JP2004087350A - Solid electrolyte fuel cell and solid electrolyte fuel cell power generation provision - Google Patents

Solid electrolyte fuel cell and solid electrolyte fuel cell power generation provision Download PDF

Info

Publication number
JP2004087350A
JP2004087350A JP2002248117A JP2002248117A JP2004087350A JP 2004087350 A JP2004087350 A JP 2004087350A JP 2002248117 A JP2002248117 A JP 2002248117A JP 2002248117 A JP2002248117 A JP 2002248117A JP 2004087350 A JP2004087350 A JP 2004087350A
Authority
JP
Japan
Prior art keywords
air
fuel
chamber
tube
exhaust
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002248117A
Other languages
Japanese (ja)
Inventor
Shigenori Koga
古賀 重徳
Masatoshi Kudome
久留 正敏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2002248117A priority Critical patent/JP2004087350A/en
Publication of JP2004087350A publication Critical patent/JP2004087350A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a solid electrolyte fuel cell capable of removing surplus reaction heat in order to retain a temperature of a battery part at a prescribed temperature without supplying a large amount of air and with the minimum amount of the necessary air. <P>SOLUTION: (1) An air heating tube to supply air to a battery room 39 is installed, the air is heated and supplied recovering reaction heat of power generation by supplying the air through the air heating tube, the surplus cell reaction heat is absorbed by heating the air circulated in the air heating tube 39, the amount of air supply is reduced by decreasing air temperature at an inlet, and loss of exhaust gas is decreased by reducing a potential heat of the exhaust air and the exhaust gas. (2) A recirculation tube 51 and a recirculation exhaust air mixing device (for example, an ejector 52) are installed between an air exhaust tube 49 and an air supply tube 50, and the exhaust air is mixed into the supply air, thus raising the temperature of the supply air, then the amount of the air supply is reduced by decreasing the inlet temperature, and the loss of the exhaust gas is decreased by reducing the potential heat of the exhaust air and the exhaust gas. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は固体電解質燃料電池(SOFC)及び固体電解質燃料電池発電設備に関する。
【0002】
【従来の技術】
図5、図6に基づいて従来の固体電解質燃料電池(SOFC)の構成を説明する。図5には従来のSOFCの概略構成を表す斜視状況、図6には従来のSOFCの概略断面を示してある。
【0003】
SOFC1は高温{電解質がYSZ(Yttria Stabilized Zirconia)の場合は900〜1000℃}で作動する燃料電池であり、断熱・保温材で内貼りされた容器(ケーシング)2に収納される。ケーシング2の内部は、上部より、燃料室管板3、排ガス室管板4、空気室管板5及び排空気室管板6で仕切られ、燃料室7、排ガス室8、電池室9、空気室10及び排空気室11が形成されている。空気室管板5には電池室9と空気室10とを連通する多数の分散孔5aが設けられている。
【0004】
電池室9の内部には電池管12が配設され、電池管12は外管13と内管14の2重管構造で構成されている。電池管12の外管13の表面には燃料極、電解質、空気極を備えた電池が形成されている。2重管構造の電池管12の内管14及び外管13はそれぞれ燃料室管板3及び排ガス室管板4で支持されている。内管14は両端部が開放状態にされ、外管13は下端部が閉じられて上端部のみが開放状態にされている。
【0005】
電池室9の内部には両端が開口状態とされた排空気管20が配設され、排空気管20の下端は排空気室11に開口した状態で排空気室管板6に支持され、空気室10を貫通して電池室9に上端部が伸びて上端が電池室9に開口している。
【0006】
燃料室7には燃料供給管15が接続され、排ガス室8には排ガス排出管16が接続されている。また、空気室10には空気供給管17が接続され、排空気室11には空気排出管18が接続されている。
【0007】
燃料供給管15から燃料室7に供給された燃料は燃料室7から内管14に送られ、内管14の下端部で反転し内管14と外管13の間のアンニュラー部を上昇して排ガス室8に送られる。空気供給管17から空気室10に供給された空気は分散孔5aから電池室9に供給される。外管13の表面の電池で電池反応をした排空気は上端から排空気管20に送られ、排空気管20の下端から排空気室11に送られる。
【0008】
上述したSOFC1では、供給された燃料の保有する化学エネルギーの40〜50%が空気に直接変換され、40〜50%が反応熱(電池反応には、束縛エネルギーの変化および内部抵抗(ジュール熱等)による熱発生が伴い、これを反応熱と総称する)が発生し、残りが未反応成分となる。
【0009】
一方、SOFC1は900〜1000℃で動作するので、電池室9の全域を所定の適正温度(Top)に一様保持することが必要である。即ち、連続して安定な発電を継続するためには、所定量の燃料及び反応空気を前記温度レベルの保持に適した温度に昇温して電池部に供給し、反応生成物および未反応物の連続排出と余剰の反応熱の連続的排出を行って、電池作動条件を一定に保持することが必要である。
【0010】
【発明が解決しようとする課題】
反応熱除去と電池室内部温度の均一化に関し、電池部の温度を所定温度に保持するための余剰反応熱排出の方法には下記の4方法が考えられている。
【0011】
a.燃料の内部改質(吸熱反応)による反応熱の吸収
SOFC1における電池反応に有効な燃料成分はH2 及びCOであるので、例えば、燃料がメタン(CH4 )であれば改質して、COとH2 にすることが必要である。この反応は下記の通り吸熱反応であるので、この改質反応を電池部近傍で行わせる(内部改質)ことにより、反応熱の一部を燃料に回収することができる。
CH4 +H2 O → CO+3H2 −206.3 kJ/mol
しかし、メタンの低位発熱量は801kJ/molであり、その約50%が反応熱になるとすれば反応熱量は約400kJ/molであるので、内部改質だけで温度制御(反応熱除去)することはできない。
【0012】
b.燃料及び反応空気の供給温度の低下
内部改質だけでは必要な熱除去ができないので、燃料Wf(kg)および空気Wa(kg)を所定の電池動作温度(Top)以下の温度(それぞれTfi、Tai)で供給することが必要である。空気および燃料による吸熱量は次式で表すことができる。
Qaf=Wa×Ca×(Top−Tai)+Wf×Cf×(Top−Tfi)
ここで、Ca及びCfはそれぞれ空気および燃料の比熱である。
【0013】
内部改質を行い、燃料および空気の低温供給により反応熱吸収(温度制御)を行う場合の必要空気温度は、例えば、理論燃空比の空気量を供給する場合では、約300℃の低温で供給することが必要になる。このような低い温度の空気および燃料をSOFC1に供給すると、導入部は電池動作温度より温度が低下し電池機能が著しく低下する。この結果電池効率が低下した発電量が減少するので(電池面積当りの発電量減少)電池の大型化を要する。即ち、電池部供給温度を適正温度以下に低下することは合理的な手段にならない。
【0014】
c.空気量の増加
上記b.項のように供給空気温度の低下は電池機能の観点から制限されるので、供給空気の温度Taiと電池動作温度Topとの差を少なくし、供給空気量Waの増加により余剰反応熱の吸熱量を増加する方法がある。即ち、電池からの排空気および排ガスの保有熱を利用して、外部熱交換器により供給空気の温度を電池作動温度近傍の適正温度に上げ、供給空気量の増加により余剰熱を吸収除去し電池温度を適正温度Topに保持する方法である。
【0015】
この方法においては、排空気量増加による外部に排出される熱量(排ガス保有熱)の増加に伴う熱損失の増加およびファン動力の増加により効率低下と、熱交換器の大型化の問題が付随する。
【0016】
d.冷却媒体による熱除去
電池内部に第三の熱除去媒体を用いた熱交換器を設置し熱除去する方法や、蒸気の注入方法の適用も可能であるが、何れにおいても、上記b.項に類似した温度低下やc.項の電池部から外部への排出熱量増加や補機動力増加による発電効率の低下が伴う。
【0017】
上記構成のSOFC1は、通風機により空気が供給され、排空気と排ガスとが混合されて燃焼された燃焼ガスとの間で空気が空気加熱器で加熱される。そして、熱交換された燃焼ガスは排熱回収ボイラで熱回収されて煙突から大気開放される。排熱回収ボイラでは、燃焼ガスの熱により給水が飽和水とされたり蒸気とされ、生成された飽和水や蒸気は必要機器に供給される。
【0018】
このようなSOFC1を適用したプラントにおいては、供給空気の温度をSOFC1の機能温度以上に上げ(但し、十分に高いということではない)、空気量の増加により余剰反応熱の吸収による除熱を行う方法が採られている。
【0019】
このため、排ガス量が増加して排ガス保有熱量が増加し、電池の発電効率低下および通風機の動力増加によるプラント性能低下の問題が生じる。また、燃焼ガスにより空気を加熱する空気加熱器が大型化し、空気を高温にするために燃焼ガス(排ガス)の保有熱が損失する問題があった。
【0020】
即ち、SOFC1は空気加熱器が電池室9の内部に設置されていない(内部加熱ではない)ので、電池反応による発生熱は電池内部における空気の内部加熱に利用されない。従って、電池室外部に設置した空気加熱器(外部空気加熱器)により予め電池作動温度に近い温度に加熱した空気を電池に供給することが必要となる。
【0021】
このため、単位流量当りの空気の反応熱吸収量(吸熱効果)は小さいので、反応余剰熱排出のために空気量増加(空気比>2.5)が必要となる。空気量の増加は、即ち、排ガス量の増加と排ガス保有熱の増加となり、外部熱交換器の大型化や補機動力の増大を伴い電池の送電端発電量の減少、即ち、効率低下となる。また、排熱ボイラの熱損失も増大しプラント熱効率が低下する。
【0022】
以上のように、SOFC1を適用したプラントでは、電池室内部における反応熱の吸熱除去(空気の内部加熱)が少ない場合は、空気量の増加が必要になり、排ガス保有熱損失の増大、外部熱交換器及び通風機等の補器の大型化、消費電力の増加により発電効率およびプラント熱効率の低下が生じる。
【0023】
本発明は上記状況に鑑みてなされたもので、大量の空気を供給することなく必要最小限の空気量の供給で電池部の温度を所定温度に保持するための余剰反応熱の除去が行える固体電解質燃料電池を提供することを目的とする。
【0024】
本発明は上記状況に鑑みてなされたもので、大量の空気を供給することなく必要最小限の空気量の供給で電池部の温度を所定温度に保持するための余剰反応熱の除去が行える固体電解質燃料電池を備えた固体電解質燃料電池発電設備を提供することを目的とする。
【0025】
【課題を解決するための手段】
上記目的を達成するための本発明の固体電解質燃料電池は、管内もしくは管外のいずれか一方に供給される燃料と燃料が供給されない管外もしくは管内のいずれか一方に供給される空気中の酸素とを電解質を介して電池反応させて発電する燃料電池管を複数備え、空気が供給される部位に空気加熱管を設け、空気加熱管を通して空気を供給することで発電の反応熱を回収することで空気を加熱して供給することを特徴とする。
【0026】
そして、請求項1に記載の固体電解質燃料電池において、
反応を終えた排空気の一部を空気加熱管の入口側に再循環させる再循環系を備え、空気加熱管に供給される空気に排空気を混入して空気の温度を高めることを特徴とする。
【0027】
また、請求項1もしくは請求項2のいずれか一項に記載の固体電解質燃料電池において、
空気加熱管は複数設けられ、空気加熱管に送給される空気の圧力を均一に維持する均一維持機構を備えたことを特徴とする。
【0028】
上記目的を達成するための本発明の固体電解質燃料電池は、管内もしくは管外のいずれか一方に供給される燃料と燃料が供給されない管外もしくは管内のいずれか一方に供給される空気中の酸素とを電解質を介して電池反応させて発電する燃料電池管を複数備え、反応を終えた排空気の一部を空気供給部に再循環させる再循環系を備え、供給される空気に排空気を混入して供給される空気の温度を高めることを特徴とする。
【0029】
また、請求項1乃至請求項4のいずれか一項に記載の固体電解質燃料電池において、
管の壁面に燃料を改質する改質触媒を設け、燃料改質反応による吸熱により発電の反応熱の一部を回収すると共に空気加熱管を通して空気を供給することで発電の残りの反応熱により空気を加熱して供給することを特徴とする。
【0030】
また、請求項5に記載の固体電解質燃料電池において、
改質触媒は燃料極であることを特徴とする。
【0031】
また、請求項1乃至請求項6のいずれか一項に記載の固体電解質燃料電池において、
管内に燃料が供給され、管の外壁に燃料極及び電解質及び空気極が設けられていることを特徴とする。
【0032】
上記目的を達成するための本発明の固体電解質燃料電池は、
容器上部の内部に設けられる燃料室と、
燃料室の下部に設けられ燃料室管板により仕切られる排ガス室と、
排ガス室の下部に設けられ排ガス室管板により仕切られる電池室と、
電池室の下部に排空気室管板により仕切られて設けられる排空気室と、
排空気室の下部に設けられ空気室管板により仕切られる空気室と、
両端が開放され上端部が燃料室に開口して配されると共に下端部が電池室に配される燃料内管と、
下端が閉じられると共に上端が開放されて燃料内管の外側に配され下端部が燃料内管の開口を覆うと共に上端部が排ガス室に開口して配される多孔質状の燃料外管と、
排空気室管板に設けられる多数の排空気排出孔と、
両端が開放され上端部が電池室の上方に配され下端部が空気室に開口する空気加熱管と、
燃料外管の外周に配される電池セルとを備え、
燃料室に燃料が供給されることにより燃料内管を通って下端部から燃料外管に燃料が送られると共に空気室に空気が供給されることにより空気加熱管を流通して電池室に空気が送られ、
多孔質状の燃料外管の壁部を通過した燃料と空気中の酸素とが電解質を介して電池反応されて発電され、
燃料外管内の未燃燃料を含む排ガスが燃料外管を流通して排ガス室に送られると共に電池室の排空気が排空気排出孔を通過して排空気室に送られ、
空気加熱管を流通する空気が発電の反応熱により加熱される
ことを特徴とする。
【0033】
そして、請求項8に記載の固体電解質燃料電池において、
空気加熱管は複数設けられ、複数の空気加熱管に供給される空気量が均一になるように空気加熱管の入口部にオリフィスを設けたことを特徴とする。
【0034】
また、請求項8もしくは請求項9に記載の固体電解質燃料電池において、
排空気室から排出される排空気の一部を空気室に再循環させる再循環系を備え、空気室に供給される空気に排空気を混入して空気の温度を高めることを特徴とする。
【0035】
また、請求項10に記載の固体電解質燃料電池において、
燃料外管の外壁には燃料極及び電解質及び空気極が設けられ、
燃料極が燃料を改質する改質触媒となり、
燃料改質反応による吸熱により発電の反応熱の一部を回収すると共に発電の反応熱の残りで空気加熱管を流通する空気を加熱して発電の反応熱を全て回収除去することを特徴とする。
【0036】
上記目的を達成するための本発明の固体電解質燃料電池発電設備は、
請求項1乃至請求項11のいずれかに記載の固体電解質燃料電池と、
固体電解質燃料電池に燃料を供給する燃料供給系と、
固体電解質燃料電池の排空気及び排ガスが混合されて燃焼される混合手段と、
混合手段で燃焼された燃焼ガスが送られると共に空気供給手段から送られる空気と熱交換を行って空気を加熱する空気加熱手段と、
空気加熱手段で加熱された空気を固体電解質燃料電池に供給する空気供給系と、空気加熱手段で熱交換された燃焼ガスが送られる排熱回収ボイラと
を備えたことを特徴とする。
【0037】
【発明の実施の形態】
図1乃至図3に基づいて本発明の固体電解質燃料電池(SOFC)の構成を説明する。図1には本発明の一実施形態例に係るSOFCの概略構成を表す斜視状況、図2には本発明の一実施形態例に係るSOFCの概略断面、図3には電池管の詳細を表す断面を示してある。
【0038】
図1、図2に示すように、SOFC31は高温{電解質がYSZ(Yttria Stabilized Zirconia)の場合は900〜1000℃}で作動する燃料電池であり、断熱・保温材で内貼りされた容器(ケーシング)32に収納される。ケーシング32の内部は、上部より、燃料室管板33、排ガス室管板34、排空気室管板35及び空気室管板36で仕切られ、燃料室37、排ガス室38、電池室39、排空気室40及び空気室41が形成されている。排空気室管板35には電池室39と排空気室40とを連通する多数の排空気排出孔35aが設けられている。
【0039】
電池室39の内部には電池管42が多数配設され、電池管42は燃料外管43と燃料内管44の2重管構造で構成されている。2重管構造の電池管12の内管14及び外管13はそれぞれ燃料室管板33及び排ガス室管板34で支持されている。
【0040】
燃料内管44は両端部が開放状態にされ、燃料外管13は下端部が閉じられて上端部のみが開放状態にされている。燃料内管14は両端が開放され上端部が燃料室37に開口して配されると共に下端部が電池室39に配されている。燃料外管13は燃料内管14の外側に配置され、下端部が燃料内管14の開口を覆い上端部が排ガス室38に開口している。燃料外管13は多孔質状の材料で形成されている。
【0041】
電池室39の内部には両端が開口状態とされた空気加熱管45が多数配設され、空気加熱管45は排ガス室38、排空気室管板35及び空気室管板36を貫通して下端が空気室41に開口した状態で空気室管板36に支持されている。空気加熱管45の入口部にはそれぞれ絞り46が設けられ、空気室41からそれぞれの空気加熱管45に供給される空気の圧力が均一に維持されるようになっている(均一維持機構)。
【0042】
尚、均一維持機構としては、空気室41の流路面積を変化させてそれぞれの空気加熱管45に供給される空気の圧力を均一に維持する機構を採用することも可能である。
【0043】
燃料室37には燃料供給管47が接続され、排ガス室38には排ガス排出管48が接続されている。また、排空気室40には空気排出管49が接続され、空気室41には空気供給管50が接続されている。
【0044】
図2に示すように、空気排出管49と空気供給管50との間には反応を終えた高温の排空気の一部を再循環させる再循環管51が設けられ、高温の排空気の一部が空気室41(空気加熱管45の入口側)に混入されて空気加熱管45に供給される空気の温度が高められる。
【0045】
再循環管51の合流部位における空気供給管50には空気供給管50内の圧力を高くするエジェクター52が設けられ、エジェクター52により空気排出管49と空気供給管50に圧力差が形成される。エジェクター52により形成される圧力差により空気排出管49の排空気の一部が再循環管51に導かれて空気供給管50に送られる。
【0046】
尚、エジェクター52に代えて空気供給管50に昇圧通風機等を設けることも可能である。
【0047】
図1、図2に示すように、電池管42の燃料外管43の表面には燃料極、電解質、空気極を備えた電池53が形成されている。そして、燃料極が燃料を改質する触媒となっており、電池管42に送られた燃料が内部改質(吸熱反応)されるようになっている。
【0048】
即ち、図3に示すように、電池管42の燃料外管43の表面には燃料極55、電解質56及び空気極57を備えた電池53が形成されている。燃料極55は、例えば、ニッケルサーメットで構成され、燃料極55自身が燃料を改質する触媒となっている。メタン等の燃料は多孔質状の燃料外管43を通過して燃料極55で改質されて水素が使用可能となる。空気中の酸素は電子を受けて酸素イオンとなり、電解質56を燃料側に移動し、燃料極55で電子を放出してH2 O及びCOとなり、発電が行われる。
【0049】
尚、図3に点線で示したように、電池管42の燃料内管44の外側表面に改質用の触媒59を設け、改質を促進することも可能である。
【0050】
燃料供給管47から燃料室37に供給された燃料は燃料室37から電池管42の燃料内管44に送られ、燃料内管44の下端部で反転し燃料内管44と燃料外管43の間のアンニュラー部を上昇して排ガス室38に送られる。燃料が燃料内管44を下降する過程で電池反応による反応熱を吸収し、アンニュラー部の入口では電池反応に必要な温度に上昇すると共に一部改質が行われ電池反応熱を吸収する。アンニュラー部では改質反応と電池反応が行われる。
【0051】
空気供給管50から空気室41に供給された空気は空気加熱管45に送られて空気加熱管45内を上昇する。空気供給管50には空気排出管49から分岐した排空気の一部が再循環管51を経由して混入され、空気室41の空気を昇温させる。空気は空気加熱管45内を上昇する過程で電池反応熱を吸収し電池反応に必要な温度に加熱されて電池室39に放出される。
【0052】
放出された空気は、電池反応を行いながら電池室39を下降し、排空気室管板35の空気加熱管45の貫通部周囲の間隙及び排空気排出孔35aを通って排空気室40に送られる。
【0053】
上記構成のSOFC31は、2重管構造の電池管42を燃料が流れるようになっており、燃料内管44を下降する過程で反応熱を下降して反応熱を吸熱し(加熱され)、アンニュラー部を上昇する過程では改質反応により吸熱する構造となっている。また、空気は空気加熱管45を上昇する過程で反応熱を吸熱する機能を有する構造となっている。このため、燃料は最大の内部吸熱機能を有する構造である。
【0054】
上述したSOFC31では、空気および燃料は必要な内部吸熱機能を有するので、空気室41に供給する空気温度及び燃料室37に供給する燃料温度をその分低下することができ、供給空気量を減少することができる。しかも、空気加熱管45から電池室39に放出される空気は適正温度レベルである。
【0055】
また、空気排出管49から分岐した排空気の一部を再循環管51を経由して空気供給管50に混入しているので、供給空気の電池室39の入口温度が上昇し、電池室39内の温度分布をより均一化することができる。
【0056】
尚、再循環管51及びエジェクター52を省略して排空気の一部を空気供給管50に混入しない構造とすることも可能である。排空気の一部を混入しない場合であっても、供給される空気は空気加熱管45を通過する過程で反応熱を吸熱して温度を高めることができる。
【0057】
また、空気加熱管45を省略して排空気の一部を空気供給管50に混入することだけで空気の温度を高める構造とすることも可能である。この場合、電池室39の簡素化を図ることができる。
【0058】
また、上述したSOFC31では、電池管42に燃料を通し電池室39に空気を供給する構成としたが、電池管42に空気を通し電池室39に燃料を供給する構成とすることも可能である。この場合、空気加熱管45は反応熱を吸熱できる適宜部位に設けられる。
【0059】
上述した本実施形態例のSOFC31は、SOFC31の内部空気加熱手段(空気加熱管45)で余剰の電池反応熱を吸収して空気加熱を行うので、SOFC31の入口空気温度を下げることができる。このため、供給空気量を減少することができる。空気加熱管45を適正に分布させることにより、熱吸収の均等化が得られると共に、空気加熱管45の数の適正化により電池室39に放出される空気の温度は、電池反応に適正なレベルの温度が得られる。
【0060】
このように、内部空気加熱方式により反応余剰熱を吸収して空気を加熱するので、SOFC31への供給空気の温度を低下させることが可能になり、SOFC31の冷却(反応熱除去)の観点から必要とする空気量を低減することにより、電池内部温度を制御し排空気および排ガスの保有熱を減少し排ガス損失を減少することができる。
【0061】
また、排空気の再循環により、SOFC31の入口空気温度を上げることができるので、電池室39の内部の温度をより均一化することができる。特に、電池室39に空気加熱管45を設置しない場合において、電池室39の入口空気を適正温度レベルに上げることができる。
【0062】
また、電池管42を二重管として燃料内管44に燃料加熱機能を持たせたことにより、燃料加熱器を経ない低温の燃料を供給しても、電池反応熱を吸熱して電池反応部(燃料内管44の下端部)に燃料が到達する前に電池反応に適正な温度レベルに昇温させることができる。
【0063】
従って電池性能の低下を伴うことなく反応熱の吸熱除去(温度制御)が可能になり、反応熱排出のための空気量増加が減少し効率低下を避けることができる。
【0064】
また、燃料極55に改質機能を有する触媒材料を使用したので、燃料極55で改質機能を持たせることができる。また、例えば、燃料内管44の外面に改質触媒機能を有する材料(触媒59)を塗布または混合することにより、内部改質機能を向上させることができ、改質し難い広範な燃料に対しても内部改質が可能となる。
【0065】
図4に基づいてSOFC31が適用される発電設備を説明する。図4には本発明の一実施形態例に係る固体電解質燃料電池発電設備の概略系統を示してある。
【0066】
本実施形態例の固体電解質燃料電池発電設備は、図1乃至図3に示したSOFC31と、空気加熱手段としての外部空気加熱器61及び排熱回収ボイラ62を設置したSOFC熱併給プラントのシステムとなっている。そして、SOFC31が2台併設されたプラントとなっている。
【0067】
尚、図中の符号で71はSOFC31で得られる電力を直流から交流に変換する直交変換器である。
【0068】
未反応分を含有する排ガスは、排ガス排出管48を経て混合手段としての排ガス排空気混合器63に供給される。また、未反応酸素を含有する排空気は、空気排出管49を経て排ガス排空気混合器63に供給される。排ガス排空気混合器63では、未反応分を含有する排ガスと未反応酸素を含有する排空気とが混合され、未反応燃料が燃焼する。
【0069】
排ガス排空気混合器63には燃料分岐路69が接続され、排熱回収ボイラ62の発生蒸気または温水の増量に応じ、制御弁70の開閉制御により必要な燃料が投入される。
【0070】
未反応燃料の燃焼により高温になった燃焼ガス(排ガス)は外部空気加熱器61に導入され、外部空気加熱器61でSOFC31への供給空気と熱交換される。排ガスの保有熱により外部空気加熱器61の出口における供給空気を必要温度に加熱してSOFC31に供給する。
【0071】
外部空気加熱器61で熱交換した排ガスは排ガス管64を経て排熱回収ボイラ62に送られ、排熱回収ボイラ62では排ガスの熱が回収されて給水から蒸気等を発生させる。熱エネルギーがほとんど回収されて所定の温度となった排ガスは、煙突73から大気へ放出される。
【0072】
一方、SOFC31へ供給される空気は通風機65で昇圧され、外部空気加熱器61に送られる。外部空気加熱器61で加熱された空気は空気供給管50からSOFC31に供給される(空気供給系)。空気供給管50には起動時に低温空気を加熱する起動用燃焼器66が設置され、起動用燃焼器66には燃料分岐路67から燃料が投入される。尚、図中68は起動時に燃料分岐路67を開く制御弁である。
【0073】
燃料は脱硫装置72で硫黄分が除去された後、燃料供給管47から通常運転時はSOFC31に供給される(燃料供給系)。起動時は制御弁68を開いて燃料分岐路67から起動用燃焼器66に燃料が供給される。
【0074】
上述した固体電解質燃料電池発電設備では、SOFC31は、少ない空気量で余熱除去が可能であり、しかも、低い温度で供給されても反応温度に近い温度まで昇温されて電池室に供給されるので、小さな外部空気加熱器61を用いても所望の温度の空気を得ることができる。
【0075】
また、少ない空気量であるため、昇圧のための通風機65の消費動力が減少し、送電端発電効率を向上させることができる。
【0076】
更に、排熱回収ボイラ62の入口への排ガスの温度が高く維持され排熱回収ボイラ62での熱回収を行って出口ガスの保有熱を減少させるので、排熱回収ボイラ62の効率を高めてプラントの熱効率を向上させることができる。
【0077】
【発明の効果】
本発明の固体電解質燃料電池は、管内もしくは管外のいずれか一方に供給される燃料と燃料が供給されない管外もしくは管内のいずれか一方に供給される空気中の酸素とを電解質を介して電池反応させて発電する燃料電池管を複数備え、空気が供給される部位に空気加熱管を設け、空気加熱管を通して空気を供給することで発電の反応熱を回収し空気を加熱して供給するようにしたので、空気加熱管を流通する空気を加熱することで余剰の電池反応熱を吸収することができ、入口の空気温度を下げて供給空気量を減少することができる。
【0078】
従って、供給空気の温度を低下させることが可能になり、固体電解質燃料電池の冷却(反応熱除去)の観点から必要とする空気量を低減することにより、電池内部温度を制御し排空気および排ガスの保有熱を減少し排ガス損失を減少することができる。
【0079】
この結果、大量の空気を供給することなく必要最小限の空気量の供給で電池部の温度を所定温度に保持するための余剰反応熱の除去が行える固体電解質燃料電池とすることが可能になる。
【0080】
そして、請求項1に記載の固体電解質燃料電池において、
反応を終えた排空気の一部を空気加熱管の入口側に再循環させる再循環系を備え、空気加熱管に供給される空気に排空気を混入して空気の温度を高めるようにしたので、排空気の再循環により、入口の空気温度を上げることができ、電池室の内部の温度をより均一化することができる。
【0081】
また、請求項1もしくは請求項2のいずれか一項に記載の固体電解質燃料電池において、
空気加熱管は複数設けられ、空気加熱管に送給される空気の圧力を均一に維持する均一維持機構を備えたので、
入口の空気の加熱を均一にすることができる。
【0082】
本発明の固体電解質燃料電池は、管内もしくは管外のいずれか一方に供給される燃料と燃料が供給されない管外もしくは管内のいずれか一方に供給される空気中の酸素とを電解質を介して電池反応させて発電する燃料電池管を複数備え、反応を終えた排空気の一部を空気供給部に再循環させる再循環系を備え、供給される空気に排空気を混入して供給される空気の温度を高めるようにしたので、排空気の再循環により、簡単な構成で入口の空気温度を上げることができ、電池室の内部の温度を均一化することができる。
【0083】
この結果、大量の空気を供給することなく必要最小限の空気量の供給で電池部の温度を所定温度に保持するための余剰反応熱の除去が行える固体電解質燃料電池とすることが可能になる。
【0084】
また、請求項1乃至請求項4のいずれか一項に記載の固体電解質燃料電池において、
管の壁面に燃料を改質する改質触媒を設け、燃料改質反応による吸熱により発電の反応熱の一部を回収すると共に空気加熱管を通して空気を供給することで発電の残りの反応熱により空気を加熱して供給するようにしたので、燃料加熱器を経ない低温の燃料を供給しても、電池反応熱を吸熱して電池反応部に燃料が到達する前に電池反応に適正な温度レベルに昇温させることができ、電池性能の低下を伴うことなく反応熱の吸熱除去(温度制御)が可能になり、反応熱排出のための空気量増加が減少し効率低下を避けることができる。
【0085】
また、請求項5に記載の固体電解質燃料電池において、
改質触媒は燃料極であるので、燃料極で燃料を改質することが可能になる。
【0086】
また、請求項1乃至請求項6のいずれか一項に記載の固体電解質燃料電池において、
管内に燃料が供給され、管の外壁に燃料極及び電解質及び空気極が設けられているので、燃料は最大の内部吸熱機能が得られる。
【0087】
本発明の固体電解質燃料電池は、
容器上部の内部に設けられる燃料室と、
燃料室の下部に設けられ燃料室管板により仕切られる排ガス室と、
排ガス室の下部に設けられ排ガス室管板により仕切られる電池室と、
電池室の下部に排空気室管板により仕切られて設けられる排空気室と、
排空気室の下部に設けられ空気室管板により仕切られる空気室と、
両端が開放され上端部が燃料室に開口して配されると共に下端部が電池室に配される燃料内管と、
下端が閉じられると共に上端が開放されて燃料内管の外側に配され下端部が燃料内管の開口を覆うと共に上端部が排ガス室に開口して配される多孔質状の燃料外管と、
排空気室管板に設けられる多数の排空気排出孔と、
両端が開放され上端部が電池室の上方に配され下端部が空気室に開口する空気加熱管と、
燃料外管の外周に配される電池セルとを備え、
燃料室に燃料が供給されることにより燃料内管を通って下端部から燃料外管に燃料が送られると共に空気室に空気が供給されることにより空気加熱管を流通して電池室に空気が送られ、
多孔質状の燃料外管の壁部を通過した燃料と空気中の酸素とが電解質を介して電池反応されて発電され、
燃料外管内の未燃燃料を含む排ガスが燃料外管を流通して排ガス室に送られると共に電池室の排空気が排空気排出孔を通過して排空気室に送られ、
空気加熱管を流通する空気が発電の反応熱により加熱されるので、
空気加熱管を流通する空気を加熱することで余剰の電池反応熱を吸収することができ、入口の空気温度を下げて供給空気量を減少することができる。
【0088】
従って、供給空気の温度を低下させることが可能になり、固体電解質燃料電池の冷却(反応熱除去)の観点から必要とする空気量を低減することにより、電池内部温度を制御し排空気および排ガスの保有熱を減少し排ガス損失を減少することができる。
【0089】
この結果、大量の空気を供給することなく必要最小限の空気量の供給で電池部の温度を所定温度に保持するための余剰反応熱の除去が行える固体電解質燃料電池とすることが可能になる。
【0090】
そして、請求項8に記載の固体電解質燃料電池において、
空気加熱管は複数設けられ、複数の空気加熱管に供給される空気量が均一になるように空気加熱管の入口部にオリフィスを設けたので、
入口の空気の加熱を均一にすることができる。
【0091】
また、請求項8もしくは請求項9に記載の固体電解質燃料電池において、
排空気室から排出される排空気の一部を空気室に再循環させる再循環系を備え、空気室に供給される空気に排空気を混入して空気の温度を高めるようにしたので、
排空気の再循環により、入口の空気温度を上げることができ、電池室の内部の温度をより均一化することができる。
【0092】
また、請求項10に記載の固体電解質燃料電池において、
燃料外管の外壁には燃料極及び電解質及び空気極が設けられ、
燃料極が燃料を改質する改質触媒となり、
燃料改質反応による吸熱により発電の反応熱の一部を回収すると共に発電の反応熱の残りで空気加熱管を流通する空気を加熱して発電の反応熱を全て回収除去するようにしたので
燃料加熱器を経ない低温の燃料を供給しても、電池反応熱を吸熱して電池反応部に燃料が到達する前に電池反応に適正な温度レベルに昇温させることができ、電池性能の低下を伴うことなく反応熱の吸熱除去(温度制御)が可能になり、反応熱排出のための空気量増加が減少し効率低下を避けることができる。
【0093】
本発明の固体電解質燃料電池発電設備は、
請求項1乃至請求項11のいずれかに記載の固体電解質燃料電池と、
固体電解質燃料電池に燃料を供給する燃料供給系と、
固体電解質燃料電池の排空気及び排ガスが混合されて燃焼される混合手段と、
混合手段で燃焼された燃焼ガスが送られると共に空気供給手段から送られる空気と熱交換を行って空気を加熱する空気加熱手段と、
空気加熱手段で加熱された空気を固体電解質燃料電池に供給する空気供給系と、空気加熱手段で熱交換された燃焼ガスが送られる排熱回収ボイラと
を備えたので、
固体電解質燃料電池は、少ない空気量で余熱除去が可能であり、しかも、低い温度で供給されても反応温度に近い温度まで昇温されて電池室に供給されるので、小さな空気加熱手段を用いても所望の温度の空気を得ることができ、また、少ない空気量であるため、昇圧のための空気供給系の動力の消費動力が減少し、送電端発電効率を向上させることができ、更に、排熱回収ボイラの入口への排ガスの温度が高く維持され排熱回収ボイラでの熱回収を行って出口ガスの保有熱を減少させるので、排熱回収ボイラの効率を高めてプラントの熱効率を向上させることができる。
【0094】
この結果、大量の空気を供給することなく必要最小限の空気量の供給で電池部の温度を所定温度に保持するための余剰反応熱の除去が行える固体電解質燃料電池を備えた固体電解質燃料電池設備とすることが可能になる。
【図面の簡単な説明】
【図1】本発明の一実施形態例に係るSOFCの概略構成を表す斜視図。
【図2】本発明の一実施形態例に係るSOFCの概略断面図。
【図3】電池管の詳細を表す断面図。
【図4】本発明の一実施形態例に係る固体電解質燃料電池発電設備の概略系統図。
【図5】従来のSOFCの概略構成を表す斜視図。
【図6】従来のSOFCの概略断面図。
【符号の説明】
31 固体電解質燃料電池(SOFC)
32 容器(ケーシング)
33 燃料室管板
34 排ガス室管板
35 排空気室管板
35a  排空気排出孔
36 空気室管板
37 燃料室
38 排ガス室
39 電池室
40 排空気室
41 空気室
42 電池管
43 燃料外管
44 燃料内管
45 空気加熱管
46 絞り
47 燃料供給管
48 排ガス排出管
49 空気排出管
50 空気供給管
51 再循環管
52 エジェクター
53 電池
55 燃料極
56 電解質
57 空気極
59 触媒
61 外部空気加熱器
62 排熱回収ボイラ
63 排ガス排空気混合器
64 排ガス管
65 通風機
66 起動用燃焼器
67,69 燃料分岐管
68,70 制御弁
71,72 直交変換器
72 脱硫装置
73 煙突
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a solid oxide fuel cell (SOFC) and a solid oxide fuel cell power generation facility.
[0002]
[Prior art]
The configuration of a conventional solid oxide fuel cell (SOFC) will be described with reference to FIGS. FIG. 5 is a perspective view showing a schematic configuration of a conventional SOFC, and FIG. 6 is a schematic cross section of the conventional SOFC.
[0003]
The SOFC 1 is a fuel cell that operates at a high temperature (900 to 1000 ° C. when the electrolyte is YSZ (Yttria Stabilized Zirconia)), and is housed in a container (casing) 2 internally covered with a heat insulating and heat insulating material. The interior of the casing 2 is partitioned from above by a fuel chamber tube sheet 3, an exhaust gas chamber tube sheet 4, an air chamber tube sheet 5, and an exhaust air chamber tube sheet 6. The fuel chamber 7, the exhaust gas chamber 8, the battery chamber 9, the air A chamber 10 and an exhaust air chamber 11 are formed. The air chamber tube sheet 5 is provided with a large number of dispersion holes 5a that communicate the battery chamber 9 and the air chamber 10.
[0004]
A battery tube 12 is provided inside the battery chamber 9, and the battery tube 12 has a double tube structure of an outer tube 13 and an inner tube 14. On the surface of the outer tube 13 of the battery tube 12, a battery having a fuel electrode, an electrolyte, and an air electrode is formed. The inner tube 14 and the outer tube 13 of the double tube battery tube 12 are supported by the fuel chamber tube sheet 3 and the exhaust gas chamber tube sheet 4, respectively. Both ends of the inner tube 14 are open, the lower end of the outer tube 13 is closed, and only the upper end is open.
[0005]
Inside the battery chamber 9, an exhaust air pipe 20 having both ends opened is disposed. The lower end of the exhaust air pipe 20 is supported by the exhaust air chamber tube plate 6 with the lower end opened to the exhaust air chamber 11. The upper end extends into the battery chamber 9 through the chamber 10 and the upper end is open to the battery chamber 9.
[0006]
A fuel supply pipe 15 is connected to the fuel chamber 7, and an exhaust gas discharge pipe 16 is connected to the exhaust gas chamber 8. Further, an air supply pipe 17 is connected to the air chamber 10, and an air discharge pipe 18 is connected to the exhaust air chamber 11.
[0007]
The fuel supplied from the fuel supply pipe 15 to the fuel chamber 7 is sent from the fuel chamber 7 to the inner pipe 14, is inverted at the lower end of the inner pipe 14, and rises in the annular portion between the inner pipe 14 and the outer pipe 13. It is sent to the exhaust gas chamber 8. The air supplied from the air supply pipe 17 to the air chamber 10 is supplied to the battery chamber 9 from the dispersion holes 5a. The exhaust air that has undergone a battery reaction with the battery on the surface of the outer tube 13 is sent from the upper end to the exhaust air tube 20, and sent from the lower end of the exhaust air tube 20 to the exhaust air chamber 11.
[0008]
In the above-described SOFC 1, 40 to 50% of the chemical energy held by the supplied fuel is directly converted to air, and 40 to 50% of the reaction heat (the change in binding energy and the internal resistance (Joule heat etc. ) Is generated, and this is collectively referred to as heat of reaction), and the remainder becomes unreacted components.
[0009]
On the other hand, since the SOFC 1 operates at 900 to 1000 ° C., it is necessary to uniformly maintain the entire area of the battery chamber 9 at a predetermined appropriate temperature (Top). That is, in order to continuously generate stable power, a predetermined amount of fuel and reaction air are heated to a temperature suitable for maintaining the temperature level and supplied to the battery unit, and the reaction products and unreacted materials are supplied. It is necessary to keep the battery operating conditions constant by performing continuous discharge of excess heat and continuous discharge of excess reaction heat.
[0010]
[Problems to be solved by the invention]
Regarding the removal of reaction heat and the uniformization of the temperature inside the battery chamber, the following four methods are considered as methods for discharging excess reaction heat to maintain the temperature of the battery unit at a predetermined temperature.
[0011]
a. Absorption of reaction heat by internal reforming of fuel (endothermic reaction)
The fuel component effective for the cell reaction in the SOFC 1 is H 2 And CO, for example, the fuel is methane (CH 4 ) If reformed, CO and H 2 It is necessary to Since this reaction is an endothermic reaction as described below, a part of the reaction heat can be recovered as fuel by causing the reforming reaction to be performed near the battery unit (internal reforming).
CH 4 + H 2 O → CO + 3H 2 -206.3 kJ / mol
However, the lower calorific value of methane is 801 kJ / mol, and if about 50% of the heat is reaction heat, the reaction heat is about 400 kJ / mol. Therefore, temperature control (reaction heat removal) is required only by internal reforming. Can not.
[0012]
b. Fuel and reaction air supply temperature drop
Since the necessary heat removal cannot be performed only by the internal reforming, it is necessary to supply the fuel Wf (kg) and the air Wa (kg) at a temperature (Tfi, Tai) equal to or lower than a predetermined battery operating temperature (Top). . The amount of heat absorbed by air and fuel can be expressed by the following equation.
Qaf = Wa * Ca * (Top-Tai) + Wf * Cf * (Top-Tfi)
Here, Ca and Cf are specific heats of air and fuel, respectively.
[0013]
When the internal reforming is performed and the reaction heat absorption (temperature control) is performed by supplying the fuel and the air at a low temperature, the required air temperature is, for example, about 300 ° C. It is necessary to supply. When such low-temperature air and fuel are supplied to the SOFC 1, the temperature of the introduction portion becomes lower than the battery operating temperature, and the battery function is significantly reduced. As a result, the amount of power generation with reduced battery efficiency decreases (the amount of power generation per battery area decreases), and the battery needs to be upsized. That is, lowering the supply temperature of the battery unit to an appropriate temperature or less is not a reasonable measure.
[0014]
c. Increase air volume
B. Since the decrease in the supply air temperature is limited from the viewpoint of the battery function as described in the section, the difference between the supply air temperature Tai and the battery operation temperature Top is reduced, and the amount of excess reaction heat absorbed by increasing the supply air amount Wa. There is a way to increase. That is, utilizing the heat retained in the exhaust air and exhaust gas from the battery, the temperature of the supplied air is raised to an appropriate temperature near the battery operating temperature by an external heat exchanger, and the excess heat is absorbed and removed by increasing the amount of supplied air. This is a method of maintaining the temperature at an appropriate temperature Top.
[0015]
In this method, there is a problem in that the heat loss increases due to an increase in the amount of heat exhausted (exhaust gas holding heat) due to an increase in the amount of exhaust air, the efficiency decreases due to an increase in fan power, and the size of the heat exchanger increases. .
[0016]
d. Heat removal by cooling medium
A method of removing heat by installing a heat exchanger using a third heat removal medium inside the battery, or a method of injecting steam can be applied. Temperature drop and c. The power generation efficiency is reduced due to the increase in the amount of heat discharged from the battery section to the outside and the increase in the auxiliary power.
[0017]
In the SOFC 1 having the above configuration, air is supplied by a ventilator, and the air is heated by an air heater between a combustion gas obtained by mixing exhaust gas and exhaust gas and burning. Then, the heat-exchanged combustion gas is recovered by the exhaust heat recovery boiler and released from the chimney to the atmosphere. In the exhaust heat recovery boiler, the feed water is turned into saturated water or steam by the heat of the combustion gas, and the generated saturated water or steam is supplied to necessary equipment.
[0018]
In a plant to which such an SOFC 1 is applied, the temperature of the supply air is raised to a temperature equal to or higher than the functional temperature of the SOFC 1 (however, it is not sufficiently high), and heat removal is performed by absorbing excess reaction heat by increasing the amount of air. The method has been adopted.
[0019]
For this reason, the amount of exhaust gas increases and the amount of heat retained in the exhaust gas increases, causing a problem of a decrease in power generation efficiency of the battery and a decrease in plant performance due to an increase in power of the ventilator. Further, there has been a problem that an air heater for heating air by a combustion gas becomes large, and the retained heat of the combustion gas (exhaust gas) is lost due to the high temperature of the air.
[0020]
That is, since the SOFC 1 has no air heater installed inside the battery chamber 9 (not internal heating), the heat generated by the battery reaction is not used for internal heating of the air inside the battery. Therefore, it is necessary to supply the battery with air heated to a temperature close to the battery operating temperature in advance by an air heater (external air heater) installed outside the battery chamber.
[0021]
For this reason, the reaction heat absorption amount of air per unit flow rate (endothermic effect) is small, so it is necessary to increase the air amount (air ratio> 2.5) in order to discharge excess heat of reaction. An increase in the amount of air, that is, an increase in the amount of exhaust gas and an increase in heat possessed by the exhaust gas, a reduction in the amount of power generation at the transmitting end of the battery with an increase in the size of the external heat exchanger and an increase in auxiliary power, that is, a decrease in efficiency. . Further, the heat loss of the waste heat boiler also increases, and the plant thermal efficiency decreases.
[0022]
As described above, in a plant to which the SOFC 1 is applied, when the endothermic removal of the reaction heat in the battery chamber (internal heating of air) is small, it is necessary to increase the amount of air, increase the heat loss possessed by the exhaust gas, and reduce the external heat. The increase in the size of auxiliary devices such as exchangers and ventilators and the increase in power consumption cause a decrease in power generation efficiency and plant thermal efficiency.
[0023]
The present invention has been made in view of the above circumstances, and a solid that can remove excess reaction heat for maintaining the temperature of a battery unit at a predetermined temperature by supplying a necessary minimum amount of air without supplying a large amount of air. An object is to provide an electrolyte fuel cell.
[0024]
The present invention has been made in view of the above circumstances, and a solid that can remove excess reaction heat for maintaining the temperature of a battery unit at a predetermined temperature by supplying a necessary minimum amount of air without supplying a large amount of air. It is an object of the present invention to provide a solid electrolyte fuel cell power generation facility equipped with an electrolyte fuel cell.
[0025]
[Means for Solving the Problems]
In order to achieve the above object, the solid electrolyte fuel cell according to the present invention is characterized in that the fuel supplied to either the inside or outside of the tube and the oxygen in the air supplied to either outside or inside the tube where fuel is not supplied are provided. A plurality of fuel cell tubes that generate electricity by causing a cell reaction between the fuel cell and the electrolyte, provide an air heating tube at a portion to which air is supplied, and recover the reaction heat of the power generation by supplying air through the air heating tube. The air is heated and supplied.
[0026]
And in the solid electrolyte fuel cell according to claim 1,
It is equipped with a recirculation system that recirculates part of the exhaust air after the reaction to the inlet side of the air heating pipe, and mixes the exhaust air with the air supplied to the air heating pipe to raise the temperature of the air. I do.
[0027]
Further, in the solid electrolyte fuel cell according to any one of claims 1 or 2,
A plurality of air heating tubes are provided, and a uniform maintaining mechanism for uniformly maintaining the pressure of air supplied to the air heating tubes is provided.
[0028]
In order to achieve the above object, the solid electrolyte fuel cell according to the present invention is characterized in that the fuel supplied to either the inside or outside of the tube and the oxygen in the air supplied to either outside or inside the tube where fuel is not supplied are provided. A plurality of fuel cell tubes that generate electricity by causing a cell reaction through the electrolyte through an electrolyte, and a recirculation system that recirculates a part of the exhausted air after the reaction to the air supply unit. It is characterized in that the temperature of the air mixed and supplied is increased.
[0029]
Further, in the solid electrolyte fuel cell according to any one of claims 1 to 4,
A reforming catalyst for reforming the fuel is provided on the wall of the pipe, and a part of the reaction heat of the power generation is recovered by the heat absorption by the fuel reforming reaction and the air is supplied through the air heating pipe to generate the remaining reaction heat of the power generation. It is characterized by heating and supplying air.
[0030]
Further, in the solid electrolyte fuel cell according to claim 5,
The reforming catalyst is a fuel electrode.
[0031]
Further, in the solid electrolyte fuel cell according to any one of claims 1 to 6,
Fuel is supplied into the tube, and a fuel electrode, an electrolyte, and an air electrode are provided on an outer wall of the tube.
[0032]
The solid electrolyte fuel cell of the present invention for achieving the above object,
A fuel chamber provided inside the upper part of the container,
An exhaust gas chamber provided at a lower portion of the fuel chamber and separated by a fuel chamber tube sheet;
A battery chamber provided at a lower portion of the exhaust gas chamber and separated by an exhaust gas tube tube;
An exhaust air chamber provided at a lower portion of the battery chamber and partitioned by an exhaust air chamber tube sheet;
An air chamber provided below the exhaust air chamber and partitioned by an air chamber tube sheet;
A fuel inner pipe whose both ends are open and whose upper end is open to the fuel chamber and whose lower end is arranged in the battery chamber,
A porous fuel outer pipe in which the lower end is closed and the upper end is opened and arranged outside the fuel inner pipe, the lower end covers the opening of the fuel inner pipe, and the upper end is arranged to be open to the exhaust gas chamber,
A large number of exhaust air exhaust holes provided in the exhaust air chamber tube sheet,
An air heating tube whose both ends are open and whose upper end is arranged above the battery chamber and whose lower end is open to the air chamber;
Battery cells arranged on the outer periphery of the fuel outer tube,
When fuel is supplied to the fuel chamber, fuel is sent from the lower end to the fuel outer pipe through the fuel inner pipe, and air is supplied to the air chamber. Sent,
Fuel passing through the wall of the porous fuel outer tube and oxygen in the air undergo a battery reaction via the electrolyte to generate power,
Exhaust gas containing unburned fuel in the fuel outer tube flows through the fuel outer tube and is sent to the exhaust gas chamber, and exhaust air of the battery chamber is sent to the exhaust air chamber through the exhaust air exhaust hole,
The air flowing through the air heating tube is heated by the reaction heat of power generation
It is characterized by the following.
[0033]
And in the solid electrolyte fuel cell according to claim 8,
A plurality of air heating pipes are provided, and an orifice is provided at an inlet of the air heating pipe so that the amount of air supplied to the plurality of air heating pipes becomes uniform.
[0034]
Further, in the solid electrolyte fuel cell according to claim 8 or 9,
A recirculation system for recirculating a part of the exhaust air discharged from the exhaust air chamber to the air chamber is provided, and the temperature of the air is increased by mixing the exhaust air into the air supplied to the air chamber.
[0035]
Further, in the solid electrolyte fuel cell according to claim 10,
A fuel electrode, an electrolyte and an air electrode are provided on the outer wall of the fuel outer tube,
The fuel electrode becomes a reforming catalyst for reforming the fuel,
It is characterized by recovering a part of the reaction heat of power generation by heat absorption by the fuel reforming reaction and recovering and removing all the reaction heat of power generation by heating the air flowing through the air heating tube with the remainder of the reaction heat of power generation. .
[0036]
The solid oxide fuel cell power generation equipment of the present invention for achieving the above object,
A solid electrolyte fuel cell according to any one of claims 1 to 11,
A fuel supply system for supplying fuel to the solid oxide fuel cell,
Mixing means for mixing and burning exhaust air and exhaust gas of the solid oxide fuel cell,
Air heating means for heating the air by performing heat exchange with air sent from the air supply means while the combustion gas burned by the mixing means is sent,
An air supply system for supplying the air heated by the air heating means to the solid oxide fuel cell, and an exhaust heat recovery boiler to which the combustion gas exchanged by the air heating means is sent.
It is characterized by having.
[0037]
BEST MODE FOR CARRYING OUT THE INVENTION
The configuration of the solid oxide fuel cell (SOFC) of the present invention will be described with reference to FIGS. FIG. 1 is a perspective view showing a schematic configuration of an SOFC according to an embodiment of the present invention, FIG. 2 is a schematic cross section of the SOFC according to an embodiment of the present invention, and FIG. 3 shows details of a battery tube. The cross section is shown.
[0038]
As shown in FIGS. 1 and 2, the SOFC 31 is a fuel cell that operates at a high temperature (900 to 1000 ° C. when the electrolyte is YSZ (Yttria Stabilized Zirconia)), and has a container (casing) internally attached with a heat insulating and heat insulating material. ) 32. The interior of the casing 32 is partitioned from above by a fuel chamber tube sheet 33, an exhaust gas chamber tube sheet 34, an exhaust air chamber tube sheet 35, and an air chamber tube sheet 36, and the fuel chamber 37, the exhaust gas chamber 38, the battery chamber 39, and the exhaust chamber. An air chamber 40 and an air chamber 41 are formed. The exhaust air chamber tube plate 35 is provided with a large number of exhaust air exhaust holes 35a that communicate the battery chamber 39 and the exhaust air chamber 40.
[0039]
A large number of battery tubes 42 are provided inside the battery chamber 39, and the battery tube 42 has a double tube structure of an outer fuel tube 43 and an inner fuel tube 44. The inner tube 14 and the outer tube 13 of the double tube battery tube 12 are supported by a fuel chamber tube sheet 33 and an exhaust gas chamber tube sheet 34, respectively.
[0040]
Both ends of the fuel inner pipe 44 are open, and the lower end of the fuel outer pipe 13 is closed and only the upper end is open. Both ends of the fuel inner tube 14 are open and the upper end thereof is open to the fuel chamber 37, and the lower end thereof is disposed in the battery chamber 39. The outer fuel tube 13 is arranged outside the inner fuel tube 14, and the lower end portion covers the opening of the inner fuel tube 14 and the upper end portion opens to the exhaust gas chamber 38. The outer fuel tube 13 is formed of a porous material.
[0041]
A large number of air heating pipes 45 having both ends opened are disposed inside the battery chamber 39. The air heating pipes 45 penetrate the exhaust gas chamber 38, the exhaust air chamber tube plate 35, and the air chamber tube plate 36, and the lower end thereof. Are supported by the air chamber tube sheet 36 in a state where they are open to the air chamber 41. Restrictors 46 are provided at the inlets of the air heating tubes 45, respectively, so that the pressure of the air supplied from the air chamber 41 to each of the air heating tubes 45 is maintained uniformly (uniform maintenance mechanism).
[0042]
In addition, as the uniformity maintaining mechanism, a mechanism that changes the flow path area of the air chamber 41 to maintain the pressure of the air supplied to the respective air heating tubes 45 uniform may be employed.
[0043]
A fuel supply pipe 47 is connected to the fuel chamber 37, and an exhaust gas discharge pipe 48 is connected to the exhaust gas chamber 38. Further, an air discharge pipe 49 is connected to the discharge air chamber 40, and an air supply pipe 50 is connected to the air chamber 41.
[0044]
As shown in FIG. 2, a recirculation pipe 51 is provided between the air discharge pipe 49 and the air supply pipe 50 to recirculate a part of the high-temperature exhaust air after the reaction. The part is mixed into the air chamber 41 (the inlet side of the air heating pipe 45), and the temperature of the air supplied to the air heating pipe 45 is increased.
[0045]
An ejector 52 for increasing the pressure in the air supply pipe 50 is provided in the air supply pipe 50 at the junction of the recirculation pipe 51, and the ejector 52 forms a pressure difference between the air discharge pipe 49 and the air supply pipe 50. A part of the exhaust air from the air exhaust pipe 49 is guided to the recirculation pipe 51 and sent to the air supply pipe 50 by the pressure difference generated by the ejector 52.
[0046]
It should be noted that a booster or the like can be provided in the air supply pipe 50 instead of the ejector 52.
[0047]
As shown in FIGS. 1 and 2, a battery 53 having a fuel electrode, an electrolyte, and an air electrode is formed on the surface of the outer fuel tube 43 of the battery tube 42. The fuel electrode serves as a catalyst for reforming the fuel, and the fuel sent to the battery tube 42 is internally reformed (endothermic reaction).
[0048]
That is, as shown in FIG. 3, a battery 53 having a fuel electrode 55, an electrolyte 56, and an air electrode 57 is formed on the surface of the fuel outer tube 43 of the battery tube 42. The fuel electrode 55 is made of, for example, nickel cermet, and the fuel electrode 55 itself is a catalyst for reforming the fuel. Fuel such as methane passes through the porous fuel outer tube 43 and is reformed at the fuel electrode 55, so that hydrogen can be used. Oxygen in the air receives electrons to become oxygen ions, moves the electrolyte 56 to the fuel side, emits electrons at the fuel electrode 55, and 2 O and CO are generated, and power is generated.
[0049]
As shown by the dotted line in FIG. 3, it is also possible to provide a reforming catalyst 59 on the outer surface of the inner fuel tube 44 of the battery tube 42 to promote the reforming.
[0050]
The fuel supplied from the fuel supply pipe 47 to the fuel chamber 37 is sent from the fuel chamber 37 to the fuel inner pipe 44 of the battery pipe 42, and is inverted at the lower end of the fuel inner pipe 44 to form the fuel inner pipe 44 and the fuel outer pipe 43. The ascending annular portion is sent to the exhaust gas chamber 38. The fuel absorbs the reaction heat due to the cell reaction in the process of descending through the fuel inner tube 44, and at the entrance of the annular portion, the temperature rises to the temperature required for the cell reaction and partially reformed to absorb the cell reaction heat. In the annular portion, a reforming reaction and a battery reaction are performed.
[0051]
The air supplied from the air supply pipe 50 to the air chamber 41 is sent to the air heating pipe 45 and rises inside the air heating pipe 45. A part of the exhaust air branched off from the air discharge pipe 49 is mixed into the air supply pipe 50 via the recirculation pipe 51 to raise the temperature of the air in the air chamber 41. The air absorbs the battery reaction heat in the process of rising in the air heating tube 45, is heated to a temperature necessary for the battery reaction, and is discharged to the battery chamber 39.
[0052]
The discharged air descends in the battery chamber 39 while performing a battery reaction, and is sent to the exhaust air chamber 40 through the gap around the through portion of the air heating tube 45 of the exhaust air chamber tube plate 35 and the exhaust air exhaust hole 35a. Can be
[0053]
In the SOFC 31 having the above-described structure, fuel flows through the battery tube 42 having a double-tube structure. In the process of descending the inner fuel tube 44, the reaction heat is lowered to absorb (heat) the reaction heat, and the annular heat is absorbed. In the process of ascending the portion, the structure is such that heat is absorbed by the reforming reaction. In addition, the air has a function of absorbing the reaction heat in the process of ascending the air heating tube 45. For this reason, the fuel has a structure having a maximum internal heat absorbing function.
[0054]
In the above-described SOFC 31, the air and the fuel have a necessary internal heat absorbing function, so that the temperature of the air supplied to the air chamber 41 and the temperature of the fuel supplied to the fuel chamber 37 can be reduced accordingly, and the amount of supplied air is reduced. be able to. Moreover, the air discharged from the air heating tube 45 to the battery chamber 39 is at an appropriate temperature level.
[0055]
Further, since a part of the exhaust air branched from the air exhaust pipe 49 is mixed into the air supply pipe 50 via the recirculation pipe 51, the inlet temperature of the supply air in the battery chamber 39 rises, and the battery chamber 39 The temperature distribution in the inside can be made more uniform.
[0056]
It is also possible to omit the recirculation pipe 51 and the ejector 52 so that a part of the exhaust air is not mixed into the air supply pipe 50. Even when a part of the exhaust air is not mixed, the supplied air can absorb the reaction heat in the process of passing through the air heating pipe 45 to increase the temperature.
[0057]
Further, it is also possible to omit the air heating pipe 45 and increase the temperature of the air only by mixing a part of the exhaust air into the air supply pipe 50. In this case, the battery chamber 39 can be simplified.
[0058]
Further, in the above-described SOFC 31, the configuration is such that the fuel is supplied to the battery chamber 39 through the fuel through the battery tube 42, but the configuration may be such that the fuel is supplied to the battery chamber 39 through the air through the battery tube 42. . In this case, the air heating tube 45 is provided at an appropriate portion capable of absorbing the reaction heat.
[0059]
The SOFC 31 of the above-described embodiment of the present embodiment absorbs excess battery reaction heat by the internal air heating means (air heating pipe 45) of the SOFC 31, and performs air heating, so that the inlet air temperature of the SOFC 31 can be reduced. For this reason, the supply air amount can be reduced. By appropriately distributing the air heating tubes 45, equalization of heat absorption can be obtained, and the temperature of the air discharged into the battery chamber 39 by optimizing the number of the air heating tubes 45 can be adjusted to an appropriate level for the battery reaction. Is obtained.
[0060]
As described above, since the air is heated by absorbing the excess heat of the reaction by the internal air heating method, the temperature of the air supplied to the SOFC 31 can be reduced, which is necessary from the viewpoint of cooling the SOFC 31 (removal of the reaction heat). By reducing the amount of air, the temperature inside the battery can be controlled to reduce the retained heat of the exhaust air and the exhaust gas, thereby reducing the exhaust gas loss.
[0061]
Further, since the inlet air temperature of the SOFC 31 can be increased by recirculating the exhaust air, the temperature inside the battery chamber 39 can be made more uniform. In particular, when the air heating tube 45 is not provided in the battery chamber 39, the inlet air of the battery chamber 39 can be raised to an appropriate temperature level.
[0062]
In addition, since the fuel tube 44 has a fuel heating function as a double tube with the battery tube 42 being a double tube, even if a low-temperature fuel that does not pass through a fuel heater is supplied, heat is absorbed by the battery reaction and the battery reaction section is absorbed. Before the fuel reaches the (lower end of the fuel inner pipe 44), the temperature can be raised to a temperature level appropriate for the cell reaction.
[0063]
Accordingly, it is possible to remove endothermic heat of reaction (temperature control) without deteriorating the battery performance, and it is possible to avoid an increase in the amount of air for exhausting the reaction heat and to avoid a decrease in efficiency.
[0064]
Further, since a catalyst material having a reforming function is used for the fuel electrode 55, the fuel electrode 55 can have a reforming function. Further, for example, by applying or mixing a material having a reforming catalyst function (catalyst 59) on the outer surface of the fuel inner tube 44, the internal reforming function can be improved, and a wide range of fuels that are difficult to reform can be used. Even this allows internal reforming.
[0065]
A power generation facility to which the SOFC 31 is applied will be described based on FIG. FIG. 4 shows a schematic system of a solid oxide fuel cell power generation facility according to an embodiment of the present invention.
[0066]
The solid oxide fuel cell power generation equipment according to the present embodiment has a SOFC 31 shown in FIGS. 1 to 3 and a system of a SOFC cogeneration plant equipped with an external air heater 61 and an exhaust heat recovery boiler 62 as air heating means. Has become. And it is a plant in which two SOFCs 31 are installed.
[0067]
Reference numeral 71 in the drawing denotes an orthogonal converter for converting the power obtained by the SOFC 31 from DC to AC.
[0068]
The exhaust gas containing unreacted components is supplied to an exhaust gas exhaust air mixer 63 as mixing means via an exhaust gas exhaust pipe 48. The exhaust air containing unreacted oxygen is supplied to an exhaust gas exhaust air mixer 63 via an air exhaust pipe 49. In the exhaust gas exhaust air mixer 63, exhaust gas containing unreacted components and exhaust air containing unreacted oxygen are mixed, and unreacted fuel burns.
[0069]
A fuel branch 69 is connected to the exhaust gas exhaust air mixer 63, and necessary fuel is supplied by opening and closing the control valve 70 in accordance with an increase in the amount of steam or hot water generated in the exhaust heat recovery boiler 62.
[0070]
The combustion gas (exhaust gas) that has become hot due to the combustion of the unreacted fuel is introduced into the external air heater 61, where the heat is exchanged with the air supplied to the SOFC 31 by the external air heater 61. The supply air at the outlet of the external air heater 61 is heated to a required temperature by the retained heat of the exhaust gas and supplied to the SOFC 31.
[0071]
Exhaust gas heat-exchanged by the external air heater 61 is sent to an exhaust heat recovery boiler 62 via an exhaust gas pipe 64, where heat of the exhaust gas is recovered and steam is generated from feed water. Exhaust gas whose heat energy has been almost recovered and has reached a predetermined temperature is discharged from the chimney 73 to the atmosphere.
[0072]
On the other hand, the pressure of the air supplied to the SOFC 31 is increased by the ventilator 65 and sent to the external air heater 61. The air heated by the external air heater 61 is supplied from the air supply pipe 50 to the SOFC 31 (air supply system). A starting combustor 66 for heating low-temperature air at the time of starting is installed in the air supply pipe 50, and fuel is supplied to the starting combustor 66 from a fuel branch 67. In the figure, reference numeral 68 denotes a control valve for opening the fuel branch 67 at the time of startup.
[0073]
After the sulfur content is removed by the desulfurizer 72, the fuel is supplied from the fuel supply pipe 47 to the SOFC 31 during normal operation (fuel supply system). During startup, the control valve 68 is opened, and fuel is supplied from the fuel branch 67 to the startup combustor 66.
[0074]
In the solid oxide fuel cell power generation equipment described above, the SOFC 31 can remove residual heat with a small amount of air, and even when supplied at a low temperature, is heated to a temperature close to the reaction temperature and supplied to the battery chamber. Even if a small external air heater 61 is used, air at a desired temperature can be obtained.
[0075]
Further, since the amount of air is small, the power consumption of the ventilator 65 for increasing the pressure is reduced, and the power transmission end power generation efficiency can be improved.
[0076]
Furthermore, since the temperature of the exhaust gas to the inlet of the exhaust heat recovery boiler 62 is maintained high and the heat recovery in the exhaust heat recovery boiler 62 is performed to reduce the heat retained in the outlet gas, the efficiency of the exhaust heat recovery boiler 62 is increased. The thermal efficiency of the plant can be improved.
[0077]
【The invention's effect】
The solid electrolyte fuel cell according to the present invention is a battery that supplies fuel supplied to either the inside or outside of the tube and oxygen in air supplied to either outside or inside the tube to which fuel is not supplied, through the electrolyte. A plurality of fuel cell tubes for reacting and generating power are provided, and an air heating tube is provided at a portion to which air is supplied, and by supplying air through the air heating tube, reaction heat of power generation is recovered and the air is heated and supplied. Therefore, by heating the air flowing through the air heating tube, excess battery reaction heat can be absorbed, and the air temperature at the inlet can be reduced to reduce the amount of supplied air.
[0078]
Therefore, the temperature of the supply air can be reduced, and the amount of air required from the viewpoint of cooling (removal of reaction heat) of the solid oxide fuel cell can be reduced, thereby controlling the internal temperature of the cell and controlling the exhaust air and exhaust gas. And the exhaust heat loss can be reduced.
[0079]
As a result, it is possible to provide a solid electrolyte fuel cell capable of removing excess heat of reaction for maintaining the temperature of the battery unit at a predetermined temperature by supplying a necessary minimum amount of air without supplying a large amount of air. .
[0080]
And in the solid electrolyte fuel cell according to claim 1,
A recirculation system that recirculates part of the exhaust air after the reaction to the inlet side of the air heating pipe is provided, and the temperature of the air is increased by mixing the exhaust air into the air supplied to the air heating pipe. By recirculating the exhaust air, the air temperature at the inlet can be increased, and the temperature inside the battery chamber can be made more uniform.
[0081]
Further, in the solid electrolyte fuel cell according to any one of claims 1 or 2,
Since a plurality of air heating pipes are provided and provided with a uniform maintenance mechanism that uniformly maintains the pressure of the air supplied to the air heating pipe,
The heating of the inlet air can be made uniform.
[0082]
The solid electrolyte fuel cell according to the present invention is a battery that supplies fuel supplied to either the inside or outside of the tube and oxygen in air supplied to either outside or inside the tube to which fuel is not supplied, through the electrolyte. Equipped with a plurality of fuel cell tubes that generate electricity by reacting, equipped with a recirculation system that recirculates part of the exhausted air after the reaction to the air supply unit, and supplied air mixed with exhausted air , The temperature of the air at the inlet can be increased with a simple configuration by recirculating the exhaust air, and the temperature inside the battery chamber can be made uniform.
[0083]
As a result, it is possible to provide a solid electrolyte fuel cell capable of removing excess heat of reaction for maintaining the temperature of the battery unit at a predetermined temperature by supplying a necessary minimum amount of air without supplying a large amount of air. .
[0084]
Further, in the solid electrolyte fuel cell according to any one of claims 1 to 4,
A reforming catalyst for reforming the fuel is provided on the wall of the pipe, and a part of the reaction heat of the power generation is recovered by the heat absorption by the fuel reforming reaction and the air is supplied through the air heating pipe to generate the remaining reaction heat of the power generation. Since the air is heated and supplied, even if a low-temperature fuel that does not pass through a fuel heater is supplied, it absorbs the reaction heat of the cell and reaches the appropriate temperature for the cell reaction before the fuel reaches the cell reaction section. The temperature can be raised to the level, the endothermic removal of reaction heat (temperature control) can be performed without lowering the battery performance, and the increase in the amount of air for exhausting the reaction heat is reduced, thereby avoiding a decrease in efficiency. .
[0085]
Further, in the solid electrolyte fuel cell according to claim 5,
Since the reforming catalyst is the fuel electrode, it becomes possible to reform the fuel at the fuel electrode.
[0086]
Further, in the solid electrolyte fuel cell according to any one of claims 1 to 6,
Since fuel is supplied into the tube and the fuel electrode, the electrolyte, and the air electrode are provided on the outer wall of the tube, the fuel has the maximum internal heat absorbing function.
[0087]
The solid electrolyte fuel cell of the present invention,
A fuel chamber provided inside the upper part of the container,
An exhaust gas chamber provided at a lower portion of the fuel chamber and separated by a fuel chamber tube sheet;
A battery chamber provided at a lower portion of the exhaust gas chamber and separated by an exhaust gas tube tube;
An exhaust air chamber provided at a lower portion of the battery chamber and partitioned by an exhaust air chamber tube sheet;
An air chamber provided below the exhaust air chamber and partitioned by an air chamber tube sheet;
A fuel inner pipe whose both ends are open and whose upper end is open to the fuel chamber and whose lower end is arranged in the battery chamber,
A porous fuel outer pipe in which the lower end is closed and the upper end is opened and arranged outside the fuel inner pipe, the lower end covers the opening of the fuel inner pipe, and the upper end is arranged to be open to the exhaust gas chamber,
A large number of exhaust air exhaust holes provided in the exhaust air chamber tube sheet,
An air heating tube whose both ends are open and whose upper end is arranged above the battery chamber and whose lower end is open to the air chamber;
Battery cells arranged on the outer periphery of the fuel outer tube,
When fuel is supplied to the fuel chamber, fuel is sent from the lower end to the fuel outer pipe through the fuel inner pipe, and air is supplied to the air chamber. Sent,
Fuel passing through the wall of the porous fuel outer tube and oxygen in the air undergo a battery reaction via the electrolyte to generate power,
Exhaust gas containing unburned fuel in the fuel outer tube flows through the fuel outer tube and is sent to the exhaust gas chamber, and exhaust air of the battery chamber is sent to the exhaust air chamber through the exhaust air exhaust hole,
Since the air flowing through the air heating pipe is heated by the reaction heat of power generation,
By heating the air flowing through the air heating tube, excess battery reaction heat can be absorbed, and the inlet air temperature can be reduced to reduce the amount of supplied air.
[0088]
Therefore, the temperature of the supply air can be reduced, and the amount of air required from the viewpoint of cooling (removal of reaction heat) of the solid oxide fuel cell can be reduced, thereby controlling the internal temperature of the cell and controlling the exhaust air and exhaust gas. And the exhaust heat loss can be reduced.
[0089]
As a result, it is possible to provide a solid electrolyte fuel cell capable of removing excess heat of reaction for maintaining the temperature of the battery unit at a predetermined temperature by supplying a necessary minimum amount of air without supplying a large amount of air. .
[0090]
And in the solid electrolyte fuel cell according to claim 8,
A plurality of air heating pipes are provided, and an orifice is provided at the inlet of the air heating pipe so that the amount of air supplied to the plurality of air heating pipes is uniform,
The heating of the inlet air can be made uniform.
[0091]
Further, in the solid electrolyte fuel cell according to claim 8 or 9,
A recirculation system that recirculates part of the exhaust air discharged from the exhaust air chamber to the air chamber is provided, and the temperature of the air is increased by mixing the exhaust air into the air supplied to the air chamber.
By recirculating the exhaust air, the air temperature at the inlet can be raised, and the temperature inside the battery chamber can be made more uniform.
[0092]
Further, in the solid electrolyte fuel cell according to claim 10,
A fuel electrode, an electrolyte and an air electrode are provided on the outer wall of the fuel outer tube,
The fuel electrode becomes a reforming catalyst for reforming the fuel,
Since a part of the heat of the power generation is recovered by the heat absorption by the fuel reforming reaction, and the air flowing through the air heating tube is heated by the remainder of the heat of the power generation to collect and remove all the heat of the power generation.
Even if a low-temperature fuel is supplied without passing through the fuel heater, the heat of the battery reaction is absorbed, and the temperature can be raised to a temperature level appropriate for the battery reaction before the fuel reaches the battery reaction section. Endothermic removal of reaction heat (temperature control) becomes possible without a decrease, and an increase in the amount of air for exhausting the reaction heat is reduced, so that a decrease in efficiency can be avoided.
[0093]
The solid oxide fuel cell power generation equipment of the present invention,
A solid electrolyte fuel cell according to any one of claims 1 to 11,
A fuel supply system for supplying fuel to the solid oxide fuel cell,
Mixing means for mixing and burning exhaust air and exhaust gas of the solid oxide fuel cell,
Air heating means for heating the air by performing heat exchange with air sent from the air supply means while the combustion gas burned by the mixing means is sent,
An air supply system for supplying the air heated by the air heating means to the solid oxide fuel cell, and an exhaust heat recovery boiler to which the combustion gas exchanged by the air heating means is sent.
With
The solid electrolyte fuel cell can remove residual heat with a small amount of air, and even if supplied at a low temperature, it is heated to a temperature close to the reaction temperature and supplied to the cell chamber. Therefore, it is possible to obtain air at a desired temperature, and because the amount of air is small, the power consumption of the power of the air supply system for increasing the pressure is reduced, and the power transmission end power generation efficiency can be improved. Since the temperature of the exhaust gas to the inlet of the exhaust heat recovery boiler is maintained high and the heat recovery in the exhaust heat recovery boiler is performed to reduce the heat retained in the outlet gas, the efficiency of the exhaust heat recovery boiler is increased to improve the thermal efficiency of the plant. Can be improved.
[0094]
As a result, a solid electrolyte fuel cell equipped with a solid electrolyte fuel cell capable of removing excess heat of reaction for maintaining the temperature of the battery unit at a predetermined temperature by supplying a necessary minimum amount of air without supplying a large amount of air It becomes possible to make equipment.
[Brief description of the drawings]
FIG. 1 is a perspective view illustrating a schematic configuration of an SOFC according to an embodiment of the present invention.
FIG. 2 is a schematic sectional view of an SOFC according to an embodiment of the present invention.
FIG. 3 is a sectional view showing details of a battery tube.
FIG. 4 is a schematic system diagram of a solid oxide fuel cell power generation system according to an embodiment of the present invention.
FIG. 5 is a perspective view illustrating a schematic configuration of a conventional SOFC.
FIG. 6 is a schematic sectional view of a conventional SOFC.
[Explanation of symbols]
31 Solid Electrolyte Fuel Cell (SOFC)
32 containers (casings)
33 Fuel chamber tube sheet
34 Exhaust gas chamber tube sheet
35 Exhaust air chamber tube sheet
35a Exhaust air exhaust hole
36 Air chamber tube sheet
37 Fuel Chamber
38 Exhaust gas chamber
39 Battery room
40 Exhaust air chamber
41 air chamber
42 Battery tube
43 Outer fuel tube
44 Fuel inner pipe
45 air heating tube
46 Aperture
47 Fuel supply pipe
48 Exhaust gas exhaust pipe
49 Air exhaust pipe
50 Air supply pipe
51 Recirculation pipe
52 Ejector
53 batteries
55 Fuel electrode
56 electrolyte
57 air electrode
59 catalyst
61 External air heater
62 Waste heat recovery boiler
63 exhaust gas exhaust air mixer
64 exhaust gas pipe
65 ventilator
66 Combustor for starting
67,69 Fuel branch pipe
68, 70 control valve
71,72 orthogonal transformer
72 Desulfurization equipment
73 Chimney

Claims (12)

管内もしくは管外のいずれか一方に供給される燃料と燃料が供給されない管外もしくは管内のいずれか一方に供給される空気中の酸素とを電解質を介して電池反応させて発電する燃料電池管を複数備え、空気が供給される部位に空気加熱管を設け、空気加熱管を通して空気を供給することで発電の反応熱を回収することで空気を加熱して供給することを特徴とする固体電解質燃料電池。A fuel cell tube which generates a battery by causing a cell reaction between fuel supplied to one of the inside and outside of the tube and oxygen in air supplied to one of the outside and inside of the tube to which fuel is not supplied via an electrolyte through an electrolyte. A solid electrolyte fuel characterized by providing a plurality of air heating pipes at a portion to which air is supplied, heating the air by supplying the air through the air heating pipe, and collecting the reaction heat of the power generation to supply the air. battery. 請求項1に記載の固体電解質燃料電池において、
反応を終えた排空気の一部を空気加熱管の入口側に再循環させる再循環系を備え、空気加熱管に供給される空気に排空気を混入して空気の温度を高めることを特徴とする固体電解質燃料電池。
The solid electrolyte fuel cell according to claim 1,
It is equipped with a recirculation system that recirculates part of the exhaust air after the reaction to the inlet side of the air heating pipe, and mixes the exhaust air with the air supplied to the air heating pipe to raise the temperature of the air. Solid electrolyte fuel cell.
請求項1もしくは請求項2のいずれか一項に記載の固体電解質燃料電池において、
空気加熱管は複数設けられ、空気加熱管に送給される空気の圧力を均一に維持する均一維持機構を備えたことを特徴とする固体電解質燃料電池。
The solid electrolyte fuel cell according to any one of claims 1 or 2,
A solid electrolyte fuel cell comprising a plurality of air heating tubes and a uniformity maintaining mechanism for uniformly maintaining the pressure of air supplied to the air heating tubes.
管内もしくは管外のいずれか一方に供給される燃料と燃料が供給されない管外もしくは管内のいずれか一方に供給される空気中の酸素とを電解質を介して電池反応させて発電する燃料電池管を複数備え、反応を終えた排空気の一部を空気供給部に再循環させる再循環系を備え、供給される空気に排空気を混入して供給される空気の温度を高めることを特徴とする固体電解質燃料電池。A fuel cell tube which generates a battery by causing a cell reaction between fuel supplied to one of the inside and outside of the tube and oxygen in air supplied to one of the outside and inside of the tube to which fuel is not supplied via an electrolyte through an electrolyte. A plurality of recirculation systems are provided for recirculating a part of the exhaust air after the reaction to the air supply unit, and the temperature of the supplied air is increased by mixing the exhaust air with the supplied air. Solid electrolyte fuel cell. 請求項1乃至請求項4のいずれか一項に記載の固体電解質燃料電池において、
管の壁面に燃料を改質する改質触媒を設け、燃料改質反応による吸熱により発電の反応熱の一部を回収すると共に空気加熱管を通して空気を供給することで発電の残りの反応熱により空気を加熱して供給することを特徴とする固体電解質燃料電池。
The solid electrolyte fuel cell according to any one of claims 1 to 4,
A reforming catalyst for reforming the fuel is provided on the wall of the pipe, and a part of the reaction heat of the power generation is recovered by the heat absorption by the fuel reforming reaction and the air is supplied through the air heating pipe to generate the remaining reaction heat of the power generation. A solid electrolyte fuel cell, wherein air is supplied by heating.
請求項5に記載の固体電解質燃料電池において、
改質触媒は燃料極であることを特徴とする固体電解質燃料電池。
The solid electrolyte fuel cell according to claim 5,
A solid electrolyte fuel cell, wherein the reforming catalyst is a fuel electrode.
請求項1乃至請求項6のいずれか一項に記載の固体電解質燃料電池において、
管内に燃料が供給され、管の外壁に燃料極及び電解質及び空気極が設けられていることを特徴とする固体電解質燃料電池。
The solid electrolyte fuel cell according to any one of claims 1 to 6,
A solid electrolyte fuel cell, wherein fuel is supplied into a tube, and a fuel electrode, an electrolyte, and an air electrode are provided on an outer wall of the tube.
容器上部の内部に設けられる燃料室と、
燃料室の下部に設けられ燃料室管板により仕切られる排ガス室と、
排ガス室の下部に設けられ排ガス室管板により仕切られる電池室と、
電池室の下部に排空気室管板により仕切られて設けられる排空気室と、
排空気室の下部に設けられ空気室管板により仕切られる空気室と、
両端が開放され上端部が燃料室に開口して配されると共に下端部が電池室に配される燃料内管と、
下端が閉じられると共に上端が開放されて燃料内管の外側に配され下端部が燃料内管の開口を覆うと共に上端部が排ガス室に開口して配される多孔質状の燃料外管と、
排空気室管板に設けられる多数の排空気排出孔と、
両端が開放され上端部が電池室の上方に配され下端部が空気室に開口する空気加熱管と、
燃料外管の外周に配される電池セルとを備え、
燃料室に燃料が供給されることにより燃料内管を通って下端部から燃料外管に燃料が送られると共に空気室に空気が供給されることにより空気加熱管を流通して電池室に空気が送られ、
多孔質状の燃料外管の壁部を通過した燃料と空気中の酸素とが電解質を介して電池反応されて発電され、
燃料外管内の未燃燃料を含む排ガスが燃料外管を流通して排ガス室に送られると共に電池室の排空気が排空気排出孔を通過して排空気室に送られ、
空気加熱管を流通する空気が発電の反応熱により加熱される
ことを特徴とする固体電解質燃料電池。
A fuel chamber provided inside the upper part of the container,
An exhaust gas chamber provided at a lower portion of the fuel chamber and separated by a fuel chamber tube sheet;
A battery chamber provided at a lower portion of the exhaust gas chamber and separated by an exhaust gas tube tube;
An exhaust air chamber provided at a lower portion of the battery chamber and partitioned by an exhaust air chamber tube sheet;
An air chamber provided below the exhaust air chamber and partitioned by an air chamber tube sheet;
A fuel inner pipe whose both ends are open and whose upper end is open to the fuel chamber and whose lower end is arranged in the battery chamber,
A porous fuel outer pipe in which the lower end is closed and the upper end is opened and arranged outside the fuel inner pipe, the lower end covers the opening of the fuel inner pipe, and the upper end is arranged to be open to the exhaust gas chamber,
A large number of exhaust air exhaust holes provided in the exhaust air chamber tube sheet,
An air heating tube whose both ends are open and whose upper end is arranged above the battery chamber and whose lower end is open to the air chamber;
Battery cells arranged on the outer periphery of the fuel outer tube,
When fuel is supplied to the fuel chamber, fuel is sent from the lower end to the fuel outer pipe through the fuel inner pipe, and air is supplied to the air chamber. Sent,
Fuel passing through the wall of the porous fuel outer tube and oxygen in the air undergo a battery reaction via the electrolyte to generate power,
Exhaust gas containing unburned fuel in the fuel outer tube flows through the fuel outer tube and is sent to the exhaust gas chamber, and exhaust air of the battery chamber is sent to the exhaust air chamber through the exhaust air exhaust hole,
A solid electrolyte fuel cell, wherein air flowing through an air heating tube is heated by reaction heat of power generation.
請求項8に記載の固体電解質燃料電池において、
空気加熱管は複数設けられ、複数の空気加熱管に供給される空気量が均一になるように空気加熱管の入口部にオリフィスを設けたことを特徴とする固体電解質燃料電池。
The solid electrolyte fuel cell according to claim 8,
A solid electrolyte fuel cell, wherein a plurality of air heating tubes are provided, and an orifice is provided at an inlet of the air heating tube so that the amount of air supplied to the plurality of air heating tubes is uniform.
請求項8もしくは請求項9に記載の固体電解質燃料電池において、
排空気室から排出される排空気の一部を空気室に再循環させる再循環系を備え、空気室に供給される空気に排空気を混入して空気の温度を高めることを特徴とする固体電解質燃料電池。
The solid electrolyte fuel cell according to claim 8 or 9,
A solid body that has a recirculation system that recirculates part of the exhaust air discharged from the exhaust air chamber to the air chamber, and increases the temperature of the air by mixing the exhaust air into the air supplied to the air chamber. Electrolyte fuel cell.
請求項10に記載の固体電解質燃料電池において、
燃料外管の外壁には燃料極及び電解質及び空気極が設けられ、
燃料極が燃料を改質する改質触媒となり、
燃料改質反応による吸熱により発電の反応熱の一部を回収すると共に発電の反応熱の残りで空気加熱管を流通する空気を加熱して発電の反応熱を全て回収除去することを特徴とする固体電解質燃料電池。
The solid electrolyte fuel cell according to claim 10,
A fuel electrode, an electrolyte and an air electrode are provided on the outer wall of the fuel outer tube,
The fuel electrode becomes a reforming catalyst for reforming the fuel,
It is characterized by recovering a part of the reaction heat of power generation by heat absorption by the fuel reforming reaction and recovering and removing all the reaction heat of power generation by heating the air flowing through the air heating tube with the remainder of the reaction heat of power generation. Solid electrolyte fuel cell.
請求項1乃至請求項11のいずれかに記載の固体電解質燃料電池と、
固体電解質燃料電池に燃料を供給する燃料供給系と、
固体電解質燃料電池の排空気及び排ガスが混合されて燃焼される混合手段と、
混合手段で燃焼された燃焼ガスが送られると共に空気供給手段から送られる空気と熱交換を行って空気を加熱する空気加熱手段と、
空気加熱手段で加熱された空気を固体電解質燃料電池に供給する空気供給系と、空気加熱手段で熱交換された燃焼ガスが送られる排熱回収ボイラと
を備えたことを特徴とする固体電解質燃料電池発電設備。
A solid electrolyte fuel cell according to any one of claims 1 to 11,
A fuel supply system for supplying fuel to the solid oxide fuel cell,
Mixing means for mixing and burning exhaust air and exhaust gas of the solid oxide fuel cell,
Air heating means for heating the air by performing heat exchange with air sent from the air supply means while the combustion gas burned by the mixing means is sent,
A solid electrolyte fuel comprising: an air supply system that supplies air heated by air heating means to a solid electrolyte fuel cell; and a waste heat recovery boiler to which combustion gas heat-exchanged by the air heating means is sent. Battery power generation equipment.
JP2002248117A 2002-08-28 2002-08-28 Solid electrolyte fuel cell and solid electrolyte fuel cell power generation provision Pending JP2004087350A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002248117A JP2004087350A (en) 2002-08-28 2002-08-28 Solid electrolyte fuel cell and solid electrolyte fuel cell power generation provision

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002248117A JP2004087350A (en) 2002-08-28 2002-08-28 Solid electrolyte fuel cell and solid electrolyte fuel cell power generation provision

Publications (1)

Publication Number Publication Date
JP2004087350A true JP2004087350A (en) 2004-03-18

Family

ID=32055572

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002248117A Pending JP2004087350A (en) 2002-08-28 2002-08-28 Solid electrolyte fuel cell and solid electrolyte fuel cell power generation provision

Country Status (1)

Country Link
JP (1) JP2004087350A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008298045A (en) * 2007-06-04 2008-12-11 Nissan Motor Co Ltd Internal-combustion engine system
JP2011034715A (en) * 2009-07-30 2011-02-17 Nissan Motor Co Ltd Fuel cell system and temperature-raising method of fuel cell used for this fuel cell system
JP2013503444A (en) * 2009-08-28 2013-01-31 ザ・ボーイング・カンパニー Thermoelectric generator and fuel cell for cogeneration
JP2017117551A (en) * 2015-12-22 2017-06-29 三菱日立パワーシステムズ株式会社 Fuel cell cartridge and fuel cell module, and cooling method for fuel battery cell stack

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008298045A (en) * 2007-06-04 2008-12-11 Nissan Motor Co Ltd Internal-combustion engine system
JP2011034715A (en) * 2009-07-30 2011-02-17 Nissan Motor Co Ltd Fuel cell system and temperature-raising method of fuel cell used for this fuel cell system
US9406949B2 (en) 2009-07-30 2016-08-02 Nissan Motor Co., Ltd. Fuel cell system and control method thereof
US9929415B2 (en) 2009-07-30 2018-03-27 Nissan Motor Co., Ltd. Fuel cell system and control method thereof
JP2013503444A (en) * 2009-08-28 2013-01-31 ザ・ボーイング・カンパニー Thermoelectric generator and fuel cell for cogeneration
JP2017117551A (en) * 2015-12-22 2017-06-29 三菱日立パワーシステムズ株式会社 Fuel cell cartridge and fuel cell module, and cooling method for fuel battery cell stack

Similar Documents

Publication Publication Date Title
AU2003261776A1 (en) Fuel Cell Electrical Power Generation System
JP2005276836A (en) Method and system for start and transient operation of fuel cell-gas turbine combined system
US20170279135A1 (en) Device and method for heating fuel cell stack and fuel cell system having the device
JPH07230816A (en) Internally modified solid electrolyte fuel cell system
CN115172800A (en) Solid oxide fuel cell combined heat and power system
EP3477751A1 (en) Fuel cell system comprising heat exchanger using anode gas or anode exhaust gas
KR100751029B1 (en) Fuel cell power generation system
KR101721237B1 (en) Solid oxide fuel cell system heated by externel hear source
CN113903949A (en) Hot area structure of MW-level solid oxide fuel cell power generation system and operation method thereof
JPH07230819A (en) Internally modified solid electrolyte fuel cell system having self-heat exchange type heat insulating prereformer
JPH07220745A (en) Fuel cell system
JP2004087350A (en) Solid electrolyte fuel cell and solid electrolyte fuel cell power generation provision
JP2010267394A (en) Generation device
JP2009541921A (en) Preheating device for fuel cell device
JP2008078144A (en) Fuel cell-gas turbine generator set and combined generator set
JP3928675B2 (en) Combined generator of fuel cell and gas turbine
JP4610906B2 (en) Fuel cell power generation system and method for starting fuel cell power generation system
JP4872760B2 (en) Operation control method and apparatus for fuel processor
JP2004087351A (en) Fuel cell-gas turbine power generation provision and combined cycle power generation provision
JP2006059549A (en) Fuel cell power generator
JPH065298A (en) Fuel cell power generating apparatus
JP2004119239A (en) Fuel cell-gas turbine power generation equipment and combined cycle power generation equipment
JP2020098699A (en) Fuel cell system and method for operating fuel cell system
JPH10223236A (en) Fuel cell electricity-generating apparatus
JP2007128718A (en) Fuel cell module and operation method of the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050811

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080612

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090106

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090609