JP3358227B2 - Fuel cell power generation system - Google Patents

Fuel cell power generation system

Info

Publication number
JP3358227B2
JP3358227B2 JP05757693A JP5757693A JP3358227B2 JP 3358227 B2 JP3358227 B2 JP 3358227B2 JP 05757693 A JP05757693 A JP 05757693A JP 5757693 A JP5757693 A JP 5757693A JP 3358227 B2 JP3358227 B2 JP 3358227B2
Authority
JP
Japan
Prior art keywords
steam
water
water supply
fuel cell
power generation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP05757693A
Other languages
Japanese (ja)
Other versions
JPH06275294A (en
Inventor
滋 若槻
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP05757693A priority Critical patent/JP3358227B2/en
Publication of JPH06275294A publication Critical patent/JPH06275294A/en
Application granted granted Critical
Publication of JP3358227B2 publication Critical patent/JP3358227B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】この発明は、燃料電池およびCO
変成器の生成熱を回収してスチ−ムとして排熱利用する
燃料電池発電システムの制御方式に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a fuel cell and a CO
The present invention relates to a control system for a fuel cell power generation system that recovers heat generated by a transformer and uses the waste heat as steam.

【0002】[0002]

【従来の技術】図1は従来の燃料電池発電システムの要
部を模式化して示すシステム構成図である。図におい
て、燃料電池発電システムは、燃料改質器2で天然ガス
やメタノ−ルなどの原燃料を水素リッチな改質ガスに改
質し、CO変成器3で改質ガス中の一酸化炭素を二酸化
炭素に変換して燃料ガスとし、単セルの積層体として構
成される燃料電池(スタック)1の燃料極に供給すると
ともに、空気極に反応空気を供給することにより、電解
質層を挟む燃料極−空気極間で電気化学反応に基づく発
電が行われる。燃料改質器2の水蒸気改質反応は吸熱反
応であり、その反応熱は付属のバ−ナ−の燃焼熱により
供給するが、CO変成器3の変成反応および燃料電池1
の電気化学反応は発熱反応であり、それぞれの反応温度
を維持するために冷却を必要とする。そこで、水蒸気分
離器5および循環ポンプ6を含む冷却水循環系4を設
け、所定温度の冷却水7を燃料電池1に積層された冷却
板に循環させて発電生成熱を回収し、燃料電池1を運転
温度に保持するとともに、CO変成器3にも冷却水7を
循環して生成熱を回収し、反応温度を保持するよう構成
される。
2. Description of the Related Art FIG. 1 is a system configuration diagram schematically showing a main part of a conventional fuel cell power generation system. In the figure, a fuel cell power generation system uses a fuel reformer 2 to reform a raw fuel such as natural gas or methanol into a hydrogen-rich reformed gas, and a CO converter 3 to convert carbon monoxide in the reformed gas. Is converted into carbon dioxide to produce a fuel gas, which is supplied to a fuel electrode of a fuel cell (stack) 1 configured as a single-cell stack, and is supplied with reaction air to an air electrode, thereby providing a fuel sandwiching an electrolyte layer. Power generation based on an electrochemical reaction is performed between the electrode and the air electrode. The steam reforming reaction of the fuel reformer 2 is an endothermic reaction, and the reaction heat is supplied by the combustion heat of an attached burner.
Is an exothermic reaction and requires cooling to maintain the respective reaction temperature. Therefore, a cooling water circulation system 4 including a steam separator 5 and a circulation pump 6 is provided, and cooling water 7 at a predetermined temperature is circulated through cooling plates stacked on the fuel cell 1 to collect heat generated by power generation. In addition to maintaining the operating temperature, the cooling water 7 is also circulated through the CO converter 3 to recover generated heat and maintain the reaction temperature.

【0003】また、生成熱を回収して高温となった冷却
水7を飽和水と水蒸気(スチ−ム)8とに分離する水蒸
気分離器5は、飽和状態の冷却水7の温度を一定に維持
することによってスチ−ム8の圧力を一定に保持するた
め、通常圧力が低下した場合には外部から補助熱を供給
し、圧力が高くなった場合には水蒸気や温水の形で熱を
外部に放出する温度調節を行うよう構成される。さら
に、水蒸気分離器5で発生した水蒸気(スチ−ム)8の
一部は、流量調節弁12を介し,流量調節弁11を介し
て供給される原燃料と混合され、水蒸気改質反応に必要
な反応水として燃料改質器2に供給され、かつスチ−ム
8の持つ熱量も原燃料の加熱源および水蒸気改質反応に
必要な反応熱の一部として利用される。スチ−ム8の他
の一部は外部の熱利用設備16に送られて燃料電池発電
システムの排熱が有効利用される。さらにまた、スチ−
ム8を熱媒体または反応水として有効利用することによ
り水蒸気分離器5内の冷却水7が不足するため、給水ポ
ンプ15および給水調整弁14を介して純水を補給し、
水蒸気分離器5内の水位を一定レベルに保つよう制御さ
れる。即ち、従来の燃料電池発電システムでは、水蒸気
分離器内の水位を水位検出器が検出し、その検出信号に
より設定水位より所定レベル液面が低下したことを感知
したレベル調節器17が、弁14を開閉して純水の供給
を間欠的に制御し、水蒸気分離器内の液面をその設定レ
ベルに保持するフィ−ドバック制御方法が知られてい
る。
[0003] A steam separator 5 for recovering generated heat and separating the high-temperature cooling water 7 into saturated water and steam (steam) 8 keeps the temperature of the saturated cooling water 7 constant. In order to maintain the pressure of the steam 8 at a constant level by maintaining the temperature, an auxiliary heat is supplied from outside when the pressure is reduced, and the heat is supplied in the form of steam or hot water when the pressure is increased. It is configured to control the temperature to be released to the air. Further, a part of the steam (steam) 8 generated in the steam separator 5 is mixed with the raw fuel supplied through the flow control valve 11 through the flow control valve 12, and is required for the steam reforming reaction. The reaction water is supplied to the fuel reformer 2 as fresh reaction water, and the amount of heat of the steam 8 is also used as a heating source of the raw fuel and a part of the reaction heat required for the steam reforming reaction. Another part of the steam 8 is sent to an external heat utilization facility 16 to effectively use the exhaust heat of the fuel cell power generation system. Furthermore, steel
Since the cooling water 7 in the steam separator 5 runs short due to the effective use of the cooling water 7 as the heat medium or the reaction water, pure water is supplied through the water supply pump 15 and the water supply regulating valve 14,
The water level in the steam separator 5 is controlled to be kept at a constant level. That is, in the conventional fuel cell power generation system, the water level in the steam separator is detected by the water level detector, and the level adjuster 17 that senses that the predetermined level is lower than the set water level by the detection signal is provided by the valve 14. There is known a feedback control method for intermittently controlling the supply of pure water by opening and closing the liquid and keeping the liquid level in the steam separator at the set level.

【0004】[0004]

【発明が解決しようとする課題】ところで、一定温度を
保持すべき水蒸気分離器5内の冷却水7の温度は、純水
を補給することにより低下し、冷却水温度と平衡関係に
ある水蒸気分離器内の水蒸気圧力が低下するため、原燃
料に添加するスチ−ム流量、および熱利用設備に供給す
るスチ−ム流量が低下する。ことに、従来の燃料電池発
電システムでは純水の補給を間欠的に制御する方式であ
り、水蒸気分離器内の水位が低くなったときに給水を開
始し、水位が設定レベルに復帰したときに給水を停止す
るため、給水の周期に併せて水蒸気分離器5内の温度お
よび圧力が変動し、これが原因でスチ−ムの供給量が周
期的に変化し、安定した熱量を熱負荷としての燃料改質
器2および熱利用設備16に供給できないという問題が
発生する。
By the way, the temperature of the cooling water 7 in the steam separator 5 to be maintained at a constant temperature is reduced by replenishing pure water, and the temperature of the steam separating water in equilibrium with the cooling water temperature is reduced. Since the steam pressure in the vessel decreases, the steam flow rate added to the raw fuel and the steam flow rate supplied to the heat utilization equipment decrease. In particular, in the conventional fuel cell power generation system, the replenishment of pure water is intermittently controlled, and water supply is started when the water level in the steam separator becomes low, and when the water level returns to the set level. In order to stop the water supply, the temperature and pressure in the steam separator 5 fluctuate in accordance with the cycle of the water supply, and as a result, the supply amount of the steam periodically changes, and a stable heat amount is used as the fuel as the heat load. A problem arises in that supply to the reformer 2 and the heat utilization facility 16 is not possible.

【0005】この発明の目的は、水蒸気分離器への純水
の供給量の変動を抑制することにより、熱負荷へのスチ
−ムの供給流量を安定化することにある。
An object of the present invention is to stabilize the supply flow rate of steam to a heat load by suppressing fluctuations in the supply amount of pure water to a steam separator.

【0006】[0006]

【課題を解決するための手段】上記課題を解決するため
に、この発明によれば、少なくとも燃料電池スタックの
生成熱を回収して所定の運転温度に保持する冷却水循環
系が水蒸気分離器を備え、分離したスチ−ムを原燃料に
添加して燃料改質器に供給するとともに、外部の熱利用
装置への熱媒体として供給するものにおいて、水蒸気分
離器への給水量を前記スチ−ムの供給量に比例して連続
的に制御する給水制御手段を備えてなるものとする。
According to the present invention, a cooling water circulation system for recovering at least heat generated by a fuel cell stack and maintaining the same at a predetermined operating temperature is provided with a steam separator. In addition, the separated steam is added to the raw fuel and supplied to the fuel reformer, and supplied as a heat medium to an external heat utilization device. Water supply control means for continuously controlling in proportion to the supply amount is provided.

【0007】また、給水制御手段が、スチ−ム流量検出
器の検出信号、および給水流量検出器の検出信号を受け
て給水調整弁の一次操作指令を発する主調節器を含むも
のとする。さらに、給水制御手段が、水蒸気分離器に設
けた水位検出器の検出信号および一次操作指令を受け、
設定水位に対する検出水位の変化に対応して給水量を補
正した二次操作指令を給水調節弁に向けて出力する副調
節器を含むものとする。
Further, it is assumed that the water supply control means includes a main controller for receiving a detection signal of the steam flow detector and a detection signal of the water supply flow detector and issuing a primary operation command of the water supply regulating valve. Further, the water supply control means receives a detection signal of a water level detector provided in the steam separator and a primary operation command,
It includes a sub-regulator that outputs a secondary operation command in which the water supply amount is corrected in accordance with a change in the detected water level with respect to the set water level, toward the water supply control valve.

【0008】[0008]

【作用】この発明において、熱負荷にスチ−ムを供給す
ることにより必要となる水蒸気分離器への給水量を、ス
チ−ムの供給量に比例して連続的に制御する給水制御手
段、例えば、スチ−ム流量検出器の検出信号および給水
流量検出器の検出信号を受けて給水調整弁の一次操作指
令を発する主調節器を設けるよう構成したことにより、
給水量がスチ−ム供給量に一致するよう連続的に制御す
ることが可能になり、給水量を間欠的に制御することに
よって生ずるスチ−ム供給量の周期的変動を排除して、
熱負荷にスチ−ムを安定供給する機能が得られる。
In the present invention, water supply control means for continuously controlling the amount of water supply to the steam separator required by supplying steam to the heat load in proportion to the supply amount of steam, for example, By receiving a detection signal of the steam flow rate detector and a detection signal of the feed water flow rate detector, and providing a main controller for issuing a primary operation command of the water supply regulating valve,
It is possible to continuously control the water supply amount so as to match the steam supply amount, and to eliminate the periodic fluctuation of the steam supply amount caused by intermittently controlling the water supply amount.
The function of stably supplying the steam to the heat load is obtained.

【0009】また、給水制御手段が、水蒸気分離器に設
けた水位検出器の検出信号および一次操作指令を受け、
設定水位に対する検出水位の変化に対応して給水量を補
正した二次操作指令を給水量調節弁に向けて出力する副
調節器を含むよう構成すれば、例えば水蒸気分離器内の
圧力を一定に保つために温水を放出することにより水位
が低下した場合、これを感知した副調節器が一次操作指
令を一定量増加するよう補正した二次操作指令により給
水量をカスケ−ド制御するので、水蒸気分離器内の飽和
水温度に急激な変化を生じさせることなく給水量を連続
的に制御することが可能となり、スチ−ム供給量の周期
的変動を排除して、熱負荷にスチ−ムを安定供給する機
能が得られる。
The water supply control means receives a detection signal of a water level detector provided in the steam separator and a primary operation command,
If it is configured to include a sub-regulator that outputs a secondary operation command that corrects the water supply amount corresponding to the change in the detected water level with respect to the set water level toward the water supply amount control valve, for example, to keep the pressure in the steam separator constant If the water level drops due to the discharge of hot water to maintain the water level, the secondary regulator that senses this will cascade control the water supply amount with the secondary operation command corrected to increase the primary operation command by a certain amount. It is possible to continuously control the amount of water supply without causing a sudden change in the temperature of the saturated water in the separator, eliminating the periodic fluctuations in the amount of steam supply and adding steam to the heat load. A stable supply function is obtained.

【0010】[0010]

【実施例】以下、この発明を実施例に基づいて説明す
る。図1はこの発明の実施例になる燃料電池発電システ
ムの要部を模式化して示すシステム構成図であり、従来
技術と同じ構成部分には同一参照符号を付すことによ
り、重複した説明を省略する。図において、冷却水循環
系4の水蒸気分離器5で生成したスチ−ム8は、スチ−
ム流量調節弁12を介して燃料改質器2に,またスチ−
ム流量調節弁13を介して熱利用設備16にそれぞれ供
給されるが、それぞれのスチ−ム流量は流量検出器25
および26で検出され、その検出信号25S,26Sは
主調節器21に入力される。また、給水調節弁24を介
して水蒸気分離器5に供給される純水流量は流量検出器
27により検出され、その検出信号27Sも主調節器2
1に入力され、スチ−ム検出信号25S,26Sの和と
給水流量検出信号27Sとの差を誤差増幅し、両者が一
致するよう給水量を制御する一次操作指令21Sが副調
節器22に向けて出力される。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below based on embodiments. FIG. 1 is a system configuration diagram schematically showing a main part of a fuel cell power generation system according to an embodiment of the present invention. The same components as in the prior art are denoted by the same reference numerals, and redundant description is omitted. . In the figure, the steam 8 generated by the steam separator 5 of the cooling water circulation system 4 is
To the fuel reformer 2 via the system flow control valve 12 and to the steam reformer 2.
The steam flow is supplied to the heat utilization equipment 16 through the steam flow control valve 13.
And 26, and the detection signals 25S and 26S are input to the main controller 21. Further, the flow rate of pure water supplied to the steam separator 5 via the feed water control valve 24 is detected by the flow rate detector 27, and the detection signal 27S is also supplied to the main controller 2
1, a primary operation command 21S for amplifying the difference between the sum of the steam detection signals 25S and 26S and the feedwater flow rate detection signal 27S and controlling the feedwater quantity so that the two coincide with each other is directed to the sub-regulator 22. Output.

【0011】また、水蒸気分離器5内の水位は水位検出
器28により検出され、その検出水位信号28Sが副調
節器22で水位設定値と比較され、検出水位が設定水位
に一致するよう一次操作指令21Sを補正した二次操作
指令22Sが給水調節弁24に向けて出力される。従っ
て、給水調節弁24はスチ−ム8の供給量に一致する量
の給水を行い、かつ水蒸気分離器5内の水位がその設定
水位に一致するようカスケ−ド制御を行うので、給水の
周期的変動および急激な変動を抑制することが可能とな
り、従って、熱利用設備や燃料改質器等の熱負荷へのス
チ−ムの供給を安定化できる利点が得られる。
The water level in the steam separator 5 is detected by a water level detector 28, and the detected water level signal 28S is compared with a water level set value by the sub-controller 22, and a primary operation is performed so that the detected water level matches the set water level. A secondary operation command 22S obtained by correcting the command 21S is output to the water supply control valve 24. Therefore, the water supply control valve 24 supplies water in an amount corresponding to the supply amount of the steam 8 and performs cascade control so that the water level in the steam separator 5 matches the set water level. This makes it possible to suppress dynamic fluctuations and rapid fluctuations, and therefore, it is possible to obtain an advantage that the supply of steam to a heat load such as a heat utilization facility or a fuel reformer can be stabilized.

【0012】[0012]

【発明の効果】前述のように構成された給水制御手段を
有する燃料電池発電システムにおいては、給水量をスチ
−ム供給量に一致するよう連続的に制御することができ
るので、給水量を間欠的に制御することによって従来生
じたスチ−ム供給量の周期的変動が排除され、熱負荷に
スチ−ムを安定供給できる利点が得られる。また、設定
水位に対する検出水位の変化に対応して給水量を補正す
る二次操作指令を発する副調節器を設けることにより、
水位の低下を感知した副調節器が一次操作指令流量を一
定量増加するよう補正した二次操作指令により給水弁の
開度をカスケ−ド制御するので、水蒸気分離器内の飽和
水温度に急激な変化を生じさせることなく給水量を連続
的に制御することが可能となり、スチ−ム供給量の周期
的変動を排除して、熱負荷にスチ−ムを安定供給できる
燃料電池発電システムを提供することができる。
In the fuel cell power generation system having the water supply control means configured as described above, the water supply amount can be continuously controlled so as to match the steam supply amount. In this manner, the periodic fluctuation of the steam supply amount which has conventionally occurred can be eliminated, and the advantage that the steam can be stably supplied to the heat load can be obtained. In addition, by providing a sub-regulator that issues a secondary operation command to correct the water supply amount in accordance with the change in the detected water level with respect to the set water level,
The secondary regulator, which senses the decrease in the water level, cascade-controls the opening of the water supply valve according to the secondary operation command corrected so as to increase the primary operation command flow rate by a certain amount. Provide a fuel cell power generation system that can continuously control the amount of water supply without causing significant changes, eliminate the periodic fluctuation of the amount of steam supply, and stably supply the steam to the heat load. can do.

【図面の簡単な説明】[Brief description of the drawings]

【図1】この発明の実施例になる燃料電池発電システム
の要部を模式化して示すシステム構成図
FIG. 1 is a system configuration diagram schematically showing a main part of a fuel cell power generation system according to an embodiment of the present invention.

【図2】従来の燃料電池発電システムの要部を模式化し
て示すシステム構成図
FIG. 2 is a system configuration diagram schematically showing a main part of a conventional fuel cell power generation system.

【符号の説明】[Explanation of symbols]

1 燃料電池(スタック) 2 燃料改質器 3 CO変成器 4 冷却水循環系 5 水蒸気分離器 6 循環ポンプ 7 冷却水 8 水蒸気(スチ−ム) 11 原燃料調節弁 12 スチ−ム流量調節弁 13 スチ−ム流量調節弁 14 給水弁 15 給水ポンプ 16 熱利用設備 21 主調節器 21S 一次操作指令 22 副調節器 22S 二次操作指令 24 給水調節弁 25 スチ−ム流量検出器 26 スチ−ム流量検出器 27 給水流量検出器 28 水位検出器 REFERENCE SIGNS LIST 1 fuel cell (stack) 2 fuel reformer 3 CO transformer 4 cooling water circulation system 5 steam separator 6 circulation pump 7 cooling water 8 steam (steam) 11 raw fuel control valve 12 steam flow control valve 13 steam -Water flow control valve 14 water supply valve 15 water supply pump 16 heat utilization equipment 21 main controller 21S primary operation command 22 sub-controller 22S secondary operation command 24 water supply control valve 25 steam flow detector 26 steam flow detector 27 Water supply flow rate detector 28 Water level detector

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】少なくとも燃料電池スタックの生成熱を回
収して所定の運転温度に保持する冷却水循環系が水蒸気
分離器を備え、分離したスチ−ムを原燃料に添加して燃
料改質器に供給するとともに、外部の熱利用装置への熱
媒体として供給するものにおいて、水蒸気分離器への給
水量を前記スチ−ムの供給量に比例して連続的に制御す
る給水制御手段を備えてなることを特徴とする燃料電池
発電システム。
A cooling water circulating system for recovering at least heat generated by a fuel cell stack and maintaining it at a predetermined operating temperature is provided with a steam separator, and the separated steam is added to a raw fuel to provide a fuel reformer. A water supply control means for continuously controlling the amount of water supplied to the steam separator in proportion to the amount of steam supplied to the steam separator. A fuel cell power generation system, characterized in that:
【請求項2】給水制御手段が、スチ−ム流量検出器の検
出信号、および給水流量検出器の検出信号を受けて給水
調整弁の一次操作指令を発する主調節器を含むことを特
徴とする請求項1記載の燃料電池発電システム。
2. The water supply control means includes a main controller for receiving a detection signal from the steam flow detector and a detection signal from the water supply flow detector and issuing a primary operation command to the water supply regulating valve. The fuel cell power generation system according to claim 1.
【請求項3】給水制御手段が、水蒸気分離器に設けた水
位検出器の検出信号および一次操作指令を受け、設定水
位に対する検出水位の変化に対応して給水量を補正した
二次操作指令を給水調節弁に向けて出力する副調節器を
含むことを特徴とする請求項2記載の燃料電池発電シス
テム。
3. The water supply control means receives a detection signal of a water level detector provided in a steam separator and a primary operation command, and issues a secondary operation command in which a water supply amount is corrected in accordance with a change in the detected water level with respect to a set water level. 3. The fuel cell power generation system according to claim 2, further comprising a sub-regulator that outputs the water to the water supply control valve.
JP05757693A 1993-03-18 1993-03-18 Fuel cell power generation system Expired - Fee Related JP3358227B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP05757693A JP3358227B2 (en) 1993-03-18 1993-03-18 Fuel cell power generation system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP05757693A JP3358227B2 (en) 1993-03-18 1993-03-18 Fuel cell power generation system

Publications (2)

Publication Number Publication Date
JPH06275294A JPH06275294A (en) 1994-09-30
JP3358227B2 true JP3358227B2 (en) 2002-12-16

Family

ID=13059684

Family Applications (1)

Application Number Title Priority Date Filing Date
JP05757693A Expired - Fee Related JP3358227B2 (en) 1993-03-18 1993-03-18 Fuel cell power generation system

Country Status (1)

Country Link
JP (1) JP3358227B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008098036A (en) * 2006-10-13 2008-04-24 Aisin Seiki Co Ltd Fuel cell system
KR101013857B1 (en) * 2008-11-10 2011-02-14 현대자동차주식회사 Drain control method for water trap

Also Published As

Publication number Publication date
JPH06275294A (en) 1994-09-30

Similar Documents

Publication Publication Date Title
US6818336B2 (en) Fuel control for fuel-processor steam generation in low temperature fuel cell power plant
KR20100030153A (en) Fuel cell system and method to supply fuel the same
JPS6229869B2 (en)
JP3358227B2 (en) Fuel cell power generation system
JP2752808B2 (en) Method and apparatus for switching fuel in fuel cell
JPS58128673A (en) Control of fuel cell power generating plant
JPS6229868B2 (en)
JPS6229867B2 (en)
JP3585249B2 (en) Fuel cell power generator
JPS60208067A (en) Fuel cell power generating system
JPH09199153A (en) Fuel cell power generating apparatus and deterioration detecting method for its reforming device
JP4622244B2 (en) Operation control method of fuel cell power generator
KR101906183B1 (en) Reforming system for submarine
JPS6340269A (en) Cooling line control device of fuel cell power generating plant
JPH08250142A (en) Steam-separator pressure controller for fuel-cell generating system
JPH0547399A (en) Temperature control method and device for reforming device of fuel cell power generating system
JPH10223245A (en) Fuel cell electricity-generating apparatus
JPS58133783A (en) Fuel cell power generating system
JP3264066B2 (en) Fuel cell fuel reformer
JP2665547B2 (en) Molten carbonate fuel cell system and its control method
JPH02213056A (en) Fuel cell power generating plant
JPS58133776A (en) Control system of fuel cell power generating system
JPH0556628B2 (en)
JPS58133771A (en) Control system of fuel cell power generating plant
JPH01217865A (en) Fuel cell power generating system

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081011

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091011

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101011

Year of fee payment: 8

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101011

Year of fee payment: 8

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees