器4は、電気ヒータまたはボイラー等の図示しない追加の熱源を備え、水蒸気分離器4内の圧力を検出し、この圧力が所定の圧力を維持するように追加の熱源の発生熱量を制御するようにしている。また、水蒸気分離器4には、図示しない補給水供給配管が接続されており、水蒸気使用量に見合う水が補給される。
【0011】
図4は、前記特願2000−266966に記載された図3とは異なる水素発生装置の概略システム系統図で、改質器バーナ1aの燃焼排ガスを排ガス冷却器7に供給するライン13上に、バーナ1aに供給する燃焼用空気を前記バーナの燃焼排ガスによって予熱するための空気予熱器8を設け、さらにその下流に、触媒燃焼器6aを設け、この触媒燃焼器6aにおいて、空気予熱器8から排出された燃焼排ガスに含まれる残留酸素によって前記PSAの残ガスを燃焼させ、この燃焼排ガスを排ガス冷却器7に供給する構成とした点が、図3とは異なる。
【0012】
予熱空気供給ライン14から改質器バーナ1aに供給される空気量は、通常、理論空燃比の1.2〜1.5倍の空気量が供給されるので、バーナの燃焼排ガス中には、余剰の酸素が残存し、これが触媒燃焼器6aにおける燃焼用に利用できる。また、図4の例においては、空気を冷却用として触媒燃焼器6aに供給する冷却空気供給配管15を設けている。この冷却空気により、常時、触媒燃焼器6aの加熱防止を図っている。上記構成により、PSA残ガスの組成や流量の変化ならびに余剰残ガスの程度に関わらず安定した燃焼を可能とすることができる。
【0013】
【発明が解決しようとする課題】
上記のような水素発生装置においても、安全性の観点から下記のような問題があった。
【0014】
PSAの水素分離機能は、外気温,改質ガス組成の変化,経時的な特性変化等によって変化し、PSA残ガスの組成や流量が変化する。そのため、前述の燃焼器に、大量のPSA残ガス(水素リッチガス)が投入された場合、燃焼器、特に触媒燃焼器の温度が急激に上昇し、例えば、800℃まで上昇することがある。この場合には、触媒燃焼器の寿命の観点から好ましくないばかりでなく、後段の機器を破損させる危険性がある。
【0015】
また、前記燃焼器においては、未反応のガス、即ち、未燃ガスが生ずることがあり、これを後段の機器を経由して大気に放出した場合、火災上危険であり、また、環境上も好ましくない。
【0016】
この発明は、上記のような問題点を解決するためになされたもので、この発明の課題は、燃焼器における未燃焼ガスの大気放出や温度異常を防止し、安全運転が可能な水素発生装置を提供することにある。
【0017】
【課題を解決するための手段】
前述の課題を解決するため、この発明においては、炭化水素系原燃料と水蒸気とを触媒の存在下で反応させて水素リッチな改質ガスを生成するための触媒層と、燃焼排ガスを前記改質反応の加熱媒体として利用するためのバーナとを備えた改質器と、前記水蒸気を改質器に供給するために設けた水蒸気分離器と、この水蒸気分離器内の水を前記バーナの燃焼排ガスにより加熱し水蒸気を発生させるための排ガス冷却器と、前記改質ガスまたは改質原燃料を加圧するための圧縮機と、加圧された改質ガスから水素を分離精製する圧力スイング吸着装置(PSA)とを備え、このPSAにおいて水素を分離除去処理した後の残ガスを前記改質器用バーナに供給して燃焼させ、かつ、前記残ガスの一部を前記バーナとは別に設けた燃焼器に供給して燃焼させ、この燃焼器における燃焼排ガスを前記バーナの燃焼排ガスとともに前記排ガス冷却器に導入してなる水素発生装置において、
前記燃焼器への残ガス供給ラインは、ガス流量調節弁とガス切替弁とを有し、かつ、前記ガス切替弁から前記燃焼器に供給する残ガスの一部をバイパスさせてフレアスタックに導入する未燃ガス放出ラインを備えてなり、また、前記燃焼器と前記排ガス冷却器とを接続する燃焼器排ガス供給ラインは、燃焼器の出口ガス温度を検出する温度検出器と、出口ガス中の未燃ガスを検知するためのガス分析器とを有し、さらに、前記温度検出器およびガス分析器の測定値に基づき、前記燃焼器における未燃焼ガスの大気放出や温度異常を防止するための制御信号を前記ガス流量調節弁とガス切替弁とに出力する制御装置を備えてなるものとする(請求項1の発明)。
【0018】
上記請求項1の発明によれば、前記温度検出器およびガス分析器の測定値に基づき、未燃焼ガスを検知した場合に、フレアスタックにより燃焼・無害化して大気放出することができる。また、温度検知に基づき、前記燃焼器への残ガス供給量を調節することにより、前記燃焼器における温度異常を防止することができる。さらに、未燃焼ガスの検知と温度検知の両検知に基づき、残ガス供給量を調節することにより、未燃焼ガスの発生や温度異常の発生確率を、補完的に低減できる。詳細は後述する。
【0019】
前記請求項1の発明の実施態様としては、下記請求項2ないし4の発明が好ましい。即ち、請求項1記載の水素発生装置において、前記燃焼器は、触媒燃焼器とする(請求項2の発明)。
【0020】
また、請求項2記載の水素発生装置において、前記改質器用バーナの燃焼排ガスを排ガス冷却器に供給するライン上に、前記バーナに供給する燃焼用空気を前記バーナの燃焼排ガスによって予熱するための空気予熱器と、前記触媒燃焼器とを設け、この触媒燃焼器において前記空気予熱器から排出された燃焼排ガスに含まれる残留酸素によって前記PSAの残ガスを燃焼させ、この燃焼排ガスを前記排ガス冷却器に供給してなるものとする(請求項3の発明)。
【0021】
さらに、前記請求項3記載の水素発生装置において、前記触媒燃焼器は、冷却用の空気導入ラインを備えるものとする(請求項4の発明)。
【0022】
【発明の実施の形態】
図面に基づき、本発明の実施の形態について以下にのべる。
【0023】
図1および2は、図3および図4を改良したこの発明のそれぞれ異なる実施例を示す概略構成図である。図1および2において、図3および図4の従来装置と同一部材については同一の符合を付して詳細説明を省略する。
【0024】
図1と図3との相違点は、燃焼器6の前後のラインの構成が異なる。図1において、燃焼器6への残ガス供給ラインは、ガス流量調節弁22とガス切替弁24とを有し、かつ、前記ガス切替弁24から前記燃焼器6に供給する残ガスの一部をバイパスさせてフレアスタック21に導入する未燃ガス放出ライン20を備える。なお、部番23は逆止弁である。
【0025】
また、燃焼器6と排ガス冷却器7とを接続する燃焼器排ガス供給ライン12は、燃焼器の出口ガス温度を検出する温度検出器32(例えば熱電対)と、出口ガス中の未燃ガスを検知するためのガス分析器34とを有し、さらに、温度検出器32およびガス分析器34の測定値に基づき、燃焼器6における未燃焼ガスの大気放出や温度異常を防止するための制御信号を前記ガス流量調節弁22とガス切替弁24とに出力する制御装置40を備える。
【0026】
上記構成により、未燃焼ガスの大気放出や温度異常を防止するための制御は、例えば、下記のようにして行なう。温度検出器32の温度検出値が、例えば500℃となった場合、ガス切替弁24の切替を行なって残ガスの一部をバイパスさせてフレアスタック21に導入する。同時に、燃焼器6へのPSAの残ガス供給量を、ガス流量調節弁22により減少させる。その後、温度検出器32の温度検出値が、例えば450℃となった場合、ガス切替弁24の切替を行なってバイパスを停止する。ガス流量調節弁22は、温度検出値に応じた所定の開度に調節する。
【0027】
また、ガス分析器34が、未燃焼ガスを検知した場合には、直ちに、ガス切替弁24の切替を行なって残ガスの燃焼器6への投入を停止し、フレアスタック21に導入して自然拡散燃焼させ、無害化した上で、大気に放出する。同時に、燃焼器6へのPSAの残ガス供給量を、ガス流量調節弁22により所定の割合減少させる操作を行う。その後、再度、ガス切替弁24の切替を行なってバイパスを停止する。残ガス供給量を減少後も、なおかつ未燃焼ガスを検知した場合には、上記と同様の操作を行なう。
【0028】
上記のようにして、未燃焼ガスの大気放出や異常温度上昇を防止することができる。
【0029】
図2は、図4の改良に関わる図1とは異なる実施例を示す。図2と図4との相違点は、図1と図3との相違点と同様に、燃焼器6aへの残ガス供給ラインが、ガス流量調節弁22とガス切替弁24とを有し、かつ、ガス切替弁24から燃焼器に供給する残ガスの一部をバイパスさせてフレアスタック21に導入する未燃ガス放出ライン20を備える点と、また、燃焼器6aと排ガス冷却器7とを接続する燃焼器排ガス供給ラインが、燃焼器の出口ガス温度を検出する温度検出器32と、出口ガス中の未燃ガスを検知するためのガス分析器34とを有し、さらに、温度検出器32およびガス分析器34の測定値に基づき、燃焼器6aにおける未燃焼ガスの大気放出や温度異常を防止するための制御信号を前記ガス流量調節弁とガス切替弁とに出力する制御装置40を備える点で異なる。
【0030】
図2においては、図1とは異なり、改質器バーナ1aの燃焼排ガスを排ガス冷却器7に供給するライン13上に、バーナ1aに供給する燃焼用空気を前記バーナの燃焼排ガスによって予熱するための空気予熱器8を設け、さらにその下流に、触媒燃焼器6を設け、この触媒燃焼器6において、空気予熱器8から排出された燃焼排ガスに含まれる残留酸素によって前記PSAの残ガスを燃焼させ、この燃焼排ガスを排ガス冷却器7に供給する構成としているので、PSA残ガスの組成や流量の変化ならびに余剰残ガスの程度に関わらず安定した燃焼を可能とすることができる(詳細は、前記特願2000−266966参照)。
【0031】
【発明の効果】
上記のように、この発明によれば、炭化水素系原燃料と水蒸気とを触媒の存在下で反応させて水素リッチな改質ガスを生成するための触媒層と、燃焼排ガスを前記改質反応の加熱媒体として利用するためのバーナとを備えた改質器と、前記水蒸気を改質器に供給するために設けた水蒸気分離器と、この水蒸気分離器内の水を前記バーナの燃焼排ガスにより加熱し水蒸気を発生させるための排ガス冷却器と、前記改質ガスまたは改質原燃料を加圧するための圧縮機と、加圧された改質ガスから水素を分離精製する圧力スイング吸着装置(PSA)とを備え、このPSAにおいて水素を分離除去処理した後の残ガスを前記改質器用バーナに供給して燃焼させ、かつ、前記残ガスの一部を前記バーナとは別に設けた燃焼器に供給して燃焼させ、この燃焼器における燃焼排ガスを前記バーナの燃焼排ガスとともに前記排ガス冷却器に導入してなる水素発生装置において、
前記燃焼器への残ガス供給ラインは、ガス流量調節弁とガス切替弁とを有し、かつ、前記ガス切替弁から前記燃焼器に供給する残ガスの一部をバイパスさせてフレアスタックに導入する未燃ガス放出ラインを備えてなり、また、前記燃焼器と前記排ガス冷却器とを接続する燃焼器排ガス供給ラインは、燃焼器の出口ガス温度を検出する温度検出器と、出口ガス中の未燃ガスを検知するためのガス分析器とを有し、さらに、前記温度検出器およびガス分析器の測定値に基づき、前記燃焼器における未燃焼ガスの大気放出や温度異常を防止するための制御信号を前記ガス流量調節弁とガス切替弁とに出力する制御装置を備えてなるものとすることにより、
燃焼器における未燃焼ガスの大気放出や温度異常を防止し、安全運転が可能な水素発生装置を提供することができる。
【図面の簡単な説明】
【図1】この発明の実施例を示す水素発生装置の概略構成図
【図2】この発明の図1とは異なる実施例を示す水素発生装置の概略構成図
【図3】従来の改良された水素発生装置の概略構成図
【図4】従来の図3とは異なる水素発生装置の概略構成図
【符号の説明】
1:改質器、1a:バーナ、1b:触媒層、2:圧縮機、3:圧力スイング吸着装置(PSA)、4:水蒸気分離器、6,6a:燃焼器、7:排ガス冷却器、8:空気予熱器、20:未燃ガス放出ライン、21:フレアスタック、22:ガス流量調節弁、24:ガス切替弁、32:温度検出器、34:ガス分析器、40:制御装置。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a hydrogen generator equipped with a pressure swing adsorption device (PSA) for separating and purifying hydrogen from reformed gas.
[0002]
[Prior art]
In an industrial device or a fuel cell power plant that uses hydrogen as an atmospheric gas, a hydrogen generator is required.
[0003]
Conventionally, as one of the hydrogen generators, a catalyst layer for producing a hydrogen-rich reformed gas by reacting a hydrocarbon-based raw fuel such as natural gas, LNG, LPG, and methanol with water vapor in the presence of a catalyst. A reformer provided with a burner for using combustion exhaust gas as a heating medium for the reforming reaction, a steam separator provided for supplying the steam to the reformer, and the inside of the steam separator An exhaust gas cooler for heating water with the combustion exhaust gas of the burner to generate water vapor, a compressor for pressurizing the reformed gas or reformed raw fuel, and hydrogen from the pressurized reformed gas There are known a pressure swing adsorption device (PSA) for separation and purification, and a hydrogen generator configured to burn the residual gas after hydrogen is separated and removed in the PSA by supplying it to the reformer burner.
[0004]
With regard to this type of hydrogen generator, the present applicant has proposed a device intended to enable safe and rational energy recovery without wasteful release of PSA residual gas after hydrogen purification. (See Japanese Patent Application No. 2000-266966). 3 and 4 are schematic system diagrams of the hydrogen generator described in Japanese Patent Application No. 2000-266966.
[0005]
The hydrogen generator shown in FIG. 3 includes a reformer 1 including a burner 1a and a catalyst layer 1b, a compressor 2 for pressurizing the reformed gas, and a PSA 3 that separates and purifies hydrogen from the reformed gas. A residual gas supply pipe 10 for supplying residual gas still containing hydrogen after separation and removal of hydrogen in the PSA to the burner 1a of the reformer, and for supplying steam to the reformer 1 A water vapor separator 4, an exhaust gas cooler 7 for heating the water in the water vapor separator 4 with the combustion exhaust gas of the burner to generate water vapor, and a water circulation pump 5.
[0006]
Further, in FIG. 3, a combustor 6 is provided, and after the surplus residual PSA gas with respect to the amount of heat necessary for the reforming reaction is combusted in the combustor 6, the combustion exhaust gas is exhausted together with the burner combustion exhaust gas. A combustor exhaust gas supply line 12 for introduction into the cooler 7 is provided. Combustion air is introduced into the combustor 6 and the reformer burner 1a by a blower (not shown) or the like. Conventionally, the combustion exhaust gas burned by the combustor 6 was released to the atmosphere, but with the configuration of FIG. 3, both the combustion exhaust gas of the reformer burner and the combustion exhaust gas in the combustor are introduced into the exhaust gas cooler. Since energy can be recovered, energy efficiency is greatly improved compared to conventional devices.
[0007]
In FIG. 3, the reforming raw fuel is introduced into the catalyst layer 1b of the reformer 1 from its introduction pipe together with water vapor, and is converted into a hydrogen-rich gas containing hydrogen, carbon dioxide, and carbon monoxide by the reforming reaction by the catalyst. Reformed. Carbon monoxide in the reformed gas is converted into carbon dioxide and hydrogen by a carbon monoxide converter (not shown). The composition of the reformed gas after the transformation is about 70% hydrogen concentration and about 20% carbon dioxide, and the remainder is water vapor, methane and some carbon monoxide.
[0008]
The reformed gas is compressed to about 0.6 to 0.9 MPa (G) by the compressor 2 and then purified by PSA to increase the hydrogen concentration. FIG. 3 shows a system in which the reformer 1 is operated at substantially atmospheric pressure, and the reformed gas charged into the PSA 3 is pressurized by the compressor 2, but the raw fuel is pressurized and reformed together with high-pressure steam. The reformer 1 can also be operated in a pressurized state by supplying to the reactor 1. In this case, the reformed gas compressor 2 is not necessary, but means for pressurizing the raw fuel is required.
[0009]
PSA is a device that adsorbs and separates specific gas species by filling a plurality of containers with adsorbents such as activated carbon and zeolite, and changing the pressure. Depending on the operating conditions and performance, On the other hand, approximately 65 to 75% is separated and purified. The remaining hydrogen and other components are discharged downstream. The residual gas of this PSA released downstream contains a large amount of combustible components of hydrogen, methane, and carbon monoxide. On the other hand, since the reforming reaction is an endothermic reaction, it is necessary to supply heat from the outside. For this reason, the combustion exhaust gas of the burner is used as a heating medium, and the combustion gas of the burner is mainly used in the PSA 3 described above. The residual gas that still contains hydrogen after separation and removal of hydrogen is used, and the residual gas is supplied from the PSA 3 to the burner 1a via a flow control valve (not shown).
[0010]
Note that the amount of water vapor necessary for the reforming reaction in the reformer 1 is insufficient with only the amount of water vapor generated in the exhaust gas cooler 7. Therefore, in order to secure a necessary amount of water vapor, the water vapor separator 4 includes an additional heat source (not shown) such as an electric heater or a boiler, detects the pressure in the water vapor separator 4, and this pressure is a predetermined pressure. The amount of heat generated by the additional heat source is controlled so as to maintain the above. The steam separator 4 is connected to a supply water supply pipe (not shown) so that water corresponding to the amount of steam used is supplied.
[0011]
FIG. 4 is a schematic system diagram of a hydrogen generator different from FIG. 3 described in Japanese Patent Application 2000-266966. On the line 13 for supplying the combustion exhaust gas of the reformer burner 1a to the exhaust gas cooler 7, An air preheater 8 for preheating the combustion air supplied to the burner 1a with the combustion exhaust gas of the burner is provided, and further, a catalytic combustor 6a is provided downstream of the air preheater 8a. 3 differs from FIG. 3 in that the residual gas of the PSA is combusted by residual oxygen contained in the discharged combustion exhaust gas and this combustion exhaust gas is supplied to the exhaust gas cooler 7.
[0012]
Since the amount of air supplied from the preheated air supply line 14 to the reformer burner 1a is usually 1.2 to 1.5 times the stoichiometric air-fuel ratio, Excess oxygen remains and can be used for combustion in the catalytic combustor 6a. Moreover, in the example of FIG. 4, the cooling air supply piping 15 which supplies air to the catalyst combustor 6a for cooling is provided. This cooling air always prevents the catalytic combustor 6a from being heated. With the above configuration, stable combustion can be performed regardless of changes in the composition and flow rate of the PSA residual gas and the degree of excess residual gas.
[0013]
[Problems to be solved by the invention]
The above hydrogen generator also has the following problems from the viewpoint of safety.
[0014]
The hydrogen separation function of PSA changes depending on the outside air temperature, the reformed gas composition change, the characteristic change over time, and the like, and the composition and flow rate of the PSA residual gas change. For this reason, when a large amount of residual PSA gas (hydrogen-rich gas) is introduced into the above-described combustor, the temperature of the combustor, particularly the catalytic combustor, may rapidly increase, for example, to 800 ° C. In this case, not only is it not preferable from the viewpoint of the life of the catalytic combustor, but there is a risk of damaging the subsequent equipment.
[0015]
Further, in the combustor, unreacted gas, that is, unburned gas, may be generated. If this gas is released to the atmosphere via a subsequent device, it is a fire hazard and also in the environment. It is not preferable.
[0016]
The present invention has been made to solve the above-described problems, and an object of the present invention is to prevent hydrogen emission from the unburned gas in the combustor and to prevent abnormal temperatures, and to enable safe operation of the hydrogen generator. Is to provide.
[0017]
[Means for Solving the Problems]
In order to solve the above-described problems, in the present invention, a catalyst layer for reacting a hydrocarbon-based raw fuel and steam in the presence of a catalyst to generate a hydrogen-rich reformed gas, and a combustion exhaust gas are modified. A reformer provided with a burner for use as a heating medium for quality reaction, a steam separator provided for supplying the steam to the reformer, and combustion of the water in the steam separator into the burner An exhaust gas cooler for generating steam by heating with exhaust gas, a compressor for pressurizing the reformed gas or reformed raw fuel, and a pressure swing adsorption device for separating and purifying hydrogen from the pressurized reformed gas (PSA), the residual gas after separation and removal of hydrogen in this PSA is supplied to the reformer burner and burned, and a part of the residual gas is provided separately from the burner. Supply to the vessel Is burnt, the hydrogen generating apparatus comprising introducing into the exhaust gas cooler flue gas together with the combustion exhaust gas of the burner in the combustor,
The residual gas supply line to the combustor has a gas flow rate control valve and a gas switching valve, and introduces into the flare stack a part of the residual gas supplied from the gas switching valve to the combustor. A combustor exhaust gas supply line for connecting the combustor and the exhaust gas cooler, a temperature detector for detecting an outlet gas temperature of the combustor, and an outlet gas in the outlet gas. A gas analyzer for detecting unburned gas, and further, based on the measured values of the temperature detector and the gas analyzer, for preventing atmospheric discharge of the unburned gas and temperature abnormality in the combustor. A control device that outputs a control signal to the gas flow rate control valve and the gas switching valve is provided (invention of claim 1).
[0018]
According to the first aspect of the present invention, when unburned gas is detected based on the measured values of the temperature detector and the gas analyzer, the flare stack can burn and detoxify it and release it to the atmosphere. Moreover, temperature abnormality in the combustor can be prevented by adjusting the residual gas supply amount to the combustor based on temperature detection. Furthermore, by adjusting the residual gas supply amount based on both detection of unburned gas and temperature detection, the probability of occurrence of unburned gas and temperature abnormality can be complementarily reduced. Details will be described later.
[0019]
As an embodiment of the invention of claim 1, the inventions of claims 2 to 4 below are preferable. That is, in the hydrogen generator according to claim 1, the combustor is a catalytic combustor (invention of claim 2).
[0020]
3. The hydrogen generator according to claim 2, wherein the combustion air supplied to the burner is preheated by the combustion exhaust gas of the burner on a line for supplying the combustion exhaust gas of the reformer burner to the exhaust gas cooler. An air preheater and the catalytic combustor are provided, and the residual gas of the PSA is burned by residual oxygen contained in the combustion exhaust gas discharged from the air preheater in the catalyst combustor, and the combustion exhaust gas is cooled by the exhaust gas. It is supposed to be supplied to a container (Invention of Claim 3).
[0021]
Further, in the hydrogen generator according to claim 3, the catalytic combustor includes an air introduction line for cooling (invention of claim 4).
[0022]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below based on the drawings.
[0023]
FIGS. 1 and 2 are schematic configuration diagrams showing different embodiments of the present invention which are improved from FIGS. 1 and 2, the same members as those of the conventional apparatus of FIGS. 3 and 4 are denoted by the same reference numerals, and detailed description thereof is omitted.
[0024]
The difference between FIG. 1 and FIG. 3 is the configuration of the lines before and after the combustor 6. In FIG. 1, the residual gas supply line to the combustor 6 includes a gas flow rate adjustment valve 22 and a gas switching valve 24, and a part of the residual gas supplied from the gas switching valve 24 to the combustor 6. Is provided with an unburned gas discharge line 20 that is introduced into the flare stack 21. Part number 23 is a check valve.
[0025]
The combustor exhaust gas supply line 12 connecting the combustor 6 and the exhaust gas cooler 7 includes a temperature detector 32 (for example, a thermocouple) that detects the outlet gas temperature of the combustor, and unburned gas in the outlet gas. And a control signal for preventing the combustion of the unburned gas in the combustor 6 from being released into the atmosphere and temperature abnormalities based on the measured values of the temperature detector 32 and the gas analyzer 34. Is provided to the gas flow rate adjusting valve 22 and the gas switching valve 24.
[0026]
With the above configuration, control for preventing unburned gas from being released into the atmosphere and temperature abnormality is performed, for example, as follows. When the temperature detection value of the temperature detector 32 reaches, for example, 500 ° C., the gas switching valve 24 is switched so that a part of the remaining gas is bypassed and introduced into the flare stack 21. At the same time, the residual gas supply amount of PSA to the combustor 6 is decreased by the gas flow rate control valve 22. Thereafter, when the temperature detection value of the temperature detector 32 reaches, for example, 450 ° C., the gas switching valve 24 is switched to stop the bypass. The gas flow rate adjustment valve 22 adjusts to a predetermined opening according to the detected temperature value.
[0027]
When the gas analyzer 34 detects unburned gas, the gas switching valve 24 is immediately switched to stop the remaining gas from being introduced into the combustor 6 and introduced into the flare stack 21 for natural It is diffused and burned, detoxified, and released to the atmosphere. At the same time, an operation of decreasing the PSA residual gas supply amount to the combustor 6 by the gas flow rate control valve 22 by a predetermined ratio is performed. Thereafter, the gas switching valve 24 is switched again to stop the bypass. Even after the remaining gas supply amount is reduced, if unburned gas is detected, the same operation as described above is performed.
[0028]
As described above, it is possible to prevent unburned gas from being released into the atmosphere and abnormal temperature rise.
[0029]
FIG. 2 shows an embodiment different from FIG. 1 relating to the improvement of FIG. Similar to the difference between FIG. 1 and FIG. 3, the difference between FIG. 2 and FIG. 4 is that the residual gas supply line to the combustor 6 a has a gas flow rate adjustment valve 22 and a gas switching valve 24. And the point provided with the unburned gas discharge line 20 which bypasses a part of residual gas supplied to the combustor from the gas switching valve 24 and introduces it into the flare stack 21, and the combustor 6a and the exhaust gas cooler 7 The combustor exhaust gas supply line to be connected has a temperature detector 32 for detecting the outlet gas temperature of the combustor, and a gas analyzer 34 for detecting unburned gas in the outlet gas, and further includes a temperature detector. And a control device 40 for outputting a control signal for preventing unburned gas from being released into the atmosphere and temperature abnormalities in the combustor 6a to the gas flow control valve and the gas switching valve based on the measured values of the gas analyzer 32 and the gas analyzer 34. It differs in the point to prepare.
[0030]
In FIG. 2, unlike FIG. 1, the combustion air supplied to the burner 1a is preheated by the combustion exhaust gas of the burner on the line 13 for supplying the combustion exhaust gas of the reformer burner 1a to the exhaust gas cooler 7. The air preheater 8 is provided, and further, a catalytic combustor 6 is provided downstream thereof, in which the residual gas of the PSA is burned by residual oxygen contained in the combustion exhaust gas discharged from the air preheater 8. Since the combustion exhaust gas is supplied to the exhaust gas cooler 7, stable combustion can be performed regardless of changes in the composition and flow rate of PSA residual gas and the degree of excess residual gas (for details, see (See Japanese Patent Application No. 2000-266966).
[0031]
【The invention's effect】
As described above, according to the present invention, a catalyst layer for reacting a hydrocarbon-based raw fuel and water vapor in the presence of a catalyst to generate a hydrogen-rich reformed gas, and a combustion exhaust gas are converted into the reforming reaction. A reformer provided with a burner for use as a heating medium for the above, a steam separator provided for supplying the steam to the reformer, and water in the steam separator by combustion exhaust gas of the burner An exhaust gas cooler for heating and generating steam, a compressor for pressurizing the reformed gas or reformed raw fuel, and a pressure swing adsorption device (PSA) for separating and purifying hydrogen from the pressurized reformed gas In the PSA, a residual gas after separating and removing hydrogen in the PSA is supplied to the reformer burner for combustion, and a part of the residual gas is provided in a combustor provided separately from the burner. Supply and burn this In the hydrogen generating apparatus comprising introducing into the exhaust gas cooler with the combustion exhaust gas of the burner flue gas in baked device,
The residual gas supply line to the combustor has a gas flow rate control valve and a gas switching valve, and introduces into the flare stack a part of the residual gas supplied from the gas switching valve to the combustor. A combustor exhaust gas supply line for connecting the combustor and the exhaust gas cooler, a temperature detector for detecting an outlet gas temperature of the combustor, and an outlet gas in the outlet gas. A gas analyzer for detecting unburned gas, and further, based on the measured values of the temperature detector and the gas analyzer, for preventing atmospheric discharge of the unburned gas and temperature abnormality in the combustor. By comprising a control device that outputs a control signal to the gas flow rate control valve and the gas switching valve,
It is possible to provide a hydrogen generator capable of safe operation by preventing unburned gas from being released into the combustor into the atmosphere and temperature abnormalities.
[Brief description of the drawings]
FIG. 1 is a schematic configuration diagram of a hydrogen generator showing an embodiment of the present invention. FIG. 2 is a schematic configuration diagram of a hydrogen generator showing an embodiment different from FIG. 1 of the present invention. Schematic configuration diagram of hydrogen generator [Fig. 4] Schematic configuration diagram of hydrogen generator different from conventional Fig. 3 [Explanation of symbols]
1: reformer, 1a: burner, 1b: catalyst layer, 2: compressor, 3: pressure swing adsorption device (PSA), 4: steam separator, 6, 6a: combustor, 7: exhaust gas cooler, 8 : Air preheater, 20: Unburned gas discharge line, 21: Flare stack, 22: Gas flow control valve, 24: Gas switching valve, 32: Temperature detector, 34: Gas analyzer, 40: Control device.

Claims (4)

炭化水素系原燃料と水蒸気とを触媒の存在下で反応させて水素リッチな改質ガスを生成するための触媒層と、燃焼排ガスを前記改質反応の加熱媒体として利用するためのバーナとを備えた改質器と、前記水蒸気を改質器に供給するために設けた水蒸気分離器と、この水蒸気分離器内の水を前記バーナの燃焼排ガスにより加熱し水蒸気を発生させるための排ガス冷却器と、前記改質ガスまたは改質原燃料を加圧するための圧縮機と、加圧された改質ガスから水素を分離精製する圧力スイング吸着装置(PSA)とを備え、このPSAにおいて水素を分離除去処理した後の残ガスを前記改質器用バーナに供給して燃焼させ、かつ、前記残ガスの一部を前記バーナとは別に設けた燃焼器に供給して燃焼させ、この燃焼器における燃焼排ガスを前記バーナの燃焼排ガスとともに前記排ガス冷却器に導入してなる水素発生装置において、
前記燃焼器への残ガス供給ラインは、ガス流量調節弁とガス切替弁とを有し、かつ、前記ガス切替弁から前記燃焼器に供給する残ガスの一部をバイパスさせてフレアスタックに導入する未燃ガス放出ラインを備えてなり、
また、前記燃焼器と前記排ガス冷却器とを接続する燃焼器排ガス供給ラインは、燃焼器の出口ガス温度を検出する温度検出器と、出口ガス中の未燃ガスを検知するためのガス分析器とを有し、
さらに、前記温度検出器およびガス分析器の測定値に基づき、前記燃焼器における未燃焼ガスの大気放出や温度異常を防止するための制御信号を前記ガス流量調節弁とガス切替弁とに出力する制御装置を備えてなることを特徴とする水素発生装置。
A catalyst layer for producing a hydrogen-rich reformed gas by reacting a hydrocarbon raw fuel and steam in the presence of a catalyst, and a burner for using combustion exhaust gas as a heating medium for the reforming reaction. A reformer provided, a steam separator provided for supplying the steam to the reformer, and an exhaust gas cooler for generating water vapor by heating water in the steam separator with combustion exhaust gas of the burner And a compressor for pressurizing the reformed gas or reformed raw fuel, and a pressure swing adsorption device (PSA) for separating and purifying hydrogen from the pressurized reformed gas, and hydrogen is separated in this PSA The residual gas after the removal treatment is supplied to the burner for the reformer and burned, and a part of the residual gas is supplied to the burner provided separately from the burner and burned. The exhaust gas is In the hydrogen generating apparatus comprising introducing into the exhaust gas cooler with flue gas burner,
The residual gas supply line to the combustor has a gas flow rate control valve and a gas switching valve, and introduces into the flare stack a part of the residual gas supplied from the gas switching valve to the combustor. With an unburned gas discharge line that
The combustor exhaust gas supply line connecting the combustor and the exhaust gas cooler includes a temperature detector for detecting an outlet gas temperature of the combustor, and a gas analyzer for detecting unburned gas in the outlet gas. And
Further, based on the measured values of the temperature detector and the gas analyzer, a control signal for preventing the unburned gas from being discharged into the atmosphere and temperature abnormality in the combustor is output to the gas flow rate control valve and the gas switching valve. A hydrogen generator comprising a control device.
請求項1記載の水素発生装置において、前記燃焼器は、触媒燃焼器としたことを特徴とする水素発生装置。2. The hydrogen generator according to claim 1, wherein the combustor is a catalytic combustor. 請求項2記載の水素発生装置において、前記改質器用バーナの燃焼排ガスを排ガス冷却器に供給するライン上に、前記バーナに供給する燃焼用空気を前記バーナの燃焼排ガスによって予熱するための空気予熱器と、前記触媒燃焼器とを設け、この触媒燃焼器において前記空気予熱器から排出された燃焼排ガスに含まれる残留酸素によって前記PSAの残ガスを燃焼させ、この燃焼排ガスを前記排ガス冷却器に供給してなることを特徴とする水素発生装置。3. The hydrogen generator according to claim 2, wherein air for preheating the combustion air supplied to the burner with the combustion exhaust gas of the burner is provided on a line for supplying the combustion exhaust gas of the reformer burner to the exhaust gas cooler. And a catalytic combustor, the residual gas of the PSA is burned by residual oxygen contained in the flue gas discharged from the air preheater in the catalytic combustor, and the flue gas is sent to the flue gas cooler. A hydrogen generator characterized by being supplied. 請求項3記載の水素発生装置において、前記触媒燃焼器は、冷却用の空気導入ラインを備えたことを特徴とする水素発生装置。4. The hydrogen generator according to claim 3, wherein the catalytic combustor includes an air introduction line for cooling.
JP2001255741A 2001-08-27 2001-08-27 Hydrogen generator Expired - Fee Related JP4147446B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001255741A JP4147446B2 (en) 2001-08-27 2001-08-27 Hydrogen generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001255741A JP4147446B2 (en) 2001-08-27 2001-08-27 Hydrogen generator

Publications (2)

Publication Number Publication Date
JP2003063802A JP2003063802A (en) 2003-03-05
JP4147446B2 true JP4147446B2 (en) 2008-09-10

Family

ID=19083664

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001255741A Expired - Fee Related JP4147446B2 (en) 2001-08-27 2001-08-27 Hydrogen generator

Country Status (1)

Country Link
JP (1) JP4147446B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7763087B2 (en) * 2004-12-17 2010-07-27 Texaco Inc. Safety system architecture for a hydrogen fueling station

Also Published As

Publication number Publication date
JP2003063802A (en) 2003-03-05

Similar Documents

Publication Publication Date Title
JP4916025B2 (en) Operation method of fuel cell heating device
US20100284892A1 (en) Process For The Purification Of A Carbon Dioxide Stream With Heating Value And Use Of This Process In Hydrogen Producing Processes
JP2008512336A (en) Method for producing hydrogen and / or carbon monoxide
US20030190503A1 (en) Fuel processor apparatus and method based on autothermal cyclic reforming
US11654414B2 (en) Hydrogen reforming system
US20030113257A1 (en) Method for producing hydrogen
JP2007254180A (en) Self-sustained lower hydrocarbon direct decomposition process and process system thereof
JP2015008142A (en) Multistage combustor and method for starting fuel cell system
WO2007086566A1 (en) Starting method of fuel cell and fuel cell system
WO2006049299A1 (en) Fuel cell system
WO2006080544A1 (en) Apparatus and method for hydrogen generation
JP5366357B2 (en) Method for starting fuel cell system and fuel cell system
KR100898881B1 (en) A combined heat and power plant and a rpocess for the operation thereof
CN111479772A (en) Process for producing hydrogen-containing synthesis gas
JP4116731B2 (en) Hydrogen generator and operation method thereof
JP4147446B2 (en) Hydrogen generator
JP4172740B2 (en) Hydrogen generator and operation method thereof
JP5102938B2 (en) Fuel cell power generation system and starting method thereof
JP5348938B2 (en) Carbon monoxide gas generator and method
JP3886789B2 (en) Reforming apparatus and operation method thereof
JP4196249B2 (en) Hydrogen generator
JP5285952B2 (en) Carbon monoxide gas generator and method
JP2003128401A (en) Apparatus for generating hydrogen and it's operating method
AU2014264844B2 (en) Vent line for use in ammonia and hydrogen plants
KR20230108605A (en) Fuel reforming device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061017

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080516

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080529

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080611

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110704

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4147446

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110704

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110704

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110704

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110704

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110704

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120704

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120704

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130704

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees