JPH0256866A - Fuel cell power generating system - Google Patents

Fuel cell power generating system

Info

Publication number
JPH0256866A
JPH0256866A JP63207798A JP20779888A JPH0256866A JP H0256866 A JPH0256866 A JP H0256866A JP 63207798 A JP63207798 A JP 63207798A JP 20779888 A JP20779888 A JP 20779888A JP H0256866 A JPH0256866 A JP H0256866A
Authority
JP
Japan
Prior art keywords
fuel
hydrogen
fuel cell
valve
hydrogen storage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63207798A
Other languages
Japanese (ja)
Inventor
Tetsuo Take
武 哲夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP63207798A priority Critical patent/JPH0256866A/en
Publication of JPH0256866A publication Critical patent/JPH0256866A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0606Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants
    • H01M8/0612Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Abstract

PURPOSE:To suppress the fluctuation of the cell output when fuel is switched by providing a fuel switching device storing a hydrogen absorbing alloy absorbing and desorbing hydrogen. CONSTITUTION:A fuel switching device 39 storing a hydrogen storing device 43 made of a hydrogen absorbing alloy is provided on a fuel feeding system to switch two or more kinds of fuel for the ordinary use and the emergency use. When a fuel cell is operated by the ordinary fuel, most of the reformed gas containing much hydrogen by a reform is fed to the fuel cell, and part of it is absorbed by the hydrogen storing device 43 via a gas refining system for storage as required. When the fuel is switched, the hydrogen stored in the hydrogen storing device 43 is discharged, the output reduction due to the response delay or the like of a reforming device is supplemented, and the cell output is kept constant when the fuel is switched. Hydrogen can be fed to the fuel cell main body with no deficiency and the output reduction can be suppressed when the fuel is switched by utilizing the characteristic of the hydrogen absorbing alloy.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、二種類以上の燃料を切り替えて使用する燃料
電池発電システム、特に燃料切替時の出力変動が少ない
燃料電池発電システムに関するものである。
[Detailed Description of the Invention] (Industrial Application Field) The present invention relates to a fuel cell power generation system that switches between two or more types of fuel, and particularly relates to a fuel cell power generation system that has little output fluctuation when switching fuels. .

(従来の技術) 従来の燃料電池発電システムでは第3図に示すように、
都市ガスなどの比較的入手確保が容易な化石燃料A(ア
ルファベットで示す符号は燃料等及びその経路等を指示
する。以下他も同様とする。)を常用燃料をして用いて
いる。常用の化石燃料Aは熱交換器1で昇温された後、
脱硫装置2で改質触媒及び燃料種触媒の被毒の原因とな
る硫黄が除去される。触媒が硫黄で被毒されると、改質
装置6の効率が低下するとともに、燃料電池全体の効率
も低下する。なお、化石燃料Aがメタノールのように硫
黄を含んでいない場合は、この脱硫過程はいらない、脱
硫ガスは、蒸気発生器20からの水蒸気Gと混合され熱
交換器3でさらに昇温された後、改質装置6の反応部4
に流入し、水素を多量に含むガスに改質される。この燃
料ガスは熱交換器7で降温された後、シフトコンバータ
8に流入し、電池本体12の燃料極触媒の被毒を防ぐた
めにここでガス中の一酸化炭素は二酸化炭素に転化され
る。その後、この改質ガスは熱交換器9で冷却された後
、気水分離器10に流入して水分が除去される。この水
分が除去された水素を多量に含む改質ガスは熱交換器1
1で昇温された後、燃料電池本体12の燃料極13に供
給される。燃料電池本体12は、燃料極13.電解質1
4.酸化剤極15から構成されており、電池反応により
得られる直流電力には直交変換装置16で交流電力りに
変換される。なお、電池反応は発熱反応なので、冷却水
Oで燃料電池本体12を冷却する。燃料極13から流出
する排ガスFは、熱交換器21で昇温された補助燃料B
とともに加熱燃料Cとして改質装置6のバーナ5に供給
され、改質反応に必要な燃焼熱を得るのに使用される。
(Conventional technology) In the conventional fuel cell power generation system, as shown in Figure 3,
Fossil fuel A (alphabetic codes indicate fuels, etc. and their routes, etc.; the same applies hereinafter), which is relatively easy to obtain and secure, such as city gas, is used as a regular fuel. After the commonly used fossil fuel A is heated in the heat exchanger 1,
The desulfurization device 2 removes sulfur that causes poisoning of the reforming catalyst and fuel type catalyst. When the catalyst is poisoned with sulfur, the efficiency of the reformer 6 is reduced, and the efficiency of the entire fuel cell is also reduced. Note that if the fossil fuel A does not contain sulfur, such as methanol, this desulfurization process is not necessary.The desulfurization gas is mixed with steam G from the steam generator 20 and further heated in the heat exchanger 3. , reaction section 4 of the reformer 6
The gas is reformed into a gas containing a large amount of hydrogen. After the temperature of this fuel gas is lowered in a heat exchanger 7, it flows into a shift converter 8, where carbon monoxide in the gas is converted into carbon dioxide in order to prevent poisoning of the fuel electrode catalyst of the battery main body 12. Thereafter, this reformed gas is cooled by a heat exchanger 9, and then flows into a steam/water separator 10 to remove moisture. The reformed gas containing a large amount of hydrogen from which water has been removed is transferred to the heat exchanger 1.
After being heated at step 1, the fuel is supplied to the fuel electrode 13 of the fuel cell main body 12. The fuel cell main body 12 includes a fuel electrode 13. electrolyte 1
4. It consists of an oxidizer electrode 15, and the DC power obtained by the battery reaction is converted into AC power by an orthogonal converter 16. Note that since the cell reaction is an exothermic reaction, the fuel cell main body 12 is cooled with cooling water O. The exhaust gas F flowing out from the fuel electrode 13 is auxiliary fuel B heated in the heat exchanger 21.
It is also supplied as heating fuel C to the burner 5 of the reformer 6 and used to obtain the combustion heat necessary for the reforming reaction.

空気Jは熱交換器17を通して燃料電池本体12の酸化
剤極15に供給され酸化剤として使われるとともに、改
質装N6にも供給され燃焼空気りとして使われる。酸化
剤極15から流出する排ガスMは熱交換器18で冷却さ
れ、次いで気水分離器19に流入して水分を除去された
後、大気中に放出される。
Air J is supplied to the oxidizer electrode 15 of the fuel cell main body 12 through the heat exchanger 17 and used as an oxidizer, and is also supplied to the reformer N6 and used as combustion air. The exhaust gas M flowing out from the oxidizer electrode 15 is cooled by a heat exchanger 18, and then flows into a steam/water separator 19 to remove moisture, and then is released into the atmosphere.

また、改質装置6より流出する排ガスEは、熱交換器2
1で補助燃料Bの予熱に使われた後、大気中に放出され
る。なお、気水分離器10及び19で分離された生成水
HとIは、蒸気発生器20に供給され加熱Nをうけ水蒸
気Gとなり、燃料の改質に利用される。
Further, the exhaust gas E flowing out from the reformer 6 is transferred to the heat exchanger 2
After being used to preheat auxiliary fuel B in step 1, it is released into the atmosphere. Note that the generated water H and I separated by the steam separators 10 and 19 are supplied to the steam generator 20, heated N, and become steam G, which is used for reforming fuel.

上述した従来の燃料電池発電システムでは、燃料として
は安全上の面から多量の備蓄の必要がなく、またコスト
面から入手が容易で、補給の必要がない都市ガス等が望
ましい、しかし、都市ガスは震度5以上の地震でその供
給が断たれるので、燃料電池を通信用電源システムのよ
うな非常時でもその信頼性が要求されるシステムに通用
する際には、非常用の備蓄燃料を準備し、非常時には都
市ガス等の常用燃料から備蓄燃料に切り替えて燃料電池
の運転を確保することが要求される。
In the conventional fuel cell power generation system described above, it is preferable to use city gas as fuel, which does not require large amounts of stockpiling from a safety perspective, and is easily available from a cost perspective and does not require replenishment. The supply of fuel will be cut off in the event of an earthquake with a seismic intensity of 5 or higher, so when fuel cells are used in systems that require reliability even in emergencies, such as power supply systems for communication, it is necessary to prepare emergency fuel reserves. However, in an emergency, it is required to switch from regular fuel such as city gas to stored fuel to ensure fuel cell operation.

第3図は都市ガスとプロパンのように改質装置を共用す
る場合であり、通常は弁22が開き弁23が閉じており
、常用の化石燃料Aが改質装置6に供給されて、水素を
多量に含む改質ガスがつくられ、これがシフトコンバー
タ8を経て燃料電池本体12に供給され、発電が行われ
る。センサー24で流量。
Figure 3 shows a case where the reformer is shared, such as city gas and propane. Normally, valve 22 is open and valve 23 is closed, and commonly used fossil fuel A is supplied to reformer 6, and hydrogen A reformed gas containing a large amount of is produced, which is supplied to the fuel cell main body 12 via the shift converter 8, and power generation is performed. Flow rate with sensor 24.

圧力等の低下から常用の化石燃料Aの供給停止を検出す
ると、弁22が閉じられるとともに弁23が開かれ、燃
料Pが改質装置6に供給されて、水素を水素を多量に含
んだ改質ガスがつくられ、これがシフトコンバータ8を
経て燃料電池本体12に供給され、発電が行われる。そ
の際、改質装置の温度。
When a stop in the supply of commonly used fossil fuel A is detected from a drop in pressure, etc., valve 22 is closed and valve 23 is opened, fuel P is supplied to reformer 6, and hydrogen is converted into a reformer containing a large amount of hydrogen. Quality gas is produced, which is supplied to the fuel cell body 12 via the shift converter 8 to generate electricity. At that time, the temperature of the reformer.

燃料Pの供給量、水蒸気の供給量等の改質条件は、予め
決められた最適値に設定される。
Reforming conditions such as the amount of fuel P supplied and the amount of water vapor supplied are set to predetermined optimal values.

また、第4図は都市ガスとメタノールのように異なる改
質装置を使用する場合である。都市ガスとメタノールの
ように改質触媒、改質温度等の改質条件が異なる燃料を
切替えて用いる場合である。
Furthermore, FIG. 4 shows a case where different reformers are used for city gas and methanol. This is a case where fuels such as city gas and methanol, which have different reforming conditions such as reforming catalyst and reforming temperature, are switched and used.

ちなみに、都市ガスに広く用いられている天然ガス(メ
タンが主成分)の場合は改質温度800°C2改質触媒
が旧糸であるのに対して、メタノールの場合は改質温度
250℃、改質触媒Cu−Cr系、あるいはCu−Zn
系である。この場合には燃料によって改質装置を使い分
ける必要がある。
By the way, in the case of natural gas (mainly composed of methane), which is widely used as city gas, the reforming temperature is 800°C2, and the reforming catalyst is old, whereas in the case of methanol, the reforming temperature is 250°C, Reforming catalyst Cu-Cr type or Cu-Zn
It is a system. In this case, it is necessary to use different reformers depending on the fuel.

次に第4図の説明では第3図と重複する部分については
省略する0通常は弁22が開き弁23が閉じており、常
用の化石燃料Aが供給される。その際には、弁26.弁
28.弁29.弁31.弁37が閉じ、弁25、弁27
.弁30.弁32.弁38が開いて改質装置6が使用さ
れる。詳細は第3図の場合と同様である。
Next, in the explanation of FIG. 4, parts that overlap with those of FIG. 3 will be omitted. Normally, the valve 22 is open and the valve 23 is closed, and the commonly used fossil fuel A is supplied. In that case, valve 26. Valve 28. Valve 29. Valve 31. Valve 37 closes, valve 25, valve 27
.. Valve 30. Valve 32. Valve 38 is opened and reformer 6 is used. The details are the same as in the case of FIG.

そこで、センサー24で流量、圧力等の低下から常用の
化石燃料Aの供給停止を検出すると、弁22が閉じ弁2
3が開いて燃料Qが供給されるとともに、改質装置6は
停止あるいは予め設定された待機状態に維持される。こ
の場合には弁26.弁28.弁29゜弁31.弁37が
開き、弁25.弁27.弁30.弁32.弁38が閉じ
て改質装置33が使用される。その際、改質装置の温度
、燃料Qの供給量、水蒸気の供給量等の改質条件は、予
め決められた最適値に設定される。
Therefore, when the sensor 24 detects the stoppage of the supply of the commonly used fossil fuel A from a drop in flow rate, pressure, etc., the valve 22 closes and the valve 22 closes.
3 is opened and fuel Q is supplied, and the reformer 6 is stopped or maintained in a preset standby state. In this case valve 26. Valve 28. Valve 29° Valve 31. Valve 37 opens, valve 25. Valve 27. Valve 30. Valve 32. Valve 38 is closed and reformer 33 is used. At this time, reforming conditions such as the temperature of the reformer, the amount of fuel Q supplied, and the amount of steam supplied are set to predetermined optimal values.

なお、第4図の場合は燃料Qとしてメタノールのように
硫黄を含んでおらず、また改質により一酸化炭素をあま
り発生しない燃料を想定しているので、燃料Qは熱交換
器36で昇温された後改質装置33に供給され、水素を
多量に含んだ改質ガスがつくられる。この水素を多量に
含んだ改質ガスは熱交換器9.気水分離器10.熱交換
器11を経て燃料電池本体12に供給される。35は改
質装置の反応部、34はバーナである。燃料によっては
、脱硫及び−酸化炭素のシフト反応が必要な場合もある
In addition, in the case of FIG. 4, the fuel Q is assumed to be a fuel that does not contain sulfur like methanol and does not generate much carbon monoxide through reforming, so the fuel Q is raised in the heat exchanger 36. After being heated, it is supplied to the reformer 33, where a reformed gas containing a large amount of hydrogen is produced. This reformed gas containing a large amount of hydrogen is transferred to the heat exchanger 9. Steam water separator 10. The fuel is supplied to the fuel cell main body 12 via the heat exchanger 11. 35 is a reaction part of the reformer, and 34 is a burner. Depending on the fuel, desulfurization and carbon oxide shift reactions may be necessary.

その場合は改質装置が異なるだけで、第3図の場合と同
一のシステムとなる。
In that case, the system would be the same as that shown in FIG. 3, only the reformer would be different.

(発明が解決しようとする課題) 上述した従来の燃料電池発電システムでは、燃料の切替
を行った場合、たとえ第3図の同一の改質装置を使う場
合でも、新たに改質装置に燃料が供給され改質反応が定
常状態に達するまでに時間遅れが生ずる。また、第4図
の改質装置が異なる場合には、特に改質装置での水蒸気
改質反応及び燃焼・熱伝達が要求される状態に達するの
に相当の時間遅れが生じる。従って、燃料切替時には、
燃料水素の供給不足が生じ、燃料電池出力が一時的に低
下する現象が発生する。このため、通信用電源のような
高精度・高信鯨性が要求される電源に燃料電池を適用す
ると、燃料切替時にシステムダウンが起こる恐れがある
(Problems to be Solved by the Invention) In the conventional fuel cell power generation system described above, when the fuel is switched, even if the same reformer shown in Fig. 3 is used, new fuel is added to the reformer. There is a time delay before the reforming reaction reaches a steady state. Furthermore, if the reformer shown in FIG. 4 is different, there will be a considerable time delay in reaching the required state, particularly for the steam reforming reaction and combustion/heat transfer in the reformer. Therefore, when switching fuel,
A shortage of fuel hydrogen occurs, causing a phenomenon in which the fuel cell output temporarily decreases. For this reason, if a fuel cell is applied to a power source that requires high accuracy and high reliability, such as a power source for communication, there is a risk that the system will go down when switching fuels.

上記燃料切替時における時間と燃料電池の出力(発電量
)及び水素供給量の関係は、第5図に示すとおりである
。第4図(a)の実線及び同図ら)は、燃料切替時の従
来技術の燃料電池出力と水素供給量をそれぞれ示してい
る。この図から、従来技術では、燃料切替時にΔを時間
のあいだ水素供給量の不足とそれに伴う電池出力の低下
が生じる欠点があることが容品に理解できる。
The relationship between the time during the fuel switching, the output (power generation amount) of the fuel cell, and the amount of hydrogen supplied is as shown in FIG. The solid line in FIG. 4(a) and FIG. 4(a) respectively show the fuel cell output and hydrogen supply amount of the conventional technology at the time of fuel switching. From this figure, it can be easily understood that the prior art has the disadvantage that the hydrogen supply amount is insufficient for a period of Δ when switching fuels, and the battery output is accordingly reduced.

本発明は、上記の従来技術の欠点を解消し、燃料切替時
における電池出力の変動を抑制することが可能な燃料電
池発電システムを提供することを目的とするものである
SUMMARY OF THE INVENTION An object of the present invention is to provide a fuel cell power generation system that eliminates the drawbacks of the prior art described above and can suppress fluctuations in battery output during fuel switching.

(課題を解決するための手段) 本発明は上記目的を達成するために、燃料電池本体、燃
料供給系、酸化剤供給系、冷却系及び付属装置からなり
、燃料電池用水素を化石燃料の改質によって得る燃料電
池発電システムにおいて、常用あるいは非常用として二
種類以上の燃料を切り替えて使用するために前記燃料供
給系に水素吸蔵合金からなる水素貯蔵装置を内蔵した燃
料切替装置を設け、常用燃料による燃料電池運転時には
、改質によって得た水素を多量に含む改質ガスの大部分
を燃料電池に供給し、一部を必要に応じてガス精製系を
経て前記水素貯蔵装置に吸蔵させて貯蔵するようにし、
燃料切替時には、前記水素貯蔵装置に貯蔵させた水素を
放出して、改質装置の応答遅れ等による出力低下を補い
、燃料切替時に電池出力を一定に保持するようにしたこ
とを特徴とする燃料電池発電システムを要旨とする。燃
料電池本体、燃料供給系、酸化剤供給系、冷却系及び付
属装置からなる燃料電池発電システムにおいて、前記燃
料供給系に加熱媒体と冷却媒体とにより、加熱及び冷却
を行うことで水素を出し入れする水素吸蔵合金を内蔵す
る燃料切替装置39を設けたものである。
(Means for Solving the Problems) In order to achieve the above object, the present invention consists of a fuel cell main body, a fuel supply system, an oxidizer supply system, a cooling system, and ancillary equipment, and provides hydrogen for fuel cells by converting fossil fuels into In a fuel cell power generation system obtained by quality, in order to switch between two or more types of fuel for regular use or emergency use, the fuel supply system is equipped with a fuel switching device that has a built-in hydrogen storage device made of a hydrogen storage alloy, and the regular fuel During fuel cell operation, most of the reformed gas containing a large amount of hydrogen obtained through reforming is supplied to the fuel cell, and if necessary, a portion is stored in the hydrogen storage device after passing through the gas purification system. and
A fuel characterized in that when switching fuels, the hydrogen stored in the hydrogen storage device is released to compensate for a decrease in output due to a response delay of the reformer, etc., and the battery output is held constant when switching fuels. The main topic is battery power generation systems. In a fuel cell power generation system consisting of a fuel cell main body, a fuel supply system, an oxidizer supply system, a cooling system, and ancillary equipment, hydrogen is taken in and out by heating and cooling the fuel supply system using a heating medium and a cooling medium. A fuel switching device 39 containing a hydrogen storage alloy is provided.

(実施例) 以下、図面に沿って本発明の実施例について説明する。(Example) Embodiments of the present invention will be described below along with the drawings.

なお、実施例は一つの例示であって、本発明の精神を逸
脱しない範囲で種々の変更あるいは改良を行いうろこと
は言うまでもない。
It should be noted that the embodiments are merely illustrative, and it goes without saying that various changes and improvements may be made without departing from the spirit of the present invention.

第1図は本発明の一実施例を示す燃料電池発電システム
の系統図であって、第1図は、第3図あるいは第4図に
示した燃料の切替を考慮した燃料電池発電システムの気
水分離器10と熱交換器11との間に燃料切替装置39
を設けた燃料電池発電システふをあられしている。すな
わち、本発明は、燃料極13.電解質14.酸化剤極1
5からなる燃料電池本体12、化石燃料Aを供給する改
質装置6.シフトコンバータ8.気水分離器lO等を含
む燃料供給系、空気Jを供給する空気供給系、冷却水0
の冷却系及び付属供給装置において、燃料切替装置39
を設けたものである。
FIG. 1 is a system diagram of a fuel cell power generation system showing one embodiment of the present invention, and FIG. A fuel switching device 39 is provided between the water separator 10 and the heat exchanger 11.
A fuel cell power generation system equipped with That is, the present invention provides fuel electrode 13. Electrolyte 14. Oxidizer electrode 1
5, a fuel cell body 12 consisting of a fuel cell main body 12, a reformer that supplies fossil fuel A; Shift converter 8. Fuel supply system including steam/water separator IO, air supply system that supplies air J, cooling water 0
In the cooling system and attached supply device, the fuel switching device 39
It has been established.

なお、第1図に示した記号のうち、第3図及び第4図と
同一のものは同一の部分を示し、説明を省略する。
Note that among the symbols shown in FIG. 1, the same symbols as those in FIGS. 3 and 4 indicate the same parts, and their explanations will be omitted.

燃料切替装置39において、43は加熱媒体Sと冷却媒
体Tにより加熱及び冷却を行うことにより水素を出し入
れする水素吸蔵合金を内蔵した水素貯蔵装置である。水
素吸蔵合金の例としては、これまでによく知られている
ランタン・ニッケル系。
In the fuel switching device 39, 43 is a hydrogen storage device incorporating a hydrogen storage alloy that takes in and out hydrogen by heating and cooling with a heating medium S and a cooling medium T. An example of a hydrogen storage alloy is the well-known lanthanum-nickel system.

マグネシウム・ニッケル系、鉄・チタン系等の金属水素
化物が挙げられる。水素吸蔵合金は次の反応により水素
の出し入れを行う。
Examples include metal hydrides such as magnesium/nickel type, iron/titanium type, etc. Hydrogen storage alloys take in and out hydrogen through the following reaction.

2M+H家→2MH+q すなわち、水素吸蔵時には発生熱qを冷却媒体により取
り去ることによって水素を吸蔵させ、水素放出時には加
熱媒体により熱qを外部から与えることによって水素を
放出させる。40及び41は燃料電池本体12の燃料極
13への水素供給量を一定に保つように改質ガス流量と
改質ガス中の水素濃度を監視するための流量計と水素セ
ンサーを内蔵した流量及び水素濃度監視装置である。ま
た、50も流量及び水素濃度監視装置であり、要素貯蔵
のために水素貯蔵装置に送られた改質ガスの出口での水
素濃度を測定することによって水素吸蔵合金の状態を把
握し、水素貯蔵装置243への改質ガスの供給量を調節
するために使われる。また、水素貯蔵装置43から水素
を燃料電池本体12に供給する際には、流量を測定し水
素供給量を適性値に調節するために使われる。水素セン
サーによる水素濃度測定法の一例としては、金属酸化物
(W、 Mo+ Cr+Pa、 TI+ Inなどの酸
化物)と活性触媒(Pt、 Ir。
2M+H house → 2MH+q That is, when hydrogen is stored, hydrogen is stored by removing generated heat q with a cooling medium, and when hydrogen is released, hydrogen is released by applying heat q from the outside with a heating medium. Reference numerals 40 and 41 refer to a flow meter and a hydrogen sensor equipped with a flow meter and a hydrogen sensor for monitoring the reformed gas flow rate and the hydrogen concentration in the reformed gas so as to keep the amount of hydrogen supplied to the fuel electrode 13 of the fuel cell main body 12 constant. This is a hydrogen concentration monitoring device. In addition, 50 is a flow rate and hydrogen concentration monitoring device, which measures the hydrogen concentration at the outlet of the reformed gas sent to the hydrogen storage device for element storage to grasp the state of the hydrogen storage alloy and store hydrogen. It is used to adjust the amount of reformed gas supplied to the device 243. Further, when hydrogen is supplied from the hydrogen storage device 43 to the fuel cell main body 12, the flow rate is measured and used to adjust the hydrogen supply amount to an appropriate value. An example of a method for measuring hydrogen concentration using a hydrogen sensor is metal oxides (oxides such as W, Mo+Cr+Pa, TI+In) and active catalysts (Pt, Ir, etc.).

Rh、 Pdなど)を検出素子とし、導電率変化から水
素濃度を検出する方法が挙げられる。42はガス分離除
去装置で、合金表面等に吸着して水素吸蔵合金の水素吸
蔵性能に悪影響を及ぼす恐れがある水素以外のガスを分
離するためのものである0分離法としては、活性炭、モ
レキュラーシーブ、活性アルミナ、ゼオライト等の吸着
剤による吸着法。
One example is a method in which hydrogen concentration is detected from changes in conductivity using a metal (Rh, Pd, etc.) as a detection element. 42 is a gas separation and removal device, which is used to separate gases other than hydrogen that may be adsorbed on the alloy surface etc. and have a negative effect on the hydrogen storage performance of the hydrogen storage alloy.0Separation methods include activated carbon, molecular Adsorption method using adsorbents such as sieves, activated alumina, and zeolites.

水素選択性透過膜による膜分離法が挙げられる。An example is a membrane separation method using a hydrogen-selective permeable membrane.

次に上述した第2図のような構成からなる本実施例に適
用する燃料切替装置の作用を説明する。
Next, the operation of the fuel switching device applied to this embodiment having the configuration as shown in FIG. 2 described above will be explained.

常用燃料による燃料電池運転時は、気水分離器10で除
去された水素を多量に含んだ改質ガスRの大部分は、流
量及び水素濃度監視装置40及び41を経て熱交換器1
1で昇温された後に燃料極13に供給される。改質燃料
ガスの一部は、開かれた弁44を経てガス分離除去装置
42に送られ、水素吸蔵合金に悪影響を及ぼす水素以外
のガスが除去される。ガス分離除去装置42で除去され
た水素以外°のガスは開かれた弁45を経て改質装置6
のバーナ5(ともに第1図参照)に供給され、改質の熱
源として使用される。また、ガス分離除去装置42で精
製された水素ガスは、水素貯蔵装置43に流入し、水素
が水素吸蔵合金に吸蔵される。この際、上述したように
発熱を伴うので、冷却媒体Tを水素貯蔵装置の外側に通
して除熱し、水素吸蔵反応を促進させる。すなわち、調
節弁47と弁49を開き、!Ilv弁47を調節し、冷
却媒体Tの供給量を制御し、水素貯蔵装置への水素の貯
蔵を効率的に行わせる。この際、調節弁46と弁48は
閉じられている。水素貯蔵装置43で水素吸蔵合金に水
素を吸蔵したあとの排ガスは、流量及び水素濃度監視装
置50.開かれた弁52を経て、燃料電池の燃料極13
の排ガスとともに改質装置6のバーナ5(ともに第1図
参照)に供給され、改質装置の熱源となる。弁52は閉
じられている。この水素貯蔵は、水素貯蔵装置43に内
蔵されている水素吸蔵合金が飽和状態に達するまで行わ
れる。水素吸蔵合金が飽和状態に達すると、水素貯蔵装
置43の出側での排ガス中の水素濃度が増加するので、
流量及び水素濃度監視装置50でこれを検出し、弁44
.弁45.弁51が閉じられる。
During fuel cell operation using regular fuel, most of the reformed gas R containing a large amount of hydrogen removed by the steam-water separator 10 passes through the flow rate and hydrogen concentration monitoring devices 40 and 41 to the heat exchanger 1.
1 and then supplied to the fuel electrode 13. A portion of the reformed fuel gas is sent to the gas separation and removal device 42 through the opened valve 44, and gases other than hydrogen that have an adverse effect on the hydrogen storage alloy are removed. Gas other than hydrogen removed by the gas separation and removal device 42 passes through the opened valve 45 to the reformer 6.
burner 5 (both shown in Figure 1) and used as a heat source for reforming. Further, the hydrogen gas purified by the gas separation and removal device 42 flows into the hydrogen storage device 43, and hydrogen is stored in the hydrogen storage alloy. At this time, as described above, heat is generated, so the cooling medium T is passed through the outside of the hydrogen storage device to remove heat and promote the hydrogen storage reaction. That is, open the control valve 47 and valve 49, and! The Ilv valve 47 is adjusted to control the supply amount of the cooling medium T to efficiently store hydrogen in the hydrogen storage device. At this time, the control valve 46 and the valve 48 are closed. After hydrogen has been stored in the hydrogen storage alloy in the hydrogen storage device 43, the exhaust gas is processed by a flow rate and hydrogen concentration monitoring device 50. Through the opened valve 52, the fuel electrode 13 of the fuel cell
The exhaust gas is supplied to the burner 5 of the reformer 6 (both shown in FIG. 1), and serves as a heat source for the reformer. Valve 52 is closed. This hydrogen storage is performed until the hydrogen storage alloy built in the hydrogen storage device 43 reaches a saturated state. When the hydrogen storage alloy reaches a saturated state, the hydrogen concentration in the exhaust gas on the outlet side of the hydrogen storage device 43 increases.
This is detected by the flow rate and hydrogen concentration monitoring device 50, and the valve 44
.. Valve 45. Valve 51 is closed.

燃料切替時には、改質装置の応答遅れ等により改質ガス
R中の水素濃度が一時的に低下し、水素ガス供給量が減
少する。そこで、流量及び水素濃度監視袋M40でこれ
を検出すると、調節弁47と49が閉じられ水素貯蔵装
置f43への冷却媒体Tの供給が停止されるとともに、
調節弁46及び弁48が開けられ、加熱媒体Sが水素貯
蔵袋243に供給され水素が放出される。放出水素量は
調節弁46により加熱媒体Sの供給量を制御することに
より調節される。また、弁51が閉じられるとともに弁
52が開けられ、水素貯蔵装置43から放出された水素
が改質ガスと混合され、これが燃料電池本体12の燃料
極13に供給される。放出水素量は流量及び水素濃度監
視装置41と50により、混合ガスによる水素供給量が
燃料切替前の水素供給量と同じになるように調節弁46
で調節される0次に、改質装置が定常状態に達し、改質
ガスRによる水素供給量が燃料切替前の状態と同じにな
ると、水素貯蔵装置43からの水素ガスの供給が停止さ
れる。すなわち、流量及び水素濃度監視装置40により
、改質燃料ガスR中の水素濃度が燃料切替前の水準に復
帰したのが確認されると、調節弁46と弁48が閉じら
れ、水素貯蔵装置43への加熱媒体Sの供給が遮断され
、水素の放出が停止される0次に調節弁47と弁49が
開けられ、水素貯蔵装置43へ冷却媒体Tが供給されて
、上述した常用燃料による燃料電池運転時と同様、水素
貯蔵装置43への水素貯蔵が行われる。その際、弁52
は閉じられ、弁44.弁45.弁51は開けられる。
At the time of fuel switching, the hydrogen concentration in the reformed gas R temporarily decreases due to a response delay of the reformer, etc., and the amount of hydrogen gas supplied decreases. Therefore, when this is detected by the flow rate and hydrogen concentration monitoring bag M40, the control valves 47 and 49 are closed and the supply of the cooling medium T to the hydrogen storage device f43 is stopped.
The control valve 46 and the valve 48 are opened, the heating medium S is supplied to the hydrogen storage bag 243, and hydrogen is released. The amount of released hydrogen is adjusted by controlling the supply amount of the heating medium S using the control valve 46. Further, the valve 51 is closed and the valve 52 is opened, and the hydrogen released from the hydrogen storage device 43 is mixed with the reformed gas, and this is supplied to the fuel electrode 13 of the fuel cell main body 12. The amount of released hydrogen is determined by the flow rate and hydrogen concentration monitoring devices 41 and 50, and the control valve 46 is controlled so that the amount of hydrogen supplied by the mixed gas is the same as the amount of hydrogen supplied before fuel switching.
Next, when the reformer reaches a steady state and the amount of hydrogen supplied by the reformed gas R becomes the same as the state before fuel switching, the supply of hydrogen gas from the hydrogen storage device 43 is stopped. . That is, when it is confirmed by the flow rate and hydrogen concentration monitoring device 40 that the hydrogen concentration in the reformed fuel gas R has returned to the level before the fuel switching, the control valve 46 and the valve 48 are closed, and the hydrogen storage device 43 is closed. The supply of the heating medium S to the hydrogen storage device 43 is cut off, and the release of hydrogen is stopped.Then, the control valve 47 and the valve 49 are opened, and the cooling medium T is supplied to the hydrogen storage device 43. Hydrogen is stored in the hydrogen storage device 43 as in the case of battery operation. At that time, the valve 52
is closed and valve 44. Valve 45. Valve 51 is opened.

上述した本実施例による電池出力を第5図(a)の−点
鎖線で示し、燃料切替装置からの水素供給量を第5図(
C)及び(ロ)に示す、ここで、第5図(C)は改質装
置からの水素供給量が不足しているΔを時間の間、最大
出力低下ΔWに対応する水素供給量の不足分60以上の
一定量の水素を燃料電池本体に供給する場合で、この場
合は過剰の水素は未反応のまま燃料電池本体から排出さ
れ、水素の利用率が低下するが、制御が簡単(混合ガス
による水素供給量を監視して燃料切替装置からの水素供
給量を調節する必要がないので、第2図の流量及び水素
濃度監視装置41が不要)という長所がある。第5図(
ロ)は改質装置からの水素供給量が不足しているΔを時
間の間、不足分に見合った水素を燃料切替装置から供給
する場合である。いずれの場合でも、第5図(萄より燃
料切替時の電池出力低下が、従来例ではΔを時間の閲見
られるのに対し、本実施例では電池出力低下が見られな
い。
The battery output according to this embodiment described above is shown by the dashed line in FIG. 5(a), and the amount of hydrogen supplied from the fuel switching device is shown in FIG.
C) and (B), where FIG. 5(C) shows the shortage of hydrogen supply from the reformer corresponding to the maximum output drop ΔW during the time period Δ when the hydrogen supply from the reformer is insufficient. In this case, excess hydrogen is discharged from the fuel cell without reacting, reducing the hydrogen utilization rate, but it is easy to control (mixing Since there is no need to monitor the amount of hydrogen supplied by gas and adjust the amount of hydrogen supplied from the fuel switching device, there is an advantage that the flow rate and hydrogen concentration monitoring device 41 shown in FIG. 2 is not required. Figure 5 (
B) is a case where hydrogen is supplied from the fuel switching device to compensate for the shortage during the time Δ when the amount of hydrogen supplied from the reformer is insufficient. In any case, as shown in FIG. 5 (see Figure 5), whereas in the conventional example the battery output decreases at the time of fuel switching can be seen as Δ over time, in the present example no decrease in the battery output is observed.

(発明の効果) 以上説明したように本発明によれば、燃料電池本体、燃
料供給系、酸化剤供給系、冷却系及び付属装置からなり
、燃料電池用水素を化石燃料の改質によって得る燃料電
池発電システムにおいて、常用あるいは非常用として二
種類以上の燃料を切り替えて使用するために前記燃料供
給系に水素吸蔵合金からなる水素貯蔵装置を内蔵した燃
料切替装置を設け、常用燃料による燃料電池運転時には
、改質によって得た水素を多量に含む改質ガスの大部分
を燃料電池に供給し、一部を必要に応じてガス精製系を
経て前記水素貯蔵装置に吸蔵させて貯蔵するようにし、
燃料切替時には、前記水素貯蔵装置に貯蔵させた水素を
放出して、改質装置の応答遅れ等による出力低下を補い
、燃料切替時に電池出力を一定に保持するようにしたこ
とにより、水素吸蔵合金の特性を利用し、燃料電池本体
への水素の供給を燃料切替時にも不足なく行うことがで
きるので、燃料電池発電システムの燃料切替時の出力低
下を抑制することができる。
(Effects of the Invention) As explained above, according to the present invention, the fuel cell consists of a fuel cell main body, a fuel supply system, an oxidizer supply system, a cooling system, and an accessory device, and hydrogen for the fuel cell is obtained by reforming fossil fuel. In a battery power generation system, in order to switch between two or more types of fuel for regular or emergency use, the fuel supply system is provided with a fuel switching device containing a hydrogen storage device made of a hydrogen storage alloy, and the fuel cell is operated using the regular fuel. In some cases, most of the reformed gas containing a large amount of hydrogen obtained through reforming is supplied to the fuel cell, and a part of the reformed gas is occluded and stored in the hydrogen storage device after passing through the gas purification system as necessary.
At the time of fuel switching, the hydrogen stored in the hydrogen storage device is released to compensate for the decrease in output due to the response delay of the reformer, etc., and the battery output is maintained constant when the fuel is switched. Utilizing this characteristic, it is possible to supply hydrogen to the fuel cell main body without shortage even when switching fuels, so it is possible to suppress a decrease in the output of the fuel cell power generation system when switching fuels.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示す燃料電池発電システム
の系統図、第2図は本発明の燃料電池発電システムの一
実施例に適用する燃料切替装置を示す系統図、第3図は
従来の一種類の改質装置で燃料の切替が可能な燃料電池
発電システムの系統図、第4図は従来の燃料ごとに異な
る改質装置を必要とする燃料電池発電システムの系統図
、第5図(a)ないしく−は燃料切替時における時間と
、燃料電池出力、改質装置からの水素供給量及び燃料切
替装置からの水素供給量との関係を示すグラフである。 39・・・・・・燃料切替装置 4G、 41.50・・流量及び水素濃度監視装置42
・・・・・・ガス分離除去装置 43・・・・・・水素貯蔵装置 第5図
FIG. 1 is a system diagram of a fuel cell power generation system showing one embodiment of the present invention, FIG. 2 is a system diagram showing a fuel switching device applied to one embodiment of the fuel cell power generation system of the present invention, and FIG. Figure 4 is a system diagram of a conventional fuel cell power generation system that can switch between fuels using one type of reformer. Figure 5 is a system diagram of a conventional fuel cell power generation system that requires a different reformer for each fuel. Figures (a) and (a) are graphs showing the relationship between time during fuel switching, fuel cell output, hydrogen supply amount from the reformer, and hydrogen supply amount from the fuel switching device. 39... Fuel switching device 4G, 41.50... Flow rate and hydrogen concentration monitoring device 42
...Gas separation and removal device 43...Hydrogen storage device Fig. 5

Claims (1)

【特許請求の範囲】[Claims] 燃料電池本体、燃料供給系、酸化剤供給系、冷却系及び
付属装置からなり、燃料電池用水素を化石燃料の改質に
よって得る燃料電池発電システムにおいて、常用あるい
は非常用として二種類以上の燃料を切り替えて使用する
ために前記燃料供給系に水素吸蔵合金からなる水素貯蔵
装置を内蔵した燃料切替装置を設け、常用燃料による燃
料電池運転時には、改質によって得た水素を多量に含む
改質ガスの大部分を燃料電池に供給し、一部を必要に応
じてガス精製系を経て前記水素貯蔵装置に吸蔵させて貯
蔵するようにし、燃料切替時には、前記水素貯蔵装置に
貯蔵させた水素を放出して、改質装置の応答遅れ等によ
る出力低下を補い、燃料切替時に電池出力を一定に保持
するようにしたことを特徴とする燃料電池発電システム
In a fuel cell power generation system that consists of a fuel cell main body, a fuel supply system, an oxidizer supply system, a cooling system, and ancillary equipment, hydrogen for fuel cells is obtained by reforming fossil fuels, and two or more types of fuel are used for regular or emergency use. In order to switch between uses, the fuel supply system is equipped with a fuel switching device that has a built-in hydrogen storage device made of a hydrogen storage alloy. Most of the hydrogen is supplied to the fuel cell, and part of it is stored in the hydrogen storage device after passing through the gas purification system as needed. When switching fuels, the hydrogen stored in the hydrogen storage device is released. A fuel cell power generation system comprising: compensating for a decrease in output due to a delay in response of a reformer, etc., and maintaining a constant cell output when switching fuels.
JP63207798A 1988-08-22 1988-08-22 Fuel cell power generating system Pending JPH0256866A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63207798A JPH0256866A (en) 1988-08-22 1988-08-22 Fuel cell power generating system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63207798A JPH0256866A (en) 1988-08-22 1988-08-22 Fuel cell power generating system

Publications (1)

Publication Number Publication Date
JPH0256866A true JPH0256866A (en) 1990-02-26

Family

ID=16545669

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63207798A Pending JPH0256866A (en) 1988-08-22 1988-08-22 Fuel cell power generating system

Country Status (1)

Country Link
JP (1) JPH0256866A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0547401A (en) * 1991-08-09 1993-02-26 Nippon Telegr & Teleph Corp <Ntt> Fuel changeover method of fuel cell and its apparatus
JP2005216822A (en) * 2004-02-02 2005-08-11 Hiroshima Gas Kk Water reusing system in solid polymer fuel cell system
JP2006100238A (en) * 2004-09-06 2006-04-13 Toyota Motor Corp Fuel cell system
JP2007519170A (en) * 2003-06-23 2007-07-12 プラクスエア・テクノロジー・インコーポレイテッド Hydrogen storage and supply method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0547401A (en) * 1991-08-09 1993-02-26 Nippon Telegr & Teleph Corp <Ntt> Fuel changeover method of fuel cell and its apparatus
JP2007519170A (en) * 2003-06-23 2007-07-12 プラクスエア・テクノロジー・インコーポレイテッド Hydrogen storage and supply method
JP2005216822A (en) * 2004-02-02 2005-08-11 Hiroshima Gas Kk Water reusing system in solid polymer fuel cell system
JP2006100238A (en) * 2004-09-06 2006-04-13 Toyota Motor Corp Fuel cell system

Similar Documents

Publication Publication Date Title
US6368735B1 (en) Fuel cell power generation system and method for powering an electric vehicle
CA2259396C (en) Fuel-cell power generating system
US7977000B2 (en) Thermally primed hydrogen-producing fuel cell system
US7011693B2 (en) Control of a hydrogen purifying pressure swing adsorption unit in fuel processor module for hydrogen generation
JP3688271B2 (en) Fuel cell system using stored hydrogen
US9112201B2 (en) Hydrogen production apparatus, fuel cell system and operation method thereof
US20070062116A1 (en) Self-regulating feedstock delivery systems and hydrogen-generating fuel processing assemblies and fuel cell systems incorporating the same
JP3686062B2 (en) Fuel cell power generation system and fuel cell power generation stop method
JP2003163021A (en) Solid polymer fuel cell system
JPH0757756A (en) Fuel cell power generation system
JPH0256866A (en) Fuel cell power generating system
US20040020124A1 (en) Process for maintaining a pure hydrogen stream during transient fuel cell operation
JPH09266005A (en) Solid high polymer fuel cell system
JP4143028B2 (en) Fuel cell system and operation method thereof
JP2005206414A (en) Hydrogen producing apparatus
JP2000012061A (en) Fuel cell power generating system
JP4455040B2 (en) Fuel cell system and operation method thereof
JPH09115541A (en) Fuel cell system and operation method thereof
JP4041085B2 (en) Fuel gas production system and method for stopping the same
JP4329116B2 (en) Fuel reformer and fuel cell system
JPS6290874A (en) Storage and supply of hydrogen in fuel cell
JPS58133783A (en) Fuel cell power generating system
JPH06223856A (en) Fuel cell generator
JP2001206702A (en) Fuel reforming device and fuel cell system
JP2006261030A (en) Fuel cell power generation system