JP4283980B2 - Starting method of fuel cell power generator - Google Patents

Starting method of fuel cell power generator Download PDF

Info

Publication number
JP4283980B2
JP4283980B2 JP2000257079A JP2000257079A JP4283980B2 JP 4283980 B2 JP4283980 B2 JP 4283980B2 JP 2000257079 A JP2000257079 A JP 2000257079A JP 2000257079 A JP2000257079 A JP 2000257079A JP 4283980 B2 JP4283980 B2 JP 4283980B2
Authority
JP
Japan
Prior art keywords
carbon monoxide
fuel cell
temperature
reformer
catalyst layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000257079A
Other languages
Japanese (ja)
Other versions
JP2002075425A (en
Inventor
収 田島
昭 藤生
浩二 進藤
恵吾 宮井
丈俊 黄木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eneos Celltech Co Ltd
Original Assignee
Eneos Celltech Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Eneos Celltech Co Ltd filed Critical Eneos Celltech Co Ltd
Priority to JP2000257079A priority Critical patent/JP4283980B2/en
Publication of JP2002075425A publication Critical patent/JP2002075425A/en
Application granted granted Critical
Publication of JP4283980B2 publication Critical patent/JP4283980B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Fuel Cell (AREA)
  • Hydrogen, Water And Hydrids (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、燃料電池発電装置における一酸化炭素除去装置の触媒層の温度を、その反応温度以上に昇温させる、燃料電池発電装置の起動方法に関する。
【0002】
【従来の技術】
燃料電池発電システムは、燃料電池に改質器からの水素ガスに富んだ改質ガスと空気を導入することにより、水素と空気中の酸素とを反応させて電気を取り出す発電システムである。改質ガスは水素、二酸化炭素および一酸化炭素を含むが、一酸化炭素は燃料電池の触媒毒となるので除去する必要があり、そのため改質器と燃料電池の間には一酸化炭素除去装置が設けられる。一酸化炭素除去装置は一酸化炭素を除くために触媒層を内包している。改質器からの改質ガスは、一酸化炭素除去装置内の触媒層の温度がその反応温度にまで上昇した状態で前記触媒層に通すことが必要である。
常温あるいは発電停止状態から前記触媒層の温度を昇温させるには、種々の方法が採用されている。たとえば一酸化炭素を変成する変成器の反応温度は200〜300℃の範囲であるが、この温度までバーナー等の加熱装置によって一酸化炭素変成器を昇温する必要がある。しかしながら、この方法では一酸化炭素変成器の起動のためだけの加熱装置が別途必要となり、燃料電池システムとして補機点数が増えるという欠点がある。また、外部から加熱するために、触媒層の中心部まで反応温度に昇温させるためには1時間30分ないし2時間と長い時間を要するという欠点を有する。
【0003】
特開平4−71169号公報には、燃料電池発電装置を起動する方法として、改質ガスを変成器を通らず直接燃料電池の燃料室に導入するためのバイパス回路を設け、最初は改質器における水蒸気の比を高くして一酸化炭素濃度が低い改質ガスを生成させ、これを前記バイパス回路を通して燃料室に導入し発電を行い、これと併行して一酸化炭素除去装置の触媒温度をヒーターによって加熱し、燃料電池および変成器の触媒温度が所定の温度にまで昇温したら、改質ガスをバイパス回路に流すのを止め、定常運転に切り替える方法が開示されている。しかし、この方法では変成器の昇温はヒーターを用いているため、触媒の温度が反応温度に達するまでに数時間を要し、また、改質ガス中の一酸化炭素濃度を水蒸気の比率だけで低減させることは難しいという問題がある。
【0004】
このように、燃料電池発電において、一酸化炭素除去装置の触媒層の温度が所定の反応温度に達するまでの時間が短い起動方法は未だ知られていない。
【特許文献1】
特開平04−071169号公報
【特許文献2】
特開平03−108270号公報
【特許文献3】
特開平06−215785号公報
【特許文献4】
特開平05−275103号公報
【特許文献5】
特開2000−203803号公報
【特許文献6】
特開2001−226106号公報
【0005】
【発明が解決しようとする課題】
本発明は、前記問題点に鑑みてなされたものであり、その目的は、一酸化炭素除去装置に触媒加熱用のバーナを設ける必要がなく、一酸化炭素除去装置の触媒層の温度を反応温度にまで昇温させる時間が短い、新規な燃料電池発電装置の起動方法を提供することにある。
【0006】
【課題を解決するための手段】
前記目的は、以下の燃料電池発電装置の起動方法を提供することにより解決される。
(1)改質器と、改質器を加熱する改質器バーナと、改質器から排出されるガスから一酸化炭素を除去する一酸化炭素除去装置と、一酸化炭素除去装置から供給される改質ガスにより発電を行う燃料電池と、を備える燃料電池発電装置の起動方法において、一酸化炭素除去装置の触媒層に空気と窒素の混合ガスを供給する第1の工程と、第1の工程の後段に設けられ、改質器バーナにて前記改質器を加熱する第2の工程と、を含み、前記第2の工程は、前記一酸化炭素除去装置の触媒層が反応温度に昇温された後に燃焼を開始することを特徴とする燃料電池発電装置の起動方法。
(2)(1)記載の燃料電池発電装置の起動方法において、改質器の触媒層および一酸化炭素除去装置の触媒層の温度が安定するまでの改質ガスは、燃料電池に供給しないことを特徴とする燃料電池発電装置の起動方法。
【0007】
【発明の実施の形態】
本発明において一酸化炭素除去装置とは、触媒により一酸化炭素を除去する装置であり、固体高分子型燃料電池の場合には、少なくとも一酸化炭素変成器と一酸化炭素除去器を備える。また、リン酸型燃料電池の場合には少なくとも一酸化炭素変成器を備える。一酸化炭素変成器は、一酸化炭素を水蒸気と反応させて二酸化炭素に変換させる装置であり、触媒としてたとえばCu系の触媒を備え、その反応温度は200〜300℃の範囲内である。また、一酸化炭素除去器は、一酸化炭素変成器からの排出ガスに空気(酸素)を加えて、選択酸化反応に基づき一酸化炭素を二酸化炭素に転換する装置であり、触媒としてたとえばRuを備え、その反応温度は120〜200℃の範囲内である。一酸化炭素変成器によりCO濃度は1%程度に低減され、また、一酸化炭素除去器によりさらに10ppm程度に低減される。
【0008】
本発明の燃料電池発電装置の起動方法においては、一酸化炭素除去装置の一酸化炭素変成器に空気と窒素ガスを含む混合ガスを導入して、一酸化炭素変成器の触媒層に発熱反応を起こさせることにより、触媒層の温度をその反応温度である200〜300℃にまで十分昇温させることができる。
固体高分子型燃料電池を用いる発電装置においては、一酸化炭素変成器に続いて一酸化炭素除去器が設けられるが、通常、一酸化炭素除去器の触媒の反応温度は一酸化炭素変成器の触媒の反応温度より低く、また、一酸化炭素変成器において生じた発熱反応により昇温している触媒層を通過した一酸化炭素変成器からのガス(窒素主体)は加熱されているので、このガスを一酸化炭素除去器に導入することにより、一酸化炭素除去器の触媒層温度を十分その反応温度まで昇温させることができる。
【0009】
一酸化炭素変成器に供給する空気と窒素の混合ガスに対する空気の割合は、混合ガスに対し0.1〜10容量%、好ましくは0.5〜2容量%である。混合ガス中に含まれる空気が0.1容量%より少ないと一酸化炭素変成器における触媒層の温度がその反応温度に到達しにくく、一方、空気の含有量が10容量%より高いと酸素濃度が高くなりすぎ、急激な触媒発熱反応が起こりやすくなるので、前記範囲が適切である。
空気と窒素ガスの混合ガスは一酸化炭素変成器に管路を通じて直接導入してもよいが、改質器および改質ガス管路を通して一酸化炭素変成器に導入してもよい。
【0010】
一酸化炭素除去装置が一酸化炭素変成器よりなる場合には、一酸化炭素変成器触媒層の温度が反応温度、すなわち200〜300℃になったら前記混合ガスの供給を停止する。また、一酸化炭素除去装置が一酸化炭素変成器と一酸化炭素除去器よりなる場合には、一酸化炭素変成器の触媒層温度が反応温度以上になった時点において、一酸化炭素除去器の触媒層の温度を計測し、前記触媒層の温度が反応温度の下限、すなわち120℃より低い場合には、一酸化炭素変成器に前記混合ガスに代えて窒素ガスを供給し、加熱された窒素ガスを一酸化炭素除去器に導入し一酸化炭素除去器の触媒層を加熱し、該触媒層の温度が反応温度以上に達した時点で窒素ガスの供給を停止する。また、前記時点において一酸化炭素除去器の触媒層の温度が既に反応温度に達している場合、すなわち120℃以上の場合には、前記混合ガスの導入を停止する。
一酸化炭素除去装置の触媒層の温度が反応温度に達したら、改質器バーナを点火し、改質器触媒の昇温を開始する。
【0011】
本発明においては一酸化炭素変成器の触媒の発熱反応を利用し内部から昇温させるので、所定の反応温度までの昇温時間を短かくすることができる。一酸化炭素変成器に前記混合ガスを供給し始めてから一酸化炭素変成器の触媒層が反応温度に達するまでの時間は、触媒の種類、量、混合ガスの空気の含有割合、流量等により異なるが、およそ10〜45分である。
また一酸化炭素除去装置が一酸化炭素変成器と一酸化炭素除去器から構成される場合、一酸化炭素変成器に前記混合ガスを供給し始めてから一酸化炭素変成器および一酸化炭素除去器の触媒層の温度が反応温度に達するまでの時間は、およそ10〜56分である。
【0012】
一酸化炭素変成器あるいは一酸化炭素除去器を出たガスはそのまま排気してもよいが、熱交換器を通して排熱回収を行ってもよい。
【0013】
次に、本発明の起動方法が適用される燃料電池発電装置について説明する。図1は、固体高分子型燃料電池を用いる発電装置の一例を示すが、本発明の運転方法は、固体高分子型燃料電池だけでなくリン酸塩型燃料電池等の他の燃料電池を用いる発電装置に適用できることは勿論である。前記発電装置の各部の構成をその作動とともに説明する。図1中、3は改質器、4は一酸化炭素変成器、5は一酸化炭素除去器、6は固体高分子型燃料電池をそれぞれ示す。
起動時は、上記のように空気と窒素ガスの混合ガスを、管路7により原燃ガス管路に導入し、改質器3を介して一酸化炭素変成器4に供給する。一酸化炭素変成器4において混合ガス中の酸素により、触媒の発熱反応が生じ触媒層は発熱する。この熱により加熱された一酸化炭素変成器からの排出ガスは一酸化炭素除去器に導入され、除去器の触媒層を加熱する。一酸化炭素除去器5からの排出ガスは熱交換器46を通して排熱回収を行ってもそのまま排気してもよい。
【0014】
一酸化炭素変成器4および一酸化炭素除去器5の触媒層の温度がそれぞれ所定の反応温度に達した時点で、改質器バーナ12に管路13からの原燃ガスと送風機14からの空気を供給して燃焼させ、この燃焼ガスにより改質器触媒層の温度を昇温させる。また、改質器3に脱硫器2で脱硫された原燃ガス1を昇圧ポンプ10を介して供給する。少なくとも、改質器3の触媒層の温度が炭素を析出させる温度に到達する以前において、改質器3に水蒸気を導入する。改質器への水蒸気の導入は、改質器に接続した熱交換器17に水タンク21からの水をポンプ22を介して供給し、熱交換器17で蒸発させ、得られた水蒸気を改質器への原燃ガス管路へ導入することにより行われる。一酸化炭素変成器4および一酸化炭素除去器5の触媒層の温度は既に100℃を超えているので、水蒸気が前記触媒層において結露する虞はない。この後さらに改質器触媒層を加熱し、改質反応に十分な温度にまで昇温させる。
改質ガスは、ガス組成が安定するまでは燃料電池6に導入することができないので、改質器3、一酸化炭素変成器4および一酸化炭素除去器5の各触媒層の温度が安定するまでは、開閉弁91を閉じ開閉弁36を開いて、一酸化炭素除去器5から排出される改質ガスを管路35を通してPG(プロセスガス)バーナ34に送り、送風機37からの空気を混合して燃焼させ、熱交換器46によりもっぱら熱回収を行う。
【0015】
各反応器の温度が安定した後には、改質ガスが燃料電池6の燃料極(アノード)6aに導入され、また、空気が送風機11により空気極(カソード)6bに導入されて発電が開始するが、燃料電池6の温度が安定するまで、開閉弁91、39は開かれ、開閉弁36、92が閉じられて、燃料極6aからのガスはPGバーナ34に供給され、前記と同様に熱回収される。燃料電池6の温度が安定した段階で開閉弁91、92が開かれ、開閉弁36、39が閉じられて、定常運転に移行する。
定常運転においては、燃料電池のアノード6aを経た未反応ガスは管路15を経て改質器バーナ12に供給される。未反応ガスは全量バーナで燃焼させるが、これだけでは改質器触媒層の温度を改質反応温度に保つことができない場合には、原燃ガスがバーナ12に供給される。カソード6bから排出された空気は、燃料電池本体6の発熱反応によって温度上昇しているので、管路26を経て熱交換器27を通した後、排気される。
【0016】
また、改質ガスからの熱、燃料電池からの熱は各熱交換器を用いて回収し、湯として供給することができる。改質器3と燃料電池6を結ぶラインに設けられた熱交換器18、19、20を通って、水タンク21からの水がポンプ23、24、25により循環し、その結果、このラインを通る改質ガスを冷却し、一方水タンク21の水を加熱する。また、水タンク21の水はポンプ42により熱交換器41内を循環し、貯湯タンク98の水と熱交換する。また、カソード6bからの排ガスは、ガス管路26に接続された熱交換器27の中を通って、その中を通る水と熱交換し、その後排気される。
貯湯タンク98からの水はポンプ28により熱交換器27内を、ポンプ33により熱交換器32内を、ポンプ43により熱交換器41内を、ポンプ47により熱交換器46内を、それぞれ循環し、加熱させられる。さらに、燃料電池6の冷却部6cにはポンプ48を介して水タンク21の水が循環する。
改質器3からの燃焼排ガス管路31には熱交換器32が接続され、熱交換器32には、貯湯タンク98からの水がポンプ33を介して循環し、排熱回収が行われる。また熱交換器17においては前記のように、水タンク21の水が蒸発し、発生した水蒸気は改質器に送られる。
【0017】
【実施例】
以下に実施例を示し本発明をさらに具体的に説明するが、本発明はこれらの実施例により限定されるものではない。
実施例1
図1で示すような固体高分子型燃料電池発電システムを用いて、起動運転を行った。改質器触媒、一酸化炭素変成器触媒および一酸化炭素除去器触媒としてそれぞれRu、Cu−ZnおよびRuを用いた。改質器に空気および窒素ガスの混合ガス(比率1:99)を供給し(流量10l/min)、前記混合ガスを一酸化炭素変成器に導入し、また、一酸化炭素変成器からのガスを一酸化炭素除去器に導いた。一酸化炭素変成器において触媒の発熱反応が生じ触媒層が昇温し、昇温した触媒層により加熱されたガスにより一酸化炭素除去器の触媒層が加熱された。
20分で一酸化炭素変成器の触媒層の温度が反応温度である200℃に到達した。この時点で一酸化炭素除去器の触媒層の温度を測定したところ、まだ120℃に昇温していなかったので、前記混合ガスに代えて窒素ガスを一酸化炭素変成器に供給した。窒素ガスの供給開始から10分経過の後一酸化炭素除去器の温度が反応温度(120℃)に達した。合計30分で一酸化炭素除去装置の各触媒層の温度を反応温度にまで昇温させることができた。
【0018】
【発明の効果】
本発明は前記のごとく起動運転において一酸化炭素変成器を含む一酸化炭素除去装置に酸素を供給することにより、短時間で一酸化炭素除去装置の触媒層を反応温度にまで昇温させることができ、従来、1時間30分ないし2時間要していた起動運転を、60分以下に短縮することが可能になった。また、従来、一酸化炭素除去装置に設けていた触媒加熱装置も不要となった。
【図面の簡単な説明】
【図1】 本発明の起動方法が用いられる燃料電池発電システムの一例を示す概念図である。
【符号の説明】
1 原燃ガス
3 改質器
4 一酸化炭素変成器
5 一酸化炭素除去器
6 燃料電池
7 空気と窒素の混合ガス管路
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for starting a fuel cell power generation apparatus, in which the temperature of a catalyst layer of a carbon monoxide removal apparatus in the fuel cell power generation apparatus is raised to a temperature equal to or higher than the reaction temperature.
[0002]
[Prior art]
The fuel cell power generation system is a power generation system that takes out electricity by reacting hydrogen with oxygen in the air by introducing reformed gas rich in hydrogen gas from a reformer and air into the fuel cell. The reformed gas contains hydrogen, carbon dioxide, and carbon monoxide. Since carbon monoxide is a catalyst poison for the fuel cell, it must be removed. Therefore, a carbon monoxide removal device is required between the reformer and the fuel cell. Is provided. The carbon monoxide removing device includes a catalyst layer in order to remove carbon monoxide. The reformed gas from the reformer needs to pass through the catalyst layer in a state where the temperature of the catalyst layer in the carbon monoxide removing apparatus has risen to the reaction temperature.
Various methods are employed to raise the temperature of the catalyst layer from room temperature or a power generation stop state. For example, the reaction temperature of a transformer for transforming carbon monoxide is in the range of 200 to 300 ° C., and it is necessary to raise the temperature of the carbon monoxide transformer by a heating device such as a burner. However, this method requires a separate heating device only for starting the carbon monoxide transformer, and there is a drawback that the number of auxiliary equipment increases as a fuel cell system. Further, in order to heat from the outside, it takes a long time of 1 hour 30 minutes to 2 hours to raise the reaction temperature to the center of the catalyst layer.
[0003]
Japanese Patent Application Laid-Open No. 4-71169 provides a bypass circuit for directly introducing reformed gas into the fuel chamber of the fuel cell without passing through the transformer as a method for starting the fuel cell power generator. A reformed gas having a low carbon monoxide concentration is generated by increasing the water vapor ratio in the gas, and this is introduced into the fuel chamber through the bypass circuit to generate power, and at the same time, the catalyst temperature of the carbon monoxide removal device is increased. A method is disclosed in which heating is performed by a heater, and when the catalyst temperature of the fuel cell and the transformer is increased to a predetermined temperature, the reformed gas is stopped from flowing through the bypass circuit and switched to steady operation. However, in this method, since the heater is used to raise the temperature of the transformer, it takes several hours for the temperature of the catalyst to reach the reaction temperature, and the carbon monoxide concentration in the reformed gas is equal to the ratio of water vapor. However, there is a problem that it is difficult to reduce it.
[0004]
As described above, in fuel cell power generation, a startup method with a short time until the temperature of the catalyst layer of the carbon monoxide removing device reaches a predetermined reaction temperature is not yet known.
[Patent Document 1]
Japanese Patent Laid-Open No. 04-071169 [Patent Document 2]
Japanese Patent Laid-Open No. 03-108270 [Patent Document 3]
Japanese Patent Laid-Open No. 06-215785 [Patent Document 4]
Japanese Patent Laid-Open No. 05-275103 [Patent Document 5]
Japanese Patent Laid-Open No. 2000-203803 [Patent Document 6]
Japanese Patent Laid-Open No. 2001-226106
[Problems to be solved by the invention]
The present invention has been made in view of the above problems, and the object thereof is not to provide a burner for heating the catalyst in the carbon monoxide removal apparatus, and the temperature of the catalyst layer of the carbon monoxide removal apparatus is set to the reaction temperature. It is an object of the present invention to provide a novel method for starting a fuel cell power generation apparatus, in which the time required for raising the temperature is short.
[0006]
[Means for Solving the Problems]
The object is solved by providing the following starting method of the fuel cell power generator.
(1) A reformer, a reformer burner for heating the reformer, a carbon monoxide removing device for removing carbon monoxide from a gas discharged from the reformer, and a carbon monoxide removing device. And a fuel cell that generates electric power using the reformed gas , a first step of supplying a mixed gas of air and nitrogen to the catalyst layer of the carbon monoxide removal device, And a second step of heating the reformer with a reformer burner , wherein the second step raises the catalyst layer of the carbon monoxide removal device to a reaction temperature. A start-up method for a fuel cell power generator, characterized in that combustion is started after being heated.
(2) In the start-up method of the fuel cell power generator described in (1) , the reformed gas until the temperature of the catalyst layer of the reformer and the catalyst layer of the carbon monoxide removing device is stabilized should not be supplied to the fuel cell. A method for starting a fuel cell power generator.
[0007]
DETAILED DESCRIPTION OF THE INVENTION
In the present invention, the carbon monoxide removing device is a device that removes carbon monoxide with a catalyst. In the case of a solid polymer fuel cell, the carbon monoxide removing device includes at least a carbon monoxide converter and a carbon monoxide remover. In the case of a phosphoric acid fuel cell, at least a carbon monoxide transformer is provided. The carbon monoxide converter is a device that reacts carbon monoxide with water vapor to convert it into carbon dioxide, and includes, for example, a Cu-based catalyst as a catalyst, and the reaction temperature is in the range of 200 to 300 ° C. The carbon monoxide remover is a device that adds air (oxygen) to the exhaust gas from the carbon monoxide converter and converts carbon monoxide to carbon dioxide based on a selective oxidation reaction. For example, Ru is used as a catalyst. And the reaction temperature is in the range of 120-200 ° C. The CO concentration is reduced to about 1% by the carbon monoxide transformer, and further reduced to about 10 ppm by the carbon monoxide remover.
[0008]
In the start-up method of the fuel cell power generation device of the present invention, a mixed gas containing air and nitrogen gas is introduced into the carbon monoxide converter of the carbon monoxide removal device, and an exothermic reaction is caused in the catalyst layer of the carbon monoxide converter. By raising the temperature, the temperature of the catalyst layer can be sufficiently raised to the reaction temperature of 200 to 300 ° C.
In a power generation apparatus using a polymer electrolyte fuel cell, a carbon monoxide remover is provided after a carbon monoxide converter. Usually, the reaction temperature of the catalyst of the carbon monoxide remover is that of the carbon monoxide converter. This is because the gas (mainly nitrogen) from the carbon monoxide converter that has passed through the catalyst layer that is lower than the reaction temperature of the catalyst and has been heated by the exothermic reaction generated in the carbon monoxide converter is heated. By introducing the gas into the carbon monoxide remover, the catalyst layer temperature of the carbon monoxide remover can be sufficiently raised to the reaction temperature.
[0009]
The ratio of air to the mixed gas of air and nitrogen supplied to the carbon monoxide transformer is 0.1 to 10% by volume, preferably 0.5 to 2% by volume with respect to the mixed gas. When the amount of air contained in the mixed gas is less than 0.1% by volume, the temperature of the catalyst layer in the carbon monoxide converter is difficult to reach the reaction temperature, whereas when the air content is higher than 10% by volume, the oxygen concentration Is too high, and a rapid catalyst exothermic reaction is likely to occur.
The mixed gas of air and nitrogen gas may be directly introduced into the carbon monoxide converter through a pipe line, or may be introduced into the carbon monoxide converter through a reformer and a reformed gas pipe line.
[0010]
In the case where the carbon monoxide removal device is composed of a carbon monoxide converter, the supply of the mixed gas is stopped when the temperature of the carbon monoxide converter catalyst layer reaches the reaction temperature, that is, 200 to 300 ° C. In addition, when the carbon monoxide removal device is composed of a carbon monoxide converter and a carbon monoxide remover, the carbon monoxide remover of the carbon monoxide remover at the time when the catalyst layer temperature of the carbon monoxide converter becomes equal to or higher than the reaction temperature. When the temperature of the catalyst layer is measured and the temperature of the catalyst layer is lower than the lower limit of the reaction temperature, that is, 120 ° C., nitrogen gas is supplied to the carbon monoxide converter instead of the mixed gas, and heated nitrogen The gas is introduced into the carbon monoxide remover, the catalyst layer of the carbon monoxide remover is heated, and the supply of nitrogen gas is stopped when the temperature of the catalyst layer reaches the reaction temperature or higher. Further, when the temperature of the catalyst layer of the carbon monoxide remover has already reached the reaction temperature at the time point, that is, when the temperature is 120 ° C. or higher, the introduction of the mixed gas is stopped.
When the temperature of the catalyst layer of the carbon monoxide removal device reaches the reaction temperature, the reformer burner is ignited and the temperature of the reformer catalyst is started to rise.
[0011]
In the present invention, since the temperature is raised from the inside using the exothermic reaction of the catalyst of the carbon monoxide converter, the temperature raising time to the predetermined reaction temperature can be shortened. The time from the start of supplying the mixed gas to the carbon monoxide converter until the catalyst layer of the carbon monoxide converter reaches the reaction temperature varies depending on the type and amount of the catalyst, the air content of the mixed gas, the flow rate, etc. Is approximately 10 to 45 minutes.
Further, when the carbon monoxide removal device is composed of a carbon monoxide converter and a carbon monoxide remover, the carbon monoxide converter and the carbon monoxide remover are started after supplying the mixed gas to the carbon monoxide converter. The time until the temperature of the catalyst layer reaches the reaction temperature is approximately 10 to 56 minutes.
[0012]
The gas exiting the carbon monoxide converter or carbon monoxide remover may be exhausted as it is, or exhaust heat recovery may be performed through a heat exchanger.
[0013]
Next, a fuel cell power generator to which the starting method of the present invention is applied will be described. FIG. 1 shows an example of a power generator using a polymer electrolyte fuel cell, but the operation method of the present invention uses not only a polymer electrolyte fuel cell but also another fuel cell such as a phosphate fuel cell. Of course, it can be applied to a power generation device. The structure of each part of the power generator will be described together with the operation thereof. In FIG. 1, 3 is a reformer, 4 is a carbon monoxide converter, 5 is a carbon monoxide remover, and 6 is a polymer electrolyte fuel cell.
At the time of start-up, a mixed gas of air and nitrogen gas is introduced into the raw fuel gas pipe through the pipe 7 as described above, and supplied to the carbon monoxide converter 4 through the reformer 3. In the carbon monoxide transformer 4, the exothermic reaction of the catalyst occurs due to oxygen in the mixed gas, and the catalyst layer generates heat. The exhaust gas from the carbon monoxide converter heated by this heat is introduced into the carbon monoxide remover, and the catalyst layer of the remover is heated. The exhaust gas from the carbon monoxide remover 5 may be exhausted through the heat exchanger 46 or exhausted as it is.
[0014]
When the temperatures of the catalyst layers of the carbon monoxide converter 4 and the carbon monoxide remover 5 reach predetermined reaction temperatures, the reformer burner 12 is supplied with the raw fuel gas from the conduit 13 and the air from the blower 14. Is supplied and burned, and the temperature of the reformer catalyst layer is raised by this combustion gas. In addition, the raw fuel gas 1 desulfurized by the desulfurizer 2 is supplied to the reformer 3 via the booster pump 10. Steam is introduced into the reformer 3 at least before the temperature of the catalyst layer of the reformer 3 reaches the temperature at which carbon is deposited. The introduction of water vapor into the reformer is performed by supplying water from the water tank 21 to the heat exchanger 17 connected to the reformer via the pump 22 and evaporating the water vapor with the heat exchanger 17. It is carried out by introducing it into the raw gas line to the pledge. Since the temperature of the catalyst layer of the carbon monoxide converter 4 and the carbon monoxide remover 5 has already exceeded 100 ° C., there is no possibility that water vapor is condensed in the catalyst layer. Thereafter, the reformer catalyst layer is further heated to raise the temperature to a temperature sufficient for the reforming reaction.
Since the reformed gas cannot be introduced into the fuel cell 6 until the gas composition is stabilized, the temperatures of the catalyst layers of the reformer 3, the carbon monoxide converter 4, and the carbon monoxide remover 5 are stabilized. Until the on-off valve 91 is closed and the on-off valve 36 is opened, the reformed gas discharged from the carbon monoxide remover 5 is sent to the PG (process gas) burner 34 through the pipe 35, and the air from the blower 37 is mixed. The heat is then recovered exclusively by the heat exchanger 46.
[0015]
After the temperature of each reactor is stabilized, the reformed gas is introduced into the fuel electrode (anode) 6a of the fuel cell 6, and air is introduced into the air electrode (cathode) 6b by the blower 11 to start power generation. However, until the temperature of the fuel cell 6 is stabilized, the on-off valves 91 and 39 are opened, the on-off valves 36 and 92 are closed, and the gas from the fuel electrode 6a is supplied to the PG burner 34, and the same as described above. Collected. When the temperature of the fuel cell 6 is stabilized, the on-off valves 91 and 92 are opened, the on-off valves 36 and 39 are closed, and the routine shifts to steady operation.
In the steady operation, the unreacted gas that has passed through the anode 6a of the fuel cell is supplied to the reformer burner 12 via the pipe line 15. Unreacted gas is burned in the burner in all amounts, but if this alone cannot keep the temperature of the reformer catalyst layer at the reforming reaction temperature, the raw fuel gas is supplied to the burner 12. Since the temperature of the air exhausted from the cathode 6b has risen due to the exothermic reaction of the fuel cell main body 6, it passes through the conduit 26 and passes through the heat exchanger 27 and is then exhausted.
[0016]
Further, heat from the reformed gas and heat from the fuel cell can be recovered using each heat exchanger and supplied as hot water. The water from the water tank 21 is circulated by the pumps 23, 24, 25 through the heat exchangers 18, 19, 20 provided in the line connecting the reformer 3 and the fuel cell 6, and as a result, this line is The reformed gas passing therethrough is cooled, while the water in the water tank 21 is heated. The water in the water tank 21 is circulated in the heat exchanger 41 by the pump 42 to exchange heat with the water in the hot water storage tank 98. Further, the exhaust gas from the cathode 6b passes through the heat exchanger 27 connected to the gas pipe 26, exchanges heat with water passing through the heat exchanger 27, and is then exhausted.
Water from the hot water storage tank 98 circulates in the heat exchanger 27 by the pump 28, in the heat exchanger 32 by the pump 33, in the heat exchanger 41 by the pump 43, and in the heat exchanger 46 by the pump 47. Heated. Further, the water in the water tank 21 is circulated through the pump 48 to the cooling unit 6 c of the fuel cell 6.
A heat exchanger 32 is connected to the combustion exhaust gas line 31 from the reformer 3, and water from the hot water storage tank 98 is circulated through the pump 33 to the heat exchanger 32, and exhaust heat recovery is performed. In the heat exchanger 17, the water in the water tank 21 evaporates as described above, and the generated water vapor is sent to the reformer.
[0017]
【Example】
EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not limited to these examples.
Example 1
A start-up operation was performed using a polymer electrolyte fuel cell power generation system as shown in FIG. Ru, Cu-Zn, and Ru were used as the reformer catalyst, carbon monoxide shifter catalyst, and carbon monoxide remover catalyst, respectively. A mixed gas (ratio 1:99) of air and nitrogen gas is supplied to the reformer (flow rate 10 l / min), the mixed gas is introduced into the carbon monoxide converter, and the gas from the carbon monoxide converter is also supplied. Was led to a carbon monoxide remover. An exothermic reaction of the catalyst occurred in the carbon monoxide converter, the temperature of the catalyst layer increased, and the catalyst layer of the carbon monoxide remover was heated by the gas heated by the heated catalyst layer.
In 20 minutes, the temperature of the catalyst layer of the carbon monoxide converter reached the reaction temperature of 200 ° C. When the temperature of the catalyst layer of the carbon monoxide remover was measured at this time, it was not yet raised to 120 ° C., so nitrogen gas was supplied to the carbon monoxide converter instead of the mixed gas. After 10 minutes from the start of the supply of nitrogen gas, the temperature of the carbon monoxide remover reached the reaction temperature (120 ° C.). In a total of 30 minutes, the temperature of each catalyst layer of the carbon monoxide removal apparatus could be raised to the reaction temperature.
[0018]
【The invention's effect】
The present invention can raise the catalyst layer of the carbon monoxide removal device to the reaction temperature in a short time by supplying oxygen to the carbon monoxide removal device including the carbon monoxide converter in the start-up operation as described above. In addition, it has become possible to shorten the start-up operation, which has conventionally required 1 hour 30 minutes to 2 hours, to 60 minutes or less. In addition, the catalyst heating device that has conventionally been provided in the carbon monoxide removing device is no longer necessary.
[Brief description of the drawings]
FIG. 1 is a conceptual diagram showing an example of a fuel cell power generation system in which a startup method of the present invention is used.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Nuclear fuel gas 3 Reformer 4 Carbon monoxide converter 5 Carbon monoxide remover 6 Fuel cell 7 Mixed gas line of air and nitrogen

Claims (2)

改質器と、前記改質器を加熱する改質器バーナと、前記改質器から排出されるガスから一酸化炭素を除去する一酸化炭素除去装置と、前記一酸化炭素除去装置から供給される改質ガスにより発電を行う燃料電池と、を備える燃料電池発電装置の起動方法において、前記一酸化炭素除去装置の触媒層に空気と窒素の混合ガスを供給する第1の工程と、前記第1の工程の後段に設けられ、前記改質器バーナにて前記改質器を加熱する第2の工程と、を含み、前記第2の工程は、前記一酸化炭素除去装置の触媒層が反応温度に昇温された後に燃焼を開始することを特徴とする燃料電池発電装置の起動方法。 A reformer, a reformer burner for heating the reformer, a carbon monoxide removing device for removing carbon monoxide from a gas discharged from the reformer, and the carbon monoxide removing device. And a fuel cell that generates electric power using the reformed gas , a first step of supplying a mixed gas of air and nitrogen to the catalyst layer of the carbon monoxide removal device, And a second step of heating the reformer with the reformer burner , wherein the second step is a reaction of the catalyst layer of the carbon monoxide removal device. A starting method of a fuel cell power generator, wherein combustion is started after the temperature is raised. 請求項1記載の燃料電池発電装置の起動方法において、前記改質器の触媒層および前記一酸化炭素除去装置の触媒層の温度が安定するまでの前記改質ガスは、前記燃料電池に供給しないことを特徴とする燃料電池発電装置の起動方法。 2. The start-up method for a fuel cell power generator according to claim 1 , wherein the reformed gas is not supplied to the fuel cell until the temperatures of the catalyst layer of the reformer and the catalyst layer of the carbon monoxide removing device are stabilized. A starting method for a fuel cell power generator.
JP2000257079A 2000-08-28 2000-08-28 Starting method of fuel cell power generator Expired - Fee Related JP4283980B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000257079A JP4283980B2 (en) 2000-08-28 2000-08-28 Starting method of fuel cell power generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000257079A JP4283980B2 (en) 2000-08-28 2000-08-28 Starting method of fuel cell power generator

Publications (2)

Publication Number Publication Date
JP2002075425A JP2002075425A (en) 2002-03-15
JP4283980B2 true JP4283980B2 (en) 2009-06-24

Family

ID=18745602

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000257079A Expired - Fee Related JP4283980B2 (en) 2000-08-28 2000-08-28 Starting method of fuel cell power generator

Country Status (1)

Country Link
JP (1) JP4283980B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6656622B2 (en) * 2000-11-15 2003-12-02 Utc Fuel Cells, Llc Degasified PEM fuel cell system
JP2008207989A (en) * 2007-02-26 2008-09-11 Idemitsu Kosan Co Ltd Co converting apparatus and method, and fuel cell system and method for controlling the same

Also Published As

Publication number Publication date
JP2002075425A (en) 2002-03-15

Similar Documents

Publication Publication Date Title
JP2006309982A (en) Solid oxide fuel cell system
JP2003282114A (en) Stopping method of fuel cell power generating device
JP3530413B2 (en) Fuel cell power generation system and operation method thereof
JP2002093447A (en) Method for starting and stopping reformer for solid high polymer type fuel cell
JP3943405B2 (en) Fuel cell power generation system
JP2005166283A (en) Hydrogen manufacturing device for fuel cell
JP4283980B2 (en) Starting method of fuel cell power generator
JP2003086210A (en) Solid high-polymer type fuel cell power generator and its operation method
JP2005063697A (en) Fuel cell power generating system
JP4049526B2 (en) Method for starting reformer for fuel cell
JP3789706B2 (en) CO conversion unit and polymer electrolyte fuel cell power generation system
JP2004031025A (en) Operation method of desulfurizer for fuel cell power generation device
JP3139574B2 (en) Fuel cell generator
JP2002053305A (en) Method for vaporizing kerosene fuel for fuel cell
JP2002216808A (en) Fuel gas generating device for fuel cell
JP4176130B2 (en) Fuel cell power generation system
JP3960001B2 (en) Carbon monoxide remover and fuel cell system
JP2004199977A (en) Fuel cell generator and its operation method
JP3997476B2 (en) Fuel cell power generator
JP4072725B2 (en) Operation method of fuel cell power generator
JP2002100382A (en) Fuel cell power generator
JP4453226B2 (en) Waste heat utilization method and apparatus for fuel cell power generator
JP4161264B2 (en) Fuel cell power generator
JPH1064566A (en) Fuel cell power generator and waste heat recovery method therefor
JP4458500B2 (en) CO selective removal apparatus and method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040405

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060215

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060328

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060519

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071023

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071101

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20080725

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20081218

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20081218

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090310

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090323

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120327

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120327

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120327

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130327

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130327

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140327

Year of fee payment: 5

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees