JP2004207052A - Fuel gas supplying method to fuel cell system and its apparatus - Google Patents

Fuel gas supplying method to fuel cell system and its apparatus Download PDF

Info

Publication number
JP2004207052A
JP2004207052A JP2002375145A JP2002375145A JP2004207052A JP 2004207052 A JP2004207052 A JP 2004207052A JP 2002375145 A JP2002375145 A JP 2002375145A JP 2002375145 A JP2002375145 A JP 2002375145A JP 2004207052 A JP2004207052 A JP 2004207052A
Authority
JP
Japan
Prior art keywords
gas
fuel gas
pressure
predetermined pressure
cell system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
JP2002375145A
Other languages
Japanese (ja)
Inventor
Satoshi Suganobu
敏 菅信
Hidetoshi Tanabe
英俊 田辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yazaki Corp
Original Assignee
Yazaki Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yazaki Corp filed Critical Yazaki Corp
Priority to JP2002375145A priority Critical patent/JP2004207052A/en
Publication of JP2004207052A publication Critical patent/JP2004207052A/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

<P>PROBLEM TO BE SOLVED: To adjust a pressure of a high pressure fuel gas to a value appropriate for reaction with water vapor in a reformer without being attended with wasteful pressure adjustment and without failing to obtain accounting information of the fuel gas in relation to construction of a fuel cell system using a LP gas or the like as the fuel gas. <P>SOLUTION: A fuel cell system 1 comprises a reformer 11 in which water vapor is added to the LP gas at a predetermined pressure and hydrogen is obtained, where the fuel cell system 1 has a pressure regulator 53 and a gas piping 57; those are used for supplying the LP gas at the predetermined pressure, filling and storing a liquid of the LP gas at a higher pressure than the predetermined pressure in a bulk storage reservoir 51, reducing the pressure of the LP gas at the higher pressure than the predetermined pressure to the predetermined pressure, and supplying the liquid of the LP gas from the bulk storage reservoir 51 capable of refilling contents to the reformer 11. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、所定圧の燃料ガスに水蒸気を加えて改質し水素を得る改質器を備える燃料電池システムに所定圧の燃料ガスを供給する方法とその装置に関する。
【0002】
【従来の技術】
水の電気分解の逆反応により電気エネルギーを発生させる燃料電池には、リン酸形のような商用化段階に至っているものから、溶融炭酸塩形、固体電解質形、固体高分子形等の試験段階のものまで、原料を水蒸気と反応させる改質器によって、電気エネルギーを発生させるプロセスに必要な水素を生成するようにしている。
【0003】
中でも、電気エネルギーを発生させるプロセスにおいて温水(又は蒸気)を併せて発生させるコジェネレーション式の燃料電池システムは、電気設備と給湯設備とを併せ持つ一般家庭への普及が試みられており、この場合の原料としては、従来、恒久的な原料供給を担保し易い都市ガスが有力視されている(例えば特許文献1参照)。
【0004】
そして、上述したコジェネレーション式を始めとする、都市ガスを原料とした燃料電池システムにおいては、灯外内管から供給される都市ガスの消費量を途中のガスメータで測定して課金情報を取得しつつ、ガスメータの下流側において、家庭消費用に調圧された灯外内管内の都市ガスを、改質器における水蒸気との反応に適した圧力に昇圧させることになる。
【0005】
ところで、都市ガスを原料とした燃料電池システムでは、都市ガス設備のある地域に適用地域が限られてしまい一般家庭に広く普及させる上でネックとなってしまうので、近年の大型シリンダの登場や、それをさらに上回る容積のバルク貯槽の登場により、都市ガス並みの恒久的原料供給が可能となりつつある、入手及び貯蔵が容易なLPガスを、原料とすることが検討されている。
【0006】
また、LPガスを燃料電池の原料とすることは、都市ガスを原料とする燃料電池システムにおける都市ガス供給設備に支障が発生した場合のバックアップとしても、大いに期待されている。
【0007】
そして、LPガスを原料とした燃料電池システムにおいては、都市ガスを原料とした燃料電池システムと同様に、供給されるLPガスの消費量を途中のガスメータで測定して課金情報を取得しつつ、ガスメータの下流側において、家庭消費用に調圧されたLPガスを、改質器における水蒸気との反応に適した圧力に昇圧させることになる。
【0008】
【特許文献1】
特開2001−176533号公報
【0009】
【発明が解決しようとする課題】
ところで、LPガスの場合は都市ガスと違い、シリンダにせよバルク貯槽にせよ、それらの内部ではLPガスが液化のためにかなりの高圧で充填されており、減圧器により家庭消費用に減圧してガスメータに供給している。
【0010】
そのため、都市ガスを原料とした燃料電池システムが主流を占めている現状では、LPガスを原料とした燃料電池システムにおいては、結果的に、高圧のものを一旦低圧にしてその後、改質器における水蒸気との反応に適した中圧まで昇圧させるという、二段階の調圧設備を必要とすることになり、設備としてもプロセスとしても、圧力調整について無駄な部分が発生することになる。
【0011】
また、上記した問題は、都市ガス以外の例えばジメチルエーテル(DME)等を原料とした燃料電池システムを構築する場合にも、同様に発生する可能性がある。
【0012】
本発明は前記事情に鑑みなされたもので、本発明の目的は、LPガスやジメチルエーテル等、都市ガス以外を原料(燃料ガス)とした燃料電池システムを構築する上で、燃料ガスの課金情報の取得を損なうことなく、無駄な圧力調整を伴わずに高圧の燃料ガスを改質器における水蒸気との反応に適した圧力に調整して供給することのできる燃料電池システムへの燃料ガス供給方法と、この方法を実施する際に用いて好適な燃料電池システムへの燃料ガス供給装置とを提供することにある。
【0013】
【課題を解決するための手段】
前記目的を達成する請求項1乃至請求項4に記載した本発明は、燃料電池システムへの燃料ガス供給方法に関するものであり、請求項5乃至請求項8に記載した本発明は、燃料電池システムへの燃料ガス供給装置に関するものである。
【0014】
そして、請求項1に記載した本発明の燃料電池システムへの燃料ガス供給方法は、所定圧の燃料ガスに水蒸気を加えて改質し水素を得る改質器を備える燃料電池システムに、前記所定圧の燃料ガスを供給するに当たり、自身の交換又は内容物の補充が可能な密閉型加圧容器に充填、貯留された、前記所定圧よりも高圧の前記燃料ガスの液体を、前記所定圧まで減圧させて前記改質器に供給するようにしたことを特徴とする。
【0015】
また、請求項2に記載した本発明の燃料電池システムへの燃料ガス供給方法は、請求項1に記載した本発明の燃料電池システムへの燃料ガス供給方法において、前記密閉型加圧容器として、残量の減少に伴い交換されるガスシリンダを用いるようにした。
【0016】
さらに、請求項3に記載した本発明の燃料電池システムへの燃料ガス供給方法は、所定圧の燃料ガスに水蒸気を加えて改質し水素を得る改質器を備える燃料電池システムに、前記所定圧の燃料ガスを供給するに当たり、密閉型加圧容器に充填、貯留された、前記所定圧よりも高圧の前記燃料ガスの液体を前記所定圧まで減圧させ、該所定圧の燃料ガスを、途中で流量を測定しつつ前記所定圧のまま前記改質器に供給するようにしたことを特徴とする。
【0017】
また、請求項4に記載した本発明の燃料電池システムへの燃料ガス供給方法は、請求項3に記載した本発明の燃料電池システムへの燃料ガス供給方法において、前記改質器に供給する途中の前記所定圧の燃料ガスの質量流量を測定するようにした。
【0018】
さらに、請求項5に記載した本発明の燃料電池システムへの燃料ガス供給装置は、所定圧の燃料ガスに水蒸気を加えて改質し水素を得る改質器を備える燃料電池システムに、前記所定圧の燃料ガスを供給する装置であって、前記所定圧よりも高圧の前記燃料ガスの液体が充填、貯留され、自身の交換又は内容物の補充が可能な密閉型加圧容器から、該密閉型加圧容器に充填、貯留された前記所定圧よりも高圧の前記燃料ガスの液体を、前記所定圧まで減圧させて前記改質器に供給する減圧供給手段を備えることを特徴とする。
【0019】
また、請求項6に記載した本発明の燃料電池システムへの燃料ガス供給装置は、請求項5に記載した本発明の燃料電池システムへの燃料ガス供給装置において、前記密閉型加圧容器が、残量の減少に伴い交換される可搬性のガスシリンダであるものとした。
【0020】
さらに、請求項7に記載した本発明の燃料電池システムへの燃料ガス供給装置は、所定圧の燃料ガスに水蒸気を加えて改質し水素を得る改質器を備える燃料電池システムに、前記所定圧の燃料ガスを供給する装置であって、密閉型加圧容器に充填、貯留された、前記所定圧よりも高圧の前記燃料ガスの液体を、前記所定圧まで減圧させて前記改質器に供給する減圧供給手段と、前記所定圧まで減圧させた前記燃料ガスの流量を前記所定圧のまま測定する流量測定手段とを備えることを特徴とする。
【0021】
また、請求項8に記載した本発明の燃料電池システムへの燃料ガス供給装置は、請求項7に記載した本発明の燃料電池システムへの燃料ガス供給装置において、前記流量測定手段が、前記所定圧まで減圧させた前記燃料ガスの質量流量を測定するものとした。
【0022】
請求項1に記載した本発明の燃料電池システムへの燃料ガス供給方法と、請求項5に記載した本発明の燃料電池システムへの燃料ガス供給装置とによれば、いずれも、密閉型加圧容器に対する高圧燃料ガスの液体の充填回数や、密閉型加圧容器自身の交換回数をカウントすることによって、燃料ガスの消費量が把握され、燃料ガスの消費量の把握のために既存のガスメータを用いたり、既存のガスメータの仕様に合わせて燃料ガスの圧力を調整したりする必要がなくなることになる。
【0023】
また、請求項2に記載した本発明の燃料電池システムへの燃料ガス供給方法によれば、請求項1に記載した本発明の燃料電池システムへの燃料ガス供給方法において、請求項6に記載した本発明の燃料電池システムへの燃料ガス供給装置によれば、請求項5に記載した本発明の燃料電池システムへの燃料ガス供給装置において、いずれも、燃料ガスの消費量の把握が、ガスシリンダの交換回数をカウントすることによってなされることになる。
【0024】
さらに、請求項3に記載した本発明の燃料電池システムへの燃料ガス供給方法と、請求項7に記載した本発明の燃料電池システムへの燃料ガス供給装置とによれば、いずれも、密閉型加圧容器に充填、貯留された高圧燃料ガスの液体を、改質器における水蒸気との反応に適した所定圧まで減圧させた後、その所定圧のまま改質器に供給する途中で燃料ガスの流量を測定することで、燃料ガスの消費量の把握のために既存のガスメータを用いたり、既存のガスメータの仕様に合わせて燃料ガスの圧力を調整したりする必要がなくなることになる。
【0025】
また、請求項4に記載した本発明の燃料電池システムへの燃料ガス供給方法によれば、請求項3に記載した本発明の燃料電池システムへの燃料ガス供給方法において、請求項8に記載した本発明の燃料電池システムへの燃料ガス供給装置によれば、請求項7に記載した本発明の燃料電池システムへの燃料ガス供給装置において、いずれも、燃料ガスの消費量が質量流量として把握されることになる。
【0026】
そして、燃料ガスが燃料としての役割を果たす主成分と、この主成分よりも比重が高く燃料としての役割よりもむしろ、燃料ガスに着臭するための着臭剤のような副成分とが混在したものである場合には、密閉式加圧容器内の燃料ガスの残量が減ってその密閉式加圧容器内の燃料ガス中に占める副成分の割合が高くなったことが、質量重量の測定値の変化により把握されて、改質器側に供給される燃料ガス中の副成分濃度が高くなったことが認識されるようになる。
【0027】
したがって、燃料ガス中の副成分が、燃料ガスと水蒸気との反応に用いられる改質器の触媒や、改質器の前段に必要に応じて介設される脱硫器、或は、改質器の後段に設けられて改質器において発生した水素を空気中の酸素と反応させて直流の電気エネルギーを生成する燃料電池本体(セルスタック)のセル等の寿命に悪影響を及ぼす硫黄分を含むものである場合には、改質器側に供給される燃料ガス中の副成分濃度が高くなったという状況を考慮に入れて、密閉型加圧容器への燃料ガスの補充や密閉型加圧容器自身の交換時期を早めに決定するような構成が、実現可能となる。
【0028】
【発明の実施の形態】
以下、本発明の燃料電池システムへの燃料ガス供給方法及びその装置の実施形態を、図面を参照して説明する。
【0029】
図1は本発明の燃料電池システムへの燃料ガス供給方法を適用した、本発明の一実施形態に係る燃料電池システムへの燃料ガス供給装置の概略構成を、一部ブロックにて示す説明図である。
【0030】
そして、図1中引用符号1で示す本実施形態の燃料電池システムは、電気エネルギーを発生させるプロセスにおいて温水(又は蒸気)を併せて発生させるコジェネレーション式のものであって、本システムを設置する家屋の屋外に設けられており、改質器11、燃料電池本体(セルスタック)13、インバータ15、並びに、排熱回収装置17を備えている。
【0031】
前記改質器11は、原料であるLPガスを水蒸気と反応させて水素と温水(又は蒸気)を発生させるものであり、前記燃料電池本体13は、改質器11において発生した水素を空気中の酸素と反応させて直流の電気エネルギーを生成するものであり、前記インバータ15は、燃料電池本体13で生成された電気エネルギーを商用電力と同じ交流に変換するものである。
【0032】
また、前記排熱回収装置17は、改質器11で発生した温水(又は蒸気)の熱エネルギーと、燃料電池本体13で電気エネルギーが生成される際に発生する高温の排熱の熱エネルギーとを回収するもので、詳しくは、これら温水(又は蒸気)及び排熱と、外部から引き込んだ市水との間で、いわゆる熱交換を行うものである。
【0033】
尚、排熱回収装置17において回収された熱エネルギーにより加熱された市水は、燃料電池システム1の近傍の屋外に設置された貯湯槽3に貯留されて、家屋の屋内にて適宜利用され、インバータ15で交流に変換された電気エネルギーは、屋内等にて適宜消費される。
【0034】
そして、上述したような構成の燃料電池システム1に原料としてのLPガスを供給する、図1中引用符号5で示す本実施形態の燃料ガス供給装置は、バルク貯槽51、圧力調整器53、質量流量計55、並びに、ガス配管57を備えている。
【0035】
前記バルク貯槽51(密閉型加圧容器に相当)は、内部に高圧の液化LPガスを貯留するもので、残量が減った場合には高圧の液化LPガスを外部から充填、補充できる据え置き形の密閉タンクによって構成されており、前記圧力調整器53は、バルク貯槽51内の高圧の液化LPガスを改質器11における水蒸気との反応に適した圧力に減圧、気化させるものである。
【0036】
尚、LPガスは通常、プロパンガスやブタンガスといったガスが混合されて構成されているが、無臭であるが故に万一の漏洩の際に匂いでそれを察知することができないため、敢えて、硫黄分を多く含む着臭剤を混ぜている。
【0037】
そして、ブタンガスは着臭剤よりも気化し易く、プロパンガスはブタンガスよりもさらに気化し易いので、バルク貯槽51内のLPガスの消費が進むと、それに連れて、バルク貯槽51内に残るLPガスの成分は、先ずプロパンガス成分が低くなり、次いでブタンガス成分が低くなり、やがて、着臭剤の濃度が高くなって行き、その結果、単位流量当たりのLPガスの質量流量、つまり、体積流量でなくカロリー量に比例した流量が、バルク貯槽51内のLPガスの残量がなくなりかけたところで急激に低下する傾向を示す。
【0038】
前記質量流量計55は、圧力調整器53で減圧、気化されたLPガスの、ガス配管57を介して改質器11に供給される供給量、即ち、減圧、気化されてガス配管57を流れるLPガスの流量を測定するものである。
【0039】
ちなみに、質量流量計55は例えば、ガス配管57を流れるLPガスの流れ方向におけるマイクロヒータの上流側と下流側とに各々配置したサーモパイルの起電力差によりLPガスの流速を測定し、LPガスの流れ方向と直交する方向にマイクロヒータから間隔をおいた側方のサーモパイルの起電力によりLPガスの組成に応じた熱伝導率を測定するマイクロフローセンサと、マイクロフローセンサによる両測定値と、ガス配管57の断面積とから、ガス配管57を流れるLPガスの単位時間当たりの質量流量を演算すると共に、演算した質量流量の変動パターンを基に、ガス配管57内のLPガスの着臭剤濃度が必要以上に高くなっていることを検出するマイクロコンピュータと、マイクロコンピュータで演算した結果を表示する表示部等で構成することができる。
【0040】
そして、本実施形態の燃料ガス供給装置5では、質量流量計55が請求項中の流量測定手段に相当しているが、流量測定手段としての質量流量計55は、表示部を備えていないものであっても良い。
【0041】
尚、燃料電池システム1には、ガス配管57から改質器11に供給されるLPガスの漏洩を検出するガスセンサと、改質器11から燃料電池本体13に供給される水素の漏洩を検出する水素センサと、それぞれのセンサが検出対象のガスの漏洩を検出した際に、検出対象毎に内容が異なる漏洩警報信号を出力する信号出力回路とをユニット化したガス検知ユニット19が、さらに設けられている。
【0042】
そして、ガス検知ユニット19からの漏洩警報信号は、質量流量計55のマイクロコンピュータに一旦入力され、質量流量計55のマイクロフローセンサから一定周期毎に入力される2つの測定値から算出されるLPガスの単位時間当たりの質量流量を示す流量信号や、ガス配管57内のLPガスの着臭剤濃度が必要以上に高くなっていることを検出した際に質量流量計55のマイクロフローセンサが出力する硫黄濃度警報信号と共に、屋外に設置された網制御装置(NCU)7から電話回線(図示せず)を介して、遠隔地の監視センタ(図示せず)に伝送される。
【0043】
ガス検知ユニット19からの漏洩警報信号を受け取った不図示の監視センタでは、その漏洩警報信号に示されている検出対象がLPガスであれば、ガス配管57上に設けられた不図示のガス遮断弁を遠隔操作で遮断させるための遮断信号を、上記の電話回線及び網制御装置7を介してガス遮断弁に伝送する。
【0044】
また、不図示の監視センタで受け取った漏洩警報信号に示されている検出対象が水素であれば、改質器11と燃料電池本体13との間に設けられた不図示の水素遮断弁を遠隔操作で遮断させるための遮断信号と、上述したガス遮断弁を遠隔操作で遮断させるための遮断信号とを、上記の電話回線及び網制御装置7を介して両遮断弁に伝送する。
【0045】
さらに、質量流量計55からのLPガスの単位時間当たりの質量流量を示す流量信号を受け取った不図示の監視センタでは、その流量信号に示されている質量流量を基に、LPガスの消費量に応じた課金情報を生成するほか、必要に応じて、バルク貯槽51への高圧の液化LPガスの充填タイミングを割り出す。
【0046】
また、質量流量計55からの硫黄濃度警報信号を受け取った不図示の監視センタでは、バルク貯槽51内のLPガスがある程度減って全体に占める着臭剤の割合が高くなり、このままバルク貯槽51内のLPガスが燃料電池システム1に供給され続けると、LPガスを水蒸気と反応させるのに用いられる改質器11の触媒や燃料電池本体13のセル、或は、改質器11の前段に必要に応じて介設される脱硫器(図示せず)等に腐食や寿命の短縮等の悪影響を及ぼしかねないものとして、バルク貯槽51に高圧の液化LPガスを充填するタイミングであることを認識する。
【0047】
以上の説明からも明らかなように、本実施形態の燃料ガス供給装置5では、圧力調整器53とガス配管57とにより、請求項中の減圧供給手段が構成されている。
【0048】
このように構成された本実施形態の燃料ガス供給装置5では、バルク貯槽51内の高圧の液化LPガスは圧力調整器53によって、改質器11における水蒸気との反応に適した圧力に直接減圧、気化され、それ以上に減圧された後に昇圧されるといった圧力調整上の無駄なプロセス及び設備が発生しない。
【0049】
尚、バルク貯槽51への高圧の液化LPガスの充填回数又は充填量を、その作業を行う業者等の側においてカウントしておいて、それに基づいてLPガスの消費量に応じた課金情報を生成するようにする場合には、上記したように圧力調整上の無駄なプロセス及び設備が発生しない構成は、質量流量計55を省略しても実現することができる。
【0050】
また、本実施形態では、高圧の液化LPガスが据え置き形のバルク貯槽51に貯留される場合について説明したが、バルク貯槽51に代えてガスシリンダを高圧の液化LPガスの貯留先として用いるようにしてもよい。
【0051】
そして、ガスシリンダを高圧の液化LPガスの貯留先として用いる場合にも、枯渇したガスシリンダの交換回数を、その作業を行う業者等の側においてカウントしておいて、それに基づいてLPガスの消費量に応じた課金情報を生成するようにする場合には、上記したように圧力調整上の無駄なプロセス及び設備が発生しない構成は、質量流量計55を省略しても実現することができる。
【0052】
ちなみに、バルク貯槽51への高圧の液化LPガスの充填回数やガスシリンダの交換回数に基づいて、LPガスの消費量に応じた課金情報を生成するというのは、屋内のガス機器やガス給湯器等のみでLPガスを使用することを想定すると、バルク貯槽51への高圧の液化LPガスの充填やガスシリンダの交換が年に何回も行われる訳ではないので、余りに充填や交換の頻度が低過ぎ現実的ではない。
【0053】
しかし、本実施形態のように燃料電池システム1における水素発生用の原料としてもLPガスを消費することが前提であれば、バルク貯槽51への高圧の液化LPガスの充填やガスシリンダの交換が月に1,2回行われることになるので、バルク貯槽51への高圧の液化LPガスの充填回数やガスシリンダの交換回数に基づいて、LPガスの消費量に応じた課金情報を生成することは、あながち非現実的とは言えない。
【0054】
そして、上述したような種々の手法でLPガスの消費量に応じた課金情報の生成を担保することで、課金情報の生成のために現状のLPガス用のガスメータをわざわざ使う必要がなくなり、そのため、ガスメータの規格に合わせて高圧の液化LPガスを家庭消費用に適した圧力まで一旦減圧し、ガスメータ通過後のLPガスを、今度は改質器11における水蒸気との反応に適した圧力に昇圧するといった、圧力調整上の無駄なプロセス及び設備の発生を、本実施形態の燃料ガス供給装置5によれば防止することができる。
【0055】
尚、本実施形態では流量測定手段として質量流量計55を用いる構成としたが、質量流量計55に代えてフルイディックセンサや超音波センサ等、ガス配管57を流れる、改質器11における水蒸気との反応に適した圧力のLPガスの流量を測定することのできるセンサと、そのセンサの出力からガス配管57を流れる流量を演算するマイクロコンピュータ等の演算手段とを有するものを、流量測定手段として用いるようにしてもよい。
【0056】
但し、改質器11の触媒や燃料電池本体13のセル等に腐食等の悪影響を及ぼしかねないぐらい着臭剤濃度が必要以上に高くなる程、バルク貯槽51内のLPガスが減ったことを、不図示の監視センタに通報し、バルク貯槽51への高圧の液化LPガスの充填を促すようにするためには、質量流量計55が必要になる。
【0057】
また、本発明は、LPガスに限らず、例えばジメチルエーテル(DME)等の、改質器11における水蒸気との反応により水素を発生し得る燃料ガスであって、自身の交換又は内容物の補充が可能な密閉型加圧容器に、改質器11における水蒸気との反応に適した圧力よりも高圧の液体状態で充填、貯留される、都市ガス以外の燃料ガスを用いるものであれば、同様に適用可能である。
【0058】
【発明の効果】
以上説明したように請求項1に記載した本発明の燃料電池システムへの燃料ガス供給方法によれば、所定圧の燃料ガスに水蒸気を加えて改質し水素を得る改質器を備える燃料電池システムに、前記所定圧の燃料ガスを供給するに当たり、自身の交換又は内容物の補充が可能な密閉型加圧容器に充填、貯留された、前記所定圧よりも高圧の前記燃料ガスの液体を、前記所定圧まで減圧させて前記改質器に供給するようにした。
【0059】
また、請求項5に記載した本発明の燃料電池システムへの燃料ガス供給装置によれば、所定圧の燃料ガスに水蒸気を加えて改質し水素を得る改質器を備える燃料電池システムに、前記所定圧の燃料ガスを供給する装置であって、前記所定圧よりも高圧の前記燃料ガスの液体が充填、貯留され、自身の交換又は内容物の補充が可能な密閉型加圧容器から、該密閉型加圧容器に充填、貯留された前記所定圧よりも高圧の前記燃料ガスの液体を、前記所定圧まで減圧させて前記改質器に供給する減圧供給手段を備える構成とした。
【0060】
さらに、請求項3に記載した本発明の燃料電池システムへの燃料ガス供給方法によれば、所定圧の燃料ガスに水蒸気を加えて改質し水素を得る改質器を備える燃料電池システムに、前記所定圧の燃料ガスを供給するに当たり、密閉型加圧容器に充填、貯留された、前記所定圧よりも高圧の前記燃料ガスの液体を前記所定圧まで減圧させ、該所定圧の燃料ガスを、途中で流量を測定しつつ前記所定圧のまま前記改質器に供給するようにした。
【0061】
また、請求項7に記載した本発明の燃料電池システムへの燃料ガス供給装置によれば、所定圧の燃料ガスに水蒸気を加えて改質し水素を得る改質器を備える燃料電池システムに、前記所定圧の燃料ガスを供給する装置であって、密閉型加圧容器に充填、貯留された、前記所定圧よりも高圧の前記燃料ガスの液体を、前記所定圧まで減圧させて前記改質器に供給する減圧供給手段と、前記所定圧まで減圧させた前記燃料ガスの流量を前記所定圧のまま測定する流量測定手段とを備える構成とした。
【0062】
このため、請求項1及び請求項3に各々記載した本発明の燃料電池システムへの燃料ガス供給方法と、請求項5及び請求項7に各々記載した本発明の燃料電池システムへの燃料ガス供給装置とのいずれによっても、燃料ガスの消費量を把握して課金情報を生成できる状況を担保しつつ、無駄な圧力調整を伴わずに高圧の液化LPガスを改質器における水蒸気との反応に適した圧力に調整して供給することできる。
【0063】
さらに、請求項2に記載した本発明の燃料電池システムへの燃料ガス供給方法によれば、請求項1に記載した本発明の燃料電池システムへの燃料ガス供給方法において、前記密閉型加圧容器として、残量の減少に伴い交換されるガスシリンダを用いるようにした。
【0064】
また、請求項6に記載した本発明の燃料電池システムへの燃料ガス供給装置によれば、請求項5に記載した本発明の燃料電池システムへの燃料ガス供給装置において、前記密閉型加圧容器が、残量の減少に伴い交換される可搬性のガスシリンダである構成とした。
【0065】
このため、請求項2に記載した本発明の燃料電池システムへの燃料ガス供給方法と、請求項6に記載した本発明の燃料電池システムへの燃料ガス供給装置とのいずれによっても、ガスシリンダの交換回数をカウントすることによって、課金情報の生成に必要な燃料ガスの消費量を容易に把握することができる。
【0066】
さらに、請求項4に記載した本発明の燃料電池システムへの燃料ガス供給方法によれば、請求項3に記載した本発明の燃料電池システムへの燃料ガス供給方法において、前記改質器に供給する途中の前記所定圧の燃料ガスの質量流量を測定するようにした。
【0067】
また、請求項8に記載した本発明の燃料電池システムへの燃料ガス供給装置によれば、請求項7に記載した本発明の燃料電池システムへの燃料ガス供給装置において、前記流量測定手段が、前記所定圧まで減圧させた前記燃料ガスの質量流量を測定する構成とした。
【0068】
このため、請求項4に記載した本発明の燃料電池システムへの燃料ガス供給方法と、請求項8に記載した本発明の燃料電池システムへの燃料ガス供給装置とのいずれによっても、燃料ガスが燃料としての役割を果たす主成分と、この主成分よりも比重が高く燃料としての役割よりもむしろ、燃料ガスに着臭するための着臭剤のような副成分とが混在したものである場合に、密閉式加圧容器内の燃料ガスの残量が減ってその密閉式加圧容器内の燃料ガス中に占める副成分の割合が高くなったときにその旨を、燃料ガスの消費量と共に把握される燃料ガスの組成変化により認識し、仮に副成分が改質器側に悪影響を及ぼす物質であったとしても、その悪影響が発生しないような、密閉型加圧容器への燃料ガスの補充や密閉型加圧容器自身の適切な交換時期を決定し、改質器側の長寿命化を図ることができる。
【図面の簡単な説明】
【図1】本発明の燃料電池システムへの燃料ガス供給方法を適用した、本発明の一実施形態に係る燃料電池システムへの燃料ガス供給装置の概略構成を、一部ブロックにて示す説明図である。
【符号の説明】
1 燃料電池システム
11 改質器
5 燃料ガス供給装置
51 バルク貯槽(密閉型加圧容器)
53 圧力調整器(減圧供給手段)
55 質量流量計(流量測定手段)
57 ガス配管(減圧供給手段)
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method and apparatus for supplying a fuel gas having a predetermined pressure to a fuel cell system including a reformer that obtains hydrogen by reforming a fuel gas having a predetermined pressure by adding steam.
[0002]
[Prior art]
For fuel cells that generate electric energy by the reverse reaction of water electrolysis, from the commercialization stage such as the phosphoric acid type, to the molten carbonate type, solid electrolyte type, solid polymer type, etc. The reformers that react the feedstock with steam produce the hydrogen required for the process of generating electrical energy.
[0003]
Above all, a cogeneration type fuel cell system that generates hot water (or steam) in the process of generating electric energy has been attempted to spread to general households having both electric equipment and hot water supply equipment. As a raw material, conventionally, city gas, which is easy to secure a permanent raw material supply, has been considered promising (for example, see Patent Document 1).
[0004]
In the fuel cell system using city gas as a raw material, including the above-described cogeneration type, the consumption of city gas supplied from the outer tube of the lamp is measured by a gas meter on the way to acquire billing information. At the same time, on the downstream side of the gas meter, the city gas in the lamp outer tube regulated for household consumption is pressurized to a pressure suitable for a reaction with steam in the reformer.
[0005]
By the way, in the fuel cell system using city gas as a raw material, the application area is limited to the area where the city gas equipment is located, which becomes a bottleneck in widespread use in general households. With the advent of bulk storage tanks of even greater capacity, the use of LP gas, which is easy to obtain and store, is being studied, as it is becoming possible to supply permanent raw materials at the same level as city gas.
[0006]
The use of LP gas as a raw material for a fuel cell is also greatly expected as a backup in the event that trouble occurs in a city gas supply facility in a fuel cell system using city gas as a raw material.
[0007]
Then, in the fuel cell system using LP gas as a raw material, similarly to the fuel cell system using city gas as a raw material, the consumption amount of the supplied LP gas is measured by a gas meter on the way to acquire billing information, On the downstream side of the gas meter, the pressure of the LP gas regulated for household consumption is increased to a pressure suitable for the reaction with the steam in the reformer.
[0008]
[Patent Document 1]
JP 2001-176533 A
[0009]
[Problems to be solved by the invention]
By the way, in the case of LP gas, unlike city gas, whether it is a cylinder or a bulk storage tank, LP gas is filled inside at a considerably high pressure for liquefaction. Supplying to gas meter.
[0010]
Therefore, under the current situation where fuel cell systems using city gas as the raw material occupy the mainstream, in a fuel cell system using LP gas as the raw material, as a result, the high-pressure fuel cell is temporarily reduced to a low pressure, and then the reformer is used. This requires a two-stage pressure adjusting device for increasing the pressure to a medium pressure suitable for the reaction with steam, and wastes pressure adjustment as a device or process.
[0011]
In addition, the above problem may similarly occur when a fuel cell system is constructed using a material other than city gas, such as dimethyl ether (DME).
[0012]
The present invention has been made in view of the above circumstances, and an object of the present invention is to construct a fuel cell system using a raw material (fuel gas) other than city gas, such as LP gas or dimethyl ether, by using fuel gas billing information. A method for supplying a fuel gas to a fuel cell system capable of adjusting and supplying a high-pressure fuel gas to a pressure suitable for reaction with steam in a reformer without impairing acquisition and without useless pressure adjustment; Another object of the present invention is to provide a fuel gas supply device for a fuel cell system suitable for use in carrying out this method.
[0013]
[Means for Solving the Problems]
The present invention described in claims 1 to 4 for achieving the above object relates to a method for supplying a fuel gas to a fuel cell system, and the present invention described in claims 5 to 8 relates to a fuel cell system. The present invention relates to a device for supplying fuel gas to a vehicle.
[0014]
The method for supplying a fuel gas to a fuel cell system according to the present invention described in claim 1 includes a fuel cell system including a reformer that obtains hydrogen by reforming fuel gas having a predetermined pressure by adding steam. In supplying the fuel gas at a pressure, the liquid of the fuel gas having a pressure higher than the predetermined pressure, filled and stored in a closed pressurized container capable of replacing itself or replenishing the contents, is filled up to the predetermined pressure. It is characterized in that the pressure is reduced and supplied to the reformer.
[0015]
The fuel gas supply method for a fuel cell system according to the present invention described in claim 2 is the fuel gas supply method for a fuel cell system according to the present invention described in claim 1, wherein: A gas cylinder that is replaced as the remaining amount decreases is used.
[0016]
Further, according to a third aspect of the present invention, there is provided a method of supplying fuel gas to a fuel cell system according to the present invention, wherein the fuel cell system includes a reformer for reforming fuel gas having a predetermined pressure by adding steam to obtain hydrogen. When supplying the fuel gas at a pressure, the liquid of the fuel gas filled and stored in the closed-type pressurized container and having a pressure higher than the predetermined pressure is reduced to the predetermined pressure. And measuring the flow rate while supplying the same to the reformer at the predetermined pressure.
[0017]
The method for supplying a fuel gas to a fuel cell system according to the present invention described in claim 4 is the same as the method for supplying a fuel gas to a fuel cell system according to the present invention described in claim 3, wherein the fuel gas is supplied to the reformer. The mass flow rate of the fuel gas having the predetermined pressure is measured.
[0018]
Further, the fuel gas supply device for a fuel cell system according to the present invention as set forth in claim 5, further comprises a fuel cell system including a reformer for reforming fuel gas having a predetermined pressure by adding steam to obtain hydrogen. An apparatus for supplying a fuel gas having a pressure higher than the predetermined pressure, wherein a liquid of the fuel gas having a pressure higher than the predetermined pressure is filled and stored, and a sealed pressurized container capable of replacing itself or replenishing the contents is provided with the sealed gas container. The fuel cell system further includes a reduced pressure supply unit configured to reduce the pressure of the fuel gas liquid higher than the predetermined pressure, which is filled and stored in the mold pressurized container, to the predetermined pressure and supply the reduced pressure to the reformer.
[0019]
The fuel gas supply device for a fuel cell system of the present invention described in claim 6 is the fuel gas supply device for a fuel cell system of the present invention described in claim 5, wherein the closed pressurized container is It is a portable gas cylinder that is replaced as the remaining amount decreases.
[0020]
Further, the fuel gas supply device for a fuel cell system according to the present invention as set forth in claim 7, further comprises a fuel cell system including a reformer that obtains hydrogen by reforming fuel gas having a predetermined pressure by adding steam. A device for supplying a fuel gas at a pressure, wherein the liquid of the fuel gas having a pressure higher than the predetermined pressure, which is filled and stored in a closed-type pressurized container, is reduced to the predetermined pressure, and is supplied to the reformer. It is characterized by comprising a reduced pressure supply means for supplying, and a flow rate measurement means for measuring the flow rate of the fuel gas reduced to the predetermined pressure while maintaining the predetermined pressure.
[0021]
The fuel gas supply device for a fuel cell system according to the present invention described in claim 8 is the fuel gas supply device for a fuel cell system according to the present invention described in claim 7, wherein the flow rate measuring means is provided in the fuel cell system. The mass flow rate of the fuel gas reduced to the pressure was measured.
[0022]
According to the method for supplying fuel gas to the fuel cell system of the present invention described in claim 1 and the apparatus for supplying fuel gas to the fuel cell system of the present invention described in claim 5, both of them are closed pressurized. By counting the number of times the container is filled with the high-pressure fuel gas liquid and the number of times the closed pressurized container itself is replaced, the fuel gas consumption can be ascertained, and an existing gas meter can be used to determine the fuel gas consumption. There is no need to use or adjust the pressure of the fuel gas according to the specifications of the existing gas meter.
[0023]
According to the method for supplying fuel gas to the fuel cell system of the present invention described in claim 2, the method for supplying fuel gas to the fuel cell system of the present invention described in claim 1 is described in claim 6. According to the fuel gas supply device for a fuel cell system of the present invention, in the fuel gas supply device for a fuel cell system of the present invention described in claim 5, any one of the gas cylinders can determine the consumption amount of the fuel gas. This is done by counting the number of replacements.
[0024]
Further, according to the method for supplying fuel gas to the fuel cell system of the present invention described in claim 3 and the apparatus for supplying fuel gas to the fuel cell system of the present invention described in claim 7, both are sealed type. After the pressure of the high-pressure fuel gas liquid filled and stored in the pressurized container is reduced to a predetermined pressure suitable for the reaction with steam in the reformer, the fuel gas is supplied to the reformer while maintaining the predetermined pressure. By measuring the flow rate of the fuel gas, it is not necessary to use an existing gas meter for grasping the consumption of the fuel gas or to adjust the pressure of the fuel gas according to the specifications of the existing gas meter.
[0025]
According to the method for supplying fuel gas to the fuel cell system of the present invention described in claim 4, the method for supplying fuel gas to the fuel cell system of the present invention described in claim 3 is described in claim 8. According to the fuel gas supply device for a fuel cell system of the present invention, in any of the fuel gas supply devices for a fuel cell system of the present invention described in claim 7, the consumption amount of the fuel gas is grasped as a mass flow rate. Will be.
[0026]
The main component in which the fuel gas plays the role of fuel is mixed with the secondary component having a higher specific gravity than the main component, such as an odorant for odorizing the fuel gas, rather than the role of the fuel. In this case, the remaining amount of fuel gas in the closed pressurized container was reduced and the proportion of subcomponents in the fuel gas in the closed pressurized container was increased. As a result of the change in the measured value, it is recognized that the concentration of the auxiliary component in the fuel gas supplied to the reformer has increased.
[0027]
Therefore, the auxiliary component in the fuel gas is used as a catalyst in the reformer used for the reaction between the fuel gas and the steam, a desulfurizer interposed as needed in the preceding stage of the reformer, or a reformer. The fuel cell contains a sulfur component which adversely affects the life of a cell or the like of a fuel cell main body (cell stack) which is provided at a subsequent stage and reacts hydrogen generated in the reformer with oxygen in the air to generate DC electric energy. In such cases, taking into account the situation where the concentration of subcomponents in the fuel gas supplied to the reformer side has increased, replenishment of the fuel gas into the closed A configuration in which the replacement time is determined earlier can be realized.
[0028]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of a method and an apparatus for supplying fuel gas to a fuel cell system according to the present invention will be described with reference to the drawings.
[0029]
FIG. 1 is an explanatory view showing a schematic configuration of a fuel gas supply apparatus for a fuel cell system according to an embodiment of the present invention, in which a method for supplying a fuel gas to a fuel cell system of the present invention is applied, in a partial block diagram. is there.
[0030]
The fuel cell system according to the present embodiment, which is indicated by reference numeral 1 in FIG. 1, is a cogeneration system that generates hot water (or steam) in a process of generating electric energy, and is provided with the present system. It is provided outside the house, and includes a reformer 11, a fuel cell body (cell stack) 13, an inverter 15, and an exhaust heat recovery device 17.
[0031]
The reformer 11 reacts the LP gas, which is a raw material, with water vapor to generate hydrogen and hot water (or steam). The fuel cell body 13 converts the hydrogen generated in the reformer 11 into air. The inverter 15 converts the electric energy generated by the fuel cell main body 13 into the same alternating current as the commercial electric power.
[0032]
In addition, the exhaust heat recovery device 17 is configured to generate heat energy of hot water (or steam) generated in the reformer 11 and heat energy of high-temperature exhaust heat generated when electric energy is generated in the fuel cell body 13. Specifically, the so-called heat exchange is performed between the warm water (or steam) and the exhaust heat and city water drawn in from the outside.
[0033]
The city water heated by the heat energy recovered in the exhaust heat recovery device 17 is stored in a hot water storage tank 3 installed outdoors near the fuel cell system 1, and is appropriately used indoors of the house. The electric energy converted into AC by the inverter 15 is appropriately consumed indoors or the like.
[0034]
The fuel gas supply device of the present embodiment, which is denoted by reference numeral 5 in FIG. 1 and supplies the LP gas as a raw material to the fuel cell system 1 having the above-described configuration, includes a bulk storage tank 51, a pressure regulator 53, a mass A flow meter 55 and a gas pipe 57 are provided.
[0035]
The bulk storage tank 51 (corresponding to a closed-type pressurized container) stores high-pressure liquefied LP gas therein. When the remaining amount is reduced, the bulk storage tank 51 can be filled with high-pressure liquefied LP gas from the outside and can be refilled. The pressure regulator 53 decompresses and vaporizes the high-pressure liquefied LP gas in the bulk storage tank 51 to a pressure suitable for reaction with steam in the reformer 11.
[0036]
The LP gas is usually composed of a mixture of gases such as propane gas and butane gas. However, since it is odorless, it cannot be detected by smell in the event of a leak. A lot of odorants are mixed.
[0037]
And, since butane gas is more easily vaporized than odorant and propane gas is more easily vaporized than butane gas, as the consumption of LP gas in the bulk storage tank 51 progresses, the LP gas remaining in the bulk storage tank 51 accompanying the consumption of LP gas increases. The propane gas component first decreases, then the butane gas component decreases, and eventually the concentration of the odorant increases. As a result, the mass flow rate of LP gas per unit flow rate, that is, the volume flow rate Instead, the flow rate proportional to the calorie amount tends to rapidly decrease when the remaining amount of the LP gas in the bulk storage tank 51 is almost exhausted.
[0038]
The mass flow meter 55 supplies the LP gas decompressed and vaporized by the pressure regulator 53 to the reformer 11 via the gas pipe 57, that is, flows through the gas pipe 57 after being decompressed and vaporized. This is for measuring the flow rate of the LP gas.
[0039]
Incidentally, the mass flow meter 55 measures, for example, the flow rate of the LP gas based on the electromotive force difference between thermopiles arranged on the upstream side and the downstream side of the micro heater in the flow direction of the LP gas flowing through the gas pipe 57, and measures the flow rate of the LP gas. A micro flow sensor that measures the thermal conductivity according to the composition of the LP gas by the electromotive force of the thermopile at a distance from the micro heater in a direction perpendicular to the flow direction, both measured values by the micro flow sensor, and gas A mass flow rate per unit time of the LP gas flowing through the gas pipe 57 is calculated from the sectional area of the pipe 57, and the odorant concentration of the LP gas in the gas pipe 57 is calculated based on the calculated fluctuation pattern of the mass flow rate. A microcomputer that detects that the signal is unnecessarily high, a display unit that displays the result calculated by the microcomputer, etc. It can be configured.
[0040]
In the fuel gas supply device 5 of the present embodiment, the mass flow meter 55 corresponds to the flow rate measuring means in the claims, but the mass flow meter 55 as the flow rate measuring means does not have a display unit. It may be.
[0041]
The fuel cell system 1 has a gas sensor that detects leakage of LP gas supplied from the gas pipe 57 to the reformer 11, and a leakage sensor that detects leakage of hydrogen supplied from the reformer 11 to the fuel cell body 13. A gas detection unit 19 is further provided, in which a hydrogen sensor and a signal output circuit that outputs a leak warning signal having different contents for each detection target when each sensor detects leakage of the gas to be detected. ing.
[0042]
The leak alarm signal from the gas detection unit 19 is once input to the microcomputer of the mass flow meter 55 and LP calculated from two measurement values input at regular intervals from the micro flow sensor of the mass flow meter 55. The micro flow sensor of the mass flow meter 55 outputs when a flow signal indicating the mass flow rate of the gas per unit time or when the odorant concentration of the LP gas in the gas pipe 57 is detected to be higher than necessary. The alarm signal is transmitted from a network control unit (NCU) 7 installed outdoors to a monitoring center (not shown) at a remote place via a telephone line (not shown).
[0043]
At the monitoring center (not shown) that has received the leak alarm signal from the gas detection unit 19, if the detection target indicated by the leak alarm signal is LP gas, a gas shut-off (not shown) provided on the gas pipe 57 A shutoff signal for remotely shutting off the valve is transmitted to the gas shutoff valve via the telephone line and the network control device 7 described above.
[0044]
If the detection target indicated by the leak alarm signal received by the monitoring center (not shown) is hydrogen, a hydrogen cutoff valve (not shown) provided between the reformer 11 and the fuel cell body 13 is remotely controlled. A shut-off signal for shutting off by operation and a shut-off signal for shutting off the gas shut-off valve by remote control are transmitted to both shut-off valves via the telephone line and network control device 7.
[0045]
Further, the monitoring center (not shown) that has received the flow rate signal indicating the mass flow rate of the LP gas per unit time from the mass flow meter 55, based on the mass flow rate indicated by the flow rate signal, determines the consumption amount of the LP gas. In addition to generating the charging information according to the above, the charging timing of the high-pressure liquefied LP gas into the bulk storage tank 51 is determined as needed.
[0046]
Further, at the monitoring center (not shown) which has received the sulfur concentration alarm signal from the mass flow meter 55, the LP gas in the bulk storage tank 51 is reduced to some extent, and the proportion of the odorant in the whole becomes high. If the LP gas continues to be supplied to the fuel cell system 1, the catalyst of the reformer 11 used for reacting the LP gas with water vapor, the cell of the fuel cell main body 13, or the preceding stage of the reformer 11 It is recognized that it is a timing to fill the bulk storage tank 51 with the high-pressure liquefied LP gas, as it may adversely affect the desulfurizer (not shown) and the like interposed in accordance with the pressure and the like, such as corrosion and shortening of the service life. .
[0047]
As is clear from the above description, in the fuel gas supply device 5 of the present embodiment, the pressure regulator 53 and the gas pipe 57 constitute a reduced pressure supply unit in the claims.
[0048]
In the fuel gas supply device 5 of the present embodiment thus configured, the high-pressure liquefied LP gas in the bulk storage tank 51 is directly depressurized by the pressure regulator 53 to a pressure suitable for the reaction with the steam in the reformer 11. No wasteful processes and equipment for pressure adjustment, such as vaporization, pressure reduction after further evacuation, and pressure increase.
[0049]
The number of times or the amount of high-pressure liquefied LP gas charged into the bulk storage tank 51 is counted on the side of a company or the like that performs the work, and based on the counted number, billing information corresponding to the LP gas consumption is generated. In such a case, a configuration in which unnecessary processes and equipment for pressure adjustment do not occur as described above can be realized even if the mass flow meter 55 is omitted.
[0050]
Further, in the present embodiment, the case where the high-pressure liquefied LP gas is stored in the stationary bulk storage tank 51 has been described. You may.
[0051]
Even when the gas cylinder is used as a storage destination for high-pressure liquefied LP gas, the number of replacements of the depleted gas cylinder is counted by the contractor or the like who performs the operation, and the consumption of the LP gas is determined based on the count. In the case of generating the billing information according to the amount, the configuration in which unnecessary processes and equipment for pressure adjustment do not occur as described above can be realized even if the mass flow meter 55 is omitted.
[0052]
Incidentally, the generation of the billing information according to the consumption amount of the LP gas based on the number of times the bulk storage tank 51 is filled with the high-pressure liquefied LP gas and the number of replacements of the gas cylinder is based on indoor gas appliances and gas water heaters. Assuming that only LP gas is used, etc., the filling of the high-pressure liquefied LP gas into the bulk storage tank 51 and the replacement of the gas cylinder are not performed many times a year. Too low and unrealistic.
[0053]
However, if it is assumed that LP gas is also consumed as a raw material for hydrogen generation in the fuel cell system 1 as in the present embodiment, filling of the bulk storage tank 51 with high-pressure liquefied LP gas and replacement of the gas cylinder are not required. Since charging is performed once or twice a month, billing information corresponding to the consumption amount of the LP gas is generated based on the number of times the bulk storage tank 51 is filled with the high-pressure liquefied LP gas and the number of replacements of the gas cylinder. Is not unrealistic.
[0054]
Then, by ensuring the generation of the billing information according to the consumption amount of the LP gas by the various methods as described above, it is not necessary to use the current gas meter for the LP gas for the generation of the billing information. In accordance with the specifications of the gas meter, the high-pressure liquefied LP gas is temporarily reduced to a pressure suitable for household consumption, and the LP gas after passing through the gas meter is increased to a pressure suitable for reaction with steam in the reformer 11. According to the fuel gas supply device 5 of the present embodiment, it is possible to prevent wasteful processes and equipment for pressure adjustment, such as the occurrence of unnecessary processes.
[0055]
In the present embodiment, the mass flow meter 55 is used as the flow rate measuring means. However, instead of the mass flow meter 55, a steam sensor, such as a fluidic sensor or an ultrasonic sensor, flows through the gas pipe 57, and the water vapor in the reformer 11 is used. A sensor having a sensor capable of measuring the flow rate of LP gas having a pressure suitable for the reaction of the above and a calculation means such as a microcomputer for calculating the flow rate flowing through the gas pipe 57 from the output of the sensor is used as a flow rate measurement means. It may be used.
[0056]
However, as the odorant concentration becomes higher than necessary so as to adversely affect the catalyst of the reformer 11 and the cells of the fuel cell body 13 such as corrosion, the LP gas in the bulk storage tank 51 is reduced. A mass flow meter 55 is required to notify a monitoring center (not shown) and to prompt the bulk storage tank 51 to be filled with high-pressure liquefied LP gas.
[0057]
Further, the present invention is not limited to LP gas, and is a fuel gas such as dimethyl ether (DME), which can generate hydrogen by reacting with steam in the reformer 11. Similarly, if a possible closed-type pressurized container uses a fuel gas other than city gas, which is filled and stored in a liquid state at a pressure higher than the pressure suitable for reaction with steam in the reformer 11, Applicable.
[0058]
【The invention's effect】
As described above, according to the method for supplying a fuel gas to a fuel cell system of the present invention described in claim 1, a fuel cell including a reformer that obtains hydrogen by reforming by adding steam to a fuel gas having a predetermined pressure In supplying the fuel gas of the predetermined pressure to the system, a liquid of the fuel gas having a pressure higher than the predetermined pressure is filled and stored in a sealed pressurized container capable of replacing itself or replenishing the contents. The pressure was reduced to the predetermined pressure and supplied to the reformer.
[0059]
Further, according to the fuel gas supply device for a fuel cell system of the present invention described in claim 5, a fuel cell system including a reformer that obtains hydrogen by reforming by adding steam to a fuel gas having a predetermined pressure, A device for supplying the fuel gas having the predetermined pressure, wherein a liquid of the fuel gas having a pressure higher than the predetermined pressure is filled and stored, and a sealed pressurized container capable of replacing itself or replenishing the contents thereof is provided. The apparatus is provided with a reduced pressure supply unit that reduces the pressure of the fuel gas liquid higher than the predetermined pressure stored and filled in the closed pressurized container to the predetermined pressure and supplies the liquid to the reformer.
[0060]
Furthermore, according to the fuel gas supply method for a fuel cell system of the present invention described in claim 3, a fuel cell system including a reformer that obtains hydrogen by reforming by adding steam to a fuel gas having a predetermined pressure. In supplying the fuel gas of the predetermined pressure, the liquid of the fuel gas filled and stored in the closed-type pressurized container and having a pressure higher than the predetermined pressure is reduced to the predetermined pressure, and the fuel gas of the predetermined pressure is discharged. During the measurement, the flow rate was measured and supplied to the reformer at the predetermined pressure.
[0061]
Further, according to the fuel gas supply device for a fuel cell system of the present invention described in claim 7, a fuel cell system including a reformer that obtains hydrogen by reforming by adding steam to a fuel gas having a predetermined pressure, An apparatus for supplying the fuel gas having the predetermined pressure, wherein the liquid of the fuel gas, which is filled and stored in a closed pressurized container and has a pressure higher than the predetermined pressure, is reduced to the predetermined pressure to perform the reforming. And a flow rate measuring means for measuring the flow rate of the fuel gas depressurized to the predetermined pressure while maintaining the predetermined pressure.
[0062]
Therefore, the fuel gas supply method to the fuel cell system of the present invention described in claim 1 and claim 3 and the fuel gas supply to the fuel cell system of the present invention described in claim 5 and claim 7 respectively With any of the devices, while ensuring the situation where the consumption of fuel gas can be grasped and billing information can be generated, the high-pressure liquefied LP gas can be reacted with steam in the reformer without unnecessary pressure adjustment. It can be supplied after being adjusted to a suitable pressure.
[0063]
Further, according to the method for supplying fuel gas to the fuel cell system of the present invention described in claim 2, in the method for supplying fuel gas to the fuel cell system of the present invention described in claim 1, the closed pressurized container is provided. As such, a gas cylinder that is replaced with a decrease in the remaining amount is used.
[0064]
According to the fuel gas supply device for a fuel cell system of the present invention described in claim 6, in the fuel gas supply device for a fuel cell system of the present invention described in claim 5, the closed pressurized container is provided. Is a portable gas cylinder that is replaced as the remaining amount decreases.
[0065]
Therefore, both of the method for supplying fuel gas to the fuel cell system of the present invention described in claim 2 and the apparatus for supplying fuel gas to the fuel cell system of the present invention described in claim 6, By counting the number of replacements, it is possible to easily grasp the amount of fuel gas consumption required for generating billing information.
[0066]
Further, according to the method of supplying fuel gas to the fuel cell system of the present invention described in claim 4, in the method of supplying fuel gas to the fuel cell system of the present invention described in claim 3, the fuel gas is supplied to the reformer. During the measurement, the mass flow rate of the fuel gas at the predetermined pressure is measured.
[0067]
According to the fuel gas supply device for a fuel cell system of the present invention described in claim 8, in the fuel gas supply device for a fuel cell system of the present invention described in claim 7, the flow rate measuring means includes: The mass flow rate of the fuel gas reduced to the predetermined pressure is measured.
[0068]
Therefore, the fuel gas can be supplied to the fuel cell system according to the fourth aspect of the present invention and the fuel gas supply apparatus to the fuel cell system according to the eighth aspect of the present invention. A mixture of a main component that plays a role as a fuel and an auxiliary component such as an odorant for odorizing fuel gas rather than a role as a fuel having a higher specific gravity than the main component In addition, when the remaining amount of fuel gas in the closed-type pressurized container decreases and the proportion of subcomponents in the fuel gas in the closed-type pressurized container increases, this fact is indicated together with the fuel gas consumption. Recognition based on the change in the composition of the fuel gas ascertained, and replenishment of the fuel gas to the closed pressurized container so that even if the sub-component is a substance that has an adverse effect on the reformer, the adverse effect does not occur. Or the closed pressurized container itself Determines-over period, it is possible to extend the life of the reformer side.
[Brief description of the drawings]
FIG. 1 is an explanatory diagram showing a schematic configuration of a fuel gas supply apparatus for a fuel cell system according to an embodiment of the present invention, in which a method for supplying a fuel gas to a fuel cell system of the present invention is applied, in a partial block diagram. It is.
[Explanation of symbols]
1 fuel cell system
11 Reformer
5 Fuel gas supply device
51 Bulk storage tank (closed pressurized container)
53 Pressure regulator (reduced pressure supply means)
55 Mass flow meter (flow measurement means)
57 gas piping (pressure reduction means)

Claims (8)

所定圧の燃料ガスに水蒸気を加えて改質し水素を得る改質器を備える燃料電池システムに、前記所定圧の燃料ガスを供給するに当たり、
自身の交換又は内容物の補充が可能な密閉型加圧容器に充填、貯留された、前記所定圧よりも高圧の前記燃料ガスの液体を、前記所定圧まで減圧させて前記改質器に供給するようにした、
燃料電池システムへの燃料ガス供給方法。
In supplying the fuel gas having the predetermined pressure to a fuel cell system including a reformer for obtaining hydrogen by reforming by adding steam to the fuel gas having a predetermined pressure,
A liquid of the fuel gas, which is filled and stored in a sealed pressurized container capable of replacing itself or replenishing its contents, and having a pressure higher than the predetermined pressure, is reduced to the predetermined pressure and supplied to the reformer. I tried to do
A method for supplying fuel gas to a fuel cell system.
前記密閉型加圧容器として、残量の減少に伴い交換されるガスシリンダを用いるようにした請求項1記載の燃料電池システムへの燃料ガス供給方法。2. The method for supplying a fuel gas to a fuel cell system according to claim 1, wherein a gas cylinder that is replaced as the remaining amount decreases is used as the closed pressurized container. 所定圧の燃料ガスに水蒸気を加えて改質し水素を得る改質器を備える燃料電池システムに、前記所定圧の燃料ガスを供給するに当たり、
密閉型加圧容器に充填、貯留された、前記所定圧よりも高圧の前記燃料ガスの液体を前記所定圧まで減圧させ、該所定圧の燃料ガスを、途中で流量を測定しつつ前記所定圧のまま前記改質器に供給するようにした、
燃料電池システムへの燃料ガス供給方法。
In supplying the fuel gas having the predetermined pressure to a fuel cell system including a reformer for obtaining hydrogen by reforming by adding steam to the fuel gas having a predetermined pressure,
The liquid of the fuel gas, which is filled and stored in a closed pressurized container and has a pressure higher than the predetermined pressure, is reduced to the predetermined pressure, and the fuel gas at the predetermined pressure is measured at a predetermined pressure while measuring a flow rate on the way. As it was supplied to the reformer,
A method for supplying fuel gas to a fuel cell system.
前記改質器に供給する途中の前記所定圧の燃料ガスの質量流量を測定するようにした請求項3記載の燃料電池システムへの燃料ガス供給方法。4. The method for supplying a fuel gas to a fuel cell system according to claim 3, wherein a mass flow rate of the fuel gas having the predetermined pressure during the supply to the reformer is measured. 所定圧の燃料ガスに水蒸気を加えて改質し水素を得る改質器を備える燃料電池システムに、前記所定圧の燃料ガスを供給する装置であって、
前記所定圧よりも高圧の前記燃料ガスの液体が充填、貯留され、自身の交換又は内容物の補充が可能な密閉型加圧容器から、該密閉型加圧容器に充填、貯留された前記所定圧よりも高圧の前記燃料ガスの液体を、前記所定圧まで減圧させて前記改質器に供給する減圧供給手段を備える、
ことを特徴とする燃料電池システムへの燃料ガス供給装置。
An apparatus for supplying a fuel gas having a predetermined pressure to a fuel cell system including a reformer that obtains hydrogen by reforming by adding steam to a fuel gas having a predetermined pressure,
The liquid of the fuel gas having a higher pressure than the predetermined pressure is filled and stored, and from the closed pressurized container capable of replacing itself or replenishing the contents, the predetermined pressure filled and stored in the closed pressurized container. The fuel gas liquid having a pressure higher than the pressure is provided with a reduced pressure supply unit that reduces the pressure to the predetermined pressure and supplies the reduced pressure to the reformer.
A fuel gas supply device for a fuel cell system, characterized in that:
前記密閉型加圧容器は、残量の減少に伴い交換される可搬性のガスシリンダである請求項5記載の燃料電池システムへの燃料ガス供給装置。The fuel gas supply device for a fuel cell system according to claim 5, wherein the closed pressurized container is a portable gas cylinder that is replaced as the remaining amount decreases. 所定圧の燃料ガスに水蒸気を加えて改質し水素を得る改質器を備える燃料電池システムに、前記所定圧の燃料ガスを供給する装置であって、
密閉型加圧容器に充填、貯留された、前記所定圧よりも高圧の前記燃料ガスの液体を、前記所定圧まで減圧させて前記改質器に供給する減圧供給手段と、
前記所定圧まで減圧させた前記燃料ガスの流量を前記所定圧のまま測定する流量測定手段と、
を備えることを特徴とする燃料電池システムへの燃料ガス供給装置。
An apparatus for supplying a fuel gas having a predetermined pressure to a fuel cell system including a reformer that obtains hydrogen by reforming by adding steam to a fuel gas having a predetermined pressure,
Filled and stored in a closed-type pressurized container, a liquid of the fuel gas having a pressure higher than the predetermined pressure, reduced-pressure supply means for reducing the pressure to the predetermined pressure and supplying the liquid to the reformer,
Flow rate measurement means for measuring the flow rate of the fuel gas reduced to the predetermined pressure while maintaining the predetermined pressure;
A fuel gas supply device for a fuel cell system, comprising:
前記流量測定手段は、前記所定圧まで減圧させた前記燃料ガスの質量流量を測定する請求項7記載の燃料電池システムへの燃料ガス供給装置。The fuel gas supply device for a fuel cell system according to claim 7, wherein the flow rate measuring means measures a mass flow rate of the fuel gas reduced to the predetermined pressure.
JP2002375145A 2002-12-25 2002-12-25 Fuel gas supplying method to fuel cell system and its apparatus Abandoned JP2004207052A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002375145A JP2004207052A (en) 2002-12-25 2002-12-25 Fuel gas supplying method to fuel cell system and its apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002375145A JP2004207052A (en) 2002-12-25 2002-12-25 Fuel gas supplying method to fuel cell system and its apparatus

Publications (1)

Publication Number Publication Date
JP2004207052A true JP2004207052A (en) 2004-07-22

Family

ID=32812968

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002375145A Abandoned JP2004207052A (en) 2002-12-25 2002-12-25 Fuel gas supplying method to fuel cell system and its apparatus

Country Status (1)

Country Link
JP (1) JP2004207052A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008084822A (en) * 2006-08-28 2008-04-10 Kyocera Corp Fuel cell device

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5911711A (en) * 1982-07-12 1984-01-21 昭和電線電纜株式会社 Gas filler
JPH0268862A (en) * 1988-09-02 1990-03-08 Nippon Telegr & Teleph Corp <Ntt> Fuel change-over method and device for fuel battery
JPH0547401A (en) * 1991-08-09 1993-02-26 Nippon Telegr & Teleph Corp <Ntt> Fuel changeover method of fuel cell and its apparatus
JPH06111843A (en) * 1992-09-29 1994-04-22 Fuji Electric Co Ltd Fuel supply system for fuel cell generator set
JPH1097862A (en) * 1996-09-24 1998-04-14 Matsushita Electric Ind Co Ltd Power supply
JPH11102718A (en) * 1997-09-25 1999-04-13 Fuji Electric Co Ltd Fuel cell power generating apparatus
JP2000088198A (en) * 1998-09-10 2000-03-31 Yazaki Corp Lp gas feeding system
JP2001068133A (en) * 1999-08-24 2001-03-16 Toshiba Corp Fuel cell device and distributed power source system
JP2002246050A (en) * 2001-02-16 2002-08-30 Matsushita Electric Works Ltd Fuel cell generator
JP2003146609A (en) * 2001-11-15 2003-05-21 Osaka Gas Co Ltd Apparatus for producing hydrogen-containing gas using lp gas and fuel cell system
JP2004055339A (en) * 2002-07-19 2004-02-19 Idemitsu Gas & Life Co Ltd Fuel cell system

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5911711A (en) * 1982-07-12 1984-01-21 昭和電線電纜株式会社 Gas filler
JPH0268862A (en) * 1988-09-02 1990-03-08 Nippon Telegr & Teleph Corp <Ntt> Fuel change-over method and device for fuel battery
JPH0547401A (en) * 1991-08-09 1993-02-26 Nippon Telegr & Teleph Corp <Ntt> Fuel changeover method of fuel cell and its apparatus
JPH06111843A (en) * 1992-09-29 1994-04-22 Fuji Electric Co Ltd Fuel supply system for fuel cell generator set
JPH1097862A (en) * 1996-09-24 1998-04-14 Matsushita Electric Ind Co Ltd Power supply
JPH11102718A (en) * 1997-09-25 1999-04-13 Fuji Electric Co Ltd Fuel cell power generating apparatus
JP2000088198A (en) * 1998-09-10 2000-03-31 Yazaki Corp Lp gas feeding system
JP2001068133A (en) * 1999-08-24 2001-03-16 Toshiba Corp Fuel cell device and distributed power source system
JP2002246050A (en) * 2001-02-16 2002-08-30 Matsushita Electric Works Ltd Fuel cell generator
JP2003146609A (en) * 2001-11-15 2003-05-21 Osaka Gas Co Ltd Apparatus for producing hydrogen-containing gas using lp gas and fuel cell system
JP2004055339A (en) * 2002-07-19 2004-02-19 Idemitsu Gas & Life Co Ltd Fuel cell system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008084822A (en) * 2006-08-28 2008-04-10 Kyocera Corp Fuel cell device

Similar Documents

Publication Publication Date Title
JP5618952B2 (en) Renewable energy storage system
JP4942386B2 (en) Power generation / hot water cogeneration system
JP5178919B2 (en) Power generation system
Weiss-Ungethüm et al. Experimental investigation of a liquid cooled high temperature proton exchange membrane (HT-PEM) fuel cell coupled to a sodium alanate tank
WO2014167907A1 (en) Fuel cell system and method of controlling the fuel cell system
JP2012169047A (en) Fuel cell system
JP4575140B2 (en) Hydrogen storage material deterioration detection device for hydrogen storage tank, hydrogen storage material deterioration detection method for hydrogen storage tank, and hydrogen storage supply system
WO2005018035A1 (en) Fuel cell power generation system, method of detecting deterioration degree of reformer for the system, and fuel cell power generation method
WO2013150722A1 (en) Hydrogen generating device and operation method for same, and fuel cell system
JP2020161306A (en) Fuel cell system
JP2003217619A (en) Cogeneration system
JP2004207052A (en) Fuel gas supplying method to fuel cell system and its apparatus
JP2006162057A (en) Hydrogen supply device, energy supply system and hydrogen storage cartridge
JP5253705B2 (en) Fuel cell system
JP2004055339A (en) Fuel cell system
Vesely et al. Problems of energy saving in Electrical Experimental Network/Smart Grid
JP2000285938A (en) Fuel cell power generation device
JP4221662B2 (en) Fuel cell power generator and its operation method
JP2014192075A (en) Fuel cell power generation system
JP2010153227A (en) Fuel cell system of liquid fuel
JP2007242255A (en) Fuel gas supply device
JP2002164061A (en) Cogeneration system
JP2012104434A (en) Fuel cell system, and method for operating fuel cell system
JP2002008702A (en) Monitor for fuel cell
JP2002352844A (en) Fuel cell system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050223

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080109

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080205

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080403

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090721

A762 Written abandonment of application

Free format text: JAPANESE INTERMEDIATE CODE: A762

Effective date: 20090918