JPH0687422B2 - Fuel cell power generation system - Google Patents

Fuel cell power generation system

Info

Publication number
JPH0687422B2
JPH0687422B2 JP59016684A JP1668484A JPH0687422B2 JP H0687422 B2 JPH0687422 B2 JP H0687422B2 JP 59016684 A JP59016684 A JP 59016684A JP 1668484 A JP1668484 A JP 1668484A JP H0687422 B2 JPH0687422 B2 JP H0687422B2
Authority
JP
Japan
Prior art keywords
fuel cell
reformer
compressed air
power generation
compressor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59016684A
Other languages
Japanese (ja)
Other versions
JPS60160576A (en
Inventor
壽 三谷
敏一 末藤
良行 田熊
槐 西山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Mitsubishi Electric Corp
Original Assignee
Shimadzu Corp
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp, Mitsubishi Electric Corp filed Critical Shimadzu Corp
Priority to JP59016684A priority Critical patent/JPH0687422B2/en
Publication of JPS60160576A publication Critical patent/JPS60160576A/en
Publication of JPH0687422B2 publication Critical patent/JPH0687422B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0606Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants
    • H01M8/0612Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04223Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids during start-up or shut-down; Depolarisation or activation, e.g. purging; Means for short-circuiting defective fuel cells
    • H01M8/04225Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids during start-up or shut-down; Depolarisation or activation, e.g. purging; Means for short-circuiting defective fuel cells during start-up
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04007Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids related to heat exchange
    • H01M8/04014Heat exchange using gaseous fluids; Heat exchange by combustion of reactants
    • H01M8/04022Heating by combustion
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Description

【発明の詳細な説明】 〔発明の技術分野〕 この発明は燃料電池の空気極出口の余剰空気及び上記改
質器の排ガスによつて駆動され上記燃料電池と改質器に
必要な圧縮空気を供給するターボコンプレッサとを備え
た燃料電池発電システムに関するものである。
Description: TECHNICAL FIELD OF THE INVENTION The present invention provides compressed air required for the fuel cell and the reformer driven by the excess air at the air electrode outlet of the fuel cell and the exhaust gas of the reformer. The present invention relates to a fuel cell power generation system including a turbo compressor for supplying the fuel cell.

〔従来技術〕[Prior art]

燃料電池発電システムは従来の汽力発電に比べ高効率が
期待できること、環境保全性が良い等の利点があり、実
用化を目指し近年盛んに開発が進められている。燃料電
池発電システムは基本的には電池本体、改質器、インバ
ータにより構成されるが、この他システムの効率向上に
不可欠な構成機器としてターボコンプレッサがある。
Fuel cell power generation systems have advantages such as higher efficiency than conventional steam power generation and good environmental conservation, and have been actively developed in recent years with the aim of practical application. A fuel cell power generation system is basically composed of a cell body, a reformer, and an inverter, and a turbo compressor is another component that is essential for improving the efficiency of the system.

燃料電池本体は燃料ガスとして天然ガス等の炭化水素系
燃料を改質して得られる水素リツチな改質ガスを使用
し、酸化剤ガスとして空気を使用する。電池本体の性能
は各反応ガスの圧力の増大によつて向上する傾向を示
し、このため燃料、空気各反応ガスの動作圧力は、例え
ば3〜6Kg/cm2g程度に加圧維持される。このとき、空気
の圧縮には多大の動力を必要とし、その値は電池の発生
エネルギーの約20%にも達する。一方、電池の燃料ガス
を生成するための改質反応は、約800℃の高温で行わ
れ、改質器からは高い温度の排ガスが排出される。した
がつて空気の圧縮動力源をシステムの排ガスエネルギー
に求めることができればシステムの効率向上に大きな効
果がある。ターボコンプレッサはこのような目的で導入
されるもので、システムの排ガスエネルギーをタービン
で回収し、同軸上のコンプレッサで必要な圧縮空気を供
給することによつて、システム内部で動力回収をし、シ
ステム効率の向上を図るものである。
The fuel cell body uses a hydrogen-rich reformed gas obtained by reforming a hydrocarbon-based fuel such as natural gas as the fuel gas, and air as the oxidant gas. The performance of the battery main body tends to improve as the pressure of each reaction gas increases. Therefore, the operating pressure of each reaction gas of fuel and air is maintained at about 3 to 6 kg / cm 2 g under pressure. At this time, a large amount of power is required to compress the air, and the value reaches about 20% of the energy generated by the battery. On the other hand, the reforming reaction for producing the fuel gas of the cell is carried out at a high temperature of about 800 ° C., and the exhaust gas of high temperature is discharged from the reformer. Therefore, if the compression power source of air can be obtained from the exhaust gas energy of the system, it has a great effect on the efficiency improvement of the system. The turbo compressor is introduced for such a purpose.The exhaust gas energy of the system is recovered by the turbine, and the required compressed air is supplied by the coaxial compressor to recover the power inside the system. It is intended to improve efficiency.

第1図に一般的な燃料電池発電システムの空気回路系統
図を示す。図において、(1)は燃料電池本体、(2)
は改質器、(3)はターボコンプレッサ、(3a),(3
b)はそれぞれターボコンプレッサ(3)のコンプレッ
サ、タービンであり、コンプレッサ(3a)で圧縮された
空気の一部が燃料電池本体(1)の反応に、残りの空気
が改質器(2)の燃料用に使用されたあと、それぞれの
排ガスがタービン(3b)に投入される。
FIG. 1 shows an air circuit system diagram of a general fuel cell power generation system. In the figure, (1) is the fuel cell body, (2)
Is a reformer, (3) is a turbo compressor, (3a), (3
b) are a compressor and a turbine of the turbo compressor (3), respectively. A part of the air compressed by the compressor (3a) reacts with the fuel cell main body (1), and the remaining air of the reformer (2). After being used for fuel, the respective exhaust gas is injected into the turbine (3b).

燃料電池発電システムは上記のように構成されるが、こ
のような燃料電池発電システムを起動させるには一般に
数時間を要するが、これは、反応温度が高く且つ熱時定
数の大きい改質器(2)の昇温に要する時間が大きい割
合を占める。したがつて、システムの起動手順として
は、通常、改質器(2)の昇温からスタートするが、こ
れには燃焼用の空気を必要とする。一方、ターボコンプ
レッサ(3)は何等かの入力なしには自力で立ち上がる
ことができない。したがつて、燃料電池発電システムを
起動するには何等かの外部エネルギーを付与してターボ
コンプレッサ(3)を起動させてやる必要がある。この
ターボコンプレッサ(3)は従来航空機の分野で補助動
力ユニツト(APU)や空調システム(ECS)に一般的に使
用される例があり、この場合、ターボコンプレッサ
(3)の起動は例えばジエツトエンジンコンプレッサの
圧縮空気の一部をタービンに導入するとか直結セルモー
タ方式で行われていた。但し、燃料電池発電システムに
おいては、システム停止状態において、ターボコンプレ
ッサ(3)を起動させるために駆動力を与えるのに必要
な利用できる動力源(圧縮空気)が周囲に存在しないた
め、特別にターボコンプレッサ(3)の起動手段を構成
する必要がある。そこで、燃料電池発電システムにおい
て、直結セルモータ方式によりターボコンプレッサ
(3)の起動手段を構成することが考えられるが、この
場合、システム構成が複雑となり、又ターボコンプレッ
サ(3)の動作効率が低下するという欠点があつた。
Although the fuel cell power generation system is configured as described above, it generally takes several hours to start up such a fuel cell power generation system. This is because the reformer having a high reaction temperature and a large thermal time constant ( The time required for raising the temperature in 2) accounts for a large proportion. Therefore, the system start-up procedure usually starts with the temperature rise of the reformer (2), but this requires air for combustion. On the other hand, the turbo compressor (3) cannot start up by itself without any input. Therefore, in order to activate the fuel cell power generation system, it is necessary to apply some external energy to activate the turbo compressor (3). The turbo compressor (3) has a conventional example which is generally used in an auxiliary power unit (APU) or an air conditioning system (ECS) in the field of aircraft. In this case, the start of the turbo compressor (3) is, for example, a jet engine. A part of the compressed air of the compressor was introduced into the turbine, or a direct connection cell motor system was used. However, in the fuel cell power generation system, when the system is stopped, a power source (compressed air) necessary for giving a driving force to start the turbo compressor (3) does not exist in the surroundings, so that the turbo generator is special. It is necessary to configure the starting means of the compressor (3). Therefore, in the fuel cell power generation system, it is conceivable to configure the starting means of the turbo compressor (3) by a direct-coupled cell motor method, but in this case, the system configuration becomes complicated and the operation efficiency of the turbo compressor (3) decreases. There was a drawback.

〔発明の概要〕[Outline of Invention]

この発明は上記のような従来のものの欠点に鑑みてなさ
れたものであり、ターボコンプレッサのコンプレッサ出
口側で改質器にいたるまでの間の回路上にシステム起動
時に圧縮空気を供給する圧縮空気供給装置を設置するこ
とにより、簡単な構成でターボコンプレッサを起動及び
自力運転することができる燃料電池発電システムを提供
するものである。
The present invention has been made in view of the above-mentioned drawbacks of the conventional ones, and compressed air supply for supplying compressed air at the time of system startup on the circuit up to the reformer on the compressor outlet side of a turbo compressor. It is intended to provide a fuel cell power generation system capable of starting a turbo compressor and operating by itself with a simple configuration by installing the device.

〔発明の実施例〕Example of Invention

以下、この発明の一実施例を第2図に基づいて説明す
る。図において、(1)〜(3)は上述した従来の構成
と同様である。(4)は改質器(2)への空気流量を調
節する調節弁、(6),(7)は負荷調整用の調整弁、
(8)はコンプレッサ(3a)出口側で大気に解散するサ
ージ防止弁、(9)は逆止弁、(10)はターボコンプレ
ッサ(3)のコンプレッサ(3a)出口側で改質器(2)
に至までの間の回路上に設置され、システム起動時に圧
縮空気を供給する圧縮空気供給装置である。
An embodiment of the present invention will be described below with reference to FIG. In the figure, (1) to (3) are the same as the above-mentioned conventional configuration. (4) is a control valve for adjusting the air flow rate to the reformer (2), (6) and (7) are control valves for load adjustment,
(8) is a surge prevention valve that dissolves into the atmosphere at the compressor (3a) outlet side, (9) is a check valve, and (10) is a reformer (2) at the compressor (3a) outlet side of the turbo compressor (3).
It is a compressed air supply device that is installed on the circuit up to and supplies compressed air when the system is started.

燃料電池発電システムを起動させる動作を次ぎに述べ
る。まず、圧縮空気供給装置(10)を起動し、調節弁
(4)を開いて改質器(2)に空気を導き改質器(2)
を立上げる。同時に、改質器(2)の排ガスがタービン
(3b)に投入され、ターボコンプレッサ(3)は初起動
する。このとき、コンプレッサ(3a)の出口側が締切状
態であればサージングを生じるので、サージ防止弁
(8)を開いてコンプレッサ(3a)出口側を大気に解放
して置く。改質器(2)の排ガス温度の上昇とともにタ
ーボコンプレッサ(3)の回転数が上昇し、コンプレッ
サ(3a)の吐出流量が増加する。十分な吐出流量になつ
た時点でサージ防止弁(8)を閉じれば、コンプレッサ
(3a)の吐出圧力が圧縮空気供給装置(10)の吐出圧力
を上回り、逆止弁(9)が開いてコンプレッサ(3a)の
吐出空気がシステムに供給される。しかる後、圧縮空気
供給装置(10)を停止させればターボコンプレッサ
(3)は自力運転に入ることになる。燃料電池本体
(1)へは、このあと調節弁(5)を開いて空気を供給
する。尚、調整弁(6),(7)は運転中のターボコン
プレッサ(3)の負荷調整を行うものであり、調整弁
(7)はシステムの低負荷域でのバイパス用、調整弁
(6)はタービン(3b)の過剰動力のバイパス用であ
る。以上のようにコンプレッサ(3a)出口側に圧縮空気
供給装置(10)を設置するという簡単な構成で、又ター
ボコンプレッサ(3)の動作効率を低下させることな
く、システム起動時にターボコンプレッサ(3)を起動
及び自力運転するようにしている。
The operation of starting the fuel cell power generation system will be described below. First, the compressed air supply device (10) is activated, the control valve (4) is opened, and air is introduced into the reformer (2) to reformer (2).
Start up. At the same time, the exhaust gas from the reformer (2) is injected into the turbine (3b), and the turbo compressor (3) is started for the first time. At this time, if the outlet side of the compressor (3a) is in a dead state, surging occurs, so the surge prevention valve (8) is opened and the outlet side of the compressor (3a) is opened to the atmosphere. As the exhaust gas temperature of the reformer (2) rises, the rotation speed of the turbo compressor (3) rises, and the discharge flow rate of the compressor (3a) increases. If the surge prevention valve (8) is closed when the discharge flow rate becomes sufficient, the discharge pressure of the compressor (3a) exceeds the discharge pressure of the compressed air supply device (10) and the check valve (9) opens to open the compressor. The discharge air of (3a) is supplied to the system. After that, if the compressed air supply device (10) is stopped, the turbo compressor (3) will start its own operation. After that, air is supplied to the fuel cell main body (1) by opening the control valve (5). The adjusting valves (6) and (7) are for adjusting the load of the turbo compressor (3) in operation. The adjusting valve (7) is for bypass in the low load region of the system, and the adjusting valve (6). Is for bypassing the excess power of the turbine (3b). As described above, the turbo compressor (3) has a simple structure in which the compressed air supply device (10) is installed on the outlet side of the compressor (3a), and the turbo compressor (3) does not deteriorate in operating efficiency of the turbo compressor (3) when the system is started. Is started and self-driving.

尚、上記実施例の圧縮空気供給装置(10)は、ターボコ
ンプレツサ(3)を初起動させるだけの要領があればよ
く、例えば電動その他の駆動によるコンプレッサ又はブ
ロワが使用される。
The compressed air supply device (10) of the above-mentioned embodiment only needs to be able to start the turbocompressor (3) for the first time, and for example, an electric or other driven compressor or blower is used.

又、圧縮空気供給装置(10)の位置は、コンプレツサ
(3a)出口側逆止弁(9)の下流側で、改質器(2)に
至るまでの間の回路上であれば何処に設置してもよく、
上記実施例と同様の効果を奏する。
Further, the position of the compressed air supply device (10) is located on the downstream side of the check valve (9) on the outlet side of the compressor (3a) and anywhere on the circuit up to the reformer (2). You may
The same effect as that of the above embodiment is obtained.

〔発明の効果〕〔The invention's effect〕

この発明は以上説明した通り、ターボコンプレッサのコ
ンプレッサ出口側で改質器に至までの間の回路上にシス
テム起動時に圧縮空気を供給する圧縮空気供給装置を設
置し、圧縮空気供給装置から改質器に圧縮空気を供給し
て改質器を立ち上げることによって、燃料電池発電シス
テムの起動はターボコンプレッサ及び改質装置を同時に
起動することによって行うことができ、燃料電池発電シ
ステム起動時間の短縮を図ることが可能である。また燃
料電池発電システム起動のための圧縮空気供給装置の小
型化、省力化を図ることができる。さらには排ガス加熱
装置がなくともシステムを構成することが可能であるた
め、システム起動時に要するエネルギーの低減が図れる
など経済性に優れた燃料電池発電システムを実現するこ
とができるものである。
As described above, according to the present invention, a compressed air supply device that supplies compressed air at the time of system startup is installed on the circuit between the compressor outlet side of the turbo compressor and the reformer, and the reforming is performed from the compressed air supply device. By supplying compressed air to the reformer and starting the reformer, the fuel cell power generation system can be started by simultaneously starting the turbocompressor and the reformer, and the fuel cell power generation system startup time can be shortened. It is possible to plan. Further, it is possible to reduce the size and labor of the compressed air supply device for starting the fuel cell power generation system. Further, since the system can be configured without the exhaust gas heating device, it is possible to realize a fuel cell power generation system excellent in economic efficiency such as reduction of energy required for system startup.

【図面の簡単な説明】[Brief description of drawings]

第1図は一般的な燃料電池発電システムを示す系統図、
第2図はこの発明の一実施例による燃料電池発電システ
ムを示す系統図である。 図において、(1)は燃料電池本体、(2)は改質器、
(3)はターボコンプレッサ、(10)は圧縮空気供給装
置である。 尚、図中同一符号は同一又は相当部分を示す。
FIG. 1 is a system diagram showing a general fuel cell power generation system,
FIG. 2 is a system diagram showing a fuel cell power generation system according to an embodiment of the present invention. In the figure, (1) is a fuel cell main body, (2) is a reformer,
(3) is a turbo compressor, and (10) is a compressed air supply device. The same reference numerals in the drawings indicate the same or corresponding parts.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 末藤 敏一 京都府京都市中京区西ノ京桑原町1番地 株式会社島津製作所三条工場内 (72)発明者 田熊 良行 兵庫県神戸市兵庫区和田崎町1丁目1番2 号 三菱電機株式会社神戸製作所内 (72)発明者 西山 槐 兵庫県尼崎市塚口本町8丁目1番1号 三 菱電機株式会社中央研究所内 (56)参考文献 特開 昭58−5975(JP,A) 特開 昭58−28177(JP,A) 実開 昭58−165977(JP,U) ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Toshikazu Suto 1 Nishinokyo Kuwabara-cho, Nakagyo-ku, Kyoto Prefecture Kyoto Sanjo Factory Sanjo Plant (72) Inventor Yoshiyuki Takuma 1-chome Wadazaki-cho, Hyogo-ku, Hyogo Prefecture 1-2 Mitsubishi Electric Co., Ltd. Kobe Works (72) Inventor Satoshi Nishiyama 8-1-1 Tsukaguchi Honcho, Amagasaki City, Hyogo Prefecture Sanryo Electric Co., Ltd. Central Research Laboratory (56) Reference JP-A-58-5975 ( JP, A) JP-A-58-28177 (JP, A) Actually developed S58-165977 (JP, U)

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】燃料電池と、炭化水素系燃料を改質して上
記燃料電池に水素ガスを供給する改質器と、この改質器
の排ガス又は上記燃料電池の空気極出口の余剰空気及び
上記改質器の排ガスの両方によって駆動され上記燃料電
池と改質器に必要な圧縮空気を供給するターボコンプレ
ッサとを備えた燃料電池発電システムにおいて、上記タ
ーボコンプレッサのコンプレッサ出口側で上記改質器に
至るまでの間の回路上にシステム起動時に圧縮空気を供
給する圧縮空気供給装置を設置し、システム起動時に、
上記圧縮空気供給装置から上記改質器に圧縮空気を供給
し、上記改質器からの排ガスを上記ターボコンプレッサ
に供給して上記ターボコンプレッサを起動するようにな
っていることを特徴とする燃料電池発電システム。
1. A fuel cell, a reformer for reforming a hydrocarbon fuel to supply hydrogen gas to the fuel cell, exhaust gas from the reformer or excess air at the air electrode outlet of the fuel cell. In a fuel cell power generation system equipped with the fuel cell driven by both of the exhaust gas of the reformer and a turbo compressor for supplying compressed air required for the reformer, the reformer at the compressor outlet side of the turbo compressor Install a compressed air supply device that supplies compressed air when the system starts up on the circuit between the
A fuel cell, wherein compressed air is supplied from the compressed air supply device to the reformer, and exhaust gas from the reformer is supplied to the turbo compressor to start the turbo compressor. Power generation system.
【請求項2】圧縮空気供給装置はコンプレッサであるこ
とを特徴とする特許請求の範囲第1項記載の燃料電池発
電システム。
2. The fuel cell power generation system according to claim 1, wherein the compressed air supply device is a compressor.
【請求項3】圧縮空気供給装置はブロワであることを特
徴とする特許請求の範囲第1項記載の燃料電池発電シス
テム。
3. The fuel cell power generation system according to claim 1, wherein the compressed air supply device is a blower.
JP59016684A 1984-01-30 1984-01-30 Fuel cell power generation system Expired - Lifetime JPH0687422B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59016684A JPH0687422B2 (en) 1984-01-30 1984-01-30 Fuel cell power generation system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59016684A JPH0687422B2 (en) 1984-01-30 1984-01-30 Fuel cell power generation system

Publications (2)

Publication Number Publication Date
JPS60160576A JPS60160576A (en) 1985-08-22
JPH0687422B2 true JPH0687422B2 (en) 1994-11-02

Family

ID=11923141

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59016684A Expired - Lifetime JPH0687422B2 (en) 1984-01-30 1984-01-30 Fuel cell power generation system

Country Status (1)

Country Link
JP (1) JPH0687422B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9979033B2 (en) 2012-10-31 2018-05-22 Mitsubishi Hitachi Power Systems, Ltd. Power generation system and method for activating fuel cell in power generation system
JP6087585B2 (en) * 2012-10-31 2017-03-01 三菱日立パワーシステムズ株式会社 Power generation system and method for starting fuel cell in power generation system

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS585975A (en) * 1981-07-01 1983-01-13 Toshiba Corp Combined cycle in fuel cell generation unit
JPS5828177A (en) * 1981-08-12 1983-02-19 Toshiba Corp Fuel-cell generation plant
JPS58165977U (en) * 1982-04-30 1983-11-05 石川島播磨重工業株式会社 Waste energy recovery equipment

Also Published As

Publication number Publication date
JPS60160576A (en) 1985-08-22

Similar Documents

Publication Publication Date Title
US5148670A (en) Gas turbine cogeneration apparatus for the production of domestic heat and power
US8623566B2 (en) Aircraft fuel cell system
US6450447B1 (en) Auxiliary power unit for an aircraft
US7578136B2 (en) Integrated power and pressurization system
EP1376728B1 (en) Solid oxide fuel cell as auxiliary power source installation in transport aircraft
EP2669492B1 (en) Gas turbine compressor inlet pressurization and flow control system
US7624592B2 (en) Flexible power and thermal architectures using a common machine
JP5442206B2 (en) Power system
CN101495372A (en) Aircraft air-conditioning unit and method for operating an aircraft air-conditioning unit
JP4300682B2 (en) Traveling body
US20190363381A1 (en) Device For The Air Supply Of A Fuel Cell, Preferentially Of A Fuel Cell Operated With Hydrogen
WO2023178946A1 (en) Fuel cell system and control method therefor
US20070077459A1 (en) Compressor-expander with high to idle air flow to fuel cell
JP2003193865A (en) Gas turbine power generation system, gas turbine power system, and starting method therefor
JPH0687422B2 (en) Fuel cell power generation system
JP3262145B2 (en) Air supply device for fuel cell
JP3137136B2 (en) Turbine operation method for fuel cell power plant
JP2000348749A (en) Starting method of fuel cell power generation plant
JP4097193B2 (en) Combined power generation facilities for fuel cells and gas turbines and their start / stop methods
JPH0353457B2 (en)
JP3151628B2 (en) Molten carbonate fuel cell power generator
JPH0352188B2 (en)
JPS60160579A (en) Starting of fuel cell power generation system
JPS60160577A (en) Fuel cell power generation system
JPS6255422A (en) Turbo compressor system