JP2001338670A - Fuel cell system for mobile body and its control method - Google Patents

Fuel cell system for mobile body and its control method

Info

Publication number
JP2001338670A
JP2001338670A JP2000159595A JP2000159595A JP2001338670A JP 2001338670 A JP2001338670 A JP 2001338670A JP 2000159595 A JP2000159595 A JP 2000159595A JP 2000159595 A JP2000159595 A JP 2000159595A JP 2001338670 A JP2001338670 A JP 2001338670A
Authority
JP
Japan
Prior art keywords
fuel
reactor
water
fuel cell
air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000159595A
Other languages
Japanese (ja)
Other versions
JP3702752B2 (en
Inventor
Ayanori Yamanashi
文徳 山梨
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2000159595A priority Critical patent/JP3702752B2/en
Priority to EP01926092A priority patent/EP1194311A1/en
Priority to KR10-2002-7001312A priority patent/KR100458082B1/en
Priority to CNB018019056A priority patent/CN1192916C/en
Priority to US10/048,058 priority patent/US6828051B2/en
Priority to PCT/JP2001/003767 priority patent/WO2001092050A1/en
Publication of JP2001338670A publication Critical patent/JP2001338670A/en
Application granted granted Critical
Publication of JP3702752B2 publication Critical patent/JP3702752B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0662Treatment of gaseous reactants or gaseous residues, e.g. cleaning
    • H01M8/0668Removal of carbon monoxide or carbon dioxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/30Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling fuel cells
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/30Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling fuel cells
    • B60L58/32Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling fuel cells for controlling the temperature of fuel cells, e.g. by controlling the electric load
    • B60L58/33Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling fuel cells for controlling the temperature of fuel cells, e.g. by controlling the electric load by cooling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/30Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling fuel cells
    • B60L58/32Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling fuel cells for controlling the temperature of fuel cells, e.g. by controlling the electric load
    • B60L58/34Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling fuel cells for controlling the temperature of fuel cells, e.g. by controlling the electric load by heating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M16/00Structural combinations of different types of electrochemical generators
    • H01M16/003Structural combinations of different types of electrochemical generators of fuel cells with other electrochemical devices, e.g. capacitors, electrolysers
    • H01M16/006Structural combinations of different types of electrochemical generators of fuel cells with other electrochemical devices, e.g. capacitors, electrolysers of fuel cells with rechargeable batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/0432Temperature; Ambient temperature
    • H01M8/04358Temperature; Ambient temperature of the coolant
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/0432Temperature; Ambient temperature
    • H01M8/04373Temperature; Ambient temperature of auxiliary devices, e.g. reformers, compressors, burners
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/04537Electric variables
    • H01M8/04604Power, energy, capacity or load
    • H01M8/04626Power, energy, capacity or load of auxiliary devices, e.g. batteries, capacitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04701Temperature
    • H01M8/04738Temperature of auxiliary devices, e.g. reformer, compressor, burner
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04746Pressure; Flow
    • H01M8/04776Pressure; Flow at auxiliary devices, e.g. reformer, compressor, burner
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04955Shut-off or shut-down of fuel cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0606Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants
    • H01M8/0612Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04007Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids related to heat exchange
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04007Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids related to heat exchange
    • H01M8/04014Heat exchange using gaseous fluids; Heat exchange by combustion of reactants
    • H01M8/04022Heating by combustion
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04007Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids related to heat exchange
    • H01M8/04029Heat exchange using liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04089Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
    • H01M8/04097Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants with recycling of the reactants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0662Treatment of gaseous reactants or gaseous residues, e.g. cleaning
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/40Application of hydrogen technology to transportation, e.g. using fuel cells

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Power Engineering (AREA)
  • Fuel Cell (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a fuel cell system for a mobile body which can perform most efficient idling concerning fuel efficiency and re-acceleration when an accelerator is closed. SOLUTION: The fuel cell system for a mobile body is composed of a reforming reactor 120 which reforms a fuel and generates hydrogen content gas, a carbon monoxide removal reactor 130 with which the carbon monoxide contained in the reforming gas generated with the reforming reactor is removed, the fuel cell 200 which generates electricity using the reforming gas and the oxygen content gas which passes the carbon monoxide removal reactor, and a compressor 400 which supplies the oxygen content gas to the carbon mono- oxide removal reactor and the fuel cell. When the mobile body is in a state of running and the accelerator is closed, the fuel, the water, and the oxygen content gas, or the fuel and the oxygen content gas are supplied to the reforming reactor so that the minimum hydrogen required in order to maintain the temperature of the reforming reactor may be generated, and, the minimum oxygen content gas needed to maintain the temperature of the carbon monoxide removal reactor is supplied to the carbon monoxide removal reactor.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、自動車などの各種
移動体に搭載して好ましい燃料電池システムおよびその
制御方法に関し、特に再加速性能および燃費上、効率的
なアイドル運転が可能な移動体用燃料電池システムおよ
びその制御方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a fuel cell system preferably mounted on various moving bodies such as automobiles and a control method therefor, and more particularly to a moving body capable of efficient idle operation in terms of re-acceleration performance and fuel efficiency. The present invention relates to a fuel cell system and a control method thereof.

【0002】[0002]

【従来の技術】この種の燃料電池システムは、燃料が有
するエネルギを直接電気エネルギに変換する装置であ
り、電解質膜を挟んで設けられた一対の電極のうちの陰
極(燃料極)側に水素リッチガスを供給するとともに、
他方の陽極(酸化剤極)側に空気などの酸素含有ガスを
供給し、これら一対の電極の電解質膜側の表面で生じる
下記の電気化学反応を利用して電極から電気エネルギを
取り出すものである。
2. Description of the Related Art A fuel cell system of this kind is a device for directly converting the energy of fuel into electric energy. Hydrogen is placed on a cathode (fuel electrode) side of a pair of electrodes provided with an electrolyte membrane interposed therebetween. Along with supplying rich gas,
An oxygen-containing gas such as air is supplied to the other anode (oxidant electrode) side, and electric energy is extracted from the electrodes by utilizing the following electrochemical reaction generated on the surface of the pair of electrodes on the electrolyte membrane side. .

【0003】[0003]

【化1】陰極反応:H→2H+2e 陽極反応:2H+2e+(1/2)O→H
O 起電燃料となる水素リッチガスを生成する装置として、
メタノールを改質して水素を多量に含む燃料ガスとする
改質反応器が用いられ、酸素を含有する酸化剤ガスを生
成する装置として、空気を取り入れて圧縮空気とする圧
縮機が用いられる。そして、圧縮機からの圧縮空気をア
フタークーラ等で冷却したのち燃料電池の陽極へ供給す
る一方で、燃料タンクから改質器へメタノールガスを送
り、当該改質器にて改質された水素リッチガスを燃料電
池の陰極へ供給する。
## STR1 ## Cathodic reaction: H 2 → 2H + + 2e Anodic reaction: 2H + + 2e + (1/2) O 2 → H
2 O As an apparatus for generating hydrogen-rich gas as electromotive fuel,
2. Description of the Related Art A reforming reactor for reforming methanol to use a fuel gas containing a large amount of hydrogen is used. As a device for generating an oxidizing gas containing oxygen, a compressor that takes in air and uses compressed air is used. Then, the compressed air from the compressor is cooled by an aftercooler or the like, and then supplied to the anode of the fuel cell, while the methanol gas is sent from the fuel tank to the reformer, and the hydrogen-rich gas reformed by the reformer is supplied. To the cathode of the fuel cell.

【0004】こうした燃料電池システムは、二次電池に
よる電気自動車に比べ、走行可能距離や燃料のインフラ
ストラクチャの整備条件等の点で有利であることから、
車両用駆動電源への採用が検討されている。
[0004] Such a fuel cell system is more advantageous than an electric vehicle using a secondary battery in terms of the mileage and conditions for maintaining a fuel infrastructure.
Application to vehicle drive power supply is under consideration.

【0005】改質反応器としては、メタノールなどの炭
化水素を水蒸気改質させる水蒸気改質型反応器の他、炭
化水素の酸化反応で放出される熱量を利用して吸熱反応
である炭化水素の水蒸気改質反応を促進する、いわゆる
オートサーマル型改質反応器も提案されている(たとえ
ば、特開平9−315801号公報参照)。この種のオ
ートサーマル型改質反応器では、メタノールなどの炭化
水素と空気(酸素)と水蒸気とを混合し、これを銅系触
媒、貴金属あるいはVIII属金属系触媒等が充填された反
応器内に流し、
[0005] As a reforming reactor, in addition to a steam reforming reactor for steam reforming hydrocarbons such as methanol, an endothermic reaction of hydrocarbons, which is an endothermic reaction utilizing the heat released in the oxidation reaction of hydrocarbons, is used. A so-called autothermal reforming reactor that promotes a steam reforming reaction has also been proposed (for example, see Japanese Patent Application Laid-Open No. 9-315801). In this type of autothermal reforming reactor, a hydrocarbon such as methanol, air (oxygen) and water vapor are mixed, and this is mixed in a reactor filled with a copper catalyst, a noble metal or a Group VIII metal catalyst, or the like. Sink

【0006】[0006]

【化2】部分酸化反応 :CHOH+1/2O
→2H+CO+189.5kJ/mol 水蒸気改質反応:CHOH+HO→3H
CO−49.5kJ/mol なる反応を生じさせる。そして、部分酸化反応(発熱反
応)により生じた熱量で水蒸気改質反応(吸熱反応)に
必要な熱量を賄い、バーナなどの外部加熱を必要としな
い小型の改質反応器とすることができる。
Embedded image Partial oxidation reaction: CH 3 OH + 1 / 2O 2
→ 2H 2 + CO 2 +189.5 kJ / mol Steam reforming reaction: CH 3 OH + H 2 O → 3H 2 +
A reaction of CO 2 -49.5 kJ / mol occurs. Then, the heat generated by the partial oxidation reaction (exothermic reaction) can cover the heat required for the steam reforming reaction (endothermic reaction), and a small reforming reactor that does not require external heating such as a burner can be provided.

【0007】また、改質反応により生成された改質ガス
には、水素および二酸化炭素の他に、微量の未改質燃料
ガスや一酸化炭素などの不純物が含まれている。このよ
うな未改質燃料ガスや一酸化炭素などの不純物を含んだ
ガスをそのまま燃料電池へ供給すると、燃料電池の電極
触媒として常用されている白金が被毒し、触媒活性が失
われて電池性能が低下するといった問題がある。
The reformed gas generated by the reforming reaction contains a small amount of impurities such as unreformed fuel gas and carbon monoxide in addition to hydrogen and carbon dioxide. When such unreformed fuel gas or gas containing impurities such as carbon monoxide is supplied to the fuel cell as it is, platinum, which is commonly used as an electrode catalyst of the fuel cell, is poisoned, and the catalytic activity is lost. There is a problem that performance is reduced.

【0008】そこで、改質反応器で生成された改質ガス
を、酸化触媒を有する一酸化炭素除去装置に空気ととも
に通すことで、一酸化炭素の酸化反応(CO+1/2O
→CO)を進行させ、これにより一酸化炭素濃度を
低下させることが行われている。こうした一酸化炭素除
去装置を燃料電池システムに設けることにより、電池性
能の低下が防止されるとともに、改質ガス中の水素がよ
り高純度化されるので、発電効率も向上する。
Therefore, the reformed gas generated in the reforming reactor is passed through a carbon monoxide removing device having an oxidation catalyst together with air, thereby oxidizing carbon monoxide (CO + / O).
2 → CO 2 ), thereby reducing the concentration of carbon monoxide. By providing such a carbon monoxide removing device in a fuel cell system, a decrease in cell performance is prevented, and the hydrogen in the reformed gas is further purified, so that the power generation efficiency is also improved.

【0009】[0009]

【発明が解決しようとする課題】ところで、車両などの
移動体に搭載される燃料電池システムにおいて、走行中
にアクセルを閉じた場合の運転制御方法として、ガソリ
ンエンジンなどの内燃機関のように、燃料供給をカット
してシステムの運転を停止するか、低負荷で運転するこ
とが考えられる。また、このような低負荷運転として
は、内燃機関で行われているアイドリングのように、改
質反応器に供給する燃料と水と空気を絞るか、あるいは
間欠的に燃料と水と空気を供給することが考えられる。
In a fuel cell system mounted on a moving body such as a vehicle, an operation control method when an accelerator is closed while the vehicle is running is provided by a fuel cell system such as an internal combustion engine such as a gasoline engine. It is conceivable to cut off the supply and stop the operation of the system or to operate at a low load. In addition, such low-load operation includes reducing the fuel, water, and air supplied to the reforming reactor, or intermittently supplying the fuel, water, and air, as in idling performed in an internal combustion engine. It is possible to do.

【0010】しかしながら、移動体に搭載される燃料電
池システムにおいては、走行中にアクセルを閉じると、
回生機能が働いて二次電池を充電するため、基本的には
この状態下では燃料電池スタックでの発電は不要とな
る。ただし、二次電池が充電不足であるときは発電した
方が有効な場合もあり得る。
However, in a fuel cell system mounted on a moving body, when the accelerator is closed during traveling,
Since the regenerative function works to charge the secondary battery, basically, in this state, power generation by the fuel cell stack is unnecessary. However, when the secondary battery is insufficiently charged, it may be more effective to generate power.

【0011】このように燃料電池スタックでの発電が不
要の状態下では、改質システムとしては、水素ガスをス
タックに供給する必要がなくなるため、ガソリンエンジ
ンなどの内燃機関のように燃料供給をカットしてシステ
ムの運転を停止するか、あるいは低負荷で運転すること
が、燃費の上で好ましいといえる。
In a state where power generation in the fuel cell stack is not necessary, the reforming system does not need to supply hydrogen gas to the stack, so that the fuel supply is cut off as in an internal combustion engine such as a gasoline engine. It can be said that stopping the operation of the system or operating with a low load is preferable from the viewpoint of fuel efficiency.

【0012】しかしながら、燃料電池システムの運転を
停止すると、改質反応器、一酸化炭素除去装置および燃
焼器など、各反応器の触媒温度が徐々に下がることにな
り、例えば高速道路などの長い下り坂を降りた後に再加
速する場合などにおいては、各反応器の触媒温度が下が
り過ぎてしまい、再加速などで反応が必要となっても、
十分に行なうことができなくなるという問題がある。
However, when the operation of the fuel cell system is stopped, the catalyst temperature of each reactor such as a reforming reactor, a carbon monoxide removing device and a combustor gradually decreases, and for example, a long descent on an expressway or the like. In the case of re-acceleration after descending the slope, the catalyst temperature of each reactor becomes too low, and even if re-acceleration requires a reaction,
There is a problem that it cannot be performed sufficiently.

【0013】尤も、アクセルを閉じたときは、内燃機関
のアイドリング状態のような低負荷運転で改質システム
を運転すれば、ある程度、各反応器の温度を常に反応可
能な温度条件に保つことができる。しかしながら、改質
システムは低負荷運転が難しくかつ効率も悪いため、余
計な燃料を消費することになり、燃費の悪化は抑制でき
ない。
However, when the accelerator is closed, if the reforming system is operated under a low load operation such as an idling state of the internal combustion engine, the temperature of each reactor can be maintained at a certain level to a temperature condition which can always react. it can. However, since the reforming system is difficult to operate at low load and has low efficiency, it consumes extra fuel and cannot suppress deterioration of fuel efficiency.

【0014】また、低負荷運転として低流量のガスを流
す代わりに間欠的な燃料供給を行なうことも考えられる
が、単純に間欠化しただけでは大幅な燃料消費の低減は
難しく、一酸化炭素除去反応器や燃焼器での水素ガスの
利用も考えないと、燃費の悪化は抑制できない。
As a low-load operation, intermittent fuel supply may be performed instead of flowing a low flow rate gas. However, it is difficult to greatly reduce fuel consumption by simply intermittent operation. Unless the use of hydrogen gas in the reactor and the combustor is considered, deterioration of fuel efficiency cannot be suppressed.

【0015】本発明は、このような従来技術の問題点に
鑑みてなされたものであり、アクセル閉時において、燃
費上および再加速上、最も効率的なアイドリングを行う
ことができる移動体用燃料電池システムおよびその制御
方法を提供することを目的とする。
SUMMARY OF THE INVENTION The present invention has been made in view of the above-mentioned problems of the prior art, and provides a fuel for a mobile body capable of performing the most efficient idling in terms of fuel efficiency and re-acceleration when the accelerator is closed. It is an object to provide a battery system and a control method thereof.

【0016】[0016]

【課題を解決するための手段】(1) 上記目的を達成
するために、本発明によれば、燃料を改質して水素含有
ガスを生成する改質反応器と、前記改質反応器で生成さ
れた改質ガスに含まれる一酸化炭素を除去する一酸化炭
素除去反応器と、前記一酸化炭素除去反応器を通過した
改質ガスと酸素含有ガスとを用いて発電する燃料電池
と、前記改質反応器、前記一酸化炭素除去反応器および
前記燃料電池に酸素含有ガスを供給する圧縮機とを有す
る移動体用燃料電池システムにおいて、前記移動体の走
行状態を検出する走行状態検出手段と、前記移動体のア
クセル開度を検出するアクセル開度検出手段と、前記走
行状態検出手段およびアクセル開度検出手段からの情報
に基づいて前記移動体が走行状態かつアクセルが閉状態
と判断した場合には、前記改質反応器に対して、当該改
質反応器の温度を維持するために必要な最低限の水素を
発生させるように、燃料と水と酸素含有ガス、又は燃料
と酸素含有ガスを供給し、前記一酸化炭素除去反応器に
対して、当該一酸化炭素除去反応器の温度を維持するた
めに必要な最低限の酸素含有ガスを供給する制御手段
と、を有することを特徴とする移動体用燃料電池システ
ムが提供される(請求項1参照)。
(1) In order to achieve the above object, according to the present invention, a reforming reactor for reforming a fuel to generate a hydrogen-containing gas, A carbon monoxide removal reactor that removes carbon monoxide contained in the generated reformed gas, and a fuel cell that generates power using the reformed gas and the oxygen-containing gas that have passed through the carbon monoxide removal reactor, In a fuel cell system for a moving body, comprising: the reforming reactor, the carbon monoxide removing reactor, and a compressor for supplying an oxygen-containing gas to the fuel cell, a running state detecting means for detecting a running state of the moving body. And accelerator opening detecting means for detecting the accelerator opening of the moving body; and determining that the moving body is in the running state and the accelerator is closed based on information from the running state detecting means and the accelerator opening detecting means. in case of, To the reforming reactor, a fuel and water and an oxygen-containing gas or a fuel and an oxygen-containing gas are supplied so as to generate the minimum amount of hydrogen necessary to maintain the temperature of the reforming reactor. A control unit for supplying a minimum amount of oxygen-containing gas necessary for maintaining the temperature of the carbon monoxide removal reactor to the carbon monoxide removal reactor. A fuel cell system is provided (see claim 1).

【0017】また、本発明によれば、燃料を改質して水
素含有ガスを生成する改質反応器と、前記改質反応器で
生成された改質ガスに含まれる一酸化炭素を除去する一
酸化炭素除去反応器と、前記一酸化炭素除去反応器を通
過した改質ガスと酸素含有ガスとを用いて発電する燃料
電池と、前記改質反応器、前記一酸化炭素除去反応器お
よび前記燃料電池に酸素含有ガスを供給する圧縮機とを
有する移動体用燃料電池システムの制御方法であって、
前記移動体が走行状態かつアクセルが閉状態である場合
には、前記改質反応器に対して、当該改質反応器の温度
を維持するために必要な最低限の水素を発生させるよう
に、燃料と水と酸素含有ガス、又は燃料と酸素含有ガス
を供給し、前記一酸化炭素除去反応器に対して、当該一
酸化炭素除去反応器の温度を維持するために必要な最低
限の酸素含有ガスを供給することを特徴とする移動体用
燃料電池システムの制御方法が提供される(請求項13
参照)。
Further, according to the present invention, a reforming reactor for reforming a fuel to generate a hydrogen-containing gas, and removing carbon monoxide contained in the reformed gas generated in the reforming reactor. A carbon monoxide removal reactor, a fuel cell that generates electricity using a reformed gas and an oxygen-containing gas that have passed through the carbon monoxide removal reactor, the reforming reactor, the carbon monoxide removal reactor, and the fuel cell. And a compressor for supplying an oxygen-containing gas to the fuel cell.
When the moving body is in the running state and the accelerator is in the closed state, the reforming reactor generates the minimum amount of hydrogen necessary to maintain the temperature of the reforming reactor, A fuel and water and an oxygen-containing gas, or a fuel and an oxygen-containing gas are supplied to the carbon monoxide removal reactor, and the minimum oxygen content necessary to maintain the temperature of the carbon monoxide removal reactor. A method for controlling a fuel cell system for a mobile body, characterized by supplying a gas, is provided.
reference).

【0018】この請求項1および13記載の発明によれ
ば、温度維持のために改質反応器で生成する水素は、そ
の生成熱で改質反応器自身を暖める分と、その結果生成
された水素を一酸化炭素除去反応器で空気と酸化反応さ
せるのに必要な分だけで済むため、燃料の消費が最小限
となる。また、改質反応器および一酸化炭素除去反応器
の温度が維持されるので、再加速時等の応答性が高まる
こととなる。
According to the first and thirteenth aspects of the present invention, the hydrogen generated in the reforming reactor for maintaining the temperature includes the amount of heat generated by the reforming reactor itself and the amount of hydrogen generated as a result. Fuel consumption is minimized because only the hydrogen needed to oxidize with air in the carbon monoxide removal reactor. Further, since the temperatures of the reforming reactor and the carbon monoxide removing reactor are maintained, the responsiveness at the time of re-acceleration and the like is improved.

【0019】(2)上記発明おいては特に限定されない
が、前記燃料電池から排出された余剰の排改質ガスと排
酸素含有ガスとを反応処理する燃焼器をさらに有し、前
記制御手段は、前記走行状態検出手段およびアクセル開
度検出手段からの情報に基づいて前記移動体が走行状態
かつアクセルが閉状態と判断した場合には、前記燃焼器
に対して、当該燃焼器の温度を維持するために必要な最
低限の酸素含有ガスを供給することがより好ましい(請
求項2参照)。
(2) Although not particularly limited in the above invention, the fuel cell further comprises a combustor for reacting excess exhaust reformed gas and oxygen-containing gas exhausted from the fuel cell. When it is determined that the moving body is in the traveling state and the accelerator is closed based on the information from the traveling state detecting means and the accelerator opening degree detecting means, the temperature of the combustor is maintained for the combustor. It is more preferable to supply the minimum amount of oxygen-containing gas necessary for the operation (see claim 2).

【0020】この請求項2記載の発明によれば、改質反
応器および一酸化炭素除去反応器に加えて、同時に燃焼
器でも水素を酸化反応させることで、燃料の消費は若干
低下するものの、燃焼器の温度維持が可能となり、再加
速時などの応答性が高まる。
According to the second aspect of the present invention, in addition to the reforming reactor and the carbon monoxide removing reactor, hydrogen is simultaneously oxidized in the combustor, so that fuel consumption is slightly reduced. The temperature of the combustor can be maintained, and responsiveness at the time of re-acceleration, etc. is improved.

【0021】(3)上記発明おける改質反応器は、いわ
ゆるオートサーマル型改質反応器および水蒸気改質反応
器の何れをも包含するが、前記改質反応器における改質
反応が水蒸気改質反応のように吸熱反応のみであるとき
は、前記燃焼器から得られる熱を前記改質反応器に回収
する系をさらに有することがより好ましい(請求項3参
照)。
(3) The reforming reactor in the present invention includes both an autothermal reforming reactor and a steam reforming reactor, and the reforming reaction in the reforming reactor is performed by steam reforming. When the reaction is only an endothermic reaction as in the reaction, it is more preferable to further include a system for recovering heat obtained from the combustor to the reforming reactor (see claim 3).

【0022】この請求項3記載の発明によれば、燃焼器
で得られた熱を改質反応器に供給するので、改質反応が
例えば水蒸気改質のような吸熱反応のみであったとして
も、燃焼器の熱で改質反応器の温度を保つことができ
る。なお、この構成であれば、部分酸化反応を使用又は
併用することもできる。
According to the third aspect of the present invention, since the heat obtained in the combustor is supplied to the reforming reactor, even if the reforming reaction is only an endothermic reaction such as steam reforming. The temperature of the reforming reactor can be maintained by the heat of the combustor. With this configuration, a partial oxidation reaction can be used or used in combination.

【0023】(4)上記発明においては特に限定されな
いが、前記燃焼器から排出された排気ガスの熱を回収し
て、前記燃料および水を蒸発させる蒸発器をさらに有す
ることがより好ましい(請求項4参照)。
(4) Although not particularly limited in the above invention, it is more preferable to further include an evaporator for recovering heat of the exhaust gas discharged from the combustor and evaporating the fuel and water. 4).

【0024】この請求項4記載の発明によれば、燃焼器
で得られる熱を改質反応器へ供給すべき燃料および水の
気化熱に利用できるので、別途加熱手段を設ける必要が
なく、熱エネルギーの有効利用を図ることができる。
According to the fourth aspect of the invention, the heat obtained in the combustor can be used for the heat of vaporization of the fuel and water to be supplied to the reforming reactor. Effective use of energy can be achieved.

【0025】(5)上記発明において、移動体が走行中
かつアクセル閉の状態の場合に、改質反応器、一酸化炭
素除去反応器および燃焼器に対する燃料と水と空気、又
は燃料と空気、又は燃料と水の供給制御は、種々の形態
が考えられる。
(5) In the above invention, when the moving body is running and the accelerator is closed, fuel and water and air, or fuel and air, for the reforming reactor, the carbon monoxide removing reactor and the combustor, Alternatively, various forms of fuel and water supply control are conceivable.

【0026】たとえば、請求項5記載の移動体用燃料電
池システムは、前記改質反応器、前記一酸化炭素除去反
応器および前記燃焼器の各温度を検出する温度検出手段
をさらに有し、前記制御手段は、前記走行状態検出手段
およびアクセル開度検出手段からの情報に基づいて前記
移動体が走行状態かつアクセルが閉状態と判断した場合
には、一旦、燃料と水と空気、又は燃料と空気、又は燃
料と水の供給を停止し、前記温度検出手段からの情報に
基づいて、前記改質反応器、前記一酸化炭素除去反応器
および前記燃焼器の温度が所定温度以下になったとき
に、再び燃料と水と空気、又は燃料と空気、又は燃料と
水の供給を開始することを特徴とする。
For example, the fuel cell system for a mobile body according to claim 5 further comprises temperature detecting means for detecting respective temperatures of the reforming reactor, the carbon monoxide removing reactor, and the combustor. The control means, when it is determined that the moving body is in a running state and the accelerator is in a closed state based on information from the running state detecting means and the accelerator opening degree detecting means, once the fuel and water and air or fuel and When the supply of air, or fuel and water is stopped, and the temperatures of the reforming reactor, the carbon monoxide removal reactor, and the combustor become lower than a predetermined temperature based on information from the temperature detecting means. Further, the supply of fuel and water and air, or fuel and air, or fuel and water is started again.

【0027】この請求項5記載の発明では、移動体が走
行中でかつアクセル閉となった直後においては、暫くの
間、各反応器(触媒)がそれ自体の熱容量によって温度
が下がらない点に着目し、ある一定時間はすべての反応
器への燃料と空気の供給を停止する。そして、そのの
ち、アクセルが開状態でなくても、所定時間が経過した
ら自動的に供給を再開する。これにより、燃料消費の低
減を図りつつ各反応器の温度維持が可能となる。
According to the present invention, each reactor (catalyst) does not drop its temperature due to its own heat capacity for a while immediately after the moving body is running and the accelerator is closed. Paying attention, supply of fuel and air to all reactors is stopped for a certain period of time. Then, even after the accelerator is not opened, the supply is automatically restarted after a predetermined time has elapsed. This makes it possible to maintain the temperature of each reactor while reducing fuel consumption.

【0028】また、請求項6記載の移動体用燃料電池シ
ステムは、燃料と水と空気、又は燃料と空気、又は燃料
と水を間欠的に供給することを特徴とする。
Further, the fuel cell system for a mobile body according to the present invention is characterized in that fuel and water and air, fuel and air, or fuel and water are intermittently supplied.

【0029】この請求項6記載の発明では、供給時に小
流量の代わりに間欠噴射で燃料、水および空気を供給す
る。これにより、燃料インジェクタと水インジェクタ、
空気バルブのダイナミックレンジが小さくても、低流量
制御が可能となる。
According to the present invention, fuel, water and air are supplied by intermittent injection instead of a small flow rate at the time of supply. This allows the fuel injector and the water injector,
Even if the dynamic range of the air valve is small, low flow rate control is possible.

【0030】さらに請求項7記載の移動体用燃料電池シ
ステムは、二次電池と、前記二次電池の充電状態を検出
する充電状態検出手段とをさらに有し、前記制御手段
は、前記アクセル開度検出手段および前記充電状態検出
手段からの情報に基づいて、アクセルが閉状態で前記二
次電池が充電不足と判断した場合には、燃料と水と空
気、又は燃料と空気、又は燃料と水の供給停止制御を中
止することを特徴とする。
The fuel cell system for a mobile object according to claim 7, further comprising a secondary battery, and a charging state detecting means for detecting a charging state of the secondary battery, wherein the control means includes a step of opening the accelerator. When it is determined that the secondary battery is insufficiently charged while the accelerator is closed based on the information from the degree detection means and the state of charge detection means, the fuel and water or air, or the fuel and air, or the fuel and water The supply stop control is stopped.

【0031】この請求項7記載の発明は、二次電池の充
電状態によって本発明に係る制御に移行するかどうかの
判断を追加したものであり、移動体が走行中かつアクセ
ル閉であっても二次電池が充電不足の場合には、燃料と
水と空気、又は燃料と空気、又は燃料と水の供給停止制
御を中止する。すなわち、そのまま燃料電池システムの
運転を継続し、燃料電池の起電力を二次電池に供給す
る。これにより、二次電池が充電不足のときは、モータ
の回生による充電と合わせて燃料電池の発電による充電
も可能となり、速やかに二次電池を満充電状態とするこ
とができる。
According to the present invention, a determination is made as to whether or not to shift to the control according to the present invention depending on the state of charge of the secondary battery. Even if the moving body is running and the accelerator is closed, If the secondary battery is insufficiently charged, the supply stop control of fuel and water and air, or fuel and air, or fuel and water is stopped. That is, the operation of the fuel cell system is continued as it is, and the electromotive force of the fuel cell is supplied to the secondary battery. Accordingly, when the secondary battery is insufficiently charged, the charging by the power generation of the fuel cell can be performed together with the charging by the regeneration of the motor, and the secondary battery can be quickly brought to the fully charged state.

【0032】(6)上記請求項5において、燃料と水と
空気、又は燃料と空気、又は燃料と水の供給を停止する
時間は種々の方法により決定することができる。
(6) In claim 5, the time for stopping the supply of fuel and water and air, or fuel and air, or fuel and water can be determined by various methods.

【0033】たとえば、請求項8記載の移動体用燃料電
池システムでは、前記燃料と水と空気、又は燃料と空
気、又は燃料と水の供給の停止時間は、いくつかの運転
条件から想定した定数で決定される。
For example, in the fuel cell system for a mobile body according to the present invention, the stop time of the supply of the fuel and the water or the air, or the supply of the fuel and the air, or the fuel and the water may be a constant value assumed from several operating conditions. Is determined.

【0034】この請求項8記載の発明では、燃料、水お
よび空気の供給停止時間を、いくつかの運転パターンを
考慮して最初から定数として設定するので、制御内容が
簡素化される。なお、各反応器に対する燃料、水および
空気の供給量や間欠時間は、それぞれの反応器の温度を
保つという前提にたてば、それぞれの熱容量、放熱量お
よび化学反応式からの発熱量で計算で理論的に求めるこ
とができるため、これもあらかじめ定数として設定する
こともできる。
According to the eighth aspect of the invention, since the supply stop time of the fuel, water and air is set as a constant from the beginning in consideration of several operation patterns, the control content is simplified. The fuel, water, and air supply amounts and intermittent time for each reactor are calculated based on the heat capacity, heat release amount, and heat value from the chemical reaction formula, assuming that the temperature of each reactor is maintained. Since this can be theoretically obtained by the following equation, this can also be set in advance as a constant.

【0035】また、請求項9記載の移動体用燃料電池シ
ステムでは、前記燃料と水と空気、又は燃料と空気、又
は燃料と水の供給の停止時間は、アクセル閉時の改質反
応器、一酸化炭素除去反応器および燃焼器の温度に基づ
いて算出される。
Further, in the fuel cell system for a mobile body according to the ninth aspect, the supply of fuel and water and air, or fuel and air, or fuel and water is stopped during the reforming reactor when the accelerator is closed, It is calculated based on the temperatures of the carbon monoxide removal reactor and the combustor.

【0036】この請求項9記載の発明では、アクセル閉
時の各反応器の温度を読み込み、これに基づいて供給停
止時間を変化させるので、請求項8記載の制御方法に比
べて精度が向上する。その結果、より少ない燃料消費で
制御することができる。
According to the ninth aspect of the present invention, the temperature of each reactor when the accelerator is closed is read, and the supply stop time is changed based on the temperature. Therefore, the accuracy is improved as compared with the control method according to the eighth aspect. . As a result, control can be performed with less fuel consumption.

【0037】さらに、請求項10記載の移動体用燃料電
池システムでは、前記燃料と水と空気、又は燃料と空
気、又は燃料と水の供給の停止時間は、アクセル閉の直
前までの運転条件の履歴に基づいて前記改質反応器、一
酸化炭素除去反応器および燃焼器の温度を推定し、算出
される。
Further, in the fuel cell system for a mobile body according to the tenth aspect, the stop time of the supply of the fuel and water and air, or the fuel and air, or the fuel and water is determined according to the operating conditions immediately before the accelerator is closed. The temperatures of the reforming reactor, the carbon monoxide removing reactor, and the combustor are estimated and calculated based on the history.

【0038】この請求項10記載の発明では、アクセル
が閉となる直前までの運転履歴から、現在の各反応器の
触媒温度を推定するので、温度センサの応答性が悪くて
も、燃料の消費量を低減することができる。
According to the tenth aspect of the present invention, the current catalyst temperature of each reactor is estimated from the operation history immediately before the accelerator is closed. Therefore, even if the response of the temperature sensor is poor, fuel consumption is low. The amount can be reduced.

【0039】(7)上記発明においては特に限定されな
いが、アクセルが閉状態となった直後は一旦燃料と水と
空気、又は燃料と空気、又は燃料と水の供給を停止し、
前記改質反応器、前記一酸化炭素除去反応器および前記
燃焼器の温度が所定温度以下となったら、前記燃料と水
と空気、又は燃料と空気、又は燃料と水の供給を開始す
ることもできる(請求項11参照)。
(7) Although not particularly limited in the above invention, immediately after the accelerator is closed, the supply of fuel and water and air, or the supply of fuel and air, or the supply of fuel and water is stopped.
When the temperatures of the reforming reactor, the carbon monoxide removal reactor and the combustor become equal to or lower than a predetermined temperature, the supply of the fuel and water and air, or the fuel and air, or the fuel and water may be started. (See claim 11).

【0040】この請求項11記載の発明では、常に各反
応器の温度を検知しているため、限界まで燃料と水と空
気の供給停止が行なえる。したがって、より一層燃料の
消費量を低減することができる。
In the eleventh aspect of the present invention, since the temperature of each reactor is always detected, the supply of fuel, water and air can be stopped to the limit. Therefore, the fuel consumption can be further reduced.

【0041】(8)上記発明においては特に限定されな
いが、前記燃料、水および空気の供給流量または間欠時
間を、アクセルが閉状態となったときの前記改質反応
器、前記一酸化炭素除去器および前記燃焼器の温度また
は運転履歴に基づいて補正することもできる(請求項1
2参照)。
(8) Although not particularly limited in the above invention, the supply flow rate or the intermittent time of the fuel, water and air is controlled by the reforming reactor and the carbon monoxide remover when the accelerator is closed. And correction based on the temperature or the operation history of the combustor.
2).

【0042】この請求項12記載の発明では、各反応器
の温度から放熱量の影響を補正し、リカバリ供給時の燃
料、水および空気の供給量や間欠時間を増減させて補正
するため、マッチングの自由度が高まり、温度のオーバ
ーシュートが減らせる。したがって、より一層燃料の消
費量を低減することができる。
In the twelfth aspect of the present invention, the effect of the amount of heat radiation is corrected based on the temperature of each reactor, and the supply amount and intermittent time of fuel, water and air at the time of recovery supply are corrected by increasing or decreasing the amount of matching. And the temperature overshoot can be reduced. Therefore, the fuel consumption can be further reduced.

【0043】[0043]

【発明の効果】請求項1,5,6および13記載の発明
によれば、アイドル時の燃料の消費を最小限に抑制でき
ると同時に、改質反応器および一酸化炭素除去反応器の
温度が維持されるので、再加速時等の応答性が高まる。
According to the first, fifth, sixth and thirteenth aspects of the present invention, fuel consumption during idling can be suppressed to a minimum, and at the same time, the temperatures of the reforming reactor and the carbon monoxide removing reactor are reduced. Since it is maintained, responsiveness at the time of re-acceleration and the like is enhanced.

【0044】これに加えて、請求項2記載の発明によれ
ば、燃焼器の温度維持も可能となるので、再加速時など
の応答性がより一層高まる。
In addition to the above, according to the second aspect of the present invention, the temperature of the combustor can be maintained, so that the responsiveness at the time of re-acceleration is further improved.

【0045】また請求項3記載の発明によれば、改質反
応が例えば水蒸気改質のような吸熱反応のみであったと
しても、燃焼器の熱で改質反応器の温度を保つことがで
きる。
According to the third aspect of the present invention, even if the reforming reaction is only an endothermic reaction such as steam reforming, the temperature of the reforming reactor can be maintained by the heat of the combustor. .

【0046】請求項4記載の発明によれば、燃焼器で得
られる熱を改質反応器へ供給すべき燃料および水の気化
熱に利用できるので、別途加熱手段を設ける必要がな
く、熱エネルギーの有効利用を図ることができる。
According to the fourth aspect of the present invention, the heat obtained in the combustor can be used for the heat of vaporization of the fuel and water to be supplied to the reforming reactor. Can be effectively used.

【0047】請求項7記載の発明によれば、二次電池が
充電不足のときは、モータの回生による充電と合わせて
燃料電池の発電による充電も可能となり、速やかに二次
電池を満充電状態とすることができる。
According to the seventh aspect of the invention, when the secondary battery is insufficiently charged, the fuel cell can be charged by power generation together with the regenerative operation of the motor, and the secondary battery can be quickly charged fully. It can be.

【0048】また請求項8記載の発明によれば、燃料、
水および空気の供給停止時間を、いくつかの運転パター
ンを考慮して最初から定数として設定するので、制御内
容が簡素化される。
According to the invention of claim 8, the fuel,
Since the supply stop time of water and air is set as a constant from the beginning in consideration of several operation patterns, the control content is simplified.

【0049】請求項9記載の発明によれば、制御精度が
より向上し、より少ない燃料消費で制御することができ
る。
According to the ninth aspect, the control accuracy is further improved, and the control can be performed with less fuel consumption.

【0050】請求項10記載の発明によれば、アクセル
が閉となる直前までの運転履歴から、現在の各反応器の
触媒温度を推定するので、温度センサの応答性が悪くて
も、燃料の消費量を低減することができる。
According to the tenth aspect of the present invention, the current catalyst temperature of each reactor is estimated from the operation history immediately before the accelerator is closed, so that even if the response of the temperature sensor is poor, the fuel The consumption can be reduced.

【0051】また請求項11記載の発明によれば、常に
各反応器の温度を検知しているため、限界まで燃料と水
と空気の供給停止を行うことができ、より一層燃料の消
費量を低減することができる。
According to the eleventh aspect of the present invention, since the temperature of each reactor is constantly detected, the supply of fuel, water and air can be stopped to the limit, and the fuel consumption can be further reduced. Can be reduced.

【0052】請求項12記載の発明によれば、各反応器
の温度から放熱量の影響を補正し、リカバリ供給時の燃
料、水および空気の供給量や間欠時間を増減させて補正
するため、マッチングの自由度が高まり、温度のオーバ
ーシュートが減らせる。したがって、より一層燃料の消
費量を低減することができる。
According to the twelfth aspect of the invention, the influence of the heat radiation amount is corrected from the temperature of each reactor, and the supply amount and the intermittent time of the fuel, water and air at the time of recovery supply are corrected by increasing or decreasing. The degree of freedom in matching is increased, and the temperature overshoot can be reduced. Therefore, the fuel consumption can be further reduced.

【0053】[0053]

【発明の実施の形態】以下、本発明の実施形態を図面に
基づいて説明する。第1実施形態 図1は本発明の第1実施形態の燃料電池システムを示す
ブロック図、図2は同実施形態の動作を示すフローチャ
ートである。
Embodiments of the present invention will be described below with reference to the drawings. First Embodiment FIG. 1 is a block diagram showing a fuel cell system according to a first embodiment of the present invention, and FIG. 2 is a flowchart showing the operation of the first embodiment.

【0054】まず本実施形態の燃料電池システムの構成
について説明する。本実施形態の燃料電池システム1
は、メタノールなどの炭化水素を改質して水素リッチな
改質ガスを生成する改質反応器120と、水素ガスおよ
び酸素ガスを燃料ガスとして発電する燃料電池スタック
200と、改質ガスに含まれた一酸化炭素を除去する一
酸化炭素除去反応器130と、燃料電池スタック200
からの余剰水素ガスを燃焼させて熱エネルギを得る燃焼
器140と、改質反応器120、一酸化炭素除去反応器
130、燃焼器140および燃料電池スタック200に
酸素含有ガス(酸化剤)である空気を供給する圧縮機4
00と、燃焼器140から供給される排気ガスの熱エネ
ルギを利用してメタノールおよび水を気化する蒸発器1
50とを有する。
First, the configuration of the fuel cell system according to the present embodiment will be described. Fuel cell system 1 of the present embodiment
Includes a reforming reactor 120 that reforms a hydrocarbon such as methanol to generate a hydrogen-rich reformed gas, a fuel cell stack 200 that generates power using hydrogen gas and oxygen gas as fuel gas, A carbon monoxide removal reactor 130 for removing trapped carbon monoxide, and a fuel cell stack 200.
A combustor 140 that burns excess hydrogen gas from the reactor to obtain thermal energy, and a reforming reactor 120, a carbon monoxide removal reactor 130, a combustor 140, and an oxygen-containing gas (oxidant) in the fuel cell stack 200. Compressor 4 for supplying air
00 and an evaporator 1 that vaporizes methanol and water by using thermal energy of exhaust gas supplied from the combustor 140.
50.

【0055】なお、燃料電池スタック200で得られる
電力はパワーマネージャ210を介して外部負荷である
モータ等に供給されるが、当該パワーマネージャ210
を介して二次電池220へも蓄電される。
The electric power obtained by the fuel cell stack 200 is supplied to a motor or the like as an external load via the power manager 210.
Is also stored in the secondary battery 220 via the.

【0056】燃料電池スタック200は、電解質膜を挟
んで対電極が設けられており、この燃料電池スタックの
陰極(カソード)側に圧縮機400からの圧縮空気40
4が供給され、陽極(アノード)側に改質反応器120
で生成され一酸化炭素除去反応器130を通過して水素
リッチとなった改質ガス135が供給され、これによる
下記電気化学反応により起電力を呈する。なお、圧縮機
400から供給される空気量は、コントロールユニット
300からの命令にしたがって流量制御弁201により
調節される。
The fuel cell stack 200 is provided with a counter electrode with an electrolyte membrane interposed therebetween, and the compressed air 40 from the compressor 400 is provided on the cathode side of the fuel cell stack.
4 and the reforming reactor 120 is provided on the anode side.
The hydrogen-rich reformed gas 135 is supplied through the carbon monoxide removal reactor 130, which is generated by the above-described process, and generates an electromotive force by the following electrochemical reaction. Note that the amount of air supplied from the compressor 400 is adjusted by the flow control valve 201 according to a command from the control unit 300.

【0057】[0057]

【化3】アノード反応:H→2H+2e カソード反応:2H+2e+(1/2)O
→HO 上記アノード反応にて生成した水素イオンはH(xH
O)の水和状態で電解質膜を透過(拡散)し、この
電解質膜を透過した水素イオンはカソードで上記カソー
ド反応に供される。この結果として、燃料電池スタック
200は起電力を呈し、モータ等の外部負荷に起電力を
供給する。
Embedded image Anode reaction: H 2 → 2H + + 2e - Cathode reaction: 2H + + 2e + (1/2) O 2
→ H 2 O The hydrogen ions generated by the anode reaction are H + (xH
The electrolyte membrane permeation (diffusion) in a hydrated state of 2 O), hydrogen ions passed through the membrane is subjected to the cathode reaction at the cathode. As a result, the fuel cell stack 200 exhibits an electromotive force and supplies the electromotive force to an external load such as a motor.

【0058】本例の改質反応器120は、たとえばメタ
ノール(改質原料)と水蒸気と空気(酸素含有ガス)と
を混合して、メタノールの水蒸気改質反応と酸化反応と
によって水素リッチガスとするもので、水蒸気反応(吸
熱反応)で必要とされる熱量を、酸化反応(発熱反応)
により生じた熱量で賄うことで、別途の加熱器を省略あ
るいは小能力化できる、いわゆるオートサーマル型改質
器である。
The reforming reactor 120 of this embodiment mixes, for example, methanol (reforming raw material), steam and air (oxygen-containing gas), and makes a hydrogen-rich gas by a steam reforming reaction and an oxidation reaction of methanol. The amount of heat required for a steam reaction (endothermic reaction) is converted to an oxidation reaction (exothermic reaction).
This is a so-called auto-thermal type reformer in which an additional heater can be omitted or reduced in capacity by supplying the heat generated by the method.

【0059】改質原料としてのメタノールは、メタノー
ルタンクから燃料インジェクタ151によって蒸発器1
50へ噴射され、燃焼器140からの排気ガスと熱交換
することで気化される。また、水蒸気は水タンクから水
インジェクタ152によって蒸発器150へ噴射され、
同じく燃焼器140からの排気ガスと熱交換することで
気化されて水蒸気とされる。これらメタノールガスと水
蒸気は、改質反応器120の入口に送られ、空気401
は圧縮機400から供給される。この空気401の流量
は流量制御弁121により調節される。
The methanol as the reforming raw material is supplied from the methanol tank to the evaporator 1 by the fuel injector 151.
The fuel is injected into the fuel cell 50 and is vaporized by heat exchange with the exhaust gas from the combustor 140. The water vapor is injected from the water tank to the evaporator 150 by the water injector 152,
Similarly, by exchanging heat with the exhaust gas from the combustor 140, it is vaporized into steam. These methanol gas and steam are sent to the inlet of the reforming reactor 120, and the air 401
Is supplied from the compressor 400. The flow rate of the air 401 is adjusted by the flow control valve 121.

【0060】改質反応器120におけるメタノールの水
蒸気改質反応は、メタノールおよび水蒸気の供給を受け
て下記式に示すメタノールの分解反応と一酸化炭素の変
性反応とを同時進行させて水素と二酸化炭素とを含有す
る改質ガスを生成するものである。
In the steam reforming reaction of methanol in the reforming reactor 120, the decomposition reaction of methanol and the reforming reaction of carbon monoxide represented by the following formulas are simultaneously advanced by receiving the supply of methanol and steam to produce hydrogen and carbon dioxide. And a reformed gas containing the following.

【0061】[0061]

【化4】メタノール反応:CHOH→CO+2H
−90.0kJ/mol 変性反応 :CO+HO→CO+H
40.5kJ/mol 全体反応 :CHOH+HO→CO
3H−49.5kJ/mol 一方、メタノールの酸化反応は、メタノールおよび空気
の供給を受けて下記式に示す酸化反応により水素と二酸
化炭素を含有する改質ガスを生成するものである。
Embedded image Methanol reaction: CH 3 OH → CO + 2H
2 -90.0kJ / mol modification reaction: CO + H 2 O → CO 2 + H 2 +
40.5 kJ / mol Overall reaction: CH 3 OH + H 2 O → CO 2 +
3H 2 -49.5 kJ / mol On the other hand, in the oxidation reaction of methanol, a reformed gas containing hydrogen and carbon dioxide is generated by the oxidation reaction shown in the following formula by supplying methanol and air.

【0062】[0062]

【化5】酸化反応:CHOH+1/2O→2H
+CO+189.5kJ/mol 一酸化炭素除去反応器130は、改質反応器120から
燃料電池スタック200の陽極側へ供給される改質ガス
中に一酸化炭素が含まれていると燃料電池が被毒するた
め、改質反応器120と燃料電池スタック200との間
の配管に設けられたもので、一酸化炭素の含有量を低減
させる装置である。この一酸化炭素除去反応器130
は、改質反応器120で得られた改質ガス125中の未
反応の一酸化炭素と水とを同じ変性反応(CO+H
O→CO+H)により水素と二酸化炭素とに変
性して水素含有量の多い燃料ガスを生成するシフト器
や、さらにこのシフト器を通過した改質ガスに含まれた
一酸化炭素を選択酸化して(CO+1/2O→CO
)二酸化炭素とする選択酸化器などが含まれる。後
者の選択酸化反応のために、圧縮機400から空気40
2が一酸化炭素除去反応器130へ供給される。この空
気402の流量は流量制御弁131により調節される。
Embedded image Oxidation reaction: CH 3 OH + 1 / 2O 2 → 2H
2 + CO 2 +189.5 kJ / mol The carbon monoxide removal reactor 130 is provided when the reformed gas supplied from the reforming reactor 120 to the anode side of the fuel cell stack 200 contains carbon monoxide. Is provided in the pipe between the reforming reactor 120 and the fuel cell stack 200, and is a device for reducing the content of carbon monoxide. This carbon monoxide removal reactor 130
Converts the unreacted carbon monoxide and water in the reformed gas 125 obtained in the reforming reactor 120 into the same reforming reaction (CO + H 2
O → CO 2 + H 2 ) to select a shifter that generates a fuel gas with a high hydrogen content by being transformed into hydrogen and carbon dioxide, and a carbon monoxide contained in the reformed gas that has passed through the shifter Oxidize (CO + 1 / 2O 2 → CO
2 ) Includes a selective oxidizer that uses carbon dioxide. Due to the latter selective oxidation reaction, air 40
2 is supplied to the carbon monoxide removal reactor 130. The flow rate of the air 402 is adjusted by a flow control valve 131.

【0063】燃料電池スタック200のアノードから排
出される余剰の改質ガス205は、圧縮機400からの
空気403および燃料インジェクタ145から噴射され
るメタノールなどの燃焼燃料とともに燃焼器140に供
給され、ここで燃焼処理される。このときの排気ガスは
蒸発器150に送られ、上述した改質反応器120のメ
タノールおよび水の気化エネルギーに利用される。な
お、圧縮機400から燃焼器140に供給される空気4
03の流量は流量制御弁141によって調節される。
The surplus reformed gas 205 discharged from the anode of the fuel cell stack 200 is supplied to the combustor 140 together with air 403 from the compressor 400 and combustion fuel such as methanol injected from the fuel injector 145. Combustion treatment. The exhaust gas at this time is sent to the evaporator 150, and is used for the vaporization energy of methanol and water in the reforming reactor 120 described above. The air 4 supplied from the compressor 400 to the combustor 140
The flow rate of 03 is adjusted by the flow control valve 141.

【0064】本例の燃料電池システム1の動作制御はコ
ントロールユニット300にて実行される。このコント
ロールユニット300には、燃料電池スタック200の
冷却水温度を検出する温度センサからの信号301と、
車両のアクセル開度を検出するセンサからの信号302
と、車両の走行速度を検出する車速センサからの信号3
03とが取り込まれる。
The operation control of the fuel cell system 1 of this embodiment is executed by the control unit 300. The control unit 300 includes a signal 301 from a temperature sensor for detecting the temperature of the cooling water of the fuel cell stack 200,
Signal 302 from a sensor for detecting the accelerator opening of the vehicle
And a signal 3 from a vehicle speed sensor for detecting the traveling speed of the vehicle
03 is taken in.

【0065】コントロールユニット300では、アクセ
ル開度センサ302や車速センサ303の信号を用いて
発生水素量を計算し、燃料インジェクタ151、水イン
ジェクタ152および空気401の流量制御弁121を
開けることで、改質反応器120に必要な燃料と水と空
気を供給する。
The control unit 300 calculates the amount of hydrogen generated using the signals from the accelerator opening sensor 302 and the vehicle speed sensor 303, and opens the fuel injector 151, the water injector 152, and the flow control valve 121 for the air 401 to change the amount. The quality reactor 120 is supplied with the required fuel, water and air.

【0066】この改質反応器120で発生した水素を多
量に含んだ改質ガス125は、一酸化炭素除去器130
に送られ、流量制御弁131で流量制御された空気によ
って一酸化炭素が選択酸化され、一酸化炭素が低濃度と
された改質ガス135が作られ、燃料電池スタック20
0へと供給される。
The reformed gas 125 containing a large amount of hydrogen generated in the reforming reactor 120 is supplied to the carbon monoxide remover 130.
And the carbon monoxide is selectively oxidized by the air whose flow rate is controlled by the flow control valve 131 to produce a reformed gas 135 having a low concentration of carbon monoxide.
0.

【0067】燃料電池スタック200で電力を取り出さ
れて水素が低濃度となった排改質ガス205は、燃焼器
140に送られ、流量制御弁141で流量制御された空
気で水素が酸化され、安全な水となって排気ガスとして
排出される。この燃焼器140からの排気ガスの熱を利
用して蒸発器150で改質反応器120に送る燃料と水
とを蒸発させる。
The exhaust reformed gas 205 from which electric power is taken out by the fuel cell stack 200 and the concentration of hydrogen becomes low is sent to the combustor 140, where the hydrogen is oxidized by air whose flow rate is controlled by the flow control valve 141. It becomes safe water and is discharged as exhaust gas. The fuel and water sent to the reforming reactor 120 are evaporated by the evaporator 150 using the heat of the exhaust gas from the combustor 140.

【0068】次に作動について説明する。以下の制御は
暖気後に行われるため、まずステップ1にて、たとえ
ば、燃料電池スタック200の冷却水温度センサで冷却
水の温度TWを取り込み、ステップ2にて、この温度T
Wと暖機終了温度TW0とを比較することで暖気運転が
終了したかどうかの判定を行なう。実際の冷却水温度T
Wが暖機終了温度TW0以上になるまで待機する。
Next, the operation will be described. Since the following control is performed after warm-up, first, for example, the cooling water temperature sensor of the fuel cell stack 200 captures the temperature TW of the cooling water in step 1, and in step 2, this temperature TW
It is determined whether the warm-up operation has ended by comparing W with the warm-up end temperature TW0. Actual cooling water temperature T
It waits until W becomes equal to or higher than the warm-up end temperature TW0.

【0069】次に、ステップ3にてアクセル開度センサ
によるアクセル開度TVOの信号302と、車速センサ
による車速VSの信号303とを取り込み、ステップ4
にて本制御の開始状態であるかどうかを判定する。この
状態とは、移動体としては走行中ではあるが、車両とし
ての負荷は0で、改質システムの運転が不要な状態であ
り、たとえば減速や降坂運転などの状態である。
Next, in step 3, a signal 302 of the accelerator opening TVO by the accelerator opening sensor and a signal 303 of the vehicle speed VS by the vehicle speed sensor are fetched.
It is determined whether or not the present control is in a start state. This state is a state in which the moving body is running, but the load as the vehicle is 0, and the operation of the reforming system is unnecessary, for example, a state such as deceleration or downhill driving.

【0070】ステップ4にて、アクセル開度TVOが
0、すなわちアクセルが全閉であり、車速VSが設定車
速VS0以上の速度であるときは次のステップ5へ進
む。
In step 4, when the accelerator opening TVO is 0, that is, when the accelerator is fully closed and the vehicle speed VS is equal to or higher than the set vehicle speed VS0, the routine proceeds to the next step 5.

【0071】ステップ4にてこの状態であると判定した
ら、ステップ5にてまず蒸発器150に設けられた燃料
インジェクタ151および水インジェクタ152を制御
することで改質反応器120へ供給する燃料と水の量を
少量に絞る。これは間欠供給を行なうことで容易におこ
なうことできる。
If it is determined in step 4 that this is the case, the fuel and water supplied to the reforming reactor 120 are controlled in step 5 by first controlling the fuel injector 151 and the water injector 152 provided in the evaporator 150. To a small amount. This can be easily performed by performing intermittent supply.

【0072】そして、流量制御弁121を制御すること
で圧縮機400から改質反応器120へ供給される空気
401の流量を調節し、改質反応器120におけるこの
反応で水素ガスを生成し、このときの反応熱で改質反応
器120を保温する。同時に、一酸化炭素除去反応器1
30および燃焼器140にこの水素ガスを供給する。
By controlling the flow control valve 121, the flow rate of the air 401 supplied from the compressor 400 to the reforming reactor 120 is adjusted, and hydrogen gas is generated by this reaction in the reforming reactor 120. The reforming reactor 120 is kept warm by the reaction heat at this time. At the same time, carbon monoxide removal reactor 1
This hydrogen gas is supplied to 30 and the combustor 140.

【0073】このとき、流量制御弁131,141を制
御することで一酸化炭素除去反応器130と燃焼器14
0にも同時に空気402,403を送り、改質反応器1
20で生成された水素ガスを酸化し、この反応熱で一酸
化炭素除去反応器130と燃焼器140をも保温する。
At this time, the carbon monoxide removal reactor 130 and the combustor 14 are controlled by controlling the flow control valves 131 and 141.
0 and air 402 and 403 are simultaneously sent to the reforming reactor 1
The hydrogen gas generated in step 20 is oxidized, and the reaction heat also keeps the temperature of the carbon monoxide removal reactor 130 and the combustor 140 high.

【0074】このように水素ガスの生成反応熱と、当該
水素ガスの酸化反応の熱とを利用することで、極少量の
燃料消費で改質反応器120,一酸化炭素除去反応器1
30および燃焼器140の保温が可能となる。
By utilizing the heat of hydrogen gas generation reaction and the heat of the oxidation reaction of the hydrogen gas as described above, the reforming reactor 120 and the carbon monoxide removing reactor 1 can be used with a very small amount of fuel consumption.
The temperature of the combustor 140 and the combustor 140 can be kept warm.

【0075】このときの改質反応器120に供給される
燃料の間欠時間と噴射時間/噴射量の値は、改質反応器
120、一酸化炭素除去反応器130および燃焼器14
0の熱容量および放熱量と化学反応式からの発熱量とを
用いて計算により理論的に求めることが可能であり、こ
れを定数とする。
At this time, the values of the intermittent time and the injection time / injection amount of the fuel supplied to the reforming reactor 120 are determined by the reforming reactor 120, the carbon monoxide removal reactor 130, and the combustor 14.
It can be theoretically obtained by calculation using the heat capacity and heat release amount of 0 and the heat generation amount from the chemical reaction formula, and this is set as a constant.

【0076】なお、上述した例では改質反応器120、
一酸化炭素除去反応器130および燃焼器140にてア
イドル制御を実行したが、本制御は改質反応器120と
一酸化炭素除去反応器130の部分のみで実施すること
も可能である。
In the example described above, the reforming reactor 120,
Although the idle control is performed in the carbon monoxide removal reactor 130 and the combustor 140, this control may be performed only in the reforming reactor 120 and the carbon monoxide removal reactor 130.

【0077】第2実施形態 図3は本発明の燃料電池システムの第2実施形態を示す
ブロック図であり、上述した第1実施形態と共通する部
材には同一の符号を付している。本例の燃料電池システ
ム1では、改質反応器120として、オートサーマル型
反応器ではなく、水蒸気改質反応のみによる改質反応器
120を用いた例である。
Second Embodiment FIG. 3 is a block diagram showing a second embodiment of the fuel cell system according to the present invention, wherein members common to those in the above-described first embodiment are denoted by the same reference numerals. In the fuel cell system 1 of the present embodiment, the reforming reactor 120 is not an autothermal reactor, but a reforming reactor 120 based only on a steam reforming reaction.

【0078】水素リッチガスを生成する改質反応が、吸
熱反応である水蒸気改質反応のみである場合には、改質
反応器120を適正温度に加熱する手段が必要とされ
る。そこで、本例では燃焼器140の下流に熱交換器1
46を設け、燃焼器140から排出される排ガスで例え
ばシリコンオイルのような熱媒を加熱し、この熱媒を改
質反応器120に送ることで熱を供給する。
When the reforming reaction for generating the hydrogen-rich gas is only a steam reforming reaction which is an endothermic reaction, means for heating the reforming reactor 120 to an appropriate temperature is required. Therefore, in this example, the heat exchanger 1 is provided downstream of the combustor 140.
A heat medium such as silicon oil is heated by exhaust gas discharged from the combustor 140, and heat is supplied by sending the heat medium to the reforming reactor 120.

【0079】なお、この構成で部分酸化と水蒸気改質と
を併用するか、又は部分酸化のみで運転する場合におけ
るコントロールユニット300の動作制御は、上述した
第1実施形態と同じである。また、水蒸気改質反応のよ
うな吸熱反応でのみ運転する場合は、図2のステップ5
において、改質反応器120への空気の供給を常に停止
すれば良い。
The operation control of the control unit 300 when the partial oxidation and the steam reforming are used in combination in this configuration or when the operation is performed only by the partial oxidation is the same as that in the above-described first embodiment. When the operation is performed only by an endothermic reaction such as a steam reforming reaction, step 5 in FIG.
In the above, the supply of air to the reforming reactor 120 may be always stopped.

【0080】第3実施形態 図4は本発明の第3実施形態の燃料電池システムを示す
ブロック図、図5は同実施形態の動作を示すフローチャ
ート、図6は本実施形態の制御タイムチャートである。
Third Embodiment FIG. 4 is a block diagram showing a fuel cell system according to a third embodiment of the present invention, FIG. 5 is a flowchart showing the operation of the third embodiment, and FIG. 6 is a control time chart of the present embodiment. .

【0081】本例の燃料電池システム1の基本的な構成
は、上述した第1実施形態の燃料電池システム1と同じ
であり、共通する部材には同一の符号を付している。本
例では、第1実施形態に対して、コントロールユニット
300における制御フローが相違している。
The basic structure of the fuel cell system 1 of this example is the same as that of the fuel cell system 1 of the first embodiment described above, and the same members are denoted by the same reference numerals. In this example, the control flow in the control unit 300 is different from that of the first embodiment.

【0082】すなわち、ステップ1乃至4までの処理
は、図2に示すステップ1乃至4と同じであり、ステッ
プ4にて、アクセル開度TVOが0、すなわちアクセル
が全閉であり、車速VSが設定車速VS0以上の速度で
あるかどうかを判断する。
That is, the processing of steps 1 to 4 is the same as that of steps 1 to 4 shown in FIG. 2. In step 4, the accelerator opening TVO is 0, that is, the accelerator is fully closed, and the vehicle speed VS is It is determined whether the speed is equal to or higher than the set vehicle speed VS0.

【0083】そして、第1実施形態に対して、より燃料
消費を低減するために、ステップ11にて、燃料インジ
ェクタ151、水インジェクタ152および流量制御弁
121,131,141を全て閉とし、改質反応器12
0への燃料と水と空気をカットする(図6のT1)。
Then, in order to further reduce the fuel consumption, the fuel injector 151, the water injector 152 and the flow control valves 121, 131, 141 are all closed in step 11 to reduce the fuel consumption. Reactor 12
Cut fuel, water and air to zero (T1 in FIG. 6).

【0084】そして、ステップ12にて、これら燃料イ
ンジェクタ151、水インジェクタ152および流量制
御弁121,131,141の全閉開始からの経過時間
TMCUTをカウントし、ステップ13にて所定の時間
TMCUT0が経過したら、ステップ14にて、そのと
き未だアクセル開度が0であっても、強制的に改質反応
器120への燃料と水と空気の供給を開始する(図6の
T2)。このときの供給量は第1実施形態と同じ計算で
求めることができる。
Then, in step 12, the elapsed time TMCUT from the start of full closing of the fuel injector 151, the water injector 152, and the flow control valves 121, 131, 141 is counted, and in step 13, the predetermined time TMCUT0 has elapsed. Then, in step 14, even if the accelerator opening is still 0 at that time, the supply of fuel, water and air to the reforming reactor 120 is forcibly started (T2 in FIG. 6). The supply amount at this time can be obtained by the same calculation as in the first embodiment.

【0085】なお、この燃料と水と空気のカット時間
は、いくつかの運転条件を想定して、定数としておくと
制御上は簡略化ができる。
The cutoff time of fuel, water and air can be simplified in terms of control if it is set to a constant, assuming several operating conditions.

【0086】第4実施形態 図7は本発明の第4実施形態の燃料電池システムを示す
ブロック図、図8は同実施形態の動作を示すフローチャ
ートである。本例の燃料電池システム1の基本的な構成
は、上述した第1実施形態の燃料電池システム1と同じ
であり、共通する部材には同一の符号を付している。本
例では、第1実施形態に対して、二次電池220の充電
状態を検出するバッテリコントローラからの信号221
がコントロールユニット300に取り込まれる点と、当
該コントロールユニット300における制御フローとが
相違している。
Fourth Embodiment FIG. 7 is a block diagram showing a fuel cell system according to a fourth embodiment of the present invention, and FIG. 8 is a flowchart showing the operation of the fourth embodiment. The basic configuration of the fuel cell system 1 of this example is the same as that of the fuel cell system 1 of the above-described first embodiment, and the same members are denoted by the same reference numerals. In this example, a signal 221 from the battery controller that detects the state of charge of the secondary battery 220 is different from the first embodiment.
Are taken into the control unit 300 and the control flow in the control unit 300 is different.

【0087】すなわち、ステップ1乃至4までの処理
は、図2に示すステップ1乃至4と同じであり、ステッ
プ4にて、アクセル開度TVOが0、すなわちアクセル
が全閉であり、車速VSが設定車速VS0以上の速度で
あるかどうかを判断する。
That is, the processing of steps 1 to 4 is the same as that of steps 1 to 4 shown in FIG. 2. In step 4, the accelerator opening TVO is 0, that is, the accelerator is fully closed, and the vehicle speed VS is lower. It is determined whether the speed is equal to or higher than the set vehicle speed VS0.

【0088】そして、本例ではステップ21にてバッテ
リコントローラ信号221を読み取ることで、二次電池
220の充電量VSOCを検知し、続くステップ22に
て燃料電池スタック200で発電を行うべき設定値VS
OC0未満であるときは、ステップ23へ進まずにステ
ップ1へリターンする。
Then, in this example, by reading the battery controller signal 221 in step 21, the charge amount VSOC of the secondary battery 220 is detected, and in the subsequent step 22, the set value VS at which the fuel cell stack 200 should generate power is set.
If it is less than OC0, the process returns to step 1 without proceeding to step 23.

【0089】すなわち、本例では充電不良時には回生に
よる充電だけでなく、この燃料と空気のカットや低流量
化を一時停止(ディレイ)することで燃料電池スタック
200で発電してこれを二次電池220へ充電する。こ
れにより速やかに二次電池220を満充電状態とするこ
とができる。
In other words, in this embodiment, when charging is poor, not only charging by regeneration but also cutting (cutting) of fuel and air and reduction of flow rate are temporarily stopped (delayed) to generate electric power in the fuel cell stack 200, and this is used as a secondary battery. Charge to 220. Thereby, the secondary battery 220 can be quickly brought to a fully charged state.

【0090】なお、ステップ22にて二次電池220の
充電量が設定値VSOC0以上であるときは、上述した
第3実施形態のステップ11乃至14と同様に、ステッ
プ23乃至26の制御を実行する。
When the charge amount of the secondary battery 220 is equal to or more than the set value VSOC0 in step 22, the control in steps 23 to 26 is executed in the same manner as in steps 11 to 14 of the third embodiment. .

【0091】第5実施形態 図9は本発明の第5実施形態の燃料電池システムを示す
ブロック図、図10は同実施形態の動作を示すフローチ
ャートである。本例の燃料電池システム1の基本的な構
成は、上述した第1実施形態の燃料電池システム1と同
じであり、共通する部材には同一の符号を付している。
本例では、第1実施形態に対して、改質反応器120、
一酸化炭素除去反応器130および燃焼器140にそれ
ぞれ温度センサ122,132,142が設けられ、こ
れらの温度センサ122,132,142からの信号は
コントロールユニット300に送出される点と、当該コ
ントロールユニット300における制御フローとが相違
している。
Fifth Embodiment FIG. 9 is a block diagram showing a fuel cell system according to a fifth embodiment of the present invention, and FIG. 10 is a flowchart showing the operation of the fifth embodiment. The basic configuration of the fuel cell system 1 of this example is the same as that of the fuel cell system 1 of the above-described first embodiment, and the same members are denoted by the same reference numerals.
In the present example, the reforming reactor 120,
Temperature sensors 122, 132 and 142 are provided in the carbon monoxide removal reactor 130 and the combustor 140, respectively. Signals from these temperature sensors 122, 132 and 142 are sent to the control unit 300, The control flow in FIG.

【0092】すなわち、ステップ1乃至4までの処理
は、図2に示すステップ1乃至4と同じであり、ステッ
プ4にて、アクセル開度TVOが0、すなわちアクセル
が全閉であり、車速VSが設定車速VS0以上の速度で
あるかどうかを判断する。
That is, the processing of steps 1 to 4 is the same as that of steps 1 to 4 shown in FIG. 2. In step 4, the accelerator opening TVO is 0, that is, the accelerator is fully closed, and the vehicle speed VS is It is determined whether the speed is equal to or higher than the set vehicle speed VS0.

【0093】そして、ステップ11にて、燃料インジェ
クタ151、水インジェクタ152および流量制御弁1
21,131,141を全て閉とし、改質反応器120
への燃料と水と空気をカットする。
Then, in step 11, the fuel injector 151, the water injector 152 and the flow control valve 1
21, 131 and 141 are all closed, and the reforming reactor 120 is closed.
Cut fuel and water and air to the.

【0094】このメタノールと水と空気の供給カットを
開始したら、続くステップ31にて改質反応器120の
温度センサ122、一酸化炭素除去反応器130の温度
センサ132、燃焼器140の温度センサ142から各
内部温度をこのトロールユニット300に読み込み、ス
テップ32にて各反応器120,130,140の最低
許容温度との差異から、カット時間について決定する。
When the supply cut of methanol, water, and air is started, in the following step 31, the temperature sensor 122 of the reforming reactor 120, the temperature sensor 132 of the carbon monoxide removing reactor 130, and the temperature sensor 142 of the combustor 140 , The internal temperatures are read into the trolling unit 300, and in step 32, the cut time is determined from the difference from the minimum allowable temperature of each of the reactors 120, 130, and 140.

【0095】そして、計算されたカット時間が経過した
らステップ33へ進んで、燃料インジェクタ151、水
インジェクタ152および流量制御弁121,131,
141を全て開とし、改質反応器120への燃料と水と
空気の供給を再開する。続くステップ34では、所定時
間が経過したら、燃料インジェクタ151、水インジェ
クタ152および流量制御弁121,131,141を
間欠的に閉とし、改質反応器120への燃料と水と空気
を絞る。
When the calculated cut time has elapsed, the routine proceeds to step 33, where the fuel injector 151, the water injector 152 and the flow control valves 121, 131,
141 are all opened, and the supply of fuel, water, and air to the reforming reactor 120 is restarted. In the subsequent step 34, after a predetermined time has elapsed, the fuel injector 151, the water injector 152, and the flow control valves 121, 131, 141 are closed intermittently, and the fuel, water, and air to the reforming reactor 120 are throttled.

【0096】これにより、カット時間を伸ばすことが可
能となり、燃料消費の低減をより図ることができる。
Thus, the cutting time can be extended, and the fuel consumption can be further reduced.

【0097】第6実施形態 図11は本発明の第6実施形態の燃料電池システムを示
すブロック図、図12は同実施形態の動作を示すフロー
チャートである。本例の燃料電池システム1の基本的な
構成は、上述した第5実施形態の燃料電池システム1と
同じであり、共通する部材には同一の符号を付してい
る。本例では、第5実施形態に対して、改質反応器12
0、一酸化炭素除去反応器130、燃焼器140の運転
履歴を常に監視しておき、本制御に移行したときにこの
履歴から推定した各反応器120,130,140の触
媒温度と最低許容温度との差異から、カット時間につい
て決定する点が相違する。
Sixth Embodiment FIG. 11 is a block diagram showing a fuel cell system according to a sixth embodiment of the present invention, and FIG. 12 is a flowchart showing the operation of the sixth embodiment. The basic configuration of the fuel cell system 1 of the present example is the same as that of the fuel cell system 1 of the above-described fifth embodiment, and the same members are denoted by the same reference numerals. In this example, the reforming reactor 12 is different from the fifth embodiment.
0, the operation history of the carbon monoxide removal reactor 130 and the combustor 140 is constantly monitored, and the catalyst temperature and the minimum allowable temperature of each of the reactors 120, 130, and 140 estimated from this history when the control is shifted to this control. Is different in that the cut time is determined.

【0098】すなわち、ステップ1乃至4までの処理
は、図10に示すステップ1乃至4と同じであり、ステ
ップ4にて、アクセル開度TVOが0、すなわちアクセ
ルが全閉であり、車速VSが設定車速VS0以上の速度
であるかどうかを判断する。
That is, the processing of steps 1 to 4 is the same as the processing of steps 1 to 4 shown in FIG. 10. In step 4, the accelerator opening TVO is 0, that is, the accelerator is fully closed, and the vehicle speed VS is reduced. It is determined whether the speed is equal to or higher than the set vehicle speed VS0.

【0099】そして、ステップ11にて、燃料インジェ
クタ151、水インジェクタ152および流量制御弁1
21,131,141を全て閉とし、改質反応器120
への燃料と水と空気をカットする。
Then, at step 11, the fuel injector 151, the water injector 152 and the flow control valve 1
21, 131 and 141 are all closed, and the reforming reactor 120 is closed.
Cut fuel and water and air to the.

【0100】このメタノールと水と空気の供給カットを
開始したら、続くステップ41にて改質反応器120、
一酸化炭素除去反応器130、燃焼器140の運転履
歴、つまり過去数十秒間の燃料、水および空気の供給量
の累積に基づいて、現在の各反応器120,130,1
40の温度を推定する。
When the supply cut of methanol, water, and air is started, in the subsequent step 41, the reforming reactor 120,
Based on the operation history of the carbon monoxide removal reactor 130 and the combustor 140, that is, the accumulation of the supply amounts of fuel, water, and air in the past several tens of seconds, the current reactors 120, 130, 1
Estimate the temperature of 40.

【0101】続くステップ42にて、この推定された温
度と各反応器120,130,140の最低許容温度と
の差異から、カット時間について決定する。
In the following step 42, the cut time is determined from the difference between the estimated temperature and the minimum allowable temperature of each of the reactors 120, 130, 140.

【0102】そして、計算されたカット時間が経過した
らステップ43へ進んで、燃料インジェクタ151、水
インジェクタ152および流量制御弁121,131,
141を全て開とし、改質反応器120への燃料と水と
空気の供給を再開する。続くステップ44では、所定時
間が経過したら、燃料インジェクタ151、水インジェ
クタ152および流量制御弁121,131,141を
間欠的に閉とし、改質反応器120への燃料と水と空気
を絞る。
When the calculated cut time has elapsed, the routine proceeds to step 43, where the fuel injector 151, the water injector 152 and the flow control valves 121, 131,
141 are all opened, and the supply of fuel, water, and air to the reforming reactor 120 is restarted. In the following step 44, after a lapse of a predetermined time, the fuel injector 151, the water injector 152 and the flow control valves 121, 131, 141 are closed intermittently, and the fuel, water and air to the reforming reactor 120 are throttled.

【0103】これにより、カット時間をより伸ばすこと
が可能になり、燃料消費の低減を図ることができる。
As a result, the cut time can be further extended, and the fuel consumption can be reduced.

【0104】第7実施形態 図13は本発明の第7実施形態の燃料電池システムを示
すブロック図、図14は同実施形態の動作を示すフロー
チャートである。本例の燃料電池システム1の基本的な
構成は、上述した第5実施形態の燃料電池システム1と
同じであり、共通する部材には同一の符号を付してい
る。本例では、第5実施形態に対して、改質反応器12
0、一酸化炭素除去反応器130、燃焼器140の実際
の温度を常に監視し、各反応器の最低許容温度以上とな
るように常時監視してフィードバック制御をかける点が
相違する。
Seventh Embodiment FIG. 13 is a block diagram showing a fuel cell system according to a seventh embodiment of the present invention, and FIG. 14 is a flowchart showing the operation of the seventh embodiment. The basic configuration of the fuel cell system 1 of the present example is the same as that of the fuel cell system 1 of the above-described fifth embodiment, and the same members are denoted by the same reference numerals. In this example, the reforming reactor 12 is different from the fifth embodiment.
0, the actual temperature of the carbon monoxide removal reactor 130 and the combustor 140 is always monitored, and the feedback control is performed by always monitoring the actual temperature of each reactor to be equal to or higher than the minimum allowable temperature.

【0105】すなわち、ステップ1乃至4までの処理
は、図10に示すステップ1乃至4と同じであり、ステ
ップ4にて、アクセル開度TVOが0、すなわちアクセ
ルが全閉であり、車速VSが設定車速VS0以上の速度
であるかどうかを判断する。
That is, the processing of steps 1 to 4 is the same as that of steps 1 to 4 shown in FIG. 10. In step 4, the accelerator opening TVO is 0, that is, the accelerator is fully closed, and the vehicle speed VS is lower. It is determined whether the speed is equal to or higher than the set vehicle speed VS0.

【0106】そして、ステップ11にて、燃料インジェ
クタ151、水インジェクタ152および流量制御弁1
21,131,141を全て閉とし、改質反応器120
への燃料と水と空気をカットする。
At step 11, the fuel injector 151, the water injector 152 and the flow control valve 1
21, 131 and 141 are all closed, and the reforming reactor 120 is closed.
Cut fuel and water and air to the.

【0107】このメタノールと水と空気の供給カットを
開始したら、続くステップ31にて改質反応器120の
温度センサ122、一酸化炭素除去反応器130の温度
センサ132、燃焼器140の温度センサ142から各
内部温度TATR,TPROX,TCCをこのトロール
ユニット300に読み込み、それぞれが各反応器12
0,130,140の最低許容温度TATR0,TPR
OX0,TCC0以下になるまでステップ11のメタノ
ールと水と空気の供給カットを継続する。
When the supply cut of methanol, water and air is started, the temperature sensor 122 of the reforming reactor 120, the temperature sensor 132 of the carbon monoxide removing reactor 130, and the temperature sensor 142 of the combustor 140 are determined in the following step 31. The internal temperatures TATR, TPROX, and TCC are read into the trawl unit 300 from the
Minimum allowable temperatures TATR0, TPR of 0, 130, 140
The supply cut of methanol, water, and air in step 11 is continued until it becomes OX0, TCC0 or less.

【0108】各反応器120,130,140の内部温
度が最低許容温度TATR0,TPROX0,TCC0
以下になったら、ステップ52へ進んで燃料インジェク
タ151、水インジェクタ152および流量制御弁12
1,131,141を全て開とし、改質反応器120へ
の燃料と水と空気の供給を再開する。続くステップ53
では、所定時間が経過したら、燃料インジェクタ15
1、水インジェクタ152および流量制御弁121,1
31,141を間欠的に閉とし、改質反応器120への
燃料と水と空気を絞る。
The internal temperature of each of the reactors 120, 130, 140 is set to the minimum allowable temperature TATR0, TPROX0, TCC0.
If it is below, the routine proceeds to step 52, where the fuel injector 151, the water injector 152 and the flow control valve 12
1, 131, and 141 are all opened, and the supply of fuel, water, and air to the reforming reactor 120 is restarted. Next step 53
Then, when a predetermined time has elapsed, the fuel injector 15
1. Water injector 152 and flow control valve 121,1
31 and 141 are closed intermittently, and the fuel, water and air to the reforming reactor 120 are throttled.

【0109】これにより、カット時間をぎりぎりまで伸
ばすことが可能となり、燃料消費をより低減することが
できる。第8実施形態 図15は本発明の第8実施形態の燃料電池システムを示
すブロック図、図16は同実施形態の動作を示すフロー
チャートである。本例の燃料電池システム1の基本的な
構成は、上述した第5実施形態の燃料電池システム1と
同じであり、共通する部材には同一の符号を付してい
る。本例では、第5実施形態に対して、各反応器の触媒
内部温度で供給を開始した後の間欠時間と噴射時間/噴
射量を補正する点が相違する。
As a result, the cut time can be extended to the last minute, and the fuel consumption can be further reduced. Eighth Embodiment FIG. 15 is a block diagram showing a fuel cell system according to an eighth embodiment of the present invention, and FIG. 16 is a flowchart showing the operation of the same embodiment. The basic configuration of the fuel cell system 1 of the present example is the same as that of the fuel cell system 1 of the above-described fifth embodiment, and the same members are denoted by the same reference numerals. The present embodiment is different from the fifth embodiment in that the intermittent time and the injection time / injection amount after starting the supply at the catalyst internal temperature of each reactor are corrected.

【0110】すなわち、ステップ1乃至4までの処理
は、図10に示すステップ1乃至4と同じであり、ステ
ップ4にて、アクセル開度TVOが0、すなわちアクセ
ルが全閉であり、車速VSが設定車速VS0以上の速度
であるかどうかを判断する。
That is, the processing of steps 1 to 4 is the same as that of steps 1 to 4 shown in FIG. 10. In step 4, the accelerator opening TVO is 0, that is, the accelerator is fully closed, and the vehicle speed VS is lower. It is determined whether the speed is equal to or higher than the set vehicle speed VS0.

【0111】そして、ステップ11にて、燃料インジェ
クタ151、水インジェクタ152および流量制御弁1
21,131,141を全て閉とし、改質反応器120
への燃料と水と空気をカットする。
At step 11, the fuel injector 151, the water injector 152 and the flow control valve 1
21, 131 and 141 are all closed, and the reforming reactor 120 is closed.
Cut fuel and water and air to the.

【0112】このメタノールと水と空気の供給カットを
開始したら、続くステップ31にて改質反応器120の
温度センサ122、一酸化炭素除去反応器130の温度
センサ132、燃焼器140の温度センサ142から各
内部温度をこのトロールユニット300に読み込み、ス
テップ61にて各反応器120,130,140の最低
許容温度との差異から、カット時間について決定する。
これと同時に、各反応器120,130,140の内部
温度と最低許容温度との差異から、燃料、水および空気
の再供給量を計算する。
When the supply cut of methanol, water and air is started, in the following step 31, the temperature sensor 122 of the reforming reactor 120, the temperature sensor 132 of the carbon monoxide removal reactor 130, and the temperature sensor 142 of the combustor 140 , The respective internal temperatures are read into the trawl unit 300, and in step 61, the cut time is determined from the difference from the minimum allowable temperature of each of the reactors 120, 130, 140.
At the same time, the amount of resupply of fuel, water and air is calculated from the difference between the internal temperature of each of the reactors 120, 130 and 140 and the minimum allowable temperature.

【0113】そして、計算されたカット時間が経過した
らステップ62へ進んで、燃料インジェクタ151、水
インジェクタ152および流量制御弁121,131,
141を全て開とし、改質反応器120への燃料と水と
空気の供給を再開する。
When the calculated cut time has elapsed, the routine proceeds to step 62, where the fuel injector 151, the water injector 152, and the flow control valves 121, 131,
141 are all opened, and the supply of fuel, water, and air to the reforming reactor 120 is restarted.

【0114】続くステップ63では、ステップ61で求
められた燃料、水および空気の再供給量に基づいて、燃
料インジェクタ151、水インジェクタ152および流
量制御弁121,131,141を間欠的に閉とし、改
質反応器120への燃料と水と空気を絞る。
In the following step 63, the fuel injector 151, the water injector 152, and the flow control valves 121, 131, 141 are closed intermittently based on the resupplied amounts of fuel, water and air obtained in step 61. The fuel, water and air to the reforming reactor 120 are throttled.

【0115】これにより、各反応器に対して燃料、水お
よび空気の供給を開始した後の間欠時間と噴射時間/噴
射量とが補正されるので、制御性が改良されて触媒温度
のオーバーシュートなどが低減できる。
As a result, the intermittent time and the injection time / injection amount after starting the supply of fuel, water and air to each reactor are corrected, so that the controllability is improved and the catalyst temperature overshoots. Etc. can be reduced.

【0116】なお、以上説明した実施形態は、本発明の
理解を容易にするために記載されたものであって、本発
明を限定するために記載されたものではない。したがっ
て、上記の実施形態に開示された各要素は、本発明の技
術的範囲に属する全ての設計変更や均等物をも含む趣旨
である。
The embodiments described above have been described in order to facilitate understanding of the present invention, and are not described to limit the present invention. Therefore, each element disclosed in the above embodiment is intended to include all design changes and equivalents belonging to the technical scope of the present invention.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1実施形態の燃料電池システムを示
すブロック図である。
FIG. 1 is a block diagram showing a fuel cell system according to a first embodiment of the present invention.

【図2】本発明の第1実施形態の動作を示すフローチャ
ートである。
FIG. 2 is a flowchart showing the operation of the first embodiment of the present invention.

【図3】本発明の第2実施形態の燃料電池システムを示
すブロック図である。
FIG. 3 is a block diagram showing a fuel cell system according to a second embodiment of the present invention.

【図4】本発明の第3実施形態の燃料電池システムを示
すブロック図である。
FIG. 4 is a block diagram showing a fuel cell system according to a third embodiment of the present invention.

【図5】本発明の第3実施形態の動作を示すフローチャ
ートである。
FIG. 5 is a flowchart showing the operation of the third embodiment of the present invention.

【図6】本発明の第3実施形態の制御タイムチャートで
ある。
FIG. 6 is a control time chart according to a third embodiment of the present invention.

【図7】本発明の第4実施形態の燃料電池システムを示
すブロック図である。
FIG. 7 is a block diagram showing a fuel cell system according to a fourth embodiment of the present invention.

【図8】本発明の第4実施形態の動作を示すフローチャ
ートである。
FIG. 8 is a flowchart showing the operation of the fourth embodiment of the present invention.

【図9】本発明の第5実施形態の燃料電池システムを示
すブロック図である。
FIG. 9 is a block diagram showing a fuel cell system according to a fifth embodiment of the present invention.

【図10】本発明の第5実施形態の動作を示すフローチ
ャートである。
FIG. 10 is a flowchart showing the operation of the fifth embodiment of the present invention.

【図11】本発明の第6実施形態の燃料電池システムを
示すブロック図である。
FIG. 11 is a block diagram showing a fuel cell system according to a sixth embodiment of the present invention.

【図12】本発明の第6実施形態の動作を示すフローチ
ャートである。
FIG. 12 is a flowchart showing the operation of the sixth embodiment of the present invention.

【図13】本発明の第7実施形態の燃料電池システムを
示すブロック図である。
FIG. 13 is a block diagram showing a fuel cell system according to a seventh embodiment of the present invention.

【図14】本発明の第7実施形態の動作を示すフローチ
ャートである。
FIG. 14 is a flowchart showing the operation of the seventh embodiment of the present invention.

【図15】本発明の第8実施形態の燃料電池システムを
示すブロック図である。
FIG. 15 is a block diagram showing a fuel cell system according to an eighth embodiment of the present invention.

【図16】本発明の第8実施形態の動作を示すフローチ
ャートである。
FIG. 16 is a flowchart showing the operation of the eighth embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1…燃料電池システム 120…改質反応器 130…一酸化炭素除去反応器 140…燃焼器 150…蒸発器 200…燃料電池 220…二次電池 300…コントロールユニット 400…圧縮機 DESCRIPTION OF SYMBOLS 1 ... Fuel cell system 120 ... Reforming reactor 130 ... Carbon monoxide removal reactor 140 ... Combustor 150 ... Evaporator 200 ... Fuel cell 220 ... Secondary battery 300 ... Control unit 400 ... Compressor

Claims (13)

【特許請求の範囲】[Claims] 【請求項1】燃料を改質して水素含有ガスを生成する改
質反応器と、前記改質反応器で生成された改質ガスに含
まれる一酸化炭素を除去する一酸化炭素除去反応器と、
前記一酸化炭素除去反応器を通過した改質ガスと酸素含
有ガスとを用いて発電する燃料電池と、前記改質反応
器、前記一酸化炭素除去反応器および前記燃料電池に酸
素含有ガスを供給する圧縮機とを有する移動体用燃料電
池システムにおいて、 前記移動体の走行状態を検出する走行状態検出手段と、 前記移動体のアクセル開度を検出するアクセル開度検出
手段と、 前記走行状態検出手段およびアクセル開度検出手段から
の情報に基づいて前記移動体が走行状態かつアクセルが
閉状態と判断した場合には、前記改質反応器に対して、
当該改質反応器の温度を維持するために必要な最低限の
水素を発生させるように、燃料と水と酸素含有ガス、又
は燃料と酸素含有ガスを供給し、前記一酸化炭素除去反
応器に対して、当該一酸化炭素除去反応器の温度を維持
するために必要な最低限の酸素含有ガスを供給する制御
手段と、を有することを特徴とする移動体用燃料電池シ
ステム。
1. A reforming reactor for reforming a fuel to generate a hydrogen-containing gas, and a carbon monoxide removing reactor for removing carbon monoxide contained in the reformed gas generated by the reforming reactor When,
A fuel cell that generates electricity using the reformed gas and the oxygen-containing gas that have passed through the carbon monoxide removal reactor, and supplies an oxygen-containing gas to the reforming reactor, the carbon monoxide removal reactor, and the fuel cell A fuel cell system for a moving body, comprising: a compressor that performs a running state; a running state detecting unit that detects a running state of the moving body; an accelerator opening degree detecting unit that detects an accelerator opening of the moving body; and the running state detection. When it is determined that the moving body is in a running state and the accelerator is in a closed state based on the information from the means and the accelerator opening detection means, for the reforming reactor,
Supplying fuel and water and an oxygen-containing gas, or fuel and an oxygen-containing gas, so as to generate the minimum amount of hydrogen required to maintain the temperature of the reforming reactor, and supplying the carbon monoxide removing reactor On the other hand, a fuel cell system for a mobile body, comprising: control means for supplying a minimum amount of oxygen-containing gas necessary for maintaining the temperature of the carbon monoxide removal reactor.
【請求項2】前記燃料電池から排出された余剰の排改質
ガスと排酸素含有ガスとを反応処理する燃焼器をさらに
有し、 前記制御手段は、前記走行状態検出手段およびアクセル
開度検出手段からの情報に基づいて前記移動体が走行状
態かつアクセルが閉状態と判断した場合には、前記燃焼
器に対して、当該燃焼器の温度を維持するために必要な
最低限の酸素含有ガスを供給することを特徴とする請求
項1記載の移動体用燃料電池システム。
2. A combustor for reacting excess exhaust reformed gas and oxygen-containing gas exhausted from the fuel cell, wherein the control means includes the traveling state detection means and an accelerator opening degree detection. When it is determined that the moving body is in the traveling state and the accelerator is in the closed state based on the information from the means, the minimum oxygen-containing gas necessary for maintaining the temperature of the combustor with respect to the combustor is provided. The fuel cell system for a mobile body according to claim 1, wherein
【請求項3】前記改質反応器における改質反応が吸熱反
応のみであり、前記燃焼器から得られる熱を前記改質反
応器に回収する系をさらに有することを特徴とする請求
項2記載の移動体用燃料電池システム。
3. The reforming reaction in the reforming reactor is an endothermic reaction only, and further comprising a system for recovering heat obtained from the combustor to the reforming reactor. Mobile fuel cell system.
【請求項4】前記燃焼器から排出された排気ガスの熱を
回収して、前記燃料および水を蒸発させる蒸発器をさら
に有することを特徴とする請求項2または3記載の移動
体用燃料電池システム。
4. The mobile fuel cell according to claim 2, further comprising an evaporator for recovering heat of the exhaust gas discharged from the combustor and evaporating the fuel and water. system.
【請求項5】前記改質反応器、前記一酸化炭素除去反応
器および前記燃焼器の各温度を検出する温度検出手段を
さらに有し、 前記制御手段は、前記走行状態検出手段およびアクセル
開度検出手段からの情報に基づいて前記移動体が走行状
態かつアクセルが閉状態と判断した場合には、一旦、燃
料と水と空気、又は燃料と空気、又は燃料と水の供給を
停止し、前記温度検出手段からの情報に基づいて、前記
改質反応器、前記一酸化炭素除去反応器および前記燃焼
器の温度が所定温度以下になったときに、再び燃料と水
と空気、又は燃料と空気、又は燃料と水の供給を開始す
ることを特徴とする請求項2〜4記載の移動体用燃料電
池システム。
5. The fuel cell system according to claim 1, further comprising: temperature detecting means for detecting respective temperatures of said reforming reactor, said carbon monoxide removing reactor and said combustor, wherein said control means comprises: said traveling state detecting means; When it is determined that the moving body is in the running state and the accelerator is in the closed state based on the information from the detection means, the supply of fuel and water and air, or fuel and air, or the supply of fuel and water is stopped, Based on the information from the temperature detecting means, when the temperatures of the reforming reactor, the carbon monoxide removing reactor, and the combustor have become equal to or lower than a predetermined temperature, fuel and water and air again, or fuel and air 5. The mobile fuel cell system according to claim 2, wherein supply of fuel and water is started.
【請求項6】前記制御手段は、燃料と水と空気、又は燃
料と空気、又は燃料と水を間欠的に供給することを特徴
とする請求項2〜5記載の移動体用燃料電池システム。
6. The fuel cell system according to claim 2, wherein said control means supplies fuel and water and air, or fuel and air, or fuel and water intermittently.
【請求項7】二次電池と、前記二次電池の充電状態を検
出する充電状態検出手段とをさらに有し、 前記制御手段は、前記アクセル開度検出手段および前記
充電状態検出手段からの情報に基づいて、アクセルが閉
状態で前記二次電池が充電不足と判断した場合には、燃
料と水と空気、又は燃料と空気、又は燃料と水の供給停
止制御を中止することを特徴とする請求項2〜6記載の
移動体用燃料電池システム。
7. A battery further comprising: a secondary battery; and a charged state detecting means for detecting a charged state of the secondary battery, wherein the control means includes information from the accelerator opening degree detecting means and the charged state detecting means. Based on the above, when it is determined that the secondary battery is insufficiently charged while the accelerator is closed, the supply stop control of fuel and water and air, or fuel and air, or fuel and water is stopped. A fuel cell system for a mobile object according to claim 2.
【請求項8】前記燃料と水と空気、又は燃料と空気、又
は燃料と水の供給の停止時間は、いくつかの運転条件か
ら想定した定数で決定されることを特徴とする請求項5
〜7記載の移動体用燃料電池システム。
8. The stop time of the supply of fuel and water, or of fuel and air, or of fuel and water, is determined by a constant assumed from several operating conditions.
8. The fuel cell system for a mobile object according to any one of items 7 to 7.
【請求項9】前記燃料と水と空気、又は燃料と空気、又
は燃料と水の供給の停止時間は、アクセル閉時の改質反
応器、一酸化炭素除去反応器および燃焼器の温度に基づ
いて算出されることを特徴とする請求項5〜7記載の移
動体用燃料電池システム。
9. The stop time of the supply of fuel, water and air, or fuel and air, or fuel and water, is based on the temperatures of the reforming reactor, the carbon monoxide removing reactor and the combustor when the accelerator is closed. 8. The fuel cell system for a mobile body according to claim 5, wherein the fuel cell system is calculated by:
【請求項10】前記燃料と水と空気、又は燃料と空気、
又は燃料と水の供給の停止時間は、アクセル閉の直前ま
での運転条件の履歴に基づいて前記改質反応器、一酸化
炭素除去反応器および燃焼器の温度を推定し、算出され
ることを特徴とする請求項5〜7記載の移動体用燃料電
池システム。
10. The fuel and water and air, or fuel and air,
Alternatively, the fuel and water supply stop time is estimated and calculated based on the history of the operating conditions immediately before the accelerator is closed, estimating the temperatures of the reforming reactor, the carbon monoxide removal reactor, and the combustor. The fuel cell system for a mobile object according to claim 5, wherein
【請求項11】前記制御手段は、アクセルが閉状態とな
った直後は一旦燃料と水と空気、又は燃料と空気、又は
燃料と水の供給を停止し、前記改質反応器、前記一酸化
炭素除去反応器および前記燃焼器の温度が所定温度以下
となったら、前記燃料と水と空気、又は燃料と空気、又
は燃料と水の供給を開始することを特徴とする請求項2
〜10記載の移動体用燃料電池システム。
11. The control means stops the supply of fuel and water and air, or the supply of fuel and air, or the supply of fuel and water once immediately after the accelerator is closed. 3. The method according to claim 2, wherein when the temperatures of the carbon removal reactor and the combustor become lower than a predetermined temperature, the supply of the fuel and water and air, the fuel and air, or the fuel and water is started.
The fuel cell system for a mobile object according to any one of claims 10 to 10.
【請求項12】前記制御手段は、前記燃料、水および空
気の供給流量または間欠時間を、アクセルが閉状態とな
ったときの前記改質反応器、前記一酸化炭素除去器およ
び前記燃焼器の温度または運転履歴に基づいて補正する
ことを特徴とする移動体用燃料電池システム。
12. The control means controls the supply flow rate or the intermittent time of the fuel, water and air for the reforming reactor, the carbon monoxide remover and the combustor when the accelerator is closed. A fuel cell system for a mobile object, wherein the correction is performed based on a temperature or an operation history.
【請求項13】燃料を改質して水素含有ガスを生成する
改質反応器と、前記改質反応器で生成された改質ガスに
含まれる一酸化炭素を除去する一酸化炭素除去反応器
と、前記一酸化炭素除去反応器を通過した改質ガスと酸
素含有ガスとを用いて発電する燃料電池と、前記改質反
応器、前記一酸化炭素除去反応器および前記燃料電池に
酸素含有ガスを供給する圧縮機とを有する移動体用燃料
電池システムの制御方法であって、 前記移動体が走行状態かつアクセルが閉状態である場合
には、前記改質反応器に対して、当該改質反応器の温度
を維持するために必要な最低限の水素を発生させるよう
に、燃料と水と酸素含有ガス、又は燃料と酸素含有ガス
を供給し、前記一酸化炭素除去反応器に対して、当該一
酸化炭素除去反応器の温度を維持するために必要な最低
限の酸素含有ガスを供給することを特徴とする移動体用
燃料電池システムの制御方法。
13. A reforming reactor for reforming a fuel to generate a hydrogen-containing gas, and a carbon monoxide removing reactor for removing carbon monoxide contained in the reformed gas generated in the reforming reactor. A fuel cell that generates electricity using the reformed gas and the oxygen-containing gas that have passed through the carbon monoxide removal reactor, and an oxygen-containing gas that is supplied to the reforming reactor, the carbon monoxide removal reactor, and the fuel cell. And a compressor for supplying the fuel cell system, wherein when the moving body is in a running state and an accelerator is in a closed state, the reforming reactor is subjected to the reforming. Fuel and water and an oxygen-containing gas or a fuel and an oxygen-containing gas are supplied so as to generate the minimum amount of hydrogen necessary to maintain the temperature of the reactor, and to the carbon monoxide removal reactor, Maintaining the temperature of the carbon monoxide removal reactor. A method for controlling a fuel cell system for a mobile body, comprising supplying a minimum amount of oxygen-containing gas necessary for the operation.
JP2000159595A 2000-05-30 2000-05-30 Fuel cell system for moving body and control method thereof Expired - Fee Related JP3702752B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2000159595A JP3702752B2 (en) 2000-05-30 2000-05-30 Fuel cell system for moving body and control method thereof
EP01926092A EP1194311A1 (en) 2000-05-30 2001-05-01 Fuel-cell system for moving body and control method thereof
KR10-2002-7001312A KR100458082B1 (en) 2000-05-30 2001-05-01 Fuel-cell system for moving body and control method thereof
CNB018019056A CN1192916C (en) 2000-05-30 2001-05-01 Fuel-cell system for moving body and control method thereof
US10/048,058 US6828051B2 (en) 2000-05-30 2001-05-01 Fuel-cell system for moving body and control method thereof
PCT/JP2001/003767 WO2001092050A1 (en) 2000-05-30 2001-05-01 Fuel-cell system for moving body and control method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000159595A JP3702752B2 (en) 2000-05-30 2000-05-30 Fuel cell system for moving body and control method thereof

Publications (2)

Publication Number Publication Date
JP2001338670A true JP2001338670A (en) 2001-12-07
JP3702752B2 JP3702752B2 (en) 2005-10-05

Family

ID=18663896

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000159595A Expired - Fee Related JP3702752B2 (en) 2000-05-30 2000-05-30 Fuel cell system for moving body and control method thereof

Country Status (6)

Country Link
US (1) US6828051B2 (en)
EP (1) EP1194311A1 (en)
JP (1) JP3702752B2 (en)
KR (1) KR100458082B1 (en)
CN (1) CN1192916C (en)
WO (1) WO2001092050A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7255946B2 (en) 2002-09-06 2007-08-14 Nissan Motor Co., Ltd. Fuel cell power plant system for moving bodies and control method thereof
JP2008078016A (en) * 2006-09-22 2008-04-03 Matsushita Electric Ind Co Ltd Fuel cell system
US7455921B2 (en) 2002-03-15 2008-11-25 Nissan Motor Co., Ltd. Fuel cell system having reformer temperature maintenance system and control method thereof
JP2010219002A (en) * 2009-03-19 2010-09-30 Jx Nippon Oil & Energy Corp Fuel cell system
WO2013128610A1 (en) * 2012-03-01 2013-09-06 トヨタ自動車株式会社 Fuel cell system
CN104655215A (en) * 2013-08-12 2015-05-27 株式会社堀场制作所 Fuel consumption calculation unit and method, fuel consumption measuring apparatus, and exhaust gas measuring apparatus
JPWO2013128610A1 (en) * 2012-03-01 2015-07-30 トヨタ自動車株式会社 Fuel cell system

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7195657B2 (en) * 2002-03-26 2007-03-27 Matsushita Electric Industrial Co., Ltd. Hydrogen generation system and fuel cell system having the same
JP3911435B2 (en) * 2002-04-11 2007-05-09 トヨタ自動車株式会社 Power supply system and control method thereof
CN1310365C (en) * 2002-05-15 2007-04-11 松下电器产业株式会社 Fuel cell power generation system
JP2004056868A (en) * 2002-07-17 2004-02-19 Honda Motor Co Ltd Idling control equipment of fuel cell vehicle
JP4265239B2 (en) * 2003-03-03 2009-05-20 日産自動車株式会社 Fuel reforming system
WO2005018035A1 (en) * 2003-08-19 2005-02-24 Matsushita Electric Industrial Co., Ltd. Fuel cell power generation system, method of detecting deterioration degree of reformer for the system, and fuel cell power generation method
JP4622313B2 (en) * 2003-08-26 2011-02-02 トヨタ自動車株式会社 Moving body
DE10343393A1 (en) * 2003-09-19 2005-04-14 Basf Coatings Ag With effect pigments pigmented, powdery coating materials, process for their preparation and their use
KR100570753B1 (en) * 2004-02-13 2006-04-12 삼성에스디아이 주식회사 Fuel cell system
FR2876501B1 (en) * 2004-10-11 2007-03-30 Renault Sas DEVICE AND METHOD FOR CONTROLLING AN INJECTED FUEL QUANTITY IN A FUEL CELL REPLACER ON BOARD A MOTOR VEHICLE
US8101306B2 (en) * 2005-08-02 2012-01-24 Samsung Sdi Co., Ltd. Fuel cell system with fuel reforming units
JP5003064B2 (en) * 2006-08-31 2012-08-15 トヨタ自動車株式会社 Fuel cell system
JP4853292B2 (en) * 2007-01-10 2012-01-11 国産電機株式会社 Engine fuel injection / ignition control method and fuel injection / ignition control device
FI122455B (en) * 2007-10-03 2012-01-31 Waertsilae Finland Oy The fuel cell device
KR100952606B1 (en) * 2008-03-25 2010-04-15 한국과학기술원 Fuel reformer and reforming method
EP2590256A1 (en) * 2011-11-02 2013-05-08 Belenos Clean Power Holding AG Method for managing the operation of a hybrid system
CN103707795A (en) * 2014-01-15 2014-04-09 中通服节能技术服务有限公司 Mobile emergency power generation vehicle using methanol fuel cell
AT518956B1 (en) * 2016-08-02 2019-04-15 Avl List Gmbh METHOD FOR HITCHING A GENERATOR UNIT WITH A FUEL CELL DEVICE

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19541575C2 (en) 1995-11-08 1998-12-17 Dbb Fuel Cell Engines Gmbh Method for determining a load setpoint for a load-dependent power generation system in an electric vehicle
JPH09315801A (en) 1996-03-26 1997-12-09 Toyota Motor Corp Fuel reforming method, fuel reformer and fuel-cell system provided with the reformer
US6638652B1 (en) * 1998-10-02 2003-10-28 Toyota Jidosha Kabushiki Kaisha Fuel cell control apparatus
DE19853379C1 (en) * 1998-11-19 2000-06-15 Dbb Fuel Cell Engines Gmbh Arrangement for generating a hydrogen-containing gas

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7455921B2 (en) 2002-03-15 2008-11-25 Nissan Motor Co., Ltd. Fuel cell system having reformer temperature maintenance system and control method thereof
US7255946B2 (en) 2002-09-06 2007-08-14 Nissan Motor Co., Ltd. Fuel cell power plant system for moving bodies and control method thereof
JP2008078016A (en) * 2006-09-22 2008-04-03 Matsushita Electric Ind Co Ltd Fuel cell system
JP2010219002A (en) * 2009-03-19 2010-09-30 Jx Nippon Oil & Energy Corp Fuel cell system
WO2013128610A1 (en) * 2012-03-01 2013-09-06 トヨタ自動車株式会社 Fuel cell system
JPWO2013128610A1 (en) * 2012-03-01 2015-07-30 トヨタ自動車株式会社 Fuel cell system
CN104655215A (en) * 2013-08-12 2015-05-27 株式会社堀场制作所 Fuel consumption calculation unit and method, fuel consumption measuring apparatus, and exhaust gas measuring apparatus
US10132225B2 (en) 2013-08-12 2018-11-20 Horiba, Ltd. Fuel consumption calculation unit, fuel consumption measuring apparatus, and exhaust gas measuring apparatus
CN104655215B (en) * 2013-08-12 2020-12-22 株式会社堀场制作所 Exhaust gas measuring device

Also Published As

Publication number Publication date
CN1192916C (en) 2005-03-16
EP1194311A1 (en) 2002-04-10
WO2001092050A1 (en) 2001-12-06
KR100458082B1 (en) 2004-11-18
CN1383405A (en) 2002-12-04
KR20020021167A (en) 2002-03-18
US20030012990A1 (en) 2003-01-16
US6828051B2 (en) 2004-12-07
JP3702752B2 (en) 2005-10-05

Similar Documents

Publication Publication Date Title
JP3702752B2 (en) Fuel cell system for moving body and control method thereof
US7968239B2 (en) Fuel cell system with multiple warm-up mechanisms
JP3739635B2 (en) Fuel cell stack monitoring and system control
US6811578B2 (en) Fuel reforming apparatus and method of controlling same
JP4487401B2 (en) Combustion exhaust gas treatment of fuel reformer
US6699609B2 (en) Fuel cell system
EP1160902B1 (en) Fuel cell system
JP3761217B2 (en) Fuel cell system
JP2001243961A (en) Fuel cell system
JPH10223249A (en) Fuel cell system and flow path freezing prevention method for fuel cell system
US6797418B1 (en) Fuel processor for fuel cell
EP3691009B1 (en) Fuel cell system and fuel cell system control method
JP2003132923A (en) Fuel cell system
JP2007165130A (en) Fuel cell system and control method of fuel cell system
JP2003229157A (en) Control device of reformed type fuel cell system
JP2004196611A (en) Fuel reforming apparatus and fuel cell system
JP2002047002A (en) Fuel reformer and method of manufacturing hydrogen
JP4176130B2 (en) Fuel cell power generation system
JP2003212508A (en) Method of controlling supply of water in reforming system
JP4329116B2 (en) Fuel reformer and fuel cell system
JP2001226106A (en) Reformer for fuel cell and its activating method
JP4255718B2 (en) Method for stopping fuel reforming system
JP4888415B2 (en) Operation control method for reformer for fuel cell
JP4075330B2 (en) Fuel cell system
JP3934145B2 (en) Fuel cell system

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050628

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050711

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees