JP3239540B2 - Temperature control method of reformer - Google Patents

Temperature control method of reformer

Info

Publication number
JP3239540B2
JP3239540B2 JP16495393A JP16495393A JP3239540B2 JP 3239540 B2 JP3239540 B2 JP 3239540B2 JP 16495393 A JP16495393 A JP 16495393A JP 16495393 A JP16495393 A JP 16495393A JP 3239540 B2 JP3239540 B2 JP 3239540B2
Authority
JP
Japan
Prior art keywords
temperature
combustion
gas
combustion chamber
exhaust gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP16495393A
Other languages
Japanese (ja)
Other versions
JPH0722051A (en
Inventor
一 斉藤
Original Assignee
石川島播磨重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 石川島播磨重工業株式会社 filed Critical 石川島播磨重工業株式会社
Priority to JP16495393A priority Critical patent/JP3239540B2/en
Publication of JPH0722051A publication Critical patent/JPH0722051A/en
Application granted granted Critical
Publication of JP3239540B2 publication Critical patent/JP3239540B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Hydrogen, Water And Hydrids (AREA)
  • Fuel Cell (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、改質器の温度制御方法
に係わり、更に詳しくは、溶融炭酸塩型燃料電池におけ
るプレート型改質器の温度制御方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for controlling the temperature of a reformer, and more particularly to a method for controlling the temperature of a plate-type reformer in a molten carbonate fuel cell.

【0002】[0002]

【従来の技術】溶融炭酸塩型燃料電池は、高効率、かつ
環境への影響が少ないなど、従来の発電装置にはない特
徴を有しており、水力・火力・原子力に続く発電システ
ムとして注目を集め、現在世界各国で鋭意研究開発が行
われている。特に天然ガスを燃料とする溶融炭酸塩型燃
料電池を用いた発電設備では、図4に示すように天然ガ
ス等の燃料ガス1を水素を含むアノードガス2に改質す
る改質器10と、アノードガス2と酸素を含むカソード
ガス3とから発電する燃料電池20とを一般的に備えて
おり、改質器で作られたアノードガスは燃料電池に供給
され、燃料電池内でその大部分(例えば80%)を消費
した後、アノード排ガス4として改質器10の燃焼室C
oに供給される。燃料ガス1は燃料予熱器11により予
熱されて改質器の改質室Reに入る。改質器ではアノー
ド排ガス中の可燃成分(水素、一酸化炭素、メタン等)
を燃焼室で燃焼し、高温の燃焼ガスにより改質室Reを
加熱し内部を流れる燃料を改質する。改質室を出た燃焼
排ガス5は、排ガス循環ライン30の空気予熱器32で
熱回収され、凝縮器33と気水分離器34で水分を除去
され、タービン圧縮機(動力回収装置40)で加圧され
た空気6が混入し、この混合ガスが空気予熱器32で加
熱されてカソードガス3に合流する。これにより、電池
のアノード側で発生した二酸化炭素が、燃焼排ガス5を
介して燃料電池用のカソードガス3に入り、燃料電池の
カソード反応に必要な二酸化炭素をカソード側Cに供給
する。カソードガス3は燃料電池内でその一部が反応し
てカソード排ガス7となり、その一部はカソード入口側
に再循環され、一部は改質器10の燃焼室Coに供給さ
れてアノード排ガス4を燃焼させ、残りは動力回収装置
40に供給されて圧力回収され、系外に排出される。な
お、22は燃料電池の格納容器、8は格納容器に供給さ
れるパージガスである。
2. Description of the Related Art Molten carbonate fuel cells have features that are not found in conventional power generation devices, such as high efficiency and little impact on the environment, and have attracted attention as power generation systems following hydro, thermal and nuclear power. Are being researched and developed in various countries around the world. In particular, in a power generation facility using a molten carbonate fuel cell using natural gas as a fuel, as shown in FIG. 4, a reformer 10 for reforming a fuel gas 1 such as natural gas into an anode gas 2 containing hydrogen, The fuel cell 20 generally includes a fuel cell 20 that generates electricity from the anode gas 2 and the cathode gas 3 containing oxygen. The anode gas produced by the reformer is supplied to the fuel cell, and most of the anode gas is generated in the fuel cell. After consuming 80%, for example, the combustion chamber C of the reformer 10 is used as the anode exhaust gas 4.
o. The fuel gas 1 is preheated by the fuel preheater 11 and enters the reforming chamber Re of the reformer. In the reformer, combustible components in anode exhaust gas (hydrogen, carbon monoxide, methane, etc.)
Is burned in the combustion chamber, and the reforming chamber Re is heated by the high-temperature combustion gas to reform the fuel flowing inside. The combustion exhaust gas 5 that has exited the reforming chamber is heat-recovered by the air preheater 32 in the exhaust gas circulation line 30, water is removed by the condenser 33 and the steam separator 34, and is removed by the turbine compressor (power recovery device 40). The pressurized air 6 is mixed, and the mixed gas is heated by the air preheater 32 and merges with the cathode gas 3. As a result, carbon dioxide generated on the anode side of the battery enters the cathode gas 3 for the fuel cell via the combustion exhaust gas 5 and supplies carbon dioxide required for the cathode reaction of the fuel cell to the cathode side C. A part of the cathode gas 3 reacts in the fuel cell to form a cathode exhaust gas 7, a part of which is recirculated to the cathode inlet side, and a part of which is supplied to the combustion chamber Co of the reformer 10 and the anode exhaust gas 4. Is burned, and the remainder is supplied to the power recovery device 40 to be recovered in pressure and discharged out of the system. Reference numeral 22 denotes a storage container of the fuel cell, and reference numeral 8 denotes a purge gas supplied to the storage container.

【0003】[0003]

【発明が解決しようとする課題】上述した燃料電池発電
装置における改質器10には、改質室Reと燃焼室Co
をそれぞれ平板状に構成して交互に積層した改質器(プ
レート型改質器)が用いられる。かかる改質器の従来の
温度制御では、改質室Reの温度を検出して燃焼室Co
に供給する燃料流量を制御していた。しかし、かかる温
度制御では燃焼室Coの温度が上昇してから改質室Re
の温度が実際に上がるまでに時間遅れがあり、そのため
燃料電池の負荷変動に対して制御遅れが大きい問題点が
あった。また、この制御遅れのため、改質室Reを短時
間に昇温する場合に燃焼室Coの温度が過度に上がり、
内部の燃焼触媒を損傷させることがある問題点があっ
た。更に、制御遅れのため改質室Reの昇温後に一定温
度に保持しようとしても、過熱された燃焼室Coからの
伝熱により改質室Reの温度が引き続き上がり、改質室
Reの改質触媒を損傷させることがある問題点があっ
た。
The reformer 10 in the above-described fuel cell power generator includes a reforming chamber Re and a combustion chamber Co.
Are formed in a plate shape, and are alternately laminated (a plate-type reformer). In the conventional temperature control of such a reformer, the temperature of the reforming chamber Re is detected and the combustion chamber Co is detected.
Was controlling the flow rate of fuel to be supplied. However, in such temperature control, after the temperature of the combustion chamber Co rises, the reforming chamber Re
There is a time lag until the temperature of the fuel cell actually rises, so that there is a problem that the control delay is large with respect to the load fluctuation of the fuel cell. Further, due to this control delay, when the temperature of the reforming chamber Re is increased in a short time, the temperature of the combustion chamber Co excessively increases,
There is a problem that the internal combustion catalyst may be damaged. Further, even if an attempt is made to maintain a constant temperature after the temperature of the reforming chamber Re is increased due to control delay, the temperature of the reforming chamber Re continues to rise due to the heat transfer from the overheated combustion chamber Co, and the reforming of the reforming chamber Re is performed. There is a problem that the catalyst may be damaged.

【0004】本発明はかかる問題点を解決するために創
案されたものである。すなわち、本発明の目的は、制御
遅れが小さく、燃焼室Co及び改質室Reの過熱を防止
することができる改質器の温度制御方法を提供すること
にある。
The present invention has been made to solve such a problem. That is, an object of the present invention is to provide a method of controlling the temperature of a reformer which has a small control delay and can prevent overheating of the combustion chamber Co and the reforming chamber Re.

【0005】[0005]

【課題を解決するための手段】本発明によれば、燃料電
池を出たアノード排ガスをカソード排ガスで燃焼させる
燃焼室と、該燃焼室の熱で燃料ガスを加熱してアノード
ガスに改質する改質室とを備えた改質器の温度制御方法
において、 前記燃焼室でのアノード排ガスとカソード
排ガスの燃焼を触媒燃焼により行い、燃焼室内の燃焼ガ
スの流れと前記改質室内の燃料ガスの流れを対向流と
し、かつ、アノード排ガスに燃料ガスを供給する追焚ラ
インと、カソード排ガスに低温空気を供給する空気ライ
ンと、燃焼室上流部の温度を検出する温度センサーとを
備え、前記温度センサーにより燃焼室上流部の温度を検
出し、該検出温度が所定の範囲になるように前記追焚ラ
インの燃料ガス流量又は前記空気ラインの低温空気流量
を制御する、ことを特徴とする改質器の温度制御方法が
提供される。
According to the present invention, there is provided a combustion chamber for burning an anode exhaust gas discharged from a fuel cell with a cathode exhaust gas, and heating the fuel gas by the heat of the combustion chamber to reform the fuel gas into an anode gas. In a method for controlling the temperature of a reformer including a reforming chamber, the combustion of anode exhaust gas and cathode exhaust gas in the combustion chamber is performed by catalytic combustion, and the flow of combustion gas in the combustion chamber and the flow of fuel gas in the reforming chamber are performed. A counter-current flow, and a reheating line for supplying fuel gas to the anode exhaust gas, an air line for supplying low-temperature air to the cathode exhaust gas, and a temperature sensor for detecting the temperature of the upstream of the combustion chamber, Detecting the temperature of the upstream portion of the combustion chamber with a sensor, and controlling the fuel gas flow rate of the reheating line or the low-temperature air flow rate of the air line so that the detected temperature falls within a predetermined range. A method for controlling the temperature of a reformer is provided.

【0006】[0006]

【作用】プレート型改質器では、平板状の改質室Reと
燃焼室Coが交互に積層されており、燃焼室Coを流れ
る燃焼ガスの流れ(燃焼側)と改質室Reを流れる改質
ガスの流れ(改質側)とは対向流となる。また、触媒燃
焼による燃焼速度は極めて速く、燃焼側でアノード排ガ
ス及びカソード排ガスが燃焼触媒と接触すると短時間に
燃焼が完了し、燃焼室Coの上流部の温度が燃焼側の最
高温度となることがわかった。また、対向流であるた
め、燃焼室Coの温度は改質室Reの温度よりも流れの
全体にわたって僅かに(例えば数十〜百数十℃)高くな
ることがわかった。本発明はかかる新規の知見に基づく
ものである。
In the plate-type reformer, the plate-shaped reforming chambers Re and the combustion chambers Co are alternately stacked, and the flow of the combustion gas flowing through the combustion chambers Co (combustion side) and the reforming flow flowing through the reforming chambers Re. The flow is opposite to the flow of the raw gas (reforming side). Further, the combustion speed by the catalytic combustion is extremely high, and when the anode exhaust gas and the cathode exhaust gas come into contact with the combustion catalyst on the combustion side, the combustion is completed in a short time, and the temperature of the upstream part of the combustion chamber Co becomes the maximum temperature on the combustion side. I understood. Further, it was found that the temperature of the combustion chamber Co was slightly higher (for example, several tens to one hundred and several tens of degrees Celsius) over the entire flow than the temperature of the reforming chamber Re because of the counterflow. The present invention is based on such a new finding.

【0007】すなわち、本発明の構成によれば、改質器
の燃焼室上流部の温度を検出する温度センサーにより燃
焼室の最高温度を検出し、該検出温度が所定の範囲にな
るように前記追焚ラインの燃料ガス流量又は前記空気ラ
インの低温空気流量を制御するので、燃焼室Coの温度
を直接制御でき改質室Reの温度の時間遅れを低減し、
燃料電池の負荷変動に対する制御遅れを小さくすること
ができる。また、改質室Reを短時間に昇温する場合で
も燃焼室Coの最高温度を直接制御するので、燃焼触媒
の損傷を回避することができる。更に、改質室Reの昇
温後に一定温度に保持する場合でも、燃焼室Coの過熱
が防げるので燃焼室Coより温度の低い改質室Reの過
熱は自動的に回避でき、改質触媒の損傷を防ぐことがで
きる。
That is, according to the configuration of the present invention, the maximum temperature of the combustion chamber is detected by the temperature sensor for detecting the temperature of the upstream of the combustion chamber of the reformer, and the detected temperature is set within a predetermined range. Since the fuel gas flow rate of the reheating line or the low-temperature air flow rate of the air line is controlled, the temperature of the combustion chamber Co can be directly controlled to reduce the time delay of the temperature of the reforming chamber Re,
The control delay with respect to the fuel cell load fluctuation can be reduced. Further, even when the temperature of the reforming chamber Re is raised in a short time, the maximum temperature of the combustion chamber Co is directly controlled, so that damage to the combustion catalyst can be avoided. Further, even when the temperature of the reforming chamber Re is maintained at a constant temperature after the temperature is raised, the overheating of the combustion chamber Co can be prevented, so that the overheating of the reforming chamber Re having a lower temperature than the combustion chamber Co can be automatically avoided, and Damage can be prevented.

【0008】[0008]

【実施例】以下に本発明の好ましい実施例を図面を参照
して説明する。なお、各図において共通する部分には同
一の符号を付して使用する。図1は、本発明による方法
を実施するための燃料電池発電装置の部分構成図であ
る。燃料電池発電装置の全体構成は、図4に示した構成
とほぼ同様である。図1において、改質器10は、燃料
電池20(図4)を出たアノード排ガス4をカソード排
ガス7で燃焼させ、その熱で燃料ガス1をアノードガス
2に改質するようになっている。また、この装置は、ア
ノード排ガス4に燃料ガスを供給する追焚ライン12
と、カソード排ガス7に低温空気を供給する空気ライン
14とを備え、追焚ライン12には燃料ガスの流量を調
節する燃料流量調節弁13が設けられ、空気ライン14
には低温空気の流量を調節する空気流量調節弁15が設
けられている。更に、この装置は、改質器10の燃焼室
上流部の温度を検出する温度センサー16と、この温度
センサー16の検出温度に応じて燃料流量調節弁13又
は空気流量調節弁15を制御する制御装置18とを備え
ている。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Preferred embodiments of the present invention will be described below with reference to the drawings. In the drawings, common parts are denoted by the same reference numerals. FIG. 1 is a partial configuration diagram of a fuel cell power generation device for performing a method according to the present invention. The overall configuration of the fuel cell power generator is substantially the same as the configuration shown in FIG. In FIG. 1, the reformer 10 burns the anode exhaust gas 4 exiting the fuel cell 20 (FIG. 4) with the cathode exhaust gas 7, and reforms the fuel gas 1 into the anode gas 2 by using the heat. . In addition, this apparatus has a reheating line 12 for supplying fuel gas to the anode exhaust gas 4.
And an air line 14 for supplying low-temperature air to the cathode exhaust gas 7, and a fuel flow control valve 13 for adjusting the flow rate of the fuel gas is provided in the reheating line 12.
Is provided with an air flow control valve 15 for controlling the flow rate of low-temperature air. Further, the apparatus has a temperature sensor 16 for detecting the temperature of the upstream portion of the combustion chamber of the reformer 10, and a control for controlling the fuel flow control valve 13 or the air flow control valve 15 in accordance with the detected temperature of the temperature sensor 16. Device 18.

【0009】図2は、制御装置18による制御内容を示
す制御系統図である。制御装置18では、温度センサー
16により燃焼室上流部の温度を検出し、該検出温度が
所定の範囲になるように追焚ライン12の燃料ガス流量
又は空気ライン14の低温空気流量を制御する。すなわ
ち、検出温度Tが例えば750℃未満の場合には追焚ラ
イン12の燃料流量調節弁13により燃料ガスの流量を
調節し、改質器10の燃焼室での発熱を増大させて燃焼
室温度を上げる。また、逆に、検出温度Tが例えば80
0℃以上の場合には、空気ライン14の空気流量調節弁
15により冷却空気の流量を調節し、燃焼室の温度を下
げる。これにより、燃焼室上流部の温度を所定の範囲
(例えば750〜800℃)に保持することができる。
FIG. 2 is a control system diagram showing the contents of control by the control device 18. As shown in FIG. The controller 18 detects the temperature of the upstream portion of the combustion chamber by the temperature sensor 16 and controls the fuel gas flow rate of the reheating line 12 or the low-temperature air flow rate of the air line 14 so that the detected temperature falls within a predetermined range. That is, when the detected temperature T is, for example, lower than 750 ° C., the flow rate of the fuel gas is adjusted by the fuel flow rate control valve 13 of the additional heating line 12, and the heat generation in the combustion chamber of the reformer 10 is increased to increase the combustion chamber temperature. Raise. Conversely, if the detected temperature T is, for example, 80
When the temperature is equal to or higher than 0 ° C., the flow rate of the cooling air is adjusted by the air flow rate adjusting valve 15 of the air line 14 to lower the temperature of the combustion chamber. Thereby, the temperature of the upstream part of the combustion chamber can be maintained in a predetermined range (for example, 750 to 800 ° C.).

【0010】図3は、プレート型改質器における燃焼側
と改質側の温度分布を模式的に示したものである。プレ
ート型改質器では、平板状の改質室Reと燃焼室Coが
交互に積層されており、燃焼室Coを流れる燃焼ガスの
流れ(燃焼側)と改質室Reを流れる改質ガスの流れ
(改質側)とは対向流となる。また、触媒燃焼による燃
焼速度は極めて速く、燃焼側でアノード排ガス及びカソ
ード排ガスが燃焼触媒と接触すると短時間に燃焼が完了
し、燃焼室Coの上流部(図にAで示す)の温度が燃焼
側の最高温度(例えば800℃)となる。また、対向流
であるため、燃焼室Coの温度は改質室Reの温度より
も流れの全体にわたって僅かに(例えば数十〜百数十
℃)高くなっている。従って、この図に於けるA点(燃
焼室上流部)の温度を検出し、この検出温度が所定の範
囲になるように追焚ライン12の燃料ガス流量又は空気
ライン14の空気流量を制御すれば、燃焼室Coの温度
を直接制御でき改質室Reの温度の時間遅れを低減し、
燃料電池の負荷変動に対する制御遅れを小さくすること
ができる。また、改質室Reを短時間に昇温する場合で
も燃焼室Coの最高温度を直接制御するので、燃焼触媒
の損傷を回避することができる。更に、改質室Reの昇
温後に一定温度に保持する場合でも、燃焼室Coの過熱
が防げるので燃焼室Coより温度の低い改質室Reの過
熱は自動的に回避でき、改質触媒の損傷を防ぐことがで
きる。
FIG. 3 schematically shows the temperature distribution on the combustion side and the reforming side in the plate type reformer. In the plate-type reformer, the plate-shaped reforming chamber Re and the combustion chamber Co are alternately stacked, and the flow of the combustion gas flowing through the combustion chamber Co (combustion side) and the flow rate of the reformed gas flowing through the reforming chamber Re are changed. The flow (reforming side) is a counter flow. Further, the combustion speed by the catalytic combustion is extremely high, and when the anode exhaust gas and the cathode exhaust gas come into contact with the combustion catalyst on the combustion side, the combustion is completed in a short time, and the temperature of the upstream portion (indicated by A in the figure) of the combustion chamber Co increases. Side (eg, 800 ° C.). In addition, because of the counterflow, the temperature of the combustion chamber Co is slightly higher (for example, several tens to one hundred and several tens degrees Celsius) than the temperature of the reforming chamber Re over the entire flow. Therefore, the temperature at point A (upstream of the combustion chamber) in this figure is detected, and the fuel gas flow rate in the reheating line 12 or the air flow rate in the air line 14 is controlled so that the detected temperature falls within a predetermined range. If the temperature of the combustion chamber Co can be directly controlled, the time delay of the temperature of the reforming chamber Re can be reduced,
The control delay with respect to the fuel cell load fluctuation can be reduced. Further, even when the temperature of the reforming chamber Re is raised in a short time, the maximum temperature of the combustion chamber Co is directly controlled, so that damage to the combustion catalyst can be avoided. Further, even when the temperature of the reforming chamber Re is maintained at a constant temperature after the temperature is raised, the overheating of the combustion chamber Co can be prevented, so that the overheating of the reforming chamber Re having a lower temperature than the combustion chamber Co can be automatically avoided, and Damage can be prevented.

【0011】[0011]

【発明の効果】上述したように、本発明の改質器の温度
制御方法は、制御遅れを小さくし、かつ燃焼室Co及び
改質室Reの過熱を防止することができる優れた効果を
有する。
As described above, the temperature control method for a reformer according to the present invention has an excellent effect of reducing the control delay and preventing overheating of the combustion chamber Co and the reforming chamber Re. .

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明による方法を実施するための燃料電池発
電装置の部分構成図である。
FIG. 1 is a partial configuration diagram of a fuel cell power generation device for performing a method according to the present invention.

【図2】制御装置の制御系統図である。FIG. 2 is a control system diagram of a control device.

【図3】プレート型改質器における燃焼側と改質側の温
度分布図である。
FIG. 3 is a temperature distribution diagram of a combustion side and a reforming side in a plate-type reformer.

【図4】従来の燃料電池発電装置の全体構成図である。FIG. 4 is an overall configuration diagram of a conventional fuel cell power generation device.

【符号の説明】[Explanation of symbols]

1 燃料ガス 2 アノードガス 3 カソードガス 4 アノード排ガス 5 燃焼排ガス 6 空気 7 カソード排ガス 8 パージガス 10 改質器 11 燃料予熱器 12 追焚ライン 13 燃料流量調節弁 14 空気ライン 15 空気流量調節弁 16 温度センサー 18 制御装置 20 燃料電池 22 格納容器 30 排ガス循環ライン 32 空気予熱器 33 凝縮器 34 気水分離器 40 動力回収装置 Re 改質室 Co 燃焼室 A アノード側 C カソード側 DESCRIPTION OF SYMBOLS 1 Fuel gas 2 Anode gas 3 Cathode gas 4 Anode exhaust gas 5 Combustion exhaust gas 6 Air 7 Cathode exhaust gas 8 Purge gas 10 Reformer 11 Fuel preheater 12 Reheating line 13 Fuel flow control valve 14 Air line 15 Air flow control valve 16 Temperature sensor REFERENCE SIGNS LIST 18 control device 20 fuel cell 22 containment vessel 30 exhaust gas circulation line 32 air preheater 33 condenser 34 steam-water separator 40 power recovery device Re reforming chamber Co combustion chamber A anode side C cathode side

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) H01M 8/04 H01M 8/06 ──────────────────────────────────────────────────続 き Continued on the front page (58) Field surveyed (Int.Cl. 7 , DB name) H01M 8/04 H01M 8/06

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 燃料電池を出たアノード排ガスをカソー
ド排ガスで燃焼させる燃焼室と、該燃焼室の熱で燃料ガ
スを加熱してアノードガスに改質する改質室とを備えた
改質器の温度制御方法において、前記燃焼室でのアノード排ガスとカソード排ガスの燃焼
を触媒燃焼により行い、 燃焼室内の燃焼ガスの流れと前記改質室内の燃料ガスの
流れを対向流とし、 かつ 、アノード排ガスに燃料ガスを供給する追焚ライン
と、カソード排ガスに低温空気を供給する空気ライン
と、燃焼室上流部の温度を検出する温度センサーとを備
え、 前記温度センサーにより燃焼室上流部の温度を検出し、
該検出温度が所定の範囲になるように前記追焚ラインの
燃料ガス流量又は前記空気ラインの低温空気流量を制御
する、ことを特徴とする改質器の温度制御方法。
And 1. A fuel cell combustion chamber Ru by burning anode exhaust gas in the cathode exhaust gas emitted, and a reforming chamber for reforming the anode gas by heating the fuel gas in the heat of the combustion chamber <br The method of controlling the temperature of the reformer, wherein the combustion of the anode exhaust gas and the cathode exhaust gas in the combustion chamber
By the catalytic combustion, the flow of the combustion gas in the combustion chamber and the fuel gas in the reforming chamber
A counter-current flow, and a reheating line for supplying fuel gas to the anode exhaust gas, an air line for supplying low-temperature air to the cathode exhaust gas, and a temperature sensor for detecting a temperature of an upstream portion of the combustion chamber; The temperature of the upstream of the combustion chamber is detected by a sensor,
A method for controlling the temperature of a reformer, comprising: controlling a fuel gas flow rate in the reheating line or a low-temperature air flow rate in the air line so that the detected temperature falls within a predetermined range.
JP16495393A 1993-07-05 1993-07-05 Temperature control method of reformer Expired - Fee Related JP3239540B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16495393A JP3239540B2 (en) 1993-07-05 1993-07-05 Temperature control method of reformer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16495393A JP3239540B2 (en) 1993-07-05 1993-07-05 Temperature control method of reformer

Publications (2)

Publication Number Publication Date
JPH0722051A JPH0722051A (en) 1995-01-24
JP3239540B2 true JP3239540B2 (en) 2001-12-17

Family

ID=15803007

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16495393A Expired - Fee Related JP3239540B2 (en) 1993-07-05 1993-07-05 Temperature control method of reformer

Country Status (1)

Country Link
JP (1) JP3239540B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4660982B2 (en) * 2000-10-06 2011-03-30 株式会社デンソー Hydrogen supply device
US20040197239A1 (en) * 2003-04-04 2004-10-07 Mirkovic Vesna R. Temperature control in combustion process

Also Published As

Publication number Publication date
JPH0722051A (en) 1995-01-24

Similar Documents

Publication Publication Date Title
JPS5823169A (en) Fuel cell power generating equipment and its operation
JP4154680B2 (en) Fuel cell power generator that injects steam into the anode exhaust gas line
JPH0845526A (en) Multistage reaction type fuel cell
JPH02168570A (en) Method of generating
JP3239540B2 (en) Temperature control method of reformer
JP3344439B2 (en) Combustion device and combustion method for turbine compressor
JP3139574B2 (en) Fuel cell generator
JP3072630B2 (en) Fuel cell combined cycle generator
JP2000348749A (en) Starting method of fuel cell power generation plant
JP3928675B2 (en) Combined generator of fuel cell and gas turbine
JP3137143B2 (en) Temperature control method for fuel cell power plant and fuel cell power plant equipped with temperature control device
JP3573239B2 (en) Fuel cell power generator
JP3467759B2 (en) Control method of outlet temperature of reformer
JP3263936B2 (en) Fuel cell generator
JPH05343083A (en) Fuel cell power generation device
JPH08339815A (en) Fuel cell power generation device
JPH1167252A (en) Fuel cell power generating device
JPH0722045A (en) Method for controlling fuel cell power generating system
JP2807635B2 (en) Temperature control method for fuel cell power generation equipment
JP2000348742A (en) Fuel cell power generation facility
JP3509948B2 (en) Fuel cell power generator
JP3741288B2 (en) Method and apparatus for controlling cathode temperature of molten carbonate fuel cell power generation facility
JPH11354143A (en) Fuel cell power generating set with anode circulation line
JPH0722049A (en) Fuel cell testing device
JP3589363B2 (en) How to start the fuel cell power plant

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees