JP4953433B2 - Absorption heat pump system - Google Patents

Absorption heat pump system Download PDF

Info

Publication number
JP4953433B2
JP4953433B2 JP2007039474A JP2007039474A JP4953433B2 JP 4953433 B2 JP4953433 B2 JP 4953433B2 JP 2007039474 A JP2007039474 A JP 2007039474A JP 2007039474 A JP2007039474 A JP 2007039474A JP 4953433 B2 JP4953433 B2 JP 4953433B2
Authority
JP
Japan
Prior art keywords
heat
refrigerant
absorption
exhaust
cooling water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007039474A
Other languages
Japanese (ja)
Other versions
JP2008202853A (en
Inventor
洋 藤本
努 若林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Gas Co Ltd
Original Assignee
Osaka Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Gas Co Ltd filed Critical Osaka Gas Co Ltd
Priority to JP2007039474A priority Critical patent/JP4953433B2/en
Publication of JP2008202853A publication Critical patent/JP2008202853A/en
Application granted granted Critical
Publication of JP4953433B2 publication Critical patent/JP4953433B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • Y02A30/274Relating to heating, ventilation or air conditioning [HVAC] technologies using waste energy, e.g. from internal combustion engine
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/62Absorption based systems
    • Y02B30/625Absorption based systems combined with heat or power generation [CHP], e.g. trigeneration
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P80/00Climate change mitigation technologies for sector-wide applications
    • Y02P80/10Efficient use of energy, e.g. using compressed air or pressurized fluid as energy carrier
    • Y02P80/15On-site combined power, heat or cool generation or distribution, e.g. combined heat and power [CHP] supply

Landscapes

  • Sorption Type Refrigeration Machines (AREA)

Description

本発明は、冷媒を蒸発する蒸発器を有する吸収式ヒートポンプ回路を備えた吸収式ヒートポンプシステムに関する。   The present invention relates to an absorption heat pump system including an absorption heat pump circuit having an evaporator for evaporating a refrigerant.

吸収式ヒートポンプシステムは、蒸発器、吸収器、再生器、及び凝縮器を順に接続した吸収式ヒートポンプ回路を備えて構成されている。即ち、蒸発器が冷媒を蒸発させ、吸収器が冷媒蒸気を吸収液に吸収させ、再生器が当該吸収液から冷媒蒸気を分離して凝縮器に供給すると共に冷媒蒸気を分離後の吸収液を吸収器に戻し、凝縮器が冷媒蒸気を凝縮させて蒸発器に戻すという吸収式ヒートポンプサイクルを実行する形態で、作動するように構成されている。上記ヒートポンプサイクルにおいて、蒸発器で発生する冷熱は、冷熱用水を冷却する形態で冷房用等に用いられ、凝縮器と吸収器とで発生する温熱は、温熱用水を温熱する形態で給湯用及び暖房用等に用いられる。   The absorption heat pump system includes an absorption heat pump circuit in which an evaporator, an absorber, a regenerator, and a condenser are connected in order. That is, the evaporator evaporates the refrigerant, the absorber absorbs the refrigerant vapor in the absorption liquid, the regenerator separates the refrigerant vapor from the absorption liquid and supplies it to the condenser, and the absorption liquid after separating the refrigerant vapor is supplied. Returning to the absorber, the condenser is configured to operate in a form that performs an absorption heat pump cycle in which refrigerant vapor is condensed and returned to the evaporator. In the heat pump cycle, the cold generated in the evaporator is used for cooling in the form of cooling the cold water, and the warm heat generated in the condenser and the absorber is used for hot water supply and heating in the form of warming the hot water. Used for such purposes.

このような吸収式ヒートポンプシステムでは、通常大気や室内空気から吸熱した冷熱用水を蒸発器に配置された伝熱管に流通させることにより、蒸発器内の冷媒を当該冷熱用水からの吸熱により蒸発させる(例えば、特許文献1を参照。)。
また、上述した吸収式ヒートポンプシステムは、エンジン等の熱源機が備えられており、当該熱源機の排熱が再生器を加熱すると共に、当該再生器を加熱した後の低温の排熱が大気へ放出されるものが公知である。
In such an absorption heat pump system, cold water that has absorbed heat from the normal atmosphere or room air is circulated through a heat transfer pipe disposed in the evaporator, thereby evaporating the refrigerant in the evaporator by absorbing heat from the cold water ( For example, see Patent Document 1.)
Further, the absorption heat pump system described above includes a heat source device such as an engine, and exhaust heat from the heat source device heats the regenerator, and low-temperature exhaust heat after heating the regenerator returns to the atmosphere. What is released is known.

特開平5−280821号公報JP-A-5-280821

上述した特許文献1の吸収式ヒートポンプシステムにおいて、吸収式ヒートポンプ回路の出力温度である温熱用水の温度は、一般に45℃程度とする必要があり、このため、当該温熱用水を加熱する吸収器と凝縮器とを循環する冷却水の温度は、48℃程度に保つ必要がある。そして、再生器を加熱する熱源機の排熱が88℃程度と仮定すると、蒸発器の冷媒の温度は、20℃程度にする必要がある。しかしながら、蒸発器の冷媒の熱源が、大気や室内空気から吸熱した冷熱用水の熱である場合、蒸発器の冷媒を20℃程度に加熱することは困難な場合があった。
このため、吸収式ヒートポンプシステムの設計条件が厳しくなり、高い成績係数の吸収式ヒートポンプシステムを実現することは、困難であった。
In the absorption heat pump system of Patent Document 1 described above, the temperature of the hot water, which is the output temperature of the absorption heat pump circuit, generally needs to be about 45 ° C. Therefore, the absorber and the condenser that heat the hot water are condensed. The temperature of the cooling water circulating through the vessel needs to be maintained at about 48 ° C. Assuming that the exhaust heat of the heat source unit that heats the regenerator is about 88 ° C., the temperature of the refrigerant in the evaporator needs to be about 20 ° C. However, when the heat source of the refrigerant of the evaporator is the heat of cold water absorbed from the atmosphere or room air, it may be difficult to heat the refrigerant of the evaporator to about 20 ° C.
For this reason, the design conditions of the absorption heat pump system have become strict, and it has been difficult to realize an absorption heat pump system with a high coefficient of performance.

一方、熱源機を備えた吸収式ヒートポンプシステムにおいて、熱源機の排熱のうち再生器を加熱した後の有効に利用することのできない低温の排熱は、大気に直接放出されていた。このため、有効な熱利用が図れず改善の余地があると共に、上述した低温の排熱が大気に放出されることで、大気が温度上昇するヒートアイランド現象を招く一要因となっていた。   On the other hand, in the absorption heat pump system provided with a heat source device, low-temperature exhaust heat that cannot be effectively used after heating the regenerator among the exhaust heat of the heat source device is directly released to the atmosphere. For this reason, effective heat utilization cannot be achieved and there is room for improvement, and the low-temperature exhaust heat described above is released to the atmosphere, which is one factor that causes a heat island phenomenon in which the temperature rises.

本発明は、上記の課題に鑑みてなされたものであり、その目的は、冬期等には、常に一定以上の出力温度を維持することができ、且つ成績係数を向上させることができ、夏期等には、ヒートアイランド現象を抑制することができる吸収式ヒートポンプを提供する点にある。   The present invention has been made in view of the above problems, and its purpose is to always maintain an output temperature above a certain level in winter and the like, and to improve the coefficient of performance. The present invention provides an absorption heat pump that can suppress the heat island phenomenon.

上記目的を達成するための本発明に係る冷媒を蒸発する蒸発器を備えた吸収式ヒートポンプ回路を有する吸収式ヒートポンプシステムの第1特徴構成は、地中に埋設され、前記冷媒を地中との間で熱交換させる埋設熱交換器を備え、前記吸収式ヒートポンプ回路の前記蒸発器の冷媒を、前記埋設熱交換器との間で循環させる冷媒循環状態で運転可能に構成されており、
前記吸収式ヒートポンプ回路の再生器に熱を供給する熱源機と、
前記熱源機の排熱を前記冷媒との間で熱交換により回収する排熱回収熱交換器とを備え、
前記冷媒循環状態において、前記蒸発器の冷媒を、前記埋設熱交換器と前記排熱回収熱交換器との順で夫々を流通する状態で循環させる点にある。
In order to achieve the above object, a first feature of an absorption heat pump system having an absorption heat pump circuit including an evaporator for evaporating a refrigerant according to the present invention is embedded in the ground, and the refrigerant is An embedded heat exchanger for exchanging heat between, and configured to be operable in a refrigerant circulation state in which the refrigerant of the evaporator of the absorption heat pump circuit is circulated with the embedded heat exchanger ,
A heat source for supplying heat to the regenerator of the absorption heat pump circuit;
An exhaust heat recovery heat exchanger that recovers exhaust heat of the heat source device by heat exchange with the refrigerant;
In the refrigerant circulation state, the refrigerant of the evaporator is circulated in a state where the buried heat exchanger and the exhaust heat recovery heat exchanger are circulated in order .

上記第1特徴構成によれば、吸収器の冷媒の熱源を年間を通じて20℃程度のほぼ一定温度の地中とするため、凝縮器の冷媒温度を20℃程度の一定温度とすることができ、上述した吸収式ヒートポンプシステムの出力温度を45℃程度にすることができる。この結果、吸収式ヒートポンプシステムの設計条件に余裕を持たせることができる。 According to the first characteristic configuration described above, since the heat source of the refrigerant of the absorber is the ground at a substantially constant temperature of about 20 ° C. throughout the year, the refrigerant temperature of the condenser can be a constant temperature of about 20 ° C., The output temperature of the absorption heat pump system described above can be about 45 ° C. As a result, the design condition of the absorption heat pump system can be afforded.

また、20℃程度の地中を熱源とすることにより、冬期等には20℃よりも低温となることがある大気や室内空気から吸熱した冷却用水の熱を熱源とする場合と比較して、凝縮器の冷媒温度を高くすることができるため、吸収式ヒートポンプシステムの成績係数を向上させることができる。
さらに、蒸発器の冷媒が他の熱媒を介することなく直接地中と熱交換することにより、熱交換効率を向上させることができ、吸収式ヒートポンプシステムの成績係数を一層向上させることができる。
さらに、蒸発器の冷媒が、埋設熱交換器で地中熱を吸熱した後に、さらに排熱回収熱交換器で熱源機の排熱を吸熱することで、蒸発器の冷媒の温度をより一層高めることができる。
また、熱源機の低温の排熱でも、大気に無駄に放出することなく有効に利用することができる。
In addition, by using the underground at about 20 ° C. as a heat source, compared to the case where the heat of the cooling water absorbed from the atmosphere or indoor air that may be lower than 20 ° C. in the winter season or the like is used as the heat source, Since the refrigerant temperature of the condenser can be increased, the coefficient of performance of the absorption heat pump system can be improved.
Furthermore, the heat exchange efficiency can be improved and the coefficient of performance of the absorption heat pump system can be further improved by directly exchanging heat between the refrigerant of the evaporator and the ground without passing through another heat medium.
Furthermore, after the refrigerant of the evaporator absorbs the underground heat in the buried heat exchanger, the exhaust heat of the heat source apparatus is further absorbed in the exhaust heat recovery heat exchanger, thereby further increasing the temperature of the refrigerant of the evaporator. be able to.
Moreover, even low-temperature exhaust heat from the heat source device can be effectively used without being wasted to the atmosphere.

本発明に係る吸収式ヒートポンプシステムの第特徴構成は、上記第特徴構成に加え、前記冷媒が水であり、前記吸収式ヒートポンプ回路の吸収器及び凝縮器の少なくとも一方を冷却した冷却水を、前記排熱回収熱交換器と前記埋設熱交換器の冷媒側との順で夫々を流通する状態で循環させる冷却水循環状態で運転可能に構成され、前記冷媒循環状態と前記冷却水循環状態とを切り替える切替手段を備えた点にある。 In addition to the first feature configuration, the second feature configuration of the absorption heat pump system according to the present invention is that the refrigerant is water, and cooling water that cools at least one of the absorber and the condenser of the absorption heat pump circuit. The exhaust heat recovery heat exchanger and the refrigerant side of the embedded heat exchanger are circulated in a state where they are circulated in order, and the refrigerant circulation state and the cooling water circulation state are It is in the point provided with the switching means to switch.

上記第特徴構成によれば、夏期等のように、吸収式ヒートポンプを冷房モードで運転しており、熱需要が少なく熱を有効に利用することができない場合でも、上述した冷媒循環状態から冷却水循環状態へ切り替えることで、埋設熱交換器が、吸収式ヒートポンプ回路の吸収器と凝縮器とで発生する温熱と熱源機の排熱とを地中に放出するため、大気へ熱を放出する場合と比較して、大気の温度上昇を低減できる。よって、吸収式ヒートポンプシステムを都市部等の地表がアスファルト等に覆われている場所に設置した場合でも、ヒートアイランド現象を抑制することができる。 According to the second characteristic configuration, even when the absorption heat pump is operated in the cooling mode, such as in summer, and the heat demand is small and heat cannot be used effectively, the cooling is performed from the refrigerant circulation state described above. By switching to the water circulation state, the buried heat exchanger releases the heat generated by the absorber and condenser of the absorption heat pump circuit and the exhaust heat of the heat source unit into the ground, and therefore releases heat to the atmosphere. Compared with, the temperature rise of the atmosphere can be reduced. Therefore, even when the absorption heat pump system is installed in a place where the ground surface such as an urban area is covered with asphalt or the like, the heat island phenomenon can be suppressed.

本発明に係る吸収式ヒートポンプシステムの第特徴構成は、上記第特徴構成又は特徴構成に加え、前記熱源機がエンジンであり、前記エンジンを冷却した後のエンジン冷却水を前記再生器との間で当該再生器の熱源として循環させると共に、前記再生器に供給されるエンジン冷却水を、前記エンジンから排出される排ガス排熱との熱交換により加熱するエンジン冷却水加熱熱交換器が前記エンジンの排気路に配置され、前記排熱回収熱交換器が、前記エンジンから排出される排ガス排熱を、前記エンジン冷却水加熱熱交換器を通過した後の前記排ガス排熱を前記冷媒との熱交換により回収するように前記排気路の前記エンジン冷却水加熱熱交換器よりも下流側に配置されている点にある。 The third feature configuration of the absorption heat pump system according to the present invention is the above-described first feature configuration or second feature configuration, wherein the heat source device is an engine, and the regenerator is used to cool the engine cooling water after cooling the engine. An engine coolant heating heat exchanger that heats the engine coolant supplied to the regenerator by heat exchange with exhaust gas exhaust heat discharged from the engine. The exhaust heat recovery heat exchanger disposed in the exhaust path of the engine uses the exhaust gas exhaust heat exhausted from the engine as the refrigerant, and the exhaust gas exhaust heat after passing through the engine cooling water heating heat exchanger as the refrigerant. It is in the point arrange | positioned rather than the said engine-cooling-water heating heat exchanger of the said exhaust path so that it may collect | recover by heat exchange.

上記第特徴構成によれば、冷媒循環状態において、排熱回収熱交換器が、エンジンの排熱のうち吸収式ヒートポンプ回路の再生器を加熱した後の低温の排熱を回収して、蒸発器の冷媒の加熱に有効に利用することができる。また、冷却水循環状態において、上述した低温の排熱を、埋設熱交換器により地中に放出して、大気への無駄な排熱の放出を抑制して、大気の温度上昇を低減できる。 According to the third characteristic configuration, in the refrigerant circulation state, the exhaust heat recovery heat exchanger recovers the low-temperature exhaust heat after heating the regenerator of the absorption heat pump circuit from the exhaust heat of the engine, and evaporates it. It can be effectively used for heating the refrigerant of the vessel. Further, in the circulating state of the cooling water, the low-temperature exhaust heat described above can be released into the ground by the embedded heat exchanger, and the release of useless exhaust heat to the atmosphere can be suppressed, thereby reducing the temperature rise in the atmosphere.

本発明の吸収式ヒートポンプシステム100の実施の形態について、図面に基づいて説明する。   An embodiment of an absorption heat pump system 100 of the present invention will be described based on the drawings.

図1は、主に冬期において、後述する冷媒循環状態と呼ぶ状態で運転可能な吸収式ヒートポンプシステム100の概略構成図であり、図2は、主に夏期において、後述する冷却水循環状態と呼ぶ状態で運転可能な吸収式ヒートポンプシステム100の概略構成図である。冷媒循環状態及び冷却水循環状態において、冷媒Aは、蒸発器1、吸収器2、再生器3、及び凝縮器4を相変化を起こしながら循環し、吸収液は、吸収器2と再生器3との間を濃度変化を起こしながら循環する。本実施形態では、冷媒としては水を、吸収液としてはLiBr水溶液を採用している。即ち、水−LiBr系の吸収式ヒートポンプシステム100となっている。
図1及び図2にあっては、蒸発器1内の冷媒Aを加熱する本発明独特の循環系統を太実線で示しており、吸収器2及び凝縮器4のうち少なくとも一方を冷却する冷却水CWの循環系統を太破線で示している。また、三方弁41〜48は、開状態を塗り潰した三角印で、閉状態を白抜きの三角印で示しており、矢印は、路内を流れる流体の流れ方向を示す。
FIG. 1 is a schematic configuration diagram of an absorption heat pump system 100 that can be operated in a state called a refrigerant circulation state, which will be described later, mainly in winter. FIG. 2 is a state called a cooling water circulation state, which will be described later, mainly in summer. It is a schematic block diagram of the absorption heat pump system 100 which can be drive | operated by. In the refrigerant circulation state and the coolant circulation state, the refrigerant A circulates through the evaporator 1, the absorber 2, the regenerator 3, and the condenser 4 while causing a phase change. Circulate while changing the concentration between the two. In this embodiment, water is used as the refrigerant, and an LiBr aqueous solution is used as the absorbing liquid. That is, it is a water-LiBr absorption heat pump system 100.
1 and 2, the circulation system unique to the present invention for heating the refrigerant A in the evaporator 1 is shown by a thick solid line, and cooling water for cooling at least one of the absorber 2 and the condenser 4 is shown. The CW circulation system is indicated by a thick broken line. In addition, the three-way valves 41 to 48 are indicated by triangular marks in which the open state is filled, and in the closed state by white triangular marks, and the arrows indicate the flow direction of the fluid flowing in the road.

まず、図1に基づいて、本願に係る吸収式ヒートポンプシステム100の構成に関して説明する。   First, based on FIG. 1, the structure of the absorption heat pump system 100 according to the present application will be described.

冷媒Aを蒸発する蒸発器1を有する吸収式ヒートポンプ回路Xを備え、前記吸収式ヒートポンプ回路Xが備える蒸発器1の冷媒Aを、前記蒸発器1と地中に備えられた埋設熱交換器34との間で循環させる冷媒循環状態で運転可能に構成されている。   An absorption heat pump circuit X having an evaporator 1 for evaporating the refrigerant A is provided, and the refrigerant A of the evaporator 1 included in the absorption heat pump circuit X is used as an embedded heat exchanger 34 provided in the ground with the evaporator 1. It is comprised so that it can drive | operate in the refrigerant | coolant circulation state circulated between.

吸収式ヒートポンプ回路Xは、蒸発器1、吸収器2、再生器3、及び凝縮器4を順に接続した吸収式ヒートポンプ回路Xを備えて構成されている。蒸発器1と吸収器2とは冷媒蒸気流通管12により接続され、再生器3と凝縮器4とは冷媒蒸気流通管9により接続され、凝縮器4と蒸発器1とは膨張弁11を備えた冷媒流通管10により接続されている。   The absorption heat pump circuit X includes an absorption heat pump circuit X in which an evaporator 1, an absorber 2, a regenerator 3, and a condenser 4 are connected in order. The evaporator 1 and the absorber 2 are connected by a refrigerant vapor flow pipe 12, the regenerator 3 and the condenser 4 are connected by a refrigerant vapor flow pipe 9, and the condenser 4 and the evaporator 1 have an expansion valve 11. The refrigerant circulation pipe 10 is connected.

そして、作動流体循環路5が、吸収器2と再生器3との間で濃度変化する吸収液Dを循環する形態で、作動流体循環路の往き路5aに循環ポンプ7が、作動流体循環路の戻り路5bに膨張弁8が、作動流体循環路の往き路5aと作動流体循環路の戻り路5bとを流れるそれぞれの流体を熱交換する冷媒熱交換器6が、それぞれ備えられている。   Then, the working fluid circulation path 5 circulates the absorbing liquid D whose concentration changes between the absorber 2 and the regenerator 3, and the circulation pump 7 is connected to the working fluid circulation path 5 a in the working fluid circulation path. The return path 5b is provided with an expansion valve 8 and a refrigerant heat exchanger 6 for exchanging heat between the fluid flowing in the forward path 5a of the working fluid circulation path and the return path 5b of the working fluid circulation path.

即ち、蒸発器1が冷媒A2を蒸発させ、蒸発した冷媒蒸気A2が冷媒蒸気流通管12を介して吸収器2に供給される。吸収器2が冷媒蒸気A2を吸収液Dに吸収させ、低濃度吸収液Dが循環ポンプ7により作動流体循環路の往き路5aを介して再生器3に圧送される。再生器3が低濃度吸収液Dから冷媒蒸気A2を分離して、冷媒蒸気循環路9を介して凝縮器4に供給すると共に、高濃度吸収液Dを分離して、作動流体循環路の戻り路5bを介して膨張弁8で減圧して吸収器2に供給する。凝縮器4が冷媒蒸気A2を凝縮させ、冷媒Aが冷媒流通管10を介して膨張弁11により減圧され蒸発器1に戻る。作動流体循環路の往き路5aを流通する低濃度吸収液Dは、冷媒熱交換器6において作動流体循環路の戻り路5bを流通する高温の高濃度吸収液Dの熱を回収することで、吸収式ヒートポンプサイクルが成立する。   That is, the evaporator 1 evaporates the refrigerant A2, and the evaporated refrigerant vapor A2 is supplied to the absorber 2 through the refrigerant vapor circulation pipe 12. The absorber 2 absorbs the refrigerant vapor A2 in the absorption liquid D, and the low-concentration absorption liquid D is pumped by the circulation pump 7 to the regenerator 3 through the working fluid circulation path 5a. The regenerator 3 separates the refrigerant vapor A2 from the low-concentration absorbent D and supplies it to the condenser 4 via the refrigerant vapor circulation path 9, and also separates the high-concentration absorbent D and returns to the working fluid circulation path. The pressure is reduced by the expansion valve 8 through the passage 5 b and supplied to the absorber 2. The condenser 4 condenses the refrigerant vapor A <b> 2, and the refrigerant A is decompressed by the expansion valve 11 through the refrigerant flow pipe 10 and returns to the evaporator 1. The low-concentration absorbing liquid D that circulates in the outgoing path 5a of the working fluid circulation path recovers the heat of the high-temperature high-concentration absorbing liquid D that circulates in the return path 5b of the working fluid circulation path in the refrigerant heat exchanger 6; Absorption heat pump cycle is established.

そして、冷却水循環路30は、循環ポンプ33で圧送された冷却水CWが吸収器2と凝縮器4とで発生する温熱を回収した後に、温熱運転熱交換器62に流通して伝熱管62aを流通する温熱用水Hに温熱を供給するように配設され、温熱用水Hに供給された温熱は、暖房用又は給湯用として利用される。   Then, the cooling water circulation path 30 recovers the heat generated by the cooling water CW pumped by the circulation pump 33 in the absorber 2 and the condenser 4, and then flows to the heat operation heat exchanger 62 to pass through the heat transfer pipe 62a. It arrange | positions so that heat may be supplied to the water H for circulating heat, and the heat supplied to the water H for heat is utilized for heating or hot water supply.

冷熱供給循環路35は、循環ポンプ32で圧送された蒸発器1の冷媒Aが冷熱運転熱交換器61に流通して伝熱管61aを流通する冷熱用水Cに冷熱を供給するように配設され、冷熱用水Cに供給された冷熱は、冷房用等に利用される。
ただし、図1の冷媒循環状態では、この冷熱供給循環路35は使用されず、後述する図2の冷却水循環状態では、冷熱供給循環路35が使用される。
The cold heat supply circuit 35 is arranged so that the refrigerant A of the evaporator 1 pumped by the circulation pump 32 flows through the cold heat operation heat exchanger 61 and supplies cold water to the cold water C flowing through the heat transfer pipe 61a. The cold heat supplied to the cold water C is used for cooling and the like.
However, in the refrigerant circulation state of FIG. 1, this cold supply circuit 35 is not used, and in the cooling water circulation state of FIG. 2 described later, the cold supply circuit 35 is used.

エンジン21(熱源機の一例)は、天然ガス等の燃料Gにより駆動し、その軸出力の一部を発電機24の動力源として供給する。発電機24で発電された電力は、吸収式ヒートポンプシステム100の補機やその他の電力負荷を稼動するために用いられる。   The engine 21 (an example of a heat source device) is driven by a fuel G such as natural gas and supplies a part of the shaft output as a power source of the generator 24. The electric power generated by the generator 24 is used to operate the auxiliary equipment of the absorption heat pump system 100 and other electric power loads.

エンジン21には、排ガスEが流通する排ガス路22(排気路の一例)と、エンジン冷却水JWが流通するエンジン冷却水循環路23が備えられている。当該エンジン冷却水循環路23は、循環ポンプ25で圧送されたエンジン冷却水JWが、エンジン21と、排ガス路22に備えられて排ガス排熱を回収するエンジン冷却水加熱熱交換器26と、吸収式ヒートポンプ回路Xの再生器3とを順に流通するように配設されている。エンジン冷却水JWは、エンジン21においてエンジン21の熱を回収した後に、エンジン冷却水加熱熱交換器26において排ガス排熱を回収し、回収した熱を再生器3に供給する。   The engine 21 includes an exhaust gas passage 22 (an example of an exhaust passage) through which the exhaust gas E flows, and an engine cooling water circulation passage 23 through which the engine cooling water JW flows. The engine cooling water circulation path 23 includes an engine cooling water JW pumped by a circulation pump 25, an engine cooling water heating heat exchanger 26 that is provided in the exhaust gas path 22 and collects exhaust gas exhaust heat, and an absorption type. It arrange | positions so that it may distribute | circulate through the regenerator 3 of the heat pump circuit X in order. The engine coolant JW recovers the heat of the engine 21 in the engine 21, recovers exhaust gas exhaust heat in the engine coolant heating heat exchanger 26, and supplies the recovered heat to the regenerator 3.

以上が、吸収式ヒートポンプシステム100の基本構成であるが、以下に、蒸発器1の冷媒Aを蒸発器1と前記埋設熱交換器34とエンジン21のエンジン排熱を回収する排熱回収熱交換器27との順で夫々を流通する冷媒循環状態、及び吸収器2又は凝縮器4を冷却する冷却水CWを前記排熱回収熱交換器27と前記埋設熱交換器34との順で夫々を流通する状態で循環させる冷却水循環状態、及び冷媒循環状態と冷却水循環状態とを切り替える切替手段Yについて、さらに詳細に説明を加える。   The above is the basic configuration of the absorption heat pump system 100. Hereinafter, the exhaust heat recovery heat exchange for recovering the exhaust heat of the evaporator 1, the embedded heat exchanger 34, and the engine 21 of the refrigerant A of the evaporator 1 will be described below. The refrigerant circulation state in which the refrigerant 27 and the condenser 4 are circulated in the order with the condenser 27, and the cooling water CW for cooling the absorber 2 or the condenser 4 in the order of the exhaust heat recovery heat exchanger 27 and the embedded heat exchanger 34, respectively. The cooling means circulating state that circulates in the circulating state and the switching means Y that switches between the refrigerant circulating state and the cooling water circulating state will be described in further detail.

〔冷媒循環状態〕
図1に太実線で示すように、吸放熱循環路31は、蒸発器1の冷媒Aが、地中と熱交換可能な埋設熱交換器34と、上記排ガス路22に備えられエンジン冷却水加熱熱交換器26が排ガス排熱を回収した後の低温の排ガス排熱を回収する排熱回収熱交換器27との順で、夫々を流通するように配設される。
冷媒循環状態は、循環ポンプ32により蒸発器1から送り出された冷媒Aを、蒸発器1と上記吸放熱循環路31とを循環させる状態である。
(Refrigerant circulation state)
As shown by a thick solid line in FIG. 1, the heat absorbing / dissipating circuit 31 includes an embedded heat exchanger 34 in which the refrigerant A of the evaporator 1 can exchange heat with the ground, and the exhaust gas path 22 to heat the engine coolant. The heat exchanger 26 is arranged so as to circulate in the order of the exhaust heat recovery heat exchanger 27 that recovers the low temperature exhaust gas exhaust heat after recovering the exhaust gas exhaust heat.
The refrigerant circulation state is a state in which the refrigerant A sent out from the evaporator 1 by the circulation pump 32 is circulated through the evaporator 1 and the heat absorption / radiation circulation path 31.

制御装置50は、吸放熱循環路31に備えられている三方弁41、42、43、44、45、47の開閉状態を、冷媒循環状態と、冷媒Aが冷熱供給循環路35を介して冷熱運転熱交換器61へ流通する状態とに、切り替え可能に構成されている。   The controller 50 opens and closes the three-way valves 41, 42, 43, 44, 45, 47 provided in the heat absorption / radiation circulation path 31, changes the refrigerant circulation state, and cools the refrigerant A through the cold supply circulation path 35. It is configured to be switchable to a state where it flows to the operation heat exchanger 61.

冷媒循環状態において、蒸発器1の冷媒Aは、循環ポンプ32により吸放熱循環路31に圧送され、三方弁43、41を介して埋設熱交換器34を流通し、三方弁45を介して排熱回収熱交換器27を流通して、三方弁42、44を介して蒸発器1に戻るように循環する。   In the refrigerant circulation state, the refrigerant A of the evaporator 1 is pumped by the circulation pump 32 to the heat absorption / radiation circulation path 31, flows through the embedded heat exchanger 34 through the three-way valves 43, 41, and is discharged through the three-way valve 45. It circulates through the heat recovery heat exchanger 27 and returns to the evaporator 1 through the three-way valves 42 and 44.

〔冷却水循環状態〕
冷却水循環状態は、図2に太破線で示すように、冷却水CWを、上述した冷却水循環路30と、冷却水循環路30における凝縮器4の出口側と吸放熱循環路31とを接続する接続路51と、吸放熱循環路31と、冷却水循環路30における吸収器2の入口側と吸放熱循環路31とを接続する接続路52との順で、夫々流通させて循環させる状態である。
[Cooling water circulation state]
In the cooling water circulation state, as shown by a thick broken line in FIG. 2, the cooling water CW is connected to the above-described cooling water circulation path 30, and the outlet side of the condenser 4 in the cooling water circulation path 30 and the heat absorption / radiation circulation path 31. It is the state which circulates through each in order of the path 51, the absorption-and-radiation circulation path 31, and the connection path 52 which connects the inlet side of the absorber 2 in the cooling water circulation path 30 and the absorption-and-radiation circulation path 31.

制御装置50は、冷却水循環路30に備えられた三方弁46、48と、吸放熱循環路31に備えられた三方弁41、42、45、47の開閉状態を切り替えて、冷媒循環状態と冷却水循環状態とを切り替える形態で切替手段Yとして機能するように構成されている。   The control device 50 switches the open / close state of the three-way valves 46, 48 provided in the cooling water circulation path 30 and the three-way valves 41, 42, 45, 47 provided in the heat absorption / dissipation circulation path 31 to change the refrigerant circulation state and cooling. It is comprised so that it may function as the switching means Y in the form which switches a water circulation state.

冷却水循環状態において、冷却水CWは、循環ポンプ33により圧送され、冷却水循環路30を流通し、三方弁46を介して接続路51を流通し、三方弁47を介して吸放熱循環路31の排熱回収熱交換器27を流通し、三方弁42と三方弁41とを介して埋設熱交換器34を流通し、三方弁45を介して接続路52を流通して、三方弁48を介して冷却水循環路30に戻るように循環する。冷却水循環状態において、冷却水CWは常に温熱運転熱交換器62の伝熱管62aを流通して温熱用水Hを加熱し、加熱された温熱用水Hは給湯用等に用いられる。   In the cooling water circulation state, the cooling water CW is pumped by the circulation pump 33, circulates through the cooling water circulation path 30, circulates through the connection path 51 via the three-way valve 46, and passes through the three-way valve 47. The exhaust heat recovery heat exchanger 27 is circulated, the embedded heat exchanger 34 is circulated through the three-way valve 42 and the three-way valve 41, the connection path 52 is circulated through the three-way valve 45, and the three-way valve 48 is circulated. And circulate back to the cooling water circulation path 30. In the cooling water circulation state, the cooling water CW always flows through the heat transfer pipe 62a of the thermal operation heat exchanger 62 to heat the hot water H, and the heated hot water H is used for hot water supply or the like.

次に、冷媒循環状態での冷媒循環運転、及び冷却水循環状態での冷却水循環運転の具体例についてそれぞれ説明する。   Next, specific examples of the refrigerant circulation operation in the refrigerant circulation state and the cooling water circulation operation in the cooling water circulation state will be described.

〔冷媒循環運転〕
冷媒循環運転は、図1に示す様に吸収式ヒートポンプシステム100を冷媒循環状態で作動させる運転であり、冬期等において、吸収式ヒートポンプシステム100を良好に稼動させるために実行され、蒸発器1の冷媒Aが、地中熱とエンジン21の排熱のうち低温の排熱とにより加熱される形態で実行される。切替手段Yが、三方弁43、44の開閉状態を蒸発器1の冷媒Aを吸放熱循環路31に流通するように制御する。そして、蒸発器1の内部において一部の冷媒Aが蒸発することで低温となった残りの冷媒Aが、循環ポンプ32により圧送されて三方弁43を介して吸放熱循環路31へ流通し、埋設熱交換器34において20℃程度の地中熱を吸熱し、排熱回収熱交換器27において20℃以上の比較的高温のエンジン21の低温の排熱をさらに吸熱し、三方弁44を介して蒸発器1に戻り、蒸発器1の冷媒Aを加熱するという循環を繰り返すことにより冷媒循環運転が実行される。これにより、蒸発器1の冷媒の温度を20℃以上とすることができ、例えば、エンジン冷却水循環路23を循環するエンジン冷却水JWの温度が88℃程度である場合には、温熱運転熱交換器62で熱交換する前の冷却水CWの温度である出力温度を45℃程度に維持できる。
[Refrigerant circulation operation]
The refrigerant circulation operation is an operation for operating the absorption heat pump system 100 in a refrigerant circulation state as shown in FIG. 1, and is performed in order to operate the absorption heat pump system 100 satisfactorily in winter and the like. The refrigerant A is executed in a form that is heated by ground heat and low-temperature exhaust heat of the exhaust heat of the engine 21. The switching means Y controls the open / closed state of the three-way valves 43, 44 so that the refrigerant A of the evaporator 1 is circulated through the heat absorption / dissipation circuit 31. And the remaining refrigerant | coolant A which became low temperature because a part of refrigerant | coolant A evaporated in the inside of the evaporator 1 is pumped by the circulation pump 32, distribute | circulates to the heat absorption / radiation circulation path 31 via the three-way valve 43, The buried heat exchanger 34 absorbs underground heat of about 20 ° C., and the exhaust heat recovery heat exchanger 27 further absorbs low-temperature exhaust heat of the relatively high temperature engine 21 of 20 ° C. or more via the three-way valve 44. Then, the refrigerant circulation operation is executed by returning to the evaporator 1 and repeating the circulation of heating the refrigerant A of the evaporator 1. Thereby, the temperature of the refrigerant | coolant of the evaporator 1 can be made into 20 degreeC or more, for example, when the temperature of the engine cooling water JW which circulates through the engine cooling water circulation path 23 is about 88 degreeC, it is thermal operation heat exchange. The output temperature that is the temperature of the cooling water CW before heat exchange in the vessel 62 can be maintained at about 45 ° C.

この時、切替手段Yが三方弁45、46、48の開閉状態を制御することにより、冷却水CWは、冷却水循環路30を流通する状態となる。   At this time, the switching means Y controls the open / closed state of the three-way valves 45, 46, 48, so that the cooling water CW is in a state of flowing through the cooling water circulation path 30.

〔冷却水循環運転〕
冷却水循環運転は、図2に示す様に吸収式ヒートポンプシステム100を冷却水循環状態で作動させる運転状態であり、夏期等において、吸収式ヒートポンプシステム100からの排熱が有効に利用できない場合に実行され、冷却水CWが、吸収器2及び凝縮器4の温熱とエンジン21の低温の排ガス排熱とを回収して地中に放出する形態で実行される。切替手段Yが、三方弁41、42、45、46、47、48の開閉状態を、冷却水CWが吸放熱循環路31に流通するように制御する。そして、冷却水CWが、循環ポンプ33により圧送され、冷却水循環路30において吸収器2及び凝縮器4の温熱を回収し、三方弁46を介して接続路51を流通し、三方弁47を介して吸放熱循環路31を流通して、排熱回収熱交換器27で低温の排熱を回収し、三方弁42、41を介して、埋設熱交換器34において吸収器2及び凝縮器4の温熱及び低温の排ガス排熱を地中に放出して、三方弁45を介して接続路52を流通し、三方弁48を介して冷却水循環路30に戻るという循環を繰り返すことにより冷却水循環運転が実行される。
[Cooling water circulation operation]
The cooling water circulation operation is an operation state in which the absorption heat pump system 100 is operated in a cooling water circulation state as shown in FIG. 2, and is executed when exhaust heat from the absorption heat pump system 100 cannot be used effectively in summer or the like. The cooling water CW is executed in such a manner that the warm heat of the absorber 2 and the condenser 4 and the low-temperature exhaust gas exhaust heat of the engine 21 are recovered and released into the ground. The switching means Y controls the open / closed state of the three-way valves 41, 42, 45, 46, 47, 48 so that the cooling water CW flows through the heat absorption / radiation circulation path 31. Then, the cooling water CW is pumped by the circulation pump 33, collects the heat of the absorber 2 and the condenser 4 in the cooling water circulation path 30, flows through the connection path 51 via the three-way valve 46, and passes through the three-way valve 47. Then, the low-temperature exhaust heat is recovered by the exhaust heat recovery heat exchanger 27, and the absorber 2 and the condenser 4 are connected in the embedded heat exchanger 34 via the three-way valves 42 and 41. The cooling water circulation operation can be performed by repeating the circulation in which the exhaust heat of the heat and the low temperature exhaust gas is discharged into the ground, is circulated through the connection path 52 via the three-way valve 45, and returns to the cooling water circulation path 30 via the three-way valve 48. Executed.

この時、切替手段Yが三方弁43、44の開閉状態を制御することにより、蒸発器1の冷媒Aは、冷熱供給循環路35を流通し、冷熱運転熱交換器61の伝熱管61aを流通して、冷熱用水Cを冷却する状態となる。   At this time, the switching means Y controls the open / closed state of the three-way valves 43, 44, whereby the refrigerant A of the evaporator 1 flows through the cold supply circuit 35 and flows through the heat transfer pipe 61 a of the cold operation heat exchanger 61. Thus, the cold water C is cooled.

以上のように、切替手段Yは、冷媒循環状態と冷却水循環状態とを適切に切り替えることで、単一の吸収式ヒートポンプシステム100により冷媒循環運転と冷却水循環運転とを実行可能にする。   As described above, the switching unit Y appropriately switches between the refrigerant circulation state and the cooling water circulation state, thereby enabling the single absorption heat pump system 100 to execute the refrigerant circulation operation and the cooling water circulation operation.

夏期において、埋設熱交換器34により地中に放出した排熱は、約半年後の冬において採熱することができると考えられており、冬期において埋設熱交換器34が備えられた地中を本ヒートポンプシステム100の熱源とすることで、年間を通じた本ヒートポンプシステム100の成績係数を向上させることができる可能性があると考えられている。   In the summer, it is considered that the exhaust heat released into the ground by the buried heat exchanger 34 can be collected in the winter about half a year later. It is considered that the coefficient of performance of the heat pump system 100 can be improved throughout the year by using the heat source of the heat pump system 100.

〔別実施形態〕
(1)上記実施形態において、冷却水循環路30は、吸収器2と凝縮器4との両方の内部に配設されている実施形態を示したが、何れか一方のみを通過する構成であってもよい。
[Another embodiment]
(1) In the above embodiment, the cooling water circulation path 30 has been shown to be disposed inside both the absorber 2 and the condenser 4, but only one of them is passed through. Also good.

(2)上記実施形態の冷媒循環状態において、吸放熱循環路31は、蒸発器1の冷媒Aが排熱回収熱交換器27を流通しないように配設されていてもよい。 (2) In the refrigerant circulation state of the above embodiment, the heat absorption / radiation circuit 31 may be arranged so that the refrigerant A of the evaporator 1 does not flow through the exhaust heat recovery heat exchanger 27.

本願発明の吸収式ヒートポンプシステムは、冬期等には、常に一定以上の出力温度を維持することができ、夏期等には、ヒートアイランド現象を抑制することができる吸収式ヒートポンプとして、有効に利用可能である。   The absorption heat pump system of the present invention can be used effectively as an absorption heat pump that can always maintain an output temperature above a certain level in winter and the like, and can suppress the heat island phenomenon in summer. is there.

冬期における本発明の吸収式ヒートポンプシステムの概略構成図Schematic configuration diagram of the absorption heat pump system of the present invention in winter 夏期における本発明の吸収式ヒートポンプシステムの概略構成図Schematic configuration diagram of the absorption heat pump system of the present invention in summer

符号の説明Explanation of symbols

1:蒸発器
31:吸放熱循環路
34:埋設熱交換器
50:制御装置(切替手段の一例)
100:吸収式ヒートポンプシステム
X:吸収式ヒートポンプ回路
A:冷媒
E:排ガス
C:冷却用水
H:温熱用水
G:燃料
CW:冷却水
JW:エンジン冷却水
1: Evaporator 31: Absorption / radiation circuit 34: Embedded heat exchanger 50: Control device (an example of switching means)
100: Absorption-type heat pump system X: Absorption-type heat pump circuit A: Refrigerant E: Exhaust gas C: Cooling water H: Hot water G: Fuel CW: Cooling water JW: Engine cooling water

Claims (3)

冷媒を蒸発する蒸発器を有する吸収式ヒートポンプ回路を備えた吸収式ヒートポンプシステムであって、
地中に埋設され、前記冷媒を地中との間で熱交換させる埋設熱交換器を備え、
前記吸収式ヒートポンプ回路の前記蒸発器の冷媒を、前記埋設熱交換器との間で循環させる冷媒循環状態で運転可能に構成されており、
前記吸収式ヒートポンプ回路の再生器に熱を供給する熱源機と、
前記熱源機の排熱を前記冷媒との間で熱交換により回収する排熱回収熱交換器とを備え、
前記冷媒循環状態において、前記蒸発器の冷媒を、前記埋設熱交換器と前記排熱回収熱交換器との順で夫々を流通する状態で循環させる吸収式ヒートポンプシステム。
An absorption heat pump system comprising an absorption heat pump circuit having an evaporator for evaporating refrigerant,
Embedded in the ground, comprising a buried heat exchanger for exchanging heat between the refrigerant and the ground,
The refrigerant in the evaporator of the absorption heat pump circuit is configured to be operated in a refrigerant circulating state is circulated between said buried heat exchanger,
A heat source for supplying heat to the regenerator of the absorption heat pump circuit;
An exhaust heat recovery heat exchanger that recovers exhaust heat of the heat source device by heat exchange with the refrigerant;
An absorption heat pump system that circulates the refrigerant in the evaporator in a state in which the embedded heat exchanger and the exhaust heat recovery heat exchanger are circulated in order in the refrigerant circulation state .
前記冷媒が水であり、
前記吸収式ヒートポンプ回路の吸収器及び凝縮器の少なくとも一方を冷却した冷却水を、前記排熱回収熱交換器と前記埋設熱交換器の冷媒側との順で夫々を流通する状態で循環させる冷却水循環状態で運転可能に構成され、
前記冷媒循環状態と前記冷却水循環状態とを切り替える切替手段を備えた請求項に記載の吸収式ヒートポンプシステム。
The refrigerant is water;
Cooling in which cooling water that has cooled at least one of the absorber and the condenser of the absorption heat pump circuit is circulated in a state where the exhaust heat recovery heat exchanger and the refrigerant side of the embedded heat exchanger are circulated in this order. It is configured to be operable in a water circulation state,
The absorption heat pump system according to claim 1 , further comprising switching means for switching between the refrigerant circulation state and the cooling water circulation state .
前記熱源機がエンジンであり、
前記エンジンを冷却した後のエンジン冷却水を前記再生器との間で当該再生器の熱源として循環させると共に、
前記再生器に供給されるエンジン冷却水を、前記エンジンから排出される排ガス排熱との熱交換により加熱するエンジン冷却水加熱熱交換器が前記エンジンの排気路に配置され、
前記排熱回収熱交換器が、前記エンジンから排出される排ガス排熱を、前記エンジン冷却水加熱熱交換器を通過した後の前記排ガス排熱を前記冷媒との熱交換により回収するように前記排気路の前記エンジン冷却水加熱熱交換器よりも下流側に配置されている請求項又はに記載の吸収式ヒートポンプシステム。
The heat source machine is an engine;
Circulating engine cooling water after cooling the engine as a heat source of the regenerator with the regenerator,
An engine cooling water heating heat exchanger for heating the engine cooling water supplied to the regenerator by heat exchange with exhaust gas exhaust heat discharged from the engine is disposed in the exhaust path of the engine,
The exhaust heat recovery heat exchanger recovers the exhaust gas exhaust heat exhausted from the engine by recovering the exhaust gas exhaust heat after passing through the engine coolant heating heat exchanger by heat exchange with the refrigerant. absorption heat pump system according to claim 1 or 2 is disposed on the downstream side of the engine cooling water heated heat exchanger of the exhaust passage.
JP2007039474A 2007-02-20 2007-02-20 Absorption heat pump system Expired - Fee Related JP4953433B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007039474A JP4953433B2 (en) 2007-02-20 2007-02-20 Absorption heat pump system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007039474A JP4953433B2 (en) 2007-02-20 2007-02-20 Absorption heat pump system

Publications (2)

Publication Number Publication Date
JP2008202853A JP2008202853A (en) 2008-09-04
JP4953433B2 true JP4953433B2 (en) 2012-06-13

Family

ID=39780554

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007039474A Expired - Fee Related JP4953433B2 (en) 2007-02-20 2007-02-20 Absorption heat pump system

Country Status (1)

Country Link
JP (1) JP4953433B2 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5086947B2 (en) * 2008-09-08 2012-11-28 大阪瓦斯株式会社 Type 2 absorption heat pump system
CN101706174A (en) * 2009-11-11 2010-05-12 李华玉 Two-stage first class absorption heat pump taking double effect as first stage
CN101706172A (en) * 2009-11-11 2010-05-12 李华玉 Two-stage first-class absorption heat pump using regenerative single stage as first stage
KR101206023B1 (en) 2011-02-11 2012-11-29 삼성중공업 주식회사 Lean burn combustion system and method for ship engine
WO2012113458A1 (en) * 2011-02-25 2012-08-30 Aeteba Gmbh Method for operating an absorption refrigeration machine for refrigerating and/or heating and system for refrigerating and/or heating
JP6111094B2 (en) * 2012-04-06 2017-04-05 荏原冷熱システム株式会社 Absorption heat pump
CN103604248B (en) * 2013-11-12 2016-01-13 清华大学 A kind of three use type earth source absorption type heat pump and operation method
CN103759469B (en) * 2014-01-17 2016-02-24 清华大学 The compound combustion gas combined cooling, heat and power System of a kind of geothermal energy
JP2019168113A (en) * 2016-08-12 2019-10-03 カルソニックカンセイ株式会社 Air conditioning device for vehicle utilizing adsorption heat storage system
JP7015671B2 (en) * 2017-10-17 2022-02-03 荏原冷熱システム株式会社 Absorption heat exchange system
KR102268853B1 (en) * 2019-07-31 2021-06-24 삼중테크 주식회사 Triple-Efficiency Absorption Chiller-Heater Having Improved High-Temperature Stability and Method for operating the same

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61268961A (en) * 1985-05-23 1986-11-28 川重冷熱工業株式会社 Self-exhaust heat recovery device
JPH01150763A (en) * 1987-12-08 1989-06-13 Babcock Hitachi Kk Waste heat recovery chilling unit
JPH07151415A (en) * 1993-11-30 1995-06-16 Nippondenso Co Ltd Absorption air conditioner
JPH08121911A (en) * 1994-10-21 1996-05-17 Nippondenso Co Ltd Absorption refrigerating machine utilizing engine exhaust heat
JP2002005594A (en) * 2000-06-19 2002-01-09 Kubota Corp Heat sampling tester
JP2005265249A (en) * 2004-03-17 2005-09-29 Osaka Gas Co Ltd Hot-water supply/air conditioning system

Also Published As

Publication number Publication date
JP2008202853A (en) 2008-09-04

Similar Documents

Publication Publication Date Title
JP4953433B2 (en) Absorption heat pump system
KR101295806B1 (en) Combined cycle power plant utilizing absorption heat pump for improving generating efficiency, and method for controlling thereof
JP5757796B2 (en) Solar thermal air conditioning system
KR100619444B1 (en) Chilled water storage type hybrid heating and cooling system using a solar heat system
JP5086947B2 (en) Type 2 absorption heat pump system
JP4909245B2 (en) Absorption system operation method and absorption system
JP2010107156A (en) Engine-driven heat pump
JP2011099640A (en) Hybrid heat pump
JP4184197B2 (en) Hybrid absorption heat pump system
JP3905986B2 (en) Waste heat utilization air conditioning system
JP5182561B2 (en) Heat utilization device
JP5384072B2 (en) Absorption type water heater
JP2008209038A (en) Engine-driven heat pump system
JP6232251B2 (en) Absorption type hot and cold water system
JP3851764B2 (en) Absorption refrigerator
KR100638225B1 (en) Cogeneration system and its control method
KR101170712B1 (en) Using a gas engine heat pump geothermal heating and cooling systems
JP3859568B2 (en) Hybrid air conditioner
JP2005300047A (en) Heat exchanger system and absorption refrigerating machine using the same
JP2002147890A (en) Air-conditioning method and air conditioner
JP5055307B2 (en) Heating system
JP2004116800A (en) Hybrid air-conditioning machine
JP4282818B2 (en) Combined cooling system and combined cooling method
KR101416935B1 (en) Co-generation system
JP2892519B2 (en) Absorption heat pump equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091222

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110823

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110901

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111028

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120308

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120312

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150323

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees