JP2004116800A - Hybrid air-conditioning machine - Google Patents

Hybrid air-conditioning machine Download PDF

Info

Publication number
JP2004116800A
JP2004116800A JP2002276964A JP2002276964A JP2004116800A JP 2004116800 A JP2004116800 A JP 2004116800A JP 2002276964 A JP2002276964 A JP 2002276964A JP 2002276964 A JP2002276964 A JP 2002276964A JP 2004116800 A JP2004116800 A JP 2004116800A
Authority
JP
Japan
Prior art keywords
solvent
heat exchanger
refrigerant
solution
absorption
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002276964A
Other languages
Japanese (ja)
Other versions
JP3859567B2 (en
Inventor
Katsuya Oshima
大島 克也
Shigeto Katagiri
片桐 成人
Original Assignee
Rinnai Corp
リンナイ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rinnai Corp, リンナイ株式会社 filed Critical Rinnai Corp
Priority to JP2002276964A priority Critical patent/JP3859567B2/en
Publication of JP2004116800A publication Critical patent/JP2004116800A/en
Application granted granted Critical
Publication of JP3859567B2 publication Critical patent/JP3859567B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/62Absorption based systems

Abstract

<P>PROBLEM TO BE SOLVED: To provide a hybrid air-conditioning machine capable of increasing air-conditioning ability without raising solution concentration, and easy to maintain and control, in an air-conditioning machine using an absorption type refrigerating machine using a lithium bromide aqueous solution as a working fluid. <P>SOLUTION: In order to facilitate heat removal in an absorptive heat exchanger of the absorption type refrigerating machine 2, a refrigerant is circulated to the absorptive heat exchanger by a compression type refrigerating machine 3 to release the absorbed heat to the atmosphere. Thereby, a problem of maintenance and control caused by a conventional water-cooled or air-cooled type heat removal method can be avoided, and cooling ability can be increased. The compression type refrigerating machine 3 is compact and manufacturable at a low cost because of being mass-produced, so that its installation space can effectively be utilized. By making the absorptive heat exchanger and an evaporating heat exchanger in a negative pressure tank 5 of the refrigerating machine 2 alternately switchable, a cooling operation can be switched over to a heating operation, and vice versa. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
この発明は、吸収式冷凍機と圧縮ヒートポンプとを組み合わせたハイブリッド空調機に関する。
【0002】
【従来の技術】
臭化リチウムなどのリチウム塩溶液(吸収溶液)を使用する吸収式冷凍機は、再生器で吸収液を加熱して溶媒蒸気と濃縮吸収溶液とに分離し、冷凍ユニットに供給する。冷凍ユニットは、溶媒蒸気を液化させる溶媒凝縮器、液化溶媒を蒸発させながら作動流体を冷却する溶媒蒸発器、および蒸発した溶媒を濃縮吸収溶液に吸収させながら発生する吸収熱を冷却水に吸熱させて吸収液を冷却し、溶媒蒸発器における液化溶媒の蒸発を持続させる吸収器を備えている。
【0003】
吸収式冷凍機を用いて冷房運転を行う場合には、溶媒蒸気の凝縮熱および吸収熱を大気中に排出するため、溶媒凝縮器および吸収器に冷却機構が付設され、また溶媒蒸発器と空調熱交換器の間で空調流体を循環させる。冷却機構は、通常、冷却水の循環によって除熱を行う水冷式冷却塔(クーリングタワー)が採られる。
【0004】
冷房運転の際の吸収式冷凍機の冷凍能力は、溶媒蒸発器での液化溶媒の蒸発量と比例しており、蒸発量は吸収器での吸収量に依存している。冷凍能力の向上または冷凍ユニットの小型化には、吸収器での溶媒蒸気の吸収効率を向上させることが重要である。吸収効率の向上は、吸収器での吸収液と溶媒蒸気との接触面積を増大させること、および発生した吸収熱を冷却水に迅速に伝達(熱引き)させることにより達成できる(例えば、特許文献1参照。)。
【0005】
【特許文献1】
特開2002−61986公報
【0006】
【発明が解決しようとする課題】
水冷式冷却塔は、水および水に溶けた溶質の除去のために維持、管理(メンテナンス)に手間がかかり、家庭用など小型の空調機では負担が大きく、実用性が低下する原因となっている。空冷式冷却塔を使用すれば維持、管理が容易であるが、水冷式冷却塔が冷却水により40℃付近まで吸収溶液を冷却できる(空調流体を5〜6℃まで下げられる)のに対し、空冷式冷却塔は空気により吸収溶液を50℃程度までしか冷却できない(空調流体は約10℃までしか下げられない)ため、空冷式にて空調流体を5〜6℃まで下げるには溶液濃度を5%程度上げる必要が生じる。溶液濃度を5%程度上げると、溶液の晶析、再生器の温度上昇、これにともなう材料の腐食、水素の発生などの問題が生ずる。
【0007】
この発明の目的は、溶液濃度を上げることなく空調能力の増大が可能であるとともに、維持、管理が容易であるハイブリッド空調機の提供にある。
【0008】
【課題を解決するための手段】
この発明のハイブリッド空調機は、吸収溶液を加熱して溶媒と濃縮吸収溶液とに分離する再生器、分離された溶媒蒸気を凝縮する溶媒凝縮器、溶媒を蒸発させる溶媒蒸発器、蒸発した溶媒を濃縮吸収溶液に吸収させる吸収器、溶媒を吸収して希釈された吸収溶液を再生器に還流させるポンプを有する吸収式冷凍機と、空調流体が循環する空調熱交換器を備えた空調機と、冷媒圧縮機、冷媒熱交換器、冷媒膨張弁を有する圧縮式冷凍機とからなるハイブリッド空調機であって、液化溶媒と濃縮吸収溶液の流路を相互に切り替え、吸収式冷凍機における溶媒蒸発器と吸収器とを相互に切り替えることにより、冷房運転と暖房運転の切り替えが可能であることを特徴とする。
【0009】
【発明の効果】
この発明では、冷房運転時に圧縮式冷凍機により吸収器に冷媒を循環させて吸収熱を大気に放出させる。このため、メンテナンスが容易であるとともに、冷房能力が増大でき、かつ吸収式冷凍機の問題を回避できる。また、圧縮式冷凍機はコンパクトであるとともに多量に生産されているため低コストであり、設置スペースの有効利用が可能になり、さらに冷房運転と暖房運転が1つの設備で可能になる。
【0010】
【発明の実施の形態】
この発明を図に示す実施例とともに説明する。図1は第1実施例にかかるハイブリッド空調機1および冷房運転時の作動流体の流れを、図2は第1実施例にかかるハイブリッド空調機1および暖房運転時の作動流体の流れを示す。ハイブリッド空調機1は、臭化リチウム水溶液などのリチウム塩溶液(以下、吸収溶液と称する)を作動流体とした吸収式冷凍機2と、フレオン、炭酸ガスなど圧縮性流体(以下、冷媒と称する)を作動流体とする圧縮式冷凍機3と、水などの空調流体を作動流体とする空調機4とを組み合わせた構成を有する。
【0011】
吸収式冷凍機2は、高温再生器21と、その上方に配された分離器22と、負圧タンク5とを有し、それぞれが吸収溶液または溶媒の流路で連結されている。高温再生器21は、溶液ポンプ23が設けられた低濃度の吸収溶液(淡液と称する)の淡液流路24を経由して、負圧タンク5の底部から淡液が還流する溶液タンク25と、該溶液タンク25を加熱するための加熱源(バーナ)Bとを備えている。高温再生器21で加熱され沸騰した淡液は、分離器22で水(溶媒)蒸気と、濃縮した中濃度の吸収溶液(中液と称する)とに分離される。
【0012】
水蒸気と高温度の中液とは、それぞれ溶媒流路26および中液流路27を経て、負圧タンク5内の上部に設置された低温再生器51に、区分して供給される。この際に中液流路27を流れる高温度の中液と、淡液流路24を経て溶液タンク25に還流する淡液とは、熱効率の向上のために高温熱交換器11で熱交換される。低温再生器51内には、再生熱交換器52が備えられ、溶媒流路26内の水蒸気と中液との熱交換が行われ、水蒸気は凝縮して水となり、この際に生じる凝縮熱で中液は再沸騰し、水蒸気と、高濃度の吸収溶液(濃液と称する)とが生成される。低温再生器51で生成した水蒸気は負圧タンク5内の上部に設置された溶媒凝縮器6に導かれ、水(溶媒)は溶媒凝縮器6内の底部に設置した溶媒容器62に溜まる。
【0013】
溶媒凝縮器6内の水蒸気は、冷房運転時には、図1に示すごとくバルブ66を備えた水蒸気流路60により、後記する圧縮式冷凍機3の送風機33で強制冷却される外部熱交換器63に導かれ、凝縮して溶媒容器62に還流する。凝縮熱は、外部熱交換器63から大気に放出される。暖房運転時には、図2に示すごとくバルブ66が閉止され、溶媒凝縮器6内に備えられた内部熱交換器61の表面で凝縮し、溶媒容器62に溜まる。凝縮熱は内部熱交換器61内を流れる空調流体に吸収される。
【0014】
負圧タンク5の下部には、2つの熱交換器7、8が備えられ、後記の三方弁71、81の流路切替により、冷房運転時には、熱交換器7が吸収熱交換器、熱交換器8が蒸発熱交換器として機能し、暖房運転時には、熱交換器8が吸収熱交換器、熱交換器7が蒸発熱交換器として機能する。吸収熱交換器には、濃液流路64を経て供給される濃液が上から散布される。この際に、濃液は、淡液流路24を経て溶液タンク21に還流する淡液と低温熱交換器12内で熱交換される。蒸発熱交換器には、溶媒容器62に溜まった水が溶媒流路65を通って上から散布される。
【0015】
蒸発熱交換器に散布された水は、蒸発熱交換器の表面で蒸発し、蒸発熱で蒸発熱交換器内を流れる作動流体を冷却する。蒸発した水は、吸収熱交換器の表面で濃液に吸収され、この際に発生する吸収熱は、吸収熱交換器内を流れる作動流体に吸収される。
【0016】
濃液流路64および溶媒流路65は、それぞれ三方弁71、81を有する。冷房運転時には、三方弁71は熱交換器7へ流れるように、三方弁81は熱交換器8へ流れるように切り替わる。暖房運転時には、三方弁71は熱交換器8へ流れるように、三方弁81は熱交換器7へ流れるように切り替わる。
【0017】
圧縮式冷凍機3は、冷媒圧縮機31と、該冷媒圧縮機31に冷媒流路30で連結された冷媒熱交換器32および膨張弁34を備えている。冷媒熱交換器32には送風機33が付設されている。冷媒流路30では、冷房運転と暖房運転で冷媒の流れを逆転させる必要があるため、冷媒圧縮機31と冷媒熱交換器32の間に四方弁35を備えている。四方弁35は、第1ポ−トが冷媒圧縮機31の入側、第2ポ−トが熱交換器7、第3ポ−トが冷媒熱交換器32、第4ポ−トが冷媒圧縮機31の出側と連結している。
【0018】
冷房運転時は、四方弁35は第2ポ−トから第1ポ−トを経て冷媒圧縮機31へ入り、第4ポ−トから第3ポ−トを経て冷媒熱交換器32に送られるように切り替えられる。冷媒は冷媒圧縮機31により圧縮され高温となり、冷媒熱交換器32において送風機33によって冷却され凝縮熱を大気に放出する。凝縮された冷媒は膨張弁34で膨張して低温になり、冷媒流路30によって連結された熱交換器7(冷房運転時は吸収熱交換器として機能する)に供給される。低温になった冷媒は熱交換器7の表面で発生した吸収熱を吸収して吸収液を冷却する。すなわち、圧縮式冷凍機3は、熱交換器7で発生する吸収熱を、迅速に大気に放出する作用を有し、ハイブリッド空調機1の冷房能力を増大させている。
【0019】
暖房運転時は、四方弁35は第3ポ−トから第1ポ−トを経て冷媒圧縮機31へ入り、第4ポ−トから第2ポ−トを経て熱交換器7、膨張弁34、冷媒熱交換器32の順に送られるように流路を切り替える。冷媒は膨張弁34により膨張され、冷媒熱交換器32において送風機33によって給熱され蒸発し、蒸発熱として大気熱を吸収する。蒸発した冷媒は冷媒圧縮機31により圧縮されて高温となり、冷媒流路30によって連結された熱交換器7(暖房運転時は蒸発熱交換器として機能する)に供給される。冷媒は熱交換器7内で凝縮し、凝縮熱を熱交換器7の表面で発生した溶媒蒸気に蒸発熱として供給する。すなわち、圧縮式冷凍機3は、冷媒熱交換器31で得た大気熱を、迅速に熱交換器7で発生する溶媒蒸気に供給する作用を有し、ハイブリッド空調機1の暖房能力を増大させている
【0020】
空調機4は、空調流体が水であり、ポンプ41、三方弁42と、該ポンプ41に空調流路40で連結された室内熱交換器などの負荷43とを備える。三方弁42は、冷房運転時には内部熱交換器61を経由せずに、熱交換器8(蒸発熱交換器として機能)からポンプ41へ流れるように切り替わり、暖房運転時には熱交換器8(吸収熱交換器として機能)から内部熱交換器61を経由してポンプ41へ流れるように切り替わる。
【0021】
ハイブリット空調機1では、メンテナンスが容易で、量産されている圧縮式冷凍機3により冷房または暖房運転をアシストする。このため実用性が高く、また、外気温度が高くても冷媒から大気への放熱が不十分になることはなく、逆に低くても冷媒への大気熱の吸収が不十分になることはない。
また、空調流体と冷媒とを別種のものを使用しても、3つの三方弁および1つの四方弁の流路を切り替えるだけで冷房運転と暖房運転の切り替えが可能となる。
【図面の簡単な説明】
【図1】第1実施例のハイブリッド空調機の概略図と冷房運転時の作動流体の流れを示すものである。
【図2】第1実施例のハイブリッド空調機の概略図と暖房運転時の作動流体の流れを示すものである。
【符号の説明】
1  ハイブリッド空調機
2  吸収式冷凍機
21 高温再生器
23 溶液ポンプ
3  圧縮式冷凍機
31 冷媒圧縮機
32 冷媒熱交換器
34 膨張弁(冷媒膨張弁)
4  空調機
43 負荷
5  負圧タンク
51 低温再生器
6  溶媒凝縮器
7、8 熱交換器
B  加熱源
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a hybrid air conditioner combining an absorption refrigerator and a compression heat pump.
[0002]
[Prior art]
In an absorption refrigerator using a lithium salt solution (absorption solution) such as lithium bromide, the absorption liquid is heated by a regenerator to be separated into a solvent vapor and a concentrated absorption solution, and supplied to a refrigeration unit. The refrigeration unit is a solvent condenser for liquefying the solvent vapor, a solvent evaporator for cooling the working fluid while evaporating the liquefied solvent, and absorbing heat generated by absorbing the evaporated solvent into the concentrated absorbing solution in the cooling water. To cool the absorbing liquid to keep the evaporation of the liquefied solvent in the solvent evaporator.
[0003]
When performing cooling operation using an absorption refrigerator, a cooling mechanism is attached to the solvent condenser and the absorber to discharge the heat of condensation and absorption of the solvent vapor into the atmosphere. Circulating the air conditioning fluid between the heat exchangers. The cooling mechanism usually employs a water-cooled cooling tower (cooling tower) that removes heat by circulating cooling water.
[0004]
The refrigerating capacity of the absorption refrigerator during the cooling operation is proportional to the amount of evaporation of the liquefied solvent in the solvent evaporator, and the amount of evaporation depends on the amount of absorption in the absorber. To improve the refrigeration capacity or downsize the refrigeration unit, it is important to improve the absorption efficiency of the solvent vapor in the absorber. The improvement of the absorption efficiency can be achieved by increasing the contact area between the absorbing liquid and the solvent vapor in the absorber, and quickly transmitting (heating) the generated heat of absorption to the cooling water (for example, see Patent Document 1). 1).
[0005]
[Patent Document 1]
JP-A-2002-61986
[Problems to be solved by the invention]
Water-cooled cooling towers require time and effort to maintain and manage (removal) water and solutes dissolved in the water. I have. The use of an air-cooled cooling tower is easy to maintain and manage, but the water-cooled cooling tower can cool the absorbing solution to around 40 ° C with cooling water (the air-conditioning fluid can be lowered to 5-6 ° C), The air-cooled cooling tower can only cool the absorption solution to about 50 ° C by air (the air-conditioning fluid can only be lowered to about 10 ° C). It is necessary to increase about 5%. When the solution concentration is increased by about 5%, problems such as crystallization of the solution, increase in the temperature of the regenerator, corrosion of the material, and generation of hydrogen are caused.
[0007]
An object of the present invention is to provide a hybrid air conditioner that can increase the air conditioning capacity without increasing the solution concentration and is easy to maintain and manage.
[0008]
[Means for Solving the Problems]
The hybrid air conditioner of the present invention includes a regenerator that heats an absorption solution to separate the solvent and a concentrated absorption solution, a solvent condenser that condenses the separated solvent vapor, a solvent evaporator that evaporates the solvent, and a solvent evaporator that evaporates the solvent. An absorber for absorbing the concentrated absorption solution, an absorption refrigerator having a pump for absorbing the solvent and returning the diluted absorption solution to the regenerator, and an air conditioner having an air conditioning heat exchanger through which the air conditioning fluid circulates, A hybrid air conditioner comprising a refrigerant compressor, a refrigerant heat exchanger, and a compression refrigerator having a refrigerant expansion valve, wherein the flow path of the liquefied solvent and the concentrated absorption solution is switched mutually, and the solvent evaporator in the absorption refrigerator is provided. It is characterized in that switching between the cooling operation and the heating operation is possible by switching between the cooling operation and the absorber.
[0009]
【The invention's effect】
According to the present invention, the refrigerant is circulated through the absorber by the compression refrigerator during the cooling operation to release the absorbed heat to the atmosphere. For this reason, maintenance is easy, the cooling capacity can be increased, and the problem of the absorption refrigerator can be avoided. In addition, since the compression refrigerator is compact and produced in large quantities, it is inexpensive, makes it possible to effectively use the installation space, and can perform cooling operation and heating operation with one facility.
[0010]
BEST MODE FOR CARRYING OUT THE INVENTION
The present invention will be described with reference to the embodiment shown in the drawings. FIG. 1 shows the hybrid air conditioner 1 according to the first embodiment and the flow of the working fluid during the cooling operation, and FIG. 2 shows the hybrid air conditioner 1 according to the first embodiment and the flow of the working fluid during the heating operation. The hybrid air conditioner 1 includes an absorption refrigerator 2 using a lithium salt solution (hereinafter, referred to as an absorption solution) such as an aqueous solution of lithium bromide as a working fluid, and a compressible fluid (hereinafter, referred to as a refrigerant) such as freon or carbon dioxide. And an air conditioner 4 using an air-conditioning fluid such as water as a working fluid.
[0011]
The absorption refrigerator 2 has a high-temperature regenerator 21, a separator 22 disposed above the high-temperature regenerator 21, and a negative pressure tank 5, each of which is connected by an absorption solution or solvent flow path. The high-temperature regenerator 21 is provided with a solution tank 25 in which the fresh liquid refluxes from the bottom of the negative pressure tank 5 via a fresh liquid flow path 24 of a low-concentration absorbing solution (referred to as a fresh liquid) provided with a solution pump 23. And a heating source (burner) B for heating the solution tank 25. The fresh liquid heated and boiled in the high-temperature regenerator 21 is separated in a separator 22 into water (solvent) vapor and a concentrated medium-concentration absorbing solution (referred to as a medium solution).
[0012]
The water vapor and the high-temperature medium liquid are separately supplied to the low-temperature regenerator 51 installed at the upper part in the negative pressure tank 5 via the solvent flow path 26 and the medium liquid flow path 27, respectively. At this time, the high-temperature middle liquid flowing through the middle liquid flow path 27 and the fresh liquid flowing back to the solution tank 25 via the fresh liquid flow path 24 undergo heat exchange in the high-temperature heat exchanger 11 in order to improve thermal efficiency. You. In the low-temperature regenerator 51, a regenerative heat exchanger 52 is provided, in which heat exchange between the water vapor in the solvent flow path 26 and the middle liquid is performed, and the water vapor condenses into water. The middle solution re-boils, producing water vapor and a highly concentrated absorbing solution (referred to as a concentrated solution). The water vapor generated by the low-temperature regenerator 51 is guided to the solvent condenser 6 installed at the upper part in the negative pressure tank 5, and water (solvent) accumulates in the solvent container 62 installed at the bottom part in the solvent condenser 6.
[0013]
During the cooling operation, the steam in the solvent condenser 6 is supplied to an external heat exchanger 63, which is forcibly cooled by a blower 33 of the compression refrigerator 3 through a steam channel 60 having a valve 66 as shown in FIG. It is guided, condensed and refluxed to the solvent container 62. The heat of condensation is released from the external heat exchanger 63 to the atmosphere. During the heating operation, the valve 66 is closed as shown in FIG. 2, and condenses on the surface of the internal heat exchanger 61 provided in the solvent condenser 6 and accumulates in the solvent container 62. The heat of condensation is absorbed by the air-conditioning fluid flowing inside the internal heat exchanger 61.
[0014]
At the lower part of the negative pressure tank 5, two heat exchangers 7 and 8 are provided, and by switching the three-way valves 71 and 81, which will be described later, during cooling operation, the heat exchanger 7 becomes an absorption heat exchanger and a heat exchanger. The heat exchanger 8 functions as an evaporative heat exchanger. During the heating operation, the heat exchanger 8 functions as an absorption heat exchanger, and the heat exchanger 7 functions as an evaporative heat exchanger. The concentrated liquid supplied through the concentrated liquid passage 64 is sprayed from above on the absorption heat exchanger. At this time, the concentrated liquid exchanges heat in the low-temperature heat exchanger 12 with the fresh liquid flowing back to the solution tank 21 via the fresh liquid flow path 24. Water accumulated in the solvent container 62 is sprayed from above through the solvent flow path 65 to the evaporative heat exchanger.
[0015]
The water sprayed on the evaporative heat exchanger evaporates on the surface of the evaporative heat exchanger and cools the working fluid flowing in the evaporative heat exchanger with the heat of evaporation. The evaporated water is absorbed by the concentrated liquid on the surface of the absorption heat exchanger, and the absorption heat generated at this time is absorbed by the working fluid flowing in the absorption heat exchanger.
[0016]
The concentrated liquid flow path 64 and the solvent flow path 65 have three-way valves 71 and 81, respectively. During the cooling operation, the three-way valve 71 is switched to flow to the heat exchanger 7 and the three-way valve 81 is switched to flow to the heat exchanger 8. During the heating operation, the three-way valve 71 is switched to flow to the heat exchanger 8 and the three-way valve 81 is switched to flow to the heat exchanger 7.
[0017]
The compression refrigerator 3 includes a refrigerant compressor 31, a refrigerant heat exchanger 32 connected to the refrigerant compressor 31 by a refrigerant flow path 30, and an expansion valve 34. A blower 33 is attached to the refrigerant heat exchanger 32. In the refrigerant passage 30, a four-way valve 35 is provided between the refrigerant compressor 31 and the refrigerant heat exchanger 32 because it is necessary to reverse the flow of the refrigerant in the cooling operation and the heating operation. The four-way valve 35 has a first port on the inlet side of the refrigerant compressor 31, a second port on the heat exchanger 7, a third port on the refrigerant heat exchanger 32, and a fourth port on the refrigerant compressor. Connected to the outlet side of the machine 31.
[0018]
During the cooling operation, the four-way valve 35 enters the refrigerant compressor 31 from the second port via the first port, and is sent from the fourth port to the refrigerant heat exchanger 32 via the third port. Can be switched. The refrigerant is compressed by the refrigerant compressor 31 to have a high temperature, and is cooled by the blower 33 in the refrigerant heat exchanger 32 to release heat of condensation to the atmosphere. The condensed refrigerant expands to a low temperature by the expansion valve 34 and is supplied to the heat exchanger 7 (which functions as an absorption heat exchanger during cooling operation) connected by the refrigerant flow path 30. The low-temperature refrigerant absorbs the heat of absorption generated on the surface of the heat exchanger 7 and cools the absorbing liquid. That is, the compression refrigerator 3 has an action of rapidly releasing the absorbed heat generated in the heat exchanger 7 to the atmosphere, and increases the cooling capacity of the hybrid air conditioner 1.
[0019]
During the heating operation, the four-way valve 35 enters the refrigerant compressor 31 from the third port via the first port, and enters the heat exchanger 7 and the expansion valve 34 from the fourth port via the second port. Then, the flow path is switched so as to be sent to the refrigerant heat exchanger 32 in this order. The refrigerant is expanded by the expansion valve 34, supplied with heat by the blower 33 in the refrigerant heat exchanger 32 and evaporated, and absorbs atmospheric heat as evaporation heat. The evaporated refrigerant is compressed by the refrigerant compressor 31 to have a high temperature, and is supplied to the heat exchanger 7 (which functions as an evaporative heat exchanger during the heating operation) connected by the refrigerant passage 30. The refrigerant condenses in the heat exchanger 7 and supplies the heat of condensation to the solvent vapor generated on the surface of the heat exchanger 7 as evaporation heat. That is, the compression refrigerator 3 has an action of quickly supplying the atmospheric heat obtained in the refrigerant heat exchanger 31 to the solvent vapor generated in the heat exchanger 7, and increases the heating capacity of the hybrid air conditioner 1. [0020]
The air conditioner 4 includes a pump 41, a three-way valve 42, and a load 43 such as an indoor heat exchanger connected to the pump 41 by an air conditioning flow path 40, in which the air-conditioning fluid is water. The three-way valve 42 is switched so as to flow from the heat exchanger 8 (functioning as an evaporative heat exchanger) to the pump 41 without passing through the internal heat exchanger 61 during the cooling operation, and the heat exchanger 8 (absorbing heat) during the heating operation. (Function as an exchanger) to flow to the pump 41 via the internal heat exchanger 61.
[0021]
In the hybrid air conditioner 1, maintenance is easy, and the cooling or heating operation is assisted by the compression refrigerator 3 that is mass-produced. For this reason, the practicability is high, and even if the outside air temperature is high, the heat release from the refrigerant to the atmosphere does not become insufficient, and even if the temperature is low, the absorption of atmospheric heat to the refrigerant does not become insufficient. .
Further, even if different types of the air-conditioning fluid and the refrigerant are used, it is possible to switch between the cooling operation and the heating operation only by switching the flow paths of the three three-way valves and the one four-way valve.
[Brief description of the drawings]
FIG. 1 is a schematic diagram of a hybrid air conditioner of a first embodiment and shows a flow of a working fluid during a cooling operation.
FIG. 2 is a schematic diagram of the hybrid air conditioner of the first embodiment and shows a flow of a working fluid during a heating operation.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Hybrid air conditioner 2 Absorption type refrigerator 21 High temperature regenerator 23 Solution pump 3 Compression type refrigerator 31 Refrigerant compressor 32 Refrigerant heat exchanger 34 Expansion valve (refrigerant expansion valve)
4 Air conditioner 43 Load 5 Negative pressure tank 51 Low temperature regenerator 6 Solvent condenser 7, 8 Heat exchanger B Heat source

Claims (2)

  1. 吸収溶液を加熱して溶媒と濃縮吸収溶液とに分離する再生器、分離された溶媒蒸気を凝縮する溶媒凝縮器、前記溶媒を蒸発させる溶媒蒸発器、蒸発した溶媒を前記濃縮吸収溶液に吸収させる吸収器、溶媒を吸収して希釈された吸収溶液を前記再生器に還流させるポンプを有する吸収式冷凍機と、
    空調流体が循環する空調熱交換器を備えた空調機と、
    冷媒圧縮機、冷媒熱交換器、冷媒膨張弁を有する圧縮式冷凍機とからなるハイブリッド空調機であって、
    液化溶媒と前記濃縮吸収溶液の流路を相互に切り替え、前記吸収式冷凍機における前記溶媒蒸発器と前記吸収器とを相互に切り替えることにより、冷房運転と暖房運転の切り替えが可能であることを特徴とするハイブリッド空調機。
    A regenerator for heating the absorption solution to separate the solvent and the concentrated absorption solution, a solvent condenser for condensing the separated solvent vapor, a solvent evaporator for evaporating the solvent, and absorbing the evaporated solvent to the concentrated absorption solution. Absorber, absorption refrigerator having a pump for absorbing the solvent and refluxing the diluted absorption solution to the regenerator,
    An air conditioner with an air conditioning heat exchanger through which the air conditioning fluid circulates,
    A refrigerant air conditioner comprising a refrigerant compressor, a refrigerant heat exchanger, and a compression refrigerator having a refrigerant expansion valve,
    By switching the flow path of the liquefied solvent and the concentrated absorption solution to each other, and by switching between the solvent evaporator and the absorber in the absorption refrigerator, it is possible to switch between cooling operation and heating operation. Features a hybrid air conditioner.
  2. 請求項1において、前記再生器は、加熱源で低濃度リチウム塩溶液を加熱して溶媒を蒸発させるとともに中濃度リチウム塩溶液を生成する高温再生器と、前記溶媒蒸発の凝縮熱で前記中濃度リチウム塩溶液を再加熱し、溶媒を蒸発させるとともに高濃度リチウム塩溶液を生成する低温再生器からなることを特徴とするハイブリッド空調機。2. The high-temperature regenerator according to claim 1, wherein the regenerator heats a low-concentration lithium salt solution by a heating source to evaporate a solvent and generates a medium-concentration lithium salt solution; A hybrid air conditioner comprising a low-temperature regenerator that reheats a lithium salt solution to evaporate a solvent and generates a high-concentration lithium salt solution.
JP2002276964A 2002-09-24 2002-09-24 Hybrid air conditioner Expired - Fee Related JP3859567B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002276964A JP3859567B2 (en) 2002-09-24 2002-09-24 Hybrid air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002276964A JP3859567B2 (en) 2002-09-24 2002-09-24 Hybrid air conditioner

Publications (2)

Publication Number Publication Date
JP2004116800A true JP2004116800A (en) 2004-04-15
JP3859567B2 JP3859567B2 (en) 2006-12-20

Family

ID=32272691

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002276964A Expired - Fee Related JP3859567B2 (en) 2002-09-24 2002-09-24 Hybrid air conditioner

Country Status (1)

Country Link
JP (1) JP3859567B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007120872A (en) * 2005-10-28 2007-05-17 Rinnai Corp Hybrid heat pump system
JP2007192432A (en) * 2006-01-17 2007-08-02 Rinnai Corp Hot water storage system
CN102463027A (en) * 2010-11-15 2012-05-23 谢逢华 Drying air compressor utilizing self heat and air for refrigeration

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007120872A (en) * 2005-10-28 2007-05-17 Rinnai Corp Hybrid heat pump system
JP4717589B2 (en) * 2005-10-28 2011-07-06 リンナイ株式会社 Hybrid heat pump system
JP2007192432A (en) * 2006-01-17 2007-08-02 Rinnai Corp Hot water storage system
JP4545691B2 (en) * 2006-01-17 2010-09-15 リンナイ株式会社 Hot water storage system
CN102463027A (en) * 2010-11-15 2012-05-23 谢逢华 Drying air compressor utilizing self heat and air for refrigeration

Also Published As

Publication number Publication date
JP3859567B2 (en) 2006-12-20

Similar Documents

Publication Publication Date Title
JP4184197B2 (en) Hybrid absorption heat pump system
JP4953433B2 (en) Absorption heat pump system
JP4717589B2 (en) Hybrid heat pump system
JP2011075180A (en) Absorption type refrigerating machine
JP2006213292A (en) Air conditioner
JP2004116800A (en) Hybrid air-conditioning machine
JP3859566B2 (en) Hybrid air conditioner
JP2004116806A (en) Hybrid air-conditioning machine
KR100981672B1 (en) Two-stage driven hot water absorption chiller
JP2004069276A (en) Waste heat recovering cooling system
JP4184196B2 (en) Hybrid absorption heat pump system
JP5375284B2 (en) Refrigeration equipment
JP5240040B2 (en) Refrigeration equipment
KR100965114B1 (en) Heating and cooling system
JP5338270B2 (en) Absorption refrigeration system
JP2007333342A (en) Multi-effect absorption refrigerating machine
JP2014129944A (en) Refrigeration device
JP2007192432A (en) Hot water storage system
JP2000274860A (en) Heat pump cycle type absorption refrigerating and heating simultaneously taking-out machine and method
JP2020046128A (en) Absorption refrigerator
KR100827569B1 (en) Absorption refrigerating apparatus with heat pump
JP5402187B2 (en) Refrigeration equipment
JP5260895B2 (en) Absorption refrigerator
JP4282225B2 (en) Absorption refrigerator
WO2016199671A1 (en) Refrigeration system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040827

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060420

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060425

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060626

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060919

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060919

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100929

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100929

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110929

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120929

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120929

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130929

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees