JPH0547401A - Fuel changeover method of fuel cell and its apparatus - Google Patents

Fuel changeover method of fuel cell and its apparatus

Info

Publication number
JPH0547401A
JPH0547401A JP3200329A JP20032991A JPH0547401A JP H0547401 A JPH0547401 A JP H0547401A JP 3200329 A JP3200329 A JP 3200329A JP 20032991 A JP20032991 A JP 20032991A JP H0547401 A JPH0547401 A JP H0547401A
Authority
JP
Japan
Prior art keywords
fuel
reforming
fuel cell
main
supply amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3200329A
Other languages
Japanese (ja)
Other versions
JP2752808B2 (en
Inventor
Tetsuo Take
武  哲夫
Kazuo Oshima
一夫 大島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP3200329A priority Critical patent/JP2752808B2/en
Publication of JPH0547401A publication Critical patent/JPH0547401A/en
Application granted granted Critical
Publication of JP2752808B2 publication Critical patent/JP2752808B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

PURPOSE:To stably obtain prescribed output power even at the time of changing over fuels in a fuel cell power generation system capable of changing over the fuels. CONSTITUTION:Abnormality of the supply amount of a main fuel 1 is detected by a sensor 39 and a controlling apparatus 53 changes the supply amount of a spare to a previously stored proper value based on the decrease of the output power of a fuel cell 14 and the supply amount of the main fuel 1. Also, the controlling apparatus 53 changes the supply amount of the steam 37 for reforming the main fuel 1 and the spare fuel 38 and the temperature of a reforming apparatus 5 to previously stored proper values corresponding to the supply amounts of the main fuel 1 and the spare fuel 38. Consequently, the transitional output power decrease of the fuel cell 14 is prevented from being caused by the temporary decrease of the hydrogen amount in the reformed gas at the time of changing over fuels due to the difference of reforming conditions such as the supply amount of the steam for reforming, the supply amounts of the fuel, a reforming reaction heat, etc., for both fuels.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、燃料電池の燃料切替方
法およびその装置に係わり、さらに詳細には、燃料切替
による改質ガス中の水素量の一時的な減少に起因する燃
料電池出力の過渡変動を抑制し、燃料切替時も無瞬断で
所定の電池出力を得る燃料電池の燃料切替方法およびそ
の装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a fuel cell fuel switching method and apparatus, and more particularly, to a fuel cell output which is caused by a temporary reduction in the amount of hydrogen in reformed gas due to fuel switching. The present invention relates to a fuel switching method and a device for a fuel cell that suppresses transient fluctuations and obtains a predetermined cell output without interruption during fuel switching.

【0002】[0002]

【従来の技術】燃料切替が可能な燃料電池発電システム
として、これまでに図1に示すような熱交換器2,4,
6,8,10,26,29及び31、脱硫装置3、改質
装置5、COシフトコンバータ7、凝縮器9,32及び
49燃料電池14、インバータ16、気水分離器36、
制御装置53、各種センサーから構成されるシステムが
提案されている(特願昭63−220004号)。
2. Description of the Related Art As a fuel cell power generation system capable of switching fuel, heat exchangers 2, 4, as shown in FIG.
6, 8, 10, 26, 29 and 31, desulfurization device 3, reformer 5, CO shift converter 7, condensers 9, 32 and 49 fuel cell 14, inverter 16, steam separator 36,
A system including a control device 53 and various sensors has been proposed (Japanese Patent Application No. 63-220004).

【0003】以下に、この従来の燃料電池発電システム
の構成とともに動作および作用について説明する。気体
状態の都市ガス,LNG,LPG,メタノール等の主燃
料1は熱交換器2で昇温させた後、水素リッチなCOシ
フトコンバータ7の出口ガスの一部とともに脱硫装置3
に送られ、燃料中の硫黄分が除去される(メタノール等
の硫黄分を含んでいない燃料を使用する場合には不
要)。脱硫された燃料ガスは、気水分離器(または蒸発
器)36で生成された水蒸気37とともに熱交換器4で
昇温された後、改質装置5に送られる。改質装置5で
は、燃料の改質反応が起こり、水素リッチな改質ガスが
生成される。例えば、都市ガス,LNG等のメタンを主
成分とした燃料を使用した場合、改質装置5の中では、
通常ニッケル系触媒を用いて約700〜800℃で次に
示す改質反応が行われる。
The structure and operation of this conventional fuel cell power generation system will be described below. The main fuel 1 such as city gas in a gas state, LNG, LPG, and methanol is heated by the heat exchanger 2, and then the desulfurization device 3 together with a part of the outlet gas of the hydrogen-rich CO shift converter 7 is heated.
And the sulfur content in the fuel is removed (not required when using a fuel that does not contain sulfur content, such as methanol). The desulfurized fuel gas is heated in the heat exchanger 4 together with the steam 37 generated in the steam separator (or evaporator) 36 and then sent to the reformer 5. In the reformer 5, a reforming reaction of the fuel occurs and a hydrogen-rich reformed gas is generated. For example, when a fuel containing methane as a main component such as city gas or LNG is used, in the reformer 5,
Usually, the following reforming reaction is performed at about 700 to 800 ° C. using a nickel-based catalyst.

【0004】CH4+H2O→CO+3H2 改質ガスは、熱交換器6で温度を下げられた後、COシ
フトコンバータ7に送られ、次に示すシフト反応により
改質ガス中の一酸化炭素が二酸化炭素に変えられる。
The CH 4 + H 2 O → CO + 3H 2 reformed gas is sent to the CO shift converter 7 after its temperature is lowered by the heat exchanger 6, and carbon monoxide contained in the reformed gas by the following shift reaction. Can be converted to carbon dioxide.

【0005】CO+H2O→CO2+H2 最終的には改質ガス中の一酸化炭素濃度は1%以下に抑
えられる。COシフトコンバータ7を出たガスは、熱交
換器8で温度が下げられた後、凝縮器9に送られ、未反
応の水蒸気が凝縮除去される。なお、前述したようにC
Oシフトコンバータ7を出たガスの一部は、水添脱硫に
必要な水素を脱硫装置3に供給するために、リサイクル
される。凝縮器9で分離された抽水34は気水分離器3
6に送られ、再び水蒸気37として改質装置5に供給さ
れる。
CO + H 2 O → CO 2 + H 2 Finally, the carbon monoxide concentration in the reformed gas can be suppressed to 1% or less. The temperature of the gas leaving the CO shift converter 7 is lowered by the heat exchanger 8 and then sent to the condenser 9, where unreacted water vapor is condensed and removed. As described above, C
A part of the gas leaving the O shift converter 7 is recycled in order to supply hydrogen required for hydrodesulfurization to the desulfurization device 3. The extracted water 34 separated by the condenser 9 is the steam separator 3
6, and again supplied as steam 37 to the reformer 5.

【0006】凝縮器9を出たガスは、熱交換器10で昇
温された後、燃料電池14の燃料極11に送られ、水素
が燃料電池14の電池反応に使われる。燃料電池14
は、燃料極11、電解質12、及び空気極13から構成
されており、電池反応では、燃料極11で生成した水素
イオンが電解質12中を空気極13まで移動し、空気中
の酸素と反応して水ができる。空気28は熱交換器29
で昇温された後、空気極13に供給され、電池反応に使
われる。空気極排ガス30は熱交換器31で温度が下げ
られた後、凝縮器32に送られ生成水35が凝縮除去さ
れる。凝縮器32で除去された生成水35も気水分離器
36に送られ、水蒸気37として改質装置5に供給され
る。凝縮器32を出たガスは排ガス33として大気中に
放出される。燃料電池14の電池反応によって発電され
た直流電力15は、インバータ16によって交流電力1
7に変換され、負荷47に供給される。
The gas discharged from the condenser 9 is heated by the heat exchanger 10 and then sent to the fuel electrode 11 of the fuel cell 14, and hydrogen is used for the cell reaction of the fuel cell 14. Fuel cell 14
Is composed of a fuel electrode 11, an electrolyte 12, and an air electrode 13. In the cell reaction, hydrogen ions generated in the fuel electrode 11 move in the electrolyte 12 to the air electrode 13 and react with oxygen in the air. Water can be created. Air 28 is a heat exchanger 29
After the temperature is raised by, it is supplied to the air electrode 13 and used for the battery reaction. After the temperature of the air electrode exhaust gas 30 is lowered by the heat exchanger 31, the produced water 35 is condensed and removed by being sent to the condenser 32. The produced water 35 removed by the condenser 32 is also sent to the steam separator 36 and supplied to the reformer 5 as steam 37. The gas exiting the condenser 32 is released into the atmosphere as an exhaust gas 33. The DC power 15 generated by the cell reaction of the fuel cell 14 is converted into AC power 1 by the inverter 16.
7 and is supplied to the load 47.

【0007】燃料電池14の燃料極11における水素利
用率は70〜80%程度であるので、燃料極排ガス18
は未反応水素を含む。この未反応水素を含む燃料極排ガ
ス18は、加熱燃料22として燃焼空気23とともに加
熱用の改質装置バーナ24に送られ、吸熱反応である改
質反応に必要な熱量を改質装置5に供給するために使わ
れる。燃料電池運転開始時のように燃料極排ガス量が不
十分な場合は、脱硫装置3の出口ガスの一部を補助燃料
25として改質装置バーナ24の加熱燃料22に使用す
る。改質装置バーナ24の燃焼ガス48は、熱交換器2
6で温度が下げられた後、凝縮器49に送られ、生成水
50が凝縮除去される。凝縮器49で除去された生成水
50は気水分離器36に送られ、水蒸気37として改質
装置5に供給される。凝縮器49を出たガスは排ガス5
1として大気中に放出される。
Since the hydrogen utilization rate of the fuel electrode 11 of the fuel cell 14 is about 70 to 80%, the fuel electrode exhaust gas 18
Contains unreacted hydrogen. The anode exhaust gas 18 containing unreacted hydrogen is sent to the reformer burner 24 for heating together with the combustion air 23 as the heating fuel 22, and the calorie required for the reforming reaction which is an endothermic reaction is supplied to the reformer 5. Used to do. When the fuel electrode exhaust gas amount is insufficient such as at the start of fuel cell operation, a part of the outlet gas of the desulfurization device 3 is used as the auxiliary fuel 25 for the heating fuel 22 of the reformer burner 24. The combustion gas 48 of the reformer burner 24 is the heat exchanger 2
After the temperature is lowered at 6, it is sent to the condenser 49 and the produced water 50 is condensed and removed. The generated water 50 removed by the condenser 49 is sent to the steam separator 36 and supplied to the reformer 5 as steam 37. The gas leaving the condenser 49 is the exhaust gas 5
1 is released into the atmosphere.

【0008】以上の燃料電池発電システムでは、通常
は、改質ガス圧力センサ44で検出される改質ガスの圧
力が所定の値になるように、主燃料流量調節弁40によ
り主燃料1の流量が制御されている。主燃料1の改質に
必要な水蒸気37の供給は、主燃料流量調節弁40を通
過する主燃料1の流量を燃料流量検出センサ42で検知
し、信号dを制御装置53に送り、前記制御装置53は
信号Dを水蒸気流量調節弁43に送り、前記水蒸気流量
調節弁43の開閉度を調節して行う。また、燃料電池1
4に供給する改質ガス流量の調節は、改質ガス流量調節
弁45で行う。即ち、負荷電流検出センサ52で負荷電
流を検出し、信号aとして制御装置53に入力する。前
記制御装置53は信号Aを改質ガス流量調節弁45に送
り、負荷電流に相当する水素ガス量よりも多くの水素ガ
ス量に相当する量の改質ガスを燃料電池14に供給す
る。改質装置温度が設定した温度になっているかどうか
は、温度センサ46で監視し、信号bとして制御装置5
3に入力する。必要に応じて改質ガス流量調節弁45に
前記制御装置53から送る信号Aを制御し、前記改質ガ
ス流量調節弁45の開閉度を補正する。これら一連の調
節弁は、通常は主燃料1について最適な燃料流量、改質
ガス流量、改質用水蒸気量、及び改質装置温度になるよ
う、前述したように制御装置53で制御される。制御装
置53は、例えば圧力センサ44からの圧力信号cを受
けて、制御装置53内部に記憶してある設定圧力と比較
し、その結果を基に演算し主燃料流量調節弁40の開閉
度を調節する信号Cを送出する。
In the above fuel cell power generation system, normally, the flow rate of the main fuel 1 is adjusted by the main fuel flow rate control valve 40 so that the pressure of the reformed gas detected by the reformed gas pressure sensor 44 becomes a predetermined value. Is controlled. The supply of the steam 37 necessary for reforming the main fuel 1 is detected by the fuel flow rate detection sensor 42 of the flow rate of the main fuel 1 passing through the main fuel flow rate control valve 40, and the signal d is sent to the control device 53 to perform the control. The device 53 sends a signal D to the steam flow rate control valve 43 to adjust the degree of opening and closing of the steam flow rate control valve 43. In addition, the fuel cell 1
The reformed gas flow rate adjustment valve 45 adjusts the reformed gas flow rate supplied to the No. 4 fuel cell. That is, the load current detection sensor 52 detects the load current and inputs it to the control device 53 as a signal a. The control device 53 sends a signal A to the reformed gas flow rate control valve 45 to supply the reformed gas to the fuel cell 14 in an amount corresponding to the hydrogen gas amount larger than the hydrogen gas amount corresponding to the load current. Whether or not the reformer temperature has reached the set temperature is monitored by the temperature sensor 46, and the controller 5 outputs the signal b.
Enter in 3. If necessary, the signal A sent from the control device 53 to the reformed gas flow rate control valve 45 is controlled to correct the opening / closing degree of the reformed gas flow rate control valve 45. These series of control valves are usually controlled by the control device 53 as described above so that the optimum fuel flow rate, reforming gas flow rate, reforming steam amount, and reforming device temperature for the main fuel 1 are usually obtained. The control device 53 receives, for example, the pressure signal c from the pressure sensor 44, compares it with a set pressure stored in the control device 53, and calculates based on the result to determine the degree of opening / closing of the main fuel flow rate control valve 40. The signal C to be adjusted is transmitted.

【0009】ここで、主燃料1の供給が大地震や事故に
より不意に停止した場合、従来は、例えば圧力あるいは
流量の変化の形で燃料供給異常検出センサ39で検出
し、信号eとして制御装置53に入力する。続いて前記
制御装置53は信号Cを制御し、速やかに主燃料流量調
節弁40を閉じるとともに、信号Eを予備燃料流量調節
弁41に送出し、前記予備燃料流量調節弁41を開いて
予備燃料38の供給を行う。また、これら2つの調節弁
を含めた全ての調節弁の制御を予め制御装置53に記憶
してあるデータを基に予備燃料38に最適な燃料流量、
改質ガス流量、改質用水蒸気量、及び改質装置温度にな
るように切り替える。これにより、予備燃料38に適し
た条件で燃料電池14の運転を継続することができ、停
電を回避できる。なお、燃料切替等の原因で改質装置温
度が上昇しすぎた場合(主燃料にメタンを主成分とする
都市ガス、予備燃料にメタノールあるいはプロパンを主
成分とするLPGを用いた場合には、同一量の水素を得
るために必要な改質反応熱は、主燃料1より予備燃料3
8の方が少ないので、予備燃料38の供給が原因で改質
装置温度が上昇する恐れがある)には、改質装置温度を
下げるために主燃料調節弁40あるいは予備燃料調節弁
41を絞ると燃料不足で燃料電池出力が低下する場合に
は、制御装置53から信号Fを分流器19に送出し、加
熱燃料22となる燃料極排ガス18の一部もしくは全部
を分流器19で分流し、燃焼器20で燃焼させた後、燃
焼排ガス21として大気中に排出している(特願平2−
181260号)。
Here, when the supply of the main fuel 1 suddenly stops due to a large earthquake or an accident, conventionally, for example, it is detected by the fuel supply abnormality detection sensor 39 in the form of a change in pressure or flow rate, and a control device is provided as a signal e. Enter in 53. Subsequently, the control device 53 controls the signal C, promptly closes the main fuel flow rate control valve 40, sends the signal E to the auxiliary fuel flow rate control valve 41, and opens the auxiliary fuel flow rate control valve 41 to operate the auxiliary fuel. 38 is supplied. Further, based on the data stored in advance in the control device 53, the control of all the control valves including these two control valves, the optimum fuel flow rate for the auxiliary fuel 38,
Switching is performed so that the reformed gas flow rate, the reforming steam amount, and the reformer temperature are reached. As a result, the fuel cell 14 can continue to operate under conditions suitable for the reserve fuel 38, and power failure can be avoided. If the reformer temperature rises too much due to fuel switching, etc. (when city gas containing methane as a main fuel is used as the main fuel and LPG containing methanol or propane as the main fuel is used as the auxiliary fuel, The heat of reforming reaction required to obtain the same amount of hydrogen is from the main fuel 1 to the auxiliary fuel 3
8 is less, there is a risk that the reformer temperature will rise due to the supply of the auxiliary fuel 38). In order to lower the reformer temperature, the main fuel control valve 40 or the auxiliary fuel control valve 41 is throttled. When the fuel cell output decreases due to lack of fuel, the signal F is sent from the control device 53 to the flow diverter 19, and part or all of the fuel electrode exhaust gas 18 to be the heating fuel 22 is diverted by the flow diverter 19. After burning in the combustor 20, it is discharged into the atmosphere as combustion exhaust gas 21 (Japanese Patent Application No. 2-
181260).

【0010】[0010]

【発明が解決しようとする課題】以下に、上記従来の燃
料電池発電システムにおいて、主燃料1にメタンが主成
分の都市ガス、予備燃料38にプロパンが主成分のLP
G、及びメタノールを用いた場合を例に、この従来のシ
ステムの問題点を説明する。
In the conventional fuel cell power generation system described above, the main fuel 1 is a city gas containing methane as a main component, and the auxiliary fuel 38 is an LP containing propane as a main component.
The problem of this conventional system will be described by taking the case of using G and methanol as an example.

【0011】都市ガス,LPG,メタノールは、ニッケ
ル−アルミナ触媒を充填した同一の改質装置で改質が可
能である。図4,図5,図6はその説明のための改質ガ
ス組成の改質温度依存性を示す図である。各図の実線は
計算値を示し、○は水素(H 2)の、□は二酸化炭素
(CO2)の、●は一酸化炭素(CO)の、△は各原料
ガスの主成分のそれぞれの実験値を示している。図4は
都市ガスの主成分であるメタン改質ガス組成の改質温度
依存性を示したものである。図から平衡上メタンの改質
は700℃以上で行うことが水素を多く生成させる上で
望ましいことがわかる。図4の実験値はニッケル−アル
ミナ触媒を用いて改質実験を行った結果を示したもので
あるが、700℃以上で平衡組成まで水素を生成させる
ことが可能である。これはニッケル−アルミナ触媒が実
用触媒として都市ガスの改質に有効であることを示唆し
ている。また、図5はLPGの主成分であるプロパン改
質ガス組成の改質温度依存性を示したものである。図か
ら平衡上プロパンの改質も700℃以上で行うことが水
素を多く生成させる上で望ましいことがわかる。図5の
実験値はニッケル−アルミナ触媒を用いて改質試験を行
った結果を示したものであるが、700℃以上で平衡組
成まで水素を生成させることが可能である。これはニッ
ケル−アルミナ触媒が実用触媒としてLPGの改質に有
効であることを示唆している。さらに、図6はメタノー
ル改質ガス組成の改質温度依存性を示したものである。
図6から平衡上メタノールの改質も700℃以上で行う
ことが水素を多く生成させる上で望ましいことがわか
る。図6の実験値はニッケル−アルミナ触媒を用いて改
質試験を行った結果を示したものであるが、700℃以
上で平衡組成まで水素を生成させることが可能である。
これはニッケル−アルミナ触媒が実用触媒としてメタノ
ールの改質に有効であることを示唆している。従って、
ニッケル−アルミナ触媒を充填した改質装置を用いる
と、都市ガス、LPG、メタノールの間で燃料切替が可
能な燃料電池発電システムが実現可能である。その際、
どの燃料も700℃以上で改質を行うことが望ましい。
City gas, LPG, and methanol are nickel
Reforming is possible with the same reforming device filled with ru-alumina catalyst
Noh. FIG. 4, FIG. 5 and FIG.
It is a figure which shows the reforming temperature dependence of the gas composition. The solid line in each figure
Indicates the calculated value, ○ indicates hydrogen (H 2), □ is carbon dioxide
(CO2), ● is carbon monoxide (CO), △ is each raw material
The respective experimental values of the main components of the gas are shown. Figure 4
Reforming temperature of methane reformed gas composition which is the main component of city gas
It shows the dependence. From the figure, reforming methane on equilibrium
Is performed at 700 ° C or higher in order to generate a large amount of hydrogen
I find it desirable. The experimental values in Figure 4 are nickel-al.
It shows the results of reforming experiments using Mina catalyst.
However, hydrogen is generated up to the equilibrium composition above 700 ° C.
It is possible. This is a nickel-alumina catalyst
Suggesting that it is effective for reforming city gas as an industrial catalyst
ing. In addition, Fig. 5 shows the main component of LPG, propane modified.
It shows the reforming temperature dependence of the quality gas composition. Figure or
In equilibrium, it is possible to reform propane at 700 ° C or higher with water.
It can be seen that this is desirable for generating many primes. Of FIG.
The experimental value is a reforming test using a nickel-alumina catalyst.
The result shows that the equilibrium group
It is possible to generate hydrogen until completion. This is ni
Kel-alumina catalyst is a practical catalyst for LPG reforming
Suggests that it is effective. Furthermore, Figure 6 shows
3 shows the dependence of the reformed gas composition on the reforming temperature.
From Fig. 6, equilibrium reforming of methanol is also performed at 700 ° C or higher.
Proved desirable for producing a large amount of hydrogen
It The experimental values in Fig. 6 are modified using a nickel-alumina catalyst.
The results of quality tests are shown below.
It is possible to produce hydrogen up to the equilibrium composition above.
This is because the nickel-alumina catalyst is used as a practical catalyst in methanol.
It is suggested that it is effective for the reforming of alcohol. Therefore,
Use a reformer filled with nickel-alumina catalyst
Fuel can be switched between city gas, LPG, and methanol
A viable fuel cell power generation system can be realized. that time,
It is desirable to reform any fuel at 700 ° C. or higher.

【0012】しかし、これらの燃料の改質条件は大きく
異なる。表1に改質条件の相対比較を示す。
However, the reforming conditions for these fuels differ greatly. Table 1 shows a relative comparison of the reforming conditions.

【0013】[0013]

【表1】 [Table 1]

【0014】燃料を都市ガスからLPGに切り替えた場
合、燃料流量は減少するが、改質に必要な水蒸気量が増
加し、過渡的に改質装置の温度が低下する。しかし、改
質反応熱は減少するので、最終的には加熱燃料になる燃
料極排ガスを分流するか、燃料流量を絞って燃料電池の
水素利用率を上げるかして、改質装置の温度が上がり過
ぎないように制御する必要がある。また、燃料を都市ガ
スからメタノールに切り替えた場合には、燃料流量及び
改質に必要な水蒸気量が増加するので、過渡的に改質装
置の温度が低下する。しかし、改質反応熱は減少するの
で、最終的には加熱燃料になる燃料極排ガスを分流する
か、燃料流量を絞って燃料電池の水素利用率を上げるか
して、改質装置の温度が上がり過ぎないように制御する
必要がある。
When the fuel is switched from city gas to LPG, the fuel flow rate decreases, but the amount of steam required for reforming increases, and the temperature of the reforming device transiently decreases. However, since the heat of the reforming reaction decreases, the temperature of the reformer can be controlled by either splitting the anode exhaust gas that will eventually become the heating fuel or by reducing the fuel flow rate to increase the hydrogen utilization rate of the fuel cell. It is necessary to control it so that it does not rise too much. Further, when the fuel is switched from city gas to methanol, the fuel flow rate and the amount of steam required for reforming increase, so the temperature of the reforming device transiently decreases. However, since the heat of the reforming reaction decreases, the temperature of the reformer can be controlled by either splitting the anode exhaust gas that will eventually become the heating fuel or by reducing the fuel flow rate to increase the hydrogen utilization rate of the fuel cell. It is necessary to control it so that it does not rise too much.

【0015】これらの燃料切替時の過渡変動を図7に示
す。流量あるいは圧力の形で主燃料供給量をモニター
し、主燃料の供給異常を検出する。主燃料の供給異常の
検出は、ある出力電流値に対する所定の主燃料供給量V
あるいは主燃料供給量の時間変化ΔV/Δtの限界値を
設定して行う。従来の燃料電池の燃料切替方法は、主燃
料の供給異常を検出した時点で、予備燃料の供給を行う
とともに、主燃料の供給を停止する。すなわち、燃料の
完全な切り替えを行う。また、それと同時に改質用水蒸
気の供給量も変化させる。例えば、メタンを主成分とす
る都市ガスからプロパンを主成分とするLPG、あるい
はメタノールに切り替える場合には、改質用水蒸気の供
給量は増加させる(図7では燃料切替により改質用水蒸
気の供給量が増加する場合を示したが、逆の場合もあ
る)。燃料切替による燃料供給量あるいは水蒸気供給量
の増加のために、改質装置温度が所定の温度より低下す
れば、それに伴って電池出力の過渡的な低下が起こる。
例えば、燃料切替からΔt1時間の間に最大ΔTだけ改
質装置温度が低下すると、燃料電池出力もそれにともな
ってΔt1時間の間に最大ΔWだけ低下する。この過渡
変動は、燃料切替に係わる一連の制御が行われ、改質装
置が定常になると消滅する。
FIG. 7 shows the transient fluctuations when these fuels are switched. Monitor the main fuel supply in the form of flow rate or pressure to detect main fuel supply abnormalities. The main fuel supply abnormality is detected by a predetermined main fuel supply amount V for a certain output current value.
Alternatively, it is performed by setting the limit value of the time change ΔV / Δt of the main fuel supply amount. In the conventional fuel switching method of the fuel cell, when the supply abnormality of the main fuel is detected, the supply of the auxiliary fuel is performed and the supply of the main fuel is stopped. That is, complete fuel switching is performed. At the same time, the supply amount of reforming steam is also changed. For example, when switching from city gas containing methane as a main component to LPG containing propane as a main component or methanol, the supply amount of the reforming steam is increased (in FIG. 7, the supply of the reforming steam is performed by switching the fuel. It has been shown that the amount increases, but the reverse is also true). If the reformer temperature falls below a predetermined temperature due to the increase in the fuel supply amount or the steam supply amount due to the fuel switching, the cell output transiently decreases accordingly.
For example, if the reformer temperature decreases by the maximum ΔT during Δt 1 hours after fuel switching, the fuel cell output accordingly decreases by the maximum ΔW during Δt 1 hours. This transient fluctuation disappears when a series of controls relating to fuel switching are performed and the reformer becomes steady.

【0016】以上述べてきたように従来の燃料電池の燃
料切替方法およびその装置では、主燃料の供給量の異常
を検知した場合に速やかに予備燃料の供給を行うととも
に主燃料の供給を停止することによって燃料切替を行う
ために、改質用水蒸気の供給量、燃料の供給量、改質反
応熱といった両者の改質条件の違いから、燃料切替時に
一時的に改質ガス中の水素量が減少し燃料電池出力の過
渡変動が起こり、このような燃料切替時の電池出力の過
渡的な低下を防ぐことが困難であるという問題があっ
た。
As described above, in the conventional fuel cell fuel switching method and apparatus, when the abnormality in the supply amount of the main fuel is detected, the auxiliary fuel is promptly supplied and the supply of the main fuel is stopped. In order to switch fuels, the amount of hydrogen in the reformed gas is temporarily changed at the time of fuel switching due to the difference in the reforming conditions such as the reforming steam supply amount, the fuel supply amount, and the reforming reaction heat. There is a problem that the transient decrease of the fuel cell output occurs due to the decrease and it is difficult to prevent such a transient decrease of the cell output at the time of fuel switching.

【0017】本発明は、上記問題点を解決するためにな
されたものであり、その目的は、燃料切替時にも所定の
電池出力を安定に得ることができる燃料電池の燃料切替
方法およびその装置を提供することにある。
The present invention has been made to solve the above problems, and an object of the present invention is to provide a fuel cell fuel switching method and apparatus capable of stably obtaining a predetermined cell output even during fuel switching. To provide.

【0018】[0018]

【課題を解決するための手段】上記目的を達成するた
め、本発明による燃料電池の燃料切替方法は、燃料電
池、この燃料電池に主燃料を供給する主燃料供給系、該
燃料電池に予備燃料を供給する予備燃料供給系、該主燃
料および該予備燃料の改質を行い電池反応に必要な水素
リッチガスをつくる燃料改質装置を含む燃料改質系、該
燃料電池に酸化剤を供給する酸化剤供給系、該燃料電池
および周辺装置の冷却を行う冷却系、および付属装置か
らなり、該燃料電池燃料極排ガスを該改質装置バーナの
燃料ガスとして使用する燃料電池発電システムにおい
て、前記主燃料供給系入口における前記主燃料の供給量
の異常を検知し、該主燃料の供給量の低下に応じてこの
主燃料の供給量の低下を補い所定の該燃料電池出力を得
るために必要な所定量の前記予備燃料を供給するととも
に、該主燃料と該予備燃料の供給量に応じて該改質用水
蒸気の供給量を制御し、また、該主燃料あるいは該予備
燃料の供給量を制御することによって該燃料電池燃料極
での水素利用率を制御し、あるいは前記燃料極排ガスの
前記改質装置バーナへの供給量を制御することによって
該改質装置バーナ燃料である燃料極排ガス中の水素の該
改質装置バーナへの供給量を制御し、該改質装置温度を
該主燃料と該予備燃料の該改質に適した最適な値に制御
する構成としている。
In order to achieve the above object, a fuel switching method for a fuel cell according to the present invention comprises a fuel cell, a main fuel supply system for supplying main fuel to the fuel cell, and a backup fuel for the fuel cell. And a fuel reforming system including a fuel reformer for reforming the main fuel and the preliminary fuel to produce a hydrogen-rich gas necessary for a cell reaction, and an oxidant for supplying an oxidant to the fuel cell. In the fuel cell power generation system, which comprises an agent supply system, a cooling system for cooling the fuel cell and peripheral devices, and an auxiliary device, and uses the fuel cell fuel electrode exhaust gas as the fuel gas for the reformer burner, the main fuel Where it is necessary to detect an abnormality in the supply amount of the main fuel at the inlet of the supply system and compensate for the decrease in the supply amount of the main fuel to obtain a predetermined fuel cell output according to the decrease in the supply amount of the main fuel. Quantitative By supplying the auxiliary fuel, controlling the supply amount of the reforming steam according to the supply amounts of the main fuel and the auxiliary fuel, and controlling the supply amount of the main fuel or the auxiliary fuel. By controlling the hydrogen utilization rate at the fuel cell fuel electrode, or by controlling the supply amount of the fuel electrode exhaust gas to the reformer burner, the hydrogen in the fuel electrode exhaust gas that is the reformer burner fuel is controlled. The supply amount to the reformer burner is controlled to control the reformer temperature to an optimum value suitable for the reforming of the main fuel and the auxiliary fuel.

【0019】さらに、本発明による燃料電池の燃料切替
装置は、上記の燃料電池発電システムにおいて、前記主
燃料供給系入口部分に設置された前記主燃料供給量の異
常を検知するセンサと、このセンサの出力を受け前記予
備燃料の供給を行う機能、前記燃料電池出力,該主燃料
の供給量に応じて該予備燃料の供給量,前記改質用水蒸
気の供給量の供給量を制御する各弁への制御量を予め記
憶してある最適値に切り替えて送出する機能、前記改質
装置の温度に応じて該主燃料の供給量,該予備燃料の供
給量,あるいは該改質装置バーナ燃料である該燃料電池
燃料極排ガスの該改質装置バーナへの供給量を制御する
弁への制御量を予め記憶してある最適値に切り替えて送
出し該改質装置の温度を該主燃料と該予備燃料の該改質
に適した予め記憶してある最適温度に制御する機能を持
つ制御装置と、を具備する構成としている。
Further, in the fuel cell fuel switching apparatus according to the present invention, in the above fuel cell power generation system, a sensor installed at the inlet of the main fuel supply system for detecting an abnormality in the main fuel supply amount, and this sensor. To control the output of the fuel cell, the output of the fuel cell, the supply of the reserve fuel, and the supply of the reforming steam according to the supply of the main fuel. Function of switching the control amount to the optimum value stored in advance and sending it, the main fuel supply amount, the auxiliary fuel supply amount, or the reformer burner fuel depending on the temperature of the reformer. A certain control amount to a valve for controlling the supply amount of the fuel cell fuel electrode exhaust gas to the reformer burner is switched to a prestored optimum value and sent out to change the temperature of the reformer to the main fuel and the main fuel. Pre-stored suitable for the reforming of reserve fuel A control device having a function of controlling the optimum temperature are that it will comprise a configuration.

【0020】[0020]

【作用】本発明の燃料電池の燃料切替方法およびその装
置では、燃料電池発電システムの主燃料供給系入口にお
ける主燃料の供給量の異常を検知した場合、すぐには主
燃料の供給を停止することなく速やかに予備燃料の供給
を行うとともに、燃料電池出力と主燃料の供給量の低下
に応じて予備燃料の供給量を予め記憶させてある最適な
値に変更する。また、主燃料の供給量と予備燃料の供給
量に応じて、改質用水蒸気の供給量、改質装置の温度を
予め記憶させてある最適な値に変更する。これにより、
従来のように、主燃料の供給量の異常を検知した場合に
速やかに予備燃料の供給を行うともに主燃料の供給を停
止することによって燃料切替を行った場合、改質用水蒸
気の供給量,燃料の供給量,改質反応熱といった両者の
改質条件の違いから、燃料切替時に一時的に改質ガス中
の水素量が減少して起こる燃料電池出力の過渡的な低下
を抑制する。
In the fuel cell fuel switching method and apparatus thereof according to the present invention, when the abnormality of the supply amount of the main fuel at the inlet of the main fuel supply system of the fuel cell power generation system is detected, the supply of the main fuel is immediately stopped. The auxiliary fuel is rapidly supplied without changing the auxiliary fuel supply amount, and the auxiliary fuel supply amount is changed to an optimal value stored in advance according to the decrease in the fuel cell output and the main fuel supply amount. Further, the supply amount of the reforming steam and the temperature of the reforming device are changed to the optimum values stored in advance according to the supply amount of the main fuel and the supply amount of the auxiliary fuel. This allows
As in the conventional case, when an abnormality in the supply amount of the main fuel is detected, the backup fuel is promptly supplied, and when the fuel is switched by stopping the supply of the main fuel, the supply amount of the reforming steam, Due to the difference between the reforming conditions such as the supply amount of fuel and the heat of reforming reaction, the transient decrease in the fuel cell output caused by the temporary decrease in the amount of hydrogen in the reformed gas at the time of fuel switching is suppressed.

【0021】[0021]

【実施例】以下、本発明の実施例を、図面を参照して詳
細に説明する。図1は本発明の燃料電池発電システムの
一実施例の構成をも示しており、この図1を用いて本発
明の一実施例を説明する。本発明の燃料電池発電システ
ムの構成は図1により説明した従来システムと同一であ
るが、燃料切替時の制御装置53の制御シーケンスが従
来システムと異なる。従って、ここでは従来例と同様な
システム構成と動作,作用については省略し、上記の異
なる制御シーケンスに関連する構成と動作および作用に
ついて述べる。
Embodiments of the present invention will now be described in detail with reference to the drawings. FIG. 1 also shows the configuration of an embodiment of the fuel cell power generation system of the present invention. An embodiment of the present invention will be described with reference to FIG. The configuration of the fuel cell power generation system of the present invention is the same as the conventional system described with reference to FIG. 1, but the control sequence of the control device 53 at the time of fuel switching is different from the conventional system. Therefore, here, the system configuration, operation, and action similar to those of the conventional example are omitted, and the configuration, action, and action related to the different control sequence are described.

【0022】従来例と同様に、主燃料1の供給が大地震
や事故等により不意に停止した場合には、例えば圧力あ
るいは流量の変化の形で燃料供給量異常検出センサ39
で検出し、信号eとして制御装置53に入力する。前記
制御装置53は、信号eに応じて信号Eを予備燃料流量
調節弁41に送り、負荷電流と主燃料1の供給量の減少
量に応じて前記予備燃料流量調節弁41を開き、主燃料
1と並行して予備燃料38の供給を行う。従来の技術と
は、負荷電流と主燃料1の供給量の減少量に応じてその
減少量を補うだけの量の予備燃料38を供給する点が大
きく異なる。予備燃料38の供給にあたっては、制御装
置53で主燃料1の供給量と前記制御装置53に予め記
憶された負荷電流から決まる発電に必要な量の水素を供
給するために必要な主燃料1の供給量を逐次比較し、主
燃料1の供給量の不足分に相当する予備燃料38の量を
前記制御装置53に予め記憶された換算方法を用いて算
出し、予備燃料38の供給量とする。また、全ての調節
弁の制御は、主燃料1と予備燃料38の供給量に対して
制御装置53に予め記憶してあるデータをもとに、主燃
料1と予備燃料38の改質に最適な改質用水蒸気量と改
質温度になるように行う。本実施例を適用した場合の燃
料切替時の過渡変動を図2および図3に示す。
Similar to the conventional example, when the supply of the main fuel 1 is suddenly stopped due to a large earthquake, an accident, etc., the fuel supply amount abnormality detection sensor 39, for example, in the form of a change in pressure or flow rate.
And the signal is input to the control device 53 as a signal e. The control device 53 sends a signal E to the auxiliary fuel flow rate adjusting valve 41 in response to the signal e, opens the auxiliary fuel flow rate adjusting valve 41 in accordance with the decrease amount of the load current and the supply amount of the main fuel 1, In parallel with 1, the auxiliary fuel 38 is supplied. This is largely different from the conventional technique in that the amount of the auxiliary fuel 38 is supplied according to the amount of decrease in the load current and the amount of supply of the main fuel 1 to compensate for the amount of decrease. In supplying the auxiliary fuel 38, the controller 53 supplies the main fuel 1 and the amount of hydrogen required for power generation determined by the load current stored in advance in the controller 53. The supply amounts are successively compared, and the amount of the auxiliary fuel 38 corresponding to the shortage of the supply amount of the main fuel 1 is calculated using the conversion method stored in advance in the control device 53, and is set as the supply amount of the auxiliary fuel 38. .. Further, the control of all the control valves is optimal for reforming the main fuel 1 and the auxiliary fuel 38 based on the data stored in advance in the control device 53 with respect to the supply amounts of the main fuel 1 and the auxiliary fuel 38. The reforming steam amount and the reforming temperature are adjusted. FIGS. 2 and 3 show transient fluctuations at the time of fuel switching when the present embodiment is applied.

【0023】図2は、主燃料1の供給量の減少量に比例
して予備燃料38の供給量を増加させ、Δt2時間経過
後、主燃料1の供給が完全に停止した時点で予備燃料3
8単独の供給を行う場合である。この場合には、予備燃
料38の供給量に応じて逐次改質用水蒸気量と改質温度
の制御を行うため(図では、主燃料にメタンを主成分と
する都市ガス、予備燃料にメタノールあるいはプロパン
を用いる場合のように、予備燃料の供給により改質用水
蒸気の供給量が増加する場合を示した)、予備燃料38
と主燃料1の改質条件(例えば、改質用水蒸気の供給
量、改質反応熱)が大きく異なる場合でも改質装置温度
の過渡的な低下が起こらず、燃料切替時の電池出力の低
下を抑制することができる。
FIG. 2 shows that the supply amount of the auxiliary fuel 38 is increased in proportion to the decrease amount of the supply amount of the main fuel 1, and after the lapse of Δt 2 time, the auxiliary fuel is completely stopped when the supply of the main fuel 1 is completely stopped. Three
This is the case where 8 independent supplies are performed. In this case, in order to control the amount of reforming steam and the reforming temperature in accordance with the supply amount of the auxiliary fuel 38 (in the figure, the main fuel is city gas containing methane as a main component, the auxiliary fuel is methanol or methanol). As in the case of using propane, the case where the supply amount of the reforming steam is increased by the supply of the preliminary fuel is shown).
And the reforming conditions of the main fuel 1 (for example, the supply amount of reforming steam, the heat of reforming reaction) are significantly different, the reformer temperature does not transiently decrease, and the cell output decreases during fuel switching. Can be suppressed.

【0024】図3は、主燃料1の供給量の減少量に比例
して予備燃料38の供給量を増加させるが、Δt3時間
経過後に主燃料1の供給量がゼロになる前に、負荷電流
に対して設定されて予め制御装置53に記憶された主燃
料1の供給量になった時点で、主燃料1の供給を停止
し、予備燃料38の供給量を所定の負荷電流を得るため
に必要な予め制御装置53に記憶された値に変更する。
この場合にも、予備燃料38の供給量に応じて逐次改質
用水蒸気量と改質温度の制御を行い(図では、主燃料1
にメタンを主成分とする都市ガス、予備燃料にメタノー
ルあるいはプロパンを用いる場合のように、予備燃料3
8の供給により改質用水蒸気の供給量が増加する場合を
示した)、主燃料1から予備燃料38に完全に切り替え
ても電池出力の低下が起こらなくなった時点で主燃料1
の供給を停止し、予備燃料38の供給量を所定の負荷電
流を得るために必要な量に変更するので、予備燃料38
と主燃料1の改質条件(例えば、改質用水蒸気の供給
量、改質反応熱)が大きく異なる場合でも改質装置温度
の過渡的な低下が起こらず、燃料切替時の電池出力の低
下を抑制することができる。
FIG. 3 shows that the supply amount of the auxiliary fuel 38 is increased in proportion to the decrease amount of the supply amount of the main fuel 1, but the load amount is increased before the supply amount of the main fuel 1 becomes zero after Δt 3 time has elapsed. At the time when the supply amount of the main fuel 1 set for the current and stored in the control device 53 in advance is reached, the supply of the main fuel 1 is stopped and the supply amount of the auxiliary fuel 38 is adjusted to obtain a predetermined load current. The value necessary for the above is stored in the control device 53 in advance.
Also in this case, the amount of steam for reforming and the reforming temperature are controlled in accordance with the supply amount of the auxiliary fuel 38 (in the figure, the main fuel 1
As in the case of using city gas containing methane as the main component and methanol or propane as the auxiliary fuel,
8 shows the case where the supply amount of reforming steam increases due to the supply of 8). Even when the main fuel 1 is completely switched to the auxiliary fuel 38, the main fuel 1 does not decrease when the cell output does not decrease.
Of the auxiliary fuel 38 is stopped and the supply amount of the auxiliary fuel 38 is changed to an amount necessary to obtain a predetermined load current.
And the reforming conditions of the main fuel 1 (for example, the supply amount of reforming steam, the heat of reforming reaction) are significantly different, the reformer temperature does not transiently decrease, and the cell output decreases during fuel switching. Can be suppressed.

【0025】[0025]

【発明の効果】以上の説明で明らかなように、本発明の
燃料電池の燃料切替方法およびその装置は、通常使用し
ている主燃料の供給に異常が生じたとき、これを検知
し、主燃料の供給量の低下に応じて、予備燃料供給系か
ら所定の燃料電池出力を得るために必要な予め記憶して
ある所定量の予備燃料の供給を行うとともに、主燃料の
供給量および予備燃料の供給量に応じて、改質用水蒸気
量、改質装置温度を予め記憶している最適な値に変更す
ることにより、燃料切替時にも所定の電池出力を安定に
得ることができるという利点がある。
As is apparent from the above description, the fuel cell fuel switching method and apparatus of the present invention detect when an abnormality occurs in the supply of the main fuel that is normally used, and In accordance with the decrease in the fuel supply amount, the pre-stored predetermined amount of reserve fuel required to obtain a predetermined fuel cell output is supplied from the reserve fuel supply system, and the main fuel supply amount and the reserve fuel are supplied. By changing the amount of reforming steam and the temperature of the reformer to optimal values stored in advance in accordance with the supply amount of the fuel, there is an advantage that a predetermined cell output can be stably obtained even when the fuel is switched. is there.

【図面の簡単な説明】[Brief description of drawings]

【図1】従来例とともに本発明を説明するための燃料切
替が可能な燃料電池発電システムの一例を示した図。
FIG. 1 is a diagram showing an example of a fuel cell power generation system capable of fuel switching for explaining the present invention together with a conventional example.

【図2】本発明を適用した場合の燃料切替時の過渡変動
の第1例を示した図。
FIG. 2 is a diagram showing a first example of transient fluctuations at the time of fuel switching when the present invention is applied.

【図3】本発明を適用した場合の燃料切替時の過渡変動
の第2例を示した図。
FIG. 3 is a diagram showing a second example of transient fluctuations at the time of fuel switching when the present invention is applied.

【図4】メタン改質ガス組成の改質温度依存性を示した
図。
FIG. 4 is a diagram showing the reforming temperature dependence of the composition of methane reformed gas.

【図5】プロパン改質ガス組成の改質温度依存性を示し
た図。
FIG. 5 is a diagram showing the reforming temperature dependence of the propane reformed gas composition.

【図6】メタノール改質ガス組成の改質温度依存性を示
した図。
FIG. 6 is a diagram showing the reforming temperature dependence of the composition of methanol reformed gas.

【図7】従来例の燃料切替時の過渡変動を示した図。FIG. 7 is a diagram showing a transient variation at the time of fuel switching in the conventional example.

【符号の説明】[Explanation of symbols]

1…主燃料、2,4,6,8,10,26,29,31
…熱交換器、3…脱硫装置、5…改質装置、7…COシ
フトコンバータ、9,32,49…凝縮器、11…燃料
極、12…電解質、13…空気極、14…燃料電池、1
5…直流電力、16…インバータ、17…交流電力、1
8…燃料極排ガス、19…分流器、20…燃焼器、2
1,51…燃焼排ガス、22…加熱燃料、23…燃焼空
気、24…改質装置バーナ、25…補助燃料、28…空
気、30…空気極排ガス、33…排ガス、34…抽水、
35,50…生成水、36…気水分離器、37…水蒸
気、38…予備燃料、39…燃料供給量異常検出セン
サ、40…主燃料流量調節弁、41…予備燃料流量調節
弁、42…燃料流量検出センサ、43…水蒸気流量調節
弁、44…改質ガス圧力センサ、45…改質ガス流量調
節弁、46…温度センサ、47…負荷、48…燃焼ガ
ス、52…負荷電流検出センサ、53…制御装置。
1 ... Main fuel, 2, 4, 6, 8, 10, 26, 29, 31
... Heat exchanger, 3 ... Desulfurization device, 5 ... Reforming device, 7 ... CO shift converter, 9, 32, 49 ... Condenser, 11 ... Fuel electrode, 12 ... Electrolyte, 13 ... Air electrode, 14 ... Fuel cell, 1
5 ... DC power, 16 ... Inverter, 17 ... AC power, 1
8 ... Fuel electrode exhaust gas, 19 ... Flow divider, 20 ... Combustor, 2
1, 51 ... Combustion exhaust gas, 22 ... Heating fuel, 23 ... Combustion air, 24 ... Reformer burner, 25 ... Auxiliary fuel, 28 ... Air, 30 ... Air electrode exhaust gas, 33 ... Exhaust gas, 34 ... Water extraction,
35, 50 ... Generated water, 36 ... Steam separator, 37 ... Steam, 38 ... Spare fuel, 39 ... Fuel supply amount abnormality detection sensor, 40 ... Main fuel flow rate control valve, 41 ... Spare fuel flow rate control valve, 42 ... Fuel flow rate detection sensor, 43 ... Steam flow rate control valve, 44 ... Reformed gas pressure sensor, 45 ... Reformed gas flow rate control valve, 46 ... Temperature sensor, 47 ... Load, 48 ... Combustion gas, 52 ... Load current detection sensor, 53 ... Control device.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 燃料電池、この燃料電池に主燃料を供給
する主燃料供給系、該燃料電池に予備燃料を供給する予
備燃料供給系、該主燃料および該予備燃料の改質を行い
電池反応に必要な水素リッチガスをつくる燃料改質装置
を含む燃料改質系、該燃料電池に酸化剤を供給する酸化
剤供給系、該燃料電池および周辺装置の冷却を行う冷却
系、および付属装置からなり、該燃料電池燃料極排ガス
を該改質装置バーナの燃料ガスとして使用する燃料電池
発電システムにおいて、 前記主燃料供給系入口における前記主燃料の供給量の異
常を検知し、該主燃料の供給量の低下に応じてこの主燃
料の供給量の低下を補い所定の該燃料電池出力を得るた
めに必要な所定量の前記予備燃料を供給するとともに、
該主燃料と該予備燃料の供給量に応じて該改質用水蒸気
の供給量を制御し、また、該主燃料あるいは該予備燃料
の供給量を制御することによって該燃料電池燃料極での
水素利用率を制御し、あるいは前記燃料極排ガスの前記
改質装置バーナへの供給量を制御することによって該改
質装置バーナ燃料である燃料極排ガス中の水素の該改質
装置バーナへの供給量を制御し、該改質装置温度を該主
燃料と該予備燃料の該改質に適した最適な値に制御する
ことを特徴とした燃料電池の燃料切替方法。
1. A fuel cell, a main fuel supply system for supplying a main fuel to the fuel cell, a reserve fuel supply system for supplying a reserve fuel to the fuel cell, a reforming of the main fuel and the reserve fuel, and a cell reaction. A fuel reforming system including a fuel reforming device for producing a hydrogen-rich gas required for the fuel cell, an oxidant supply system for supplying an oxidant to the fuel cell, a cooling system for cooling the fuel cell and peripheral devices, and an auxiliary device. A fuel cell power generation system that uses the fuel cell anode exhaust gas as a fuel gas for the reformer burner, detects an abnormality in the supply amount of the main fuel at the inlet of the main fuel supply system, and supplies the main fuel In addition to supplying the predetermined amount of the auxiliary fuel required to obtain the predetermined fuel cell output by compensating for the decrease in the supply amount of the main fuel according to the decrease in
Hydrogen at the fuel electrode of the fuel cell is controlled by controlling the supply amount of the reforming steam according to the supply amounts of the main fuel and the auxiliary fuel, and by controlling the supply amount of the main fuel or the auxiliary fuel. The amount of hydrogen supplied to the reformer burner, which is the fuel for the reformer burner, is supplied to the reformer burner by controlling the utilization rate or by controlling the amount of the anode exhaust gas supplied to the reformer burner. To control the temperature of the reformer to an optimum value suitable for the reforming of the main fuel and the auxiliary fuel.
【請求項2】 燃料電池、この燃料電池に主燃料を供給
する主燃料供給系、該燃料電池に予備燃料を供給する予
備燃料供給系、該主燃料および該予備燃料の改質を行い
電池反応に必要な水素リッチガスをつくる燃料改質装置
を含む燃料改質系、該燃料電池に酸化剤を供給する酸化
剤供給系、該燃料電池および周辺装置の冷却を行う冷却
系、および付属装置からなり、該燃料電池燃料極排ガス
を該改質装置バーナの燃料ガスとして使用する燃料電池
発電システムにおいて、 前記主燃料供給系入口部分に設置された前記主燃料供給
量の異常を検知するセンサと、このセンサの出力を受け
前記予備燃料の供給を行う機能、前記燃料電池出力,該
主燃料の供給量に応じて該予備燃料の供給量,前記改質
用水蒸気の供給量の供給量を制御する各弁への制御量を
予め記憶してある最適値に切り替えて送出する機能、前
記改質装置の温度に応じて該主燃料の供給量,該予備燃
料の供給量,あるいは該改質装置バーナ燃料である該燃
料電池燃料極排ガスのこの改質装置バーナへの供給量を
制御する弁への制御量を予め記憶してある最適値に切り
替えて送出し該改質装置の温度を該主燃料と該予備燃料
の該改質に適した予め記憶してある最適温度に制御する
機能を持つ制御装置と、を具備することを特徴とする燃
料電池の燃料切替装置。
2. A fuel cell, a main fuel supply system for supplying a main fuel to the fuel cell, a reserve fuel supply system for supplying a reserve fuel to the fuel cell, a reforming of the main fuel and the reserve fuel, and a cell reaction. A fuel reforming system including a fuel reforming device for producing a hydrogen-rich gas required for the fuel cell, an oxidant supply system for supplying an oxidant to the fuel cell, a cooling system for cooling the fuel cell and peripheral devices, and an auxiliary device. A fuel cell power generation system that uses the fuel cell fuel electrode exhaust gas as a fuel gas for the reformer burner, and a sensor installed at the main fuel supply system inlet for detecting an abnormality in the main fuel supply amount; Functions for receiving the output of the sensor and supplying the auxiliary fuel, controlling the output of the fuel cell, the supply amount of the auxiliary fuel and the supply amount of the reforming steam according to the supply amount of the main fuel. Control over valve A function of switching the amount to an optimal value stored in advance and sending it, a supply amount of the main fuel, a supply amount of the auxiliary fuel, or the fuel that is the reformer burner fuel according to the temperature of the reformer The control amount to the valve that controls the supply amount of the cell fuel electrode exhaust gas to the reformer burner is switched to an optimal value stored in advance and sent out, and the temperature of the reformer is switched between the main fuel and the auxiliary fuel. A fuel switching device for a fuel cell, comprising: a controller having a function of controlling to a prestored optimum temperature suitable for the reforming.
JP3200329A 1991-08-09 1991-08-09 Method and apparatus for switching fuel in fuel cell Expired - Lifetime JP2752808B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3200329A JP2752808B2 (en) 1991-08-09 1991-08-09 Method and apparatus for switching fuel in fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3200329A JP2752808B2 (en) 1991-08-09 1991-08-09 Method and apparatus for switching fuel in fuel cell

Publications (2)

Publication Number Publication Date
JPH0547401A true JPH0547401A (en) 1993-02-26
JP2752808B2 JP2752808B2 (en) 1998-05-18

Family

ID=16422488

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3200329A Expired - Lifetime JP2752808B2 (en) 1991-08-09 1991-08-09 Method and apparatus for switching fuel in fuel cell

Country Status (1)

Country Link
JP (1) JP2752808B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5713315A (en) * 1995-06-30 1998-02-03 Mitsubishi Jidosha Kogyo Kabushiki Kaisha Multiple step valve opening control system
JP2004207052A (en) * 2002-12-25 2004-07-22 Yazaki Corp Fuel gas supplying method to fuel cell system and its apparatus
WO2007123136A1 (en) * 2006-04-19 2007-11-01 Panasonic Corporation Fuel cell system
JP2008218222A (en) * 2007-03-05 2008-09-18 Toshiba Corp Fuel cell system
WO2012091033A1 (en) * 2010-12-28 2012-07-05 Jx日鉱日石エネルギー株式会社 Fuel cell system
WO2012091034A1 (en) * 2010-12-28 2012-07-05 Jx日鉱日石エネルギー株式会社 Fuel cell system

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0256866A (en) * 1988-08-22 1990-02-26 Nippon Telegr & Teleph Corp <Ntt> Fuel cell power generating system
JPH0268862A (en) * 1988-09-02 1990-03-08 Nippon Telegr & Teleph Corp <Ntt> Fuel change-over method and device for fuel battery

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0256866A (en) * 1988-08-22 1990-02-26 Nippon Telegr & Teleph Corp <Ntt> Fuel cell power generating system
JPH0268862A (en) * 1988-09-02 1990-03-08 Nippon Telegr & Teleph Corp <Ntt> Fuel change-over method and device for fuel battery

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5713315A (en) * 1995-06-30 1998-02-03 Mitsubishi Jidosha Kogyo Kabushiki Kaisha Multiple step valve opening control system
JP2004207052A (en) * 2002-12-25 2004-07-22 Yazaki Corp Fuel gas supplying method to fuel cell system and its apparatus
WO2007123136A1 (en) * 2006-04-19 2007-11-01 Panasonic Corporation Fuel cell system
US8067122B2 (en) 2006-04-19 2011-11-29 Panasonic Corporation Fuel cell system
JP5213703B2 (en) * 2006-04-19 2013-06-19 パナソニック株式会社 Fuel cell system
JP2008218222A (en) * 2007-03-05 2008-09-18 Toshiba Corp Fuel cell system
WO2012091033A1 (en) * 2010-12-28 2012-07-05 Jx日鉱日石エネルギー株式会社 Fuel cell system
WO2012091034A1 (en) * 2010-12-28 2012-07-05 Jx日鉱日石エネルギー株式会社 Fuel cell system
JP5519809B2 (en) * 2010-12-28 2014-06-11 Jx日鉱日石エネルギー株式会社 Fuel cell system

Also Published As

Publication number Publication date
JP2752808B2 (en) 1998-05-18

Similar Documents

Publication Publication Date Title
US7056480B2 (en) Fuel reforming system
US7931467B2 (en) Method for determining an air ratio in a burner for a fuel cell heater, a fuel cell heater
KR20100014407A (en) Reforming system, fuel cell system, and its operation method
US6818336B2 (en) Fuel control for fuel-processor steam generation in low temperature fuel cell power plant
JP4325270B2 (en) Operation control method of fuel cell power generator
KR20100030153A (en) Fuel cell system and method to supply fuel the same
JPH0547401A (en) Fuel changeover method of fuel cell and its apparatus
JPH0547396A (en) Fuel cell power generating system
US7998629B2 (en) Method of operating hydrogen and power generating system
JPH07192742A (en) Catalyst layer temperature control system of fuel reformer for fuel cell
US7745060B2 (en) Fuel cell system and method of operating the fuel cell system
JPH09199153A (en) Fuel cell power generating apparatus and deterioration detecting method for its reforming device
JP3602698B2 (en) Fuel cell power generator and fuel switching method thereof
JP2916293B2 (en) Fuel cell generator
JPH0547399A (en) Temperature control method and device for reforming device of fuel cell power generating system
JPH06349510A (en) Temperature control device for fuel reformer for fuel cell
JPH0268862A (en) Fuel change-over method and device for fuel battery
JP2007026998A (en) Fuel cell temperature control method for fused carbonate type fuel cell power generator, and device for the same
JP4622244B2 (en) Operation control method of fuel cell power generator
JP2009117170A (en) Hydrogen and power generating system, and load following power generation method therein
JP3471513B2 (en) Fuel cell power generator and fuel switching test method thereof
JP3358227B2 (en) Fuel cell power generation system
JPH076780A (en) Fuel cell power generating device
JP5537218B2 (en) Fuel cell system and method for starting fuel cell system
JPH05198309A (en) Fuel cell power generating system

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090227

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090227

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100227

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110227

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110227

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120227

Year of fee payment: 14

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120227

Year of fee payment: 14