JPH01253167A - Fuel cell power generator - Google Patents

Fuel cell power generator

Info

Publication number
JPH01253167A
JPH01253167A JP63080110A JP8011088A JPH01253167A JP H01253167 A JPH01253167 A JP H01253167A JP 63080110 A JP63080110 A JP 63080110A JP 8011088 A JP8011088 A JP 8011088A JP H01253167 A JPH01253167 A JP H01253167A
Authority
JP
Japan
Prior art keywords
fuel
fuel cell
gas
auxiliary
reformer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63080110A
Other languages
Japanese (ja)
Inventor
Satoshi Kumagai
熊谷 諭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP63080110A priority Critical patent/JPH01253167A/en
Publication of JPH01253167A publication Critical patent/JPH01253167A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0606Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants
    • H01M8/0612Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

PURPOSE:To enable normal power generation operation even if an abrupt increase occurs in a load current by controlling the supply of fuel according to the load current of a fuel cell, and supplying an auxiliary fuel to the burner of a refiner according to the rare of off gas of the fuel cell. CONSTITUTION:In a power generator including a fuel cell using refined methanol and the like, a load current is detected by a current detector 12, and according to the signal, operation of a fuel supply pump 8 is controlled through a fuel controller 13. The signal is input to an auxiliary fuel controller while the rate of off-gas is detected by a flow rate detector 16. When the load increases to reduce the rate of off gas and the value detected is below a specified level, an auxiliary fuel pump 14 is driven and methanol is supplied to a burner 4 of a refiner 4 from an auxiliary fuel tank 15, thereby the reduction in the supply of refined gas caused by the decrease of off gas can be prevented. When the flow rate of off gas is over a specified level, the supply of methanol is stopped.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、燃料タンク、補助燃料タンク、改質装置、
燃料′I11池で構成され、負荷電流が急増したときに
、それに追随した運転が可能な燃料電池発電装[K関す
る。
[Detailed Description of the Invention] [Industrial Application Field] This invention relates to a fuel tank, an auxiliary fuel tank, a reformer,
A fuel cell power generation system [related to K], which is composed of a fuel cell and is capable of operation that follows a sudden increase in load current.

〔従来の技術〕[Conventional technology]

小型燃料電池発1!妓置として、天然ガスの改質に板ぺ
て改質反応温度が大幅に低く、かつ改質工程も簡易であ
るメタノールを燃料とした燃料電池発電装置が注目され
ている。メタノールを水蒸気で改質する反応温度は20
0〜300’C程度であり、かつその反応は吸熱反応に
より進行する。燃料電池へ燃料とし【供給される水素ガ
スは、メタノールと水蒸気を所定の温度に保持された改
質装置に通流させて水素リッチなガスに改質して使用す
る。
Small fuel cell power 1! As an alternative to reforming natural gas, fuel cell power generation devices using methanol as fuel are attracting attention because the reforming reaction temperature is significantly low and the reforming process is simple. The reaction temperature for reforming methanol with steam is 20
The temperature is about 0 to 300'C, and the reaction proceeds as an endothermic reaction. The hydrogen gas supplied to the fuel cell as fuel is reformed into a hydrogen-rich gas by passing methanol and steam through a reformer maintained at a predetermined temperature.

このため燃料電池発電装置には改質装置が備えられる。For this reason, the fuel cell power generation device is equipped with a reformer.

第3図は従来の燃料電池発電装置を示す系統接続図で、
メタノール等の流体燃料を収容した燃料タンク2よりメ
タノールがe材供給ボング8によって改質装置3へ供給
される。改質装置ml:3はバーナ4.気化器6.改質
管7.とよりなり、改質装置に入ったメタノールは、バ
〜す4の熱によって気化器6で気化され、改質管7に入
って水素リッチなガスとなって絞り11を経て燃料電池
lに入る。燃料電池1では、水素リッチなカスと一諸に
電気化学反応により発電に供される酸化剤としての空気
が空気供給ブロア9によって供給され、燃料電池内部の
発熱を冷却する冷却用空気は冷却用ブロアIOKよって
供給されている。
Figure 3 is a system connection diagram showing a conventional fuel cell power generation device.
Methanol is supplied to the reformer 3 by an e-material supply bong 8 from a fuel tank 2 containing a fluid fuel such as methanol. The reformer ml: 3 is the burner 4. Vaporizer 6. Reforming tube7. Therefore, the methanol that has entered the reformer is vaporized in the vaporizer 6 by the heat of the bath 4, enters the reformer tube 7, becomes hydrogen-rich gas, passes through the throttle 11, and enters the fuel cell 1. . In the fuel cell 1, an air supply blower 9 supplies air as an oxidizing agent to be used together with the hydrogen-rich scum to generate power through an electrochemical reaction, and cooling air for cooling the heat generated inside the fuel cell is supplied to the fuel cell 1. Blower is supplied by IOK.

燃料電池から排出され、未反応水系ガスを含むオフガス
は燃料を池よりオフガスライン4Aをiって改質装置3
のバーナ4へ供給され、燃焼されて気化器6と改質管7
の熱源となる。なおバーナ4へはバーナ用ブロア5によ
って燃焼用空気が供給されている。
Off-gas discharged from the fuel cell and containing unreacted water-based gas is transferred from the fuel pond to the off-gas line 4A to the reformer 3.
is supplied to the burner 4 of the
becomes a heat source. Note that combustion air is supplied to the burner 4 by a burner blower 5.

燃料電池発電装置を起動させるときは、燃料電池よりの
オフガスがなく、バーナ4が燃焼できないので、補助燃
料として燃焼させるメタノールを補助燃料タンク15よ
り補助燃料ポンプ14によりてバーナ4へ供給して燃焼
させて、改質装置の熱源として使用し、起動が完了して
、定常運転になり、オフガスがバーナ4へ供給されだす
と、補助燃料ポンプ14を止めて、補助燃料の供給を止
める。
When starting up the fuel cell power generation device, there is no off gas from the fuel cell and the burner 4 cannot burn, so methanol to be burned as auxiliary fuel is supplied from the auxiliary fuel tank 15 to the burner 4 by the auxiliary fuel pump 14 for combustion. The fuel is then used as a heat source for the reformer, and when startup is completed and steady operation begins, and off-gas begins to be supplied to the burner 4, the auxiliary fuel pump 14 is stopped and the supply of auxiliary fuel is stopped.

〔発明が解決しようとする腺翅〕[The glandular wing that the invention attempts to solve]

ところで燃料を池発電装置では、燃料電池がらのオフガ
ス量およびその組成は、燃料電池から給電する負荷電流
の変動により大幅に変化する。例えば第4図は負荷電流
が急増したときの各部の時間的変化を示すグラフで、燃
料電池内で負荷の急増によって一時的に水素ガスを多く
消費されるので、燃料電池から排出されるオフガスでは
、水素ガスの量が減少する。一方燃料電池の発電能力を
増すためには、燃料を前よりも多く改質して多量の水素
リッチなガスを供給しなくてはならず、このため、改質
装置3にも燃料が多量に供給されかつバーナ4は燃焼に
供する燃料を増して気化器6や改質管7に前より多くの
熱量を供給しなくてはならない。しかるに負荷が急増し
たことで前述のごとく、燃料電池から排出されるオフガ
スの水素ガス量の減少で、バーナ4で燃焼される熱量が
減り、改質1fI7の温度が低下し、したがって改質率
も低下し、燃料¥1L池に供給される水素ガスの量も減
少して、発電能力も低下し、燃料電池発電装置として負
荷急増に追随して運転することは不可能となる欠点があ
った。
By the way, in a fuel pond power generation device, the amount of off-gas in the fuel cell and its composition vary significantly due to fluctuations in the load current supplied from the fuel cell. For example, Figure 4 is a graph showing the temporal changes in various parts when the load current increases rapidly.Since a large amount of hydrogen gas is temporarily consumed in the fuel cell due to the sudden increase in load, the off-gas discharged from the fuel cell is , the amount of hydrogen gas decreases. On the other hand, in order to increase the power generation capacity of the fuel cell, it is necessary to reform the fuel more than before and supply a large amount of hydrogen-rich gas. In addition, the burner 4 must increase the amount of fuel it burns to supply more heat to the carburetor 6 and reformer tube 7 than before. However, as the load increased rapidly, as mentioned above, the amount of hydrogen gas in the off-gas discharged from the fuel cell decreased, the amount of heat burned in the burner 4 decreased, the temperature of the reforming 1fI7 decreased, and the reforming rate also decreased. As a result, the amount of hydrogen gas supplied to the 1L fuel pond also decreases, and the power generation capacity also decreases, making it impossible to operate as a fuel cell power generation device in response to a sudden increase in load.

この発明は、前述のような点に鑑み、負荷電流の急増に
対して改質装置のバーナが燃焼してもたらす熱量が不足
することなく、改質管の適正温度に維持して、燃料電池
が要求される負荷電流の急増に追随して発電できる、燃
料電池発電装置を提供することを目的とする。
In view of the above-mentioned points, this invention prevents the burner of the reformer from running out of heat generated by combustion in response to a sudden increase in load current, maintains the reformer tube at an appropriate temperature, and enables the fuel cell to operate. It is an object of the present invention to provide a fuel cell power generation device that can generate electricity following a sudden increase in required load current.

〔課題を解決するための手段〕[Means to solve the problem]

上記課題を解決するために、この発明によれは、メタノ
ール等を燃料として内蔵する燃料タンク。
In order to solve the above problems, the present invention provides a fuel tank containing methanol or the like as fuel.

補助燃料タンク、前記燃料を水素リッチなガスに改質す
る改質装置、ならびに燃料電池からなる燃料電池発電装
置において、前記燃料電池の負荷電流を検出する電流検
出器、その検出された電流に追随する燃料の供給量を演
算出力する燃料制御部および前記燃料電池からのオフガ
ス流量を検出する流量検出器、その検出されたオフガス
流量に追随して補助燃料タンクより、燃料を改質装置の
バーナに供給する量を演算出力する補助燃料制御部を具
備し、前記燃料制御部によりその演算出力に従って燃料
を改質装置に供給し、同時に検出されたオフガス流量が
前記燃料電池の負荷急増によって所定の値を下廻るとき
、補助燃料タンクより改質装置のバーナに前記補助燃料
制御部によりその演算出力に従って補助燃料の供給を開
始し、挽出されたオフガス?Jrr、tが所定の値を上
廻ったときに前記補助燃料の供給を止めるように制御さ
れるものとする。
In a fuel cell power generation device comprising an auxiliary fuel tank, a reformer for reforming the fuel into a hydrogen-rich gas, and a fuel cell, a current detector for detecting a load current of the fuel cell and following the detected current. a fuel control unit that calculates and outputs the amount of fuel supplied; a flow rate detector that detects the off-gas flow rate from the fuel cell; and a flow rate detector that detects the off-gas flow rate from the fuel cell; The fuel control unit includes an auxiliary fuel control unit that calculates and outputs the amount to be supplied, and the fuel control unit supplies fuel to the reformer according to the calculation output, and at the same time, the detected off-gas flow rate reaches a predetermined value due to a sudden increase in the load on the fuel cell. , the auxiliary fuel control section starts supplying auxiliary fuel from the auxiliary fuel tank to the burner of the reformer according to its calculation output, and the recovered off-gas? It is assumed that the supply of the auxiliary fuel is controlled to be stopped when Jr,t exceeds a predetermined value.

〔作 用〕[For production]

この発明の構成においては、燃料電池の負荷電流を検出
して燃料制御部の出力によって燃料供給ポンプを駆動し
改質装置で改質されて水素リッチなガスとなる燃料を前
記負荷電流の急増時にそれに追随して改質装置に供給す
ると同時に、燃料電池から排出されるオフガスの流量を
検出して負荷11r、流の急増によりそれが所定の量よ
り低下したとき、本来は発電装置起動時に使用する目的
で備へられた補助燃料タンクより、メタノールを改質装
置のバーナに供給し燃焼させて、改質装置で負荷電流の
急増に追随した水素リッチなガスを急速に改質して絆料
電池に供給する。
In the configuration of the present invention, the load current of the fuel cell is detected, the fuel supply pump is driven by the output of the fuel control section, and the fuel is reformed by the reformer to become a hydrogen-rich gas when the load current suddenly increases. At the same time as supplying it to the reformer, the flow rate of off-gas discharged from the fuel cell is detected, and when the flow rate drops below a predetermined amount due to a sudden increase in load 11r, it is originally used to start up the power generator. From the auxiliary fuel tank prepared for this purpose, methanol is supplied to the burner of the reformer and combusted, and the reformer rapidly reforms the hydrogen-rich gas that follows the sudden increase in load current, creating a bonding battery. supply to.

〔実施例〕〔Example〕

以下この発明を実施例に基づいて説明する。第1図はこ
の発明の実施例を示すブロック図で、従来例を示した第
3図のブロック図の中と同一の機能を有する部分には同
一の番号が付してあり、(つかえしの説明は省略する。
The present invention will be explained below based on examples. FIG. 1 is a block diagram showing an embodiment of the present invention. Parts having the same functions as those in the block diagram of FIG. 3 showing a conventional example are given the same numbers. Explanation will be omitted.

第1図で燃料電池1の出力端子に設けられたt流検出器
12により負荷[流を検出して、この出力信号は燃料制
御部13に入り、出力信号に基づき燃料タンク2より改
質装置3に供給する燃料供給量を演算し指令信号な発し
て、液材供給ポンプ8を駆動することができる。すなわ
ち負荷電流の変化に追随した量の燃料が、燃料タンク2
より改質装fM、3に供給されて、水素リッチなガスに
改質されて、燃料電池1に送るように制御されている。
In FIG. 1, a load flow is detected by a flow detector 12 installed at the output terminal of a fuel cell 1, and this output signal is input to a fuel control section 13, and based on the output signal, a flow is transmitted from a fuel tank 2 to a reformer. The liquid material supply pump 8 can be driven by calculating the amount of fuel supplied to the pump 3 and issuing a command signal. In other words, the amount of fuel that follows the change in load current flows into the fuel tank 2.
The gas is supplied to the reformer fM, 3, reformed into a hydrogen-rich gas, and then sent to the fuel cell 1.

一方、燃料電池から排出されるオフガス艦は流量検出器
16によって計測され、その出力信号が補助燃料制御部
17に入る。燃料電池の負荷が急増してオフガス量が減
少し、前記流量検出器16の出力信号か補助燃料制御部
で演算された結果、定所の値を下潮るときは、補助燃料
ポンプ14が駆動されて補助燃料タンク15よりメタノ
ールが改質装[3のバーナ4に供給されて燃焼され、気
化器6と改質管7がオフガス減少によって温度低下をき
たすのを防ぐ役目を果す。負荷電流に追随した充分の水
素リッチなガスが改質装[3より燃料電池に供給され、
そこから゛排出されるオフガスも充分な量に達すると、
流量検出器16の出力信号が、補助燃料制御部17で演
算されて所定の値を上廻っていれば、補助燃料ポンプ1
4の運転は停止されて、補助燃料メタノールは改質装f
13のバーナ4への供給をやめる。
On the other hand, the off-gas discharged from the fuel cell is measured by the flow rate detector 16, and its output signal is input to the auxiliary fuel control section 17. When the load on the fuel cell rapidly increases and the amount of off-gas decreases, and the output signal of the flow rate detector 16 falls below a predetermined value as a result of calculation by the auxiliary fuel control section, the auxiliary fuel pump 14 is activated. Then, methanol is supplied from the auxiliary fuel tank 15 to the burner 4 of the reformer [3] and burned, which serves to prevent the temperature of the vaporizer 6 and reformer pipe 7 from decreasing due to a decrease in off-gas. Sufficient hydrogen-rich gas following the load current is supplied to the fuel cell from the reformer [3].
When the off-gas emitted from there reaches a sufficient amount,
If the output signal of the flow rate detector 16 exceeds a predetermined value calculated by the auxiliary fuel control unit 17, the auxiliary fuel pump 1
The operation of No. 4 was stopped and the auxiliary fuel methanol was transferred to the reformer f.
13, the supply to burner 4 is stopped.

燃料電池の負荷電流が急増した場合の本発明の実施例に
よる各部の時間的変化を示すグラフにしたものが第2図
である。この図において負荷電流の急増によって、前述
のごとく改質装置に入る燃料が増加する。改質装#3で
は水素リッチなガスの原料となる燃料の増加と1d1時
にバーナ4で補助燃料のメタノールの燃焼がはじまるの
で、気化器6や改質v7の温度は第4図のグラフのごと
く低下することなく、必伎な温度を保って動作すること
が可能である。したがって発生する水素リッチなガスの
竜も増加し、それが燃料電池に入って発電に供されたあ
とのオフガス量も増加する。すなわち補助燃料のメタノ
ールを改質装置3のバーナ4で臨時に燃焼させることで
、負荷電流に追随した燃料電池発電装置を提供すること
ができる。
FIG. 2 is a graph showing temporal changes in various parts according to an embodiment of the present invention when the load current of the fuel cell increases rapidly. In this diagram, the sudden increase in load current causes an increase in fuel entering the reformer as described above. In reformer #3, the fuel that becomes the raw material for hydrogen-rich gas increases, and at 1d1, the combustion of methanol, which is the auxiliary fuel, starts in burner 4, so the temperatures of carburetor 6 and reformer V7 are as shown in the graph in Figure 4. It is possible to operate while maintaining the required temperature without lowering the temperature. Therefore, the amount of hydrogen-rich gas generated increases, and the amount of off-gas after it enters the fuel cell and is used for power generation also increases. That is, by temporarily burning methanol as auxiliary fuel in the burner 4 of the reformer 3, it is possible to provide a fuel cell power generation device that follows the load current.

〔発明の効果〕〔Effect of the invention〕

この発明は前述のように、燃料電池の負荷電流を検出し
て、負荷の急増に対処した燃料を改質装置へ供給し、同
時に燃料電池より排出されるオフガスのm*を検出して
、改質装置のバーナへ、補助燃料タンクよりメタノール
を供給して燃焼し、改質装置がヒートバランスをくずす
ことなく運転出来るようにすること罠よって、負荷の要
求に追随した燃料電池の運転が可能になり、負荷応答性
の高い発電装置を提供することができる。
As described above, this invention detects the load current of the fuel cell, supplies fuel that can cope with the sudden increase in load to the reformer, and at the same time detects m* of off-gas discharged from the fuel cell. By supplying methanol from the auxiliary fuel tank to the reformer's burner and combusting it, the reformer can operate without disrupting its heat balance.This trap allows the fuel cell to operate according to load demands. Therefore, it is possible to provide a power generation device with high load responsiveness.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例による系統接続図、第2図は本
発明の実施例による各部の時間的変化を示すグラフ、第
3図は従来例による系統接続図、第4崗は従来例による
各部の時間的変化を示すグラフである。 1・・・燃料電池    2・・・燃料タンク3・・・
改質装置t     8・・・燃料供給ポンプ13・・
・燃料制御部  12・・・電流検出器第3図 第4図
Fig. 1 is a system connection diagram according to an embodiment of the present invention, Fig. 2 is a graph showing temporal changes in each part according to an embodiment of the present invention, Fig. 3 is a system connection diagram according to a conventional example, and Fig. 4 is a conventional example. 2 is a graph showing temporal changes in each part due to 1...Fuel cell 2...Fuel tank 3...
Reformer t8...Fuel supply pump 13...
・Fuel control unit 12...Current detector Fig. 3 Fig. 4

Claims (1)

【特許請求の範囲】[Claims] 1)メタノール等を燃料として内蔵する燃料タンク、補
助燃料タンク、前記燃料を水素リッチなガスに改質する
改質装置、ならびに燃料電池からなる燃料電池発電装置
において、前記燃料電池の負荷電流を検出する電流検出
器、その検出された電流に追随する燃料の供給量を演算
出力する燃料制御部および前記燃料電池からのオフガス
流量を検出する流量検出器、その検出されたオフガス流
量に追随して補助燃料タンクより、燃料を改質装置のバ
ーナに供給する量を演算出力する補助燃料制御部を具備
し、前記燃料制御部によりその演算出力に従って燃料を
改質装置に供給し、同時に検出されたオフガス流量が前
記燃料電池の負荷急増によって所定の値を下廻るとき、
補助燃料タンクより改質装置のバーナに前記補助燃料制
御部によりその演算出力に従って補助燃料の供給を開始
し、検出されたオフガス流量が所定の値を上廻ったとき
に前記補助燃料の供給を止めるように制御されることを
特徴とする燃料電池発電装置。
1) Detecting the load current of the fuel cell in a fuel cell power generation device consisting of a fuel tank containing methanol or the like as a fuel, an auxiliary fuel tank, a reformer for reforming the fuel into hydrogen-rich gas, and a fuel cell. a fuel control unit that calculates and outputs the amount of fuel supplied following the detected current; a flow rate detector that detects the off-gas flow rate from the fuel cell; and an auxiliary current detector that follows the detected off-gas flow rate. The auxiliary fuel control section calculates and outputs the amount of fuel to be supplied from the fuel tank to the burner of the reformer. When the flow rate falls below a predetermined value due to a sudden increase in the load on the fuel cell,
The auxiliary fuel control unit starts supplying auxiliary fuel from the auxiliary fuel tank to the burner of the reformer according to its calculated output, and stops supplying the auxiliary fuel when the detected off-gas flow rate exceeds a predetermined value. A fuel cell power generation device characterized in that it is controlled as follows.
JP63080110A 1988-03-31 1988-03-31 Fuel cell power generator Pending JPH01253167A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63080110A JPH01253167A (en) 1988-03-31 1988-03-31 Fuel cell power generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63080110A JPH01253167A (en) 1988-03-31 1988-03-31 Fuel cell power generator

Publications (1)

Publication Number Publication Date
JPH01253167A true JPH01253167A (en) 1989-10-09

Family

ID=13709047

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63080110A Pending JPH01253167A (en) 1988-03-31 1988-03-31 Fuel cell power generator

Country Status (1)

Country Link
JP (1) JPH01253167A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0922713A (en) * 1995-07-06 1997-01-21 Agency Of Ind Science & Technol Power generating system by fuel cell
JP2007213854A (en) * 2006-02-07 2007-08-23 Toyota Motor Corp Output control method of fuel cell device
US7771881B2 (en) * 2005-02-28 2010-08-10 Samsung Sdi Co., Ltd. Fuel supply unit for reformer and fuel cell system with the same
JP2014010944A (en) * 2012-06-28 2014-01-20 Nissan Motor Co Ltd Fuel cell system

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0922713A (en) * 1995-07-06 1997-01-21 Agency Of Ind Science & Technol Power generating system by fuel cell
US7771881B2 (en) * 2005-02-28 2010-08-10 Samsung Sdi Co., Ltd. Fuel supply unit for reformer and fuel cell system with the same
JP2007213854A (en) * 2006-02-07 2007-08-23 Toyota Motor Corp Output control method of fuel cell device
JP2014010944A (en) * 2012-06-28 2014-01-20 Nissan Motor Co Ltd Fuel cell system

Similar Documents

Publication Publication Date Title
US5159900A (en) Method and means of generating gas from water for use as a fuel
KR100647850B1 (en) Fuel cell system and its control method
JP2000082480A (en) Humidifier for fuel cell and water managing device for fuel cell system
JPH07296834A (en) Fuel cell power plant and operating method for reformer of plant
US6607855B2 (en) Control system for fuel cell
JPH01253167A (en) Fuel cell power generator
JP2001176528A (en) Fuel cell system
JPS63181270A (en) Fuel reforming device for fuel cell system
JPH02119061A (en) Methanol reformer of fuel cell
JPH0834106B2 (en) How to stop the fuel cell power generation system
JPS6348774A (en) Combustion gas controller of fuel reformer
JPH0227669A (en) Fuel reformer for fuel cell
JPH05303971A (en) Molten carbonate fuel cell generating system
JPH0349185B2 (en)
JPH0697618B2 (en) Fuel cell power generator
JPS60167275A (en) Temperature controller of fuel cell plant reformer
JPH04284365A (en) Fuel cell power generating device
JPS6345764A (en) Operating controller of fuel cell power generating plant
JP2000178001A (en) Controller for reformer
JPH07169474A (en) Methanol switching type fuel cell system
JPH03266367A (en) Fuel system control unit of fuel cell system
JPH03272567A (en) Hybrid fuel cell
JPS63158759A (en) Operation of fuel cell power generating system
JPH01315957A (en) Fuel cell generator
JPH0298062A (en) Operation control device for fuel cell