JP7015671B2 - Absorption heat exchange system - Google Patents

Absorption heat exchange system Download PDF

Info

Publication number
JP7015671B2
JP7015671B2 JP2017201151A JP2017201151A JP7015671B2 JP 7015671 B2 JP7015671 B2 JP 7015671B2 JP 2017201151 A JP2017201151 A JP 2017201151A JP 2017201151 A JP2017201151 A JP 2017201151A JP 7015671 B2 JP7015671 B2 JP 7015671B2
Authority
JP
Japan
Prior art keywords
fluid
temperature
heat
heat exchange
absorption
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017201151A
Other languages
Japanese (ja)
Other versions
JP2019074271A (en
Inventor
與四郎 竹村
淳 青山
甲介 平田
Original Assignee
荏原冷熱システム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 荏原冷熱システム株式会社 filed Critical 荏原冷熱システム株式会社
Priority to JP2017201151A priority Critical patent/JP7015671B2/en
Priority to CN201821567487.1U priority patent/CN209263411U/en
Priority to CN201811113922.8A priority patent/CN109668351A/en
Publication of JP2019074271A publication Critical patent/JP2019074271A/en
Application granted granted Critical
Publication of JP7015671B2 publication Critical patent/JP7015671B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B30/00Heat pumps
    • F25B30/06Heat pumps characterised by the source of low potential heat
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B30/00Heat pumps
    • F25B30/04Heat pumps of the sorption type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B33/00Boilers; Analysers; Rectifiers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B37/00Absorbers; Adsorbers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B39/00Evaporators; Condensers
    • F25B39/02Evaporators
    • F25B39/026Evaporators specially adapted for sorption type systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B39/00Evaporators; Condensers
    • F25B39/04Condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/20Disposition of valves, e.g. of on-off valves or flow control valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B43/00Arrangements for separating or purifying gases or liquids; Arrangements for vaporising the residuum of liquid refrigerant, e.g. by heat
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D2021/0019Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for
    • F28D2021/0068Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for for refrigerant cycles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/62Absorption based systems

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Sorption Type Refrigeration Machines (AREA)

Description

本発明は吸収式熱交換システムに関し、特に温度が異なる2種類の被加熱流体を取り出すことができる吸収式熱交換システムに関する。 The present invention relates to an absorption heat exchange system, and more particularly to an absorption heat exchange system capable of taking out two types of fluids to be heated having different temperatures.

熱交換器は、高温の流体と低温の流体との間で熱を交換する装置として広く用いられている。2つの流体の間で直接熱交換が行われる熱交換器では、熱交換後に流出する低温の流体及び高温の流体の温度は、両者の交換熱量に見合った温度となる(例えば、特許文献1参照。)。 Heat exchangers are widely used as devices for exchanging heat between hot and cold fluids. In a heat exchanger in which heat exchange is performed directly between two fluids, the temperatures of the low-temperature fluid and the high-temperature fluid that flow out after the heat exchange are equal to the amount of heat exchanged between the two (see, for example, Patent Document 1). .).

特許第5498809号公報(図11等参照)Japanese Patent No. 5498809 (see FIG. 11 etc.)

熱交換器の用途の1つとして、排熱を回収することが挙げられる。排熱は、使用されずに捨てられる熱であるため、回収できる熱量が多いほど熱を有効に利用することができることとなる。回収した熱を利用する側で、温度が異なる2種類の流体の需要があるとき、温度が異なる2種類の流体を取り出すことができれば、回収した熱の有効利用を図ることができる。 One of the uses of heat exchangers is to recover waste heat. Since the waste heat is heat that is discarded without being used, the more heat that can be recovered, the more effectively the heat can be used. When there is a demand for two types of fluids having different temperatures on the side of using the recovered heat, if the two types of fluids having different temperatures can be taken out, the recovered heat can be effectively used.

本発明は上述の課題に鑑み、温度が異なる2種類の被加熱流体を取り出すことができる吸収式熱交換システムを提供することを目的とする。 In view of the above problems, it is an object of the present invention to provide an absorption heat exchange system capable of taking out two types of fluids to be heated having different temperatures.

上記目的を達成するために、本発明の第1の態様に係る吸収式熱交換システムは、例えば図1に示すように、吸収液Saが冷媒の蒸気Veを吸収して濃度が低下した希溶液Swとなる際に放出した吸収熱によって第1の被加熱流体FL1の温度を上昇させる吸収部10と;冷媒の蒸気Vgが凝縮して冷媒液Vfとなる際に放出した凝縮熱によって第2の被加熱流体FL2の温度を上昇させる凝縮部40と;凝縮部40から冷媒液Vfを導入し、導入した冷媒液Vfが蒸発して吸収部10に供給される冷媒の蒸気Veとなる際に必要な蒸発潜熱を加熱源流体FHから奪うことで加熱源流体FHの温度を低下させる蒸発部20と;吸収部10から希溶液Swを導入し、導入した希溶液Swを加熱し希溶液Swから冷媒Vgを離脱させて濃度が上昇した濃溶液Saとするのに必要な熱を加熱源流体FHから奪うことで加熱源流体FHの温度を低下させる再生部30と;凝縮部40において温度が上昇した後の第2の被加熱流体FL2と、凝縮部40において温度が上昇した後の第2の被加熱流体FL2の温度を上昇させる昇温流体FHと、の間で熱交換を行わせる熱交換部80とを備え;吸収液Sa、Swと冷媒Ve、Vf、Vgとの吸収ヒートポンプサイクルによって、吸収部10は再生部30よりも内部の圧力及び温度が高くなり、蒸発部20は凝縮部40よりも内部の圧力及び温度が高くなるように構成されている。 In order to achieve the above object, in the absorption type heat exchange system according to the first aspect of the present invention, for example, as shown in FIG. 1, the absorption liquid Sa absorbs the vapor Ve of the refrigerant and the concentration is reduced. The absorption unit 10 that raises the temperature of the first heated fluid FL1 by the absorption heat released when it becomes Sw; and the second by the condensation heat released when the vapor Vg of the refrigerant condenses into the refrigerant liquid Vf. A condensing unit 40 that raises the temperature of the fluid FL2 to be heated; required when the refrigerant liquid Vf is introduced from the condensing unit 40 and the introduced refrigerant liquid Vf evaporates to become the vapor vapor Ve of the refrigerant supplied to the absorption unit 10. Evaporation section 20 that lowers the temperature of the heating source fluid FH by removing the latent heat of evaporation from the heating source fluid FH; The regenerating section 30 lowers the temperature of the heating source fluid FH by removing the heat required for removing Vg to form a concentrated solution Sa having an increased concentration from the heating source fluid FH; and the temperature rises in the condensing section 40. A heat exchange unit that exchanges heat between the second heated fluid FL2 and the heating fluid FH that raises the temperature of the second heated fluid FL2 after the temperature rises in the condensing unit 40. 80; due to the absorption heat pump cycle of the absorption liquids Sa, Sw and the refrigerants Ve, Vf, Vg, the internal pressure and temperature of the absorption unit 10 are higher than those of the regeneration unit 30, and the evaporation unit 20 is from the condensation unit 40. Is also configured to increase internal pressure and temperature.

このように構成すると、温度が異なる2種類の被加熱流体を取り出すことができる。 With this configuration, two types of fluids to be heated with different temperatures can be taken out.

また、本発明の第2の態様に係る吸収式熱交換システムは、例えば図1に示すように、上記本発明の第1の態様に係る吸収式熱交換システム1において、吸収部10で加熱された第1の被加熱流体FL1を導入して第1の被加熱流体FL1の液体Frと蒸気Fvとに分離する気液分離器16を備える。 Further, the absorption heat exchange system according to the second aspect of the present invention is heated by the absorption unit 10 in the absorption heat exchange system 1 according to the first aspect of the present invention, for example, as shown in FIG. A gas-liquid separator 16 is provided which introduces the first heated fluid FL1 and separates the liquid Fr and the steam Fv of the first heated fluid FL1.

このように構成すると、利用価値の高い、第1の被加熱流体の蒸気を取り出すことができる。 With this configuration, it is possible to take out the steam of the first fluid to be heated, which has high utility value.

また、本発明の第3の態様に係る吸収式熱交換システムは、例えば図1に示すように、上記本発明の第1の態様又は第2の態様に係る吸収式熱交換システム1において、熱交換部80は、蒸発部20において温度が低下した後の加熱源流体FH及び再生部30において温度が低下した後の加熱源流体FHの少なくとも一方を昇温流体として導入するように構成されている。 Further, the absorption type heat exchange system according to the third aspect of the present invention is, for example, as shown in FIG. 1, in the absorption type heat exchange system 1 according to the first aspect or the second aspect of the present invention. The exchange unit 80 is configured to introduce at least one of the heat source fluid FH after the temperature has dropped in the evaporation unit 20 and the heat source fluid FH after the temperature has dropped in the regeneration unit 30 as a heating fluid. ..

このように構成すると、吸収式熱交換システムから排出される加熱源流体からさらに熱を回収することができる。 With this configuration, more heat can be recovered from the heat source fluid discharged from the absorption heat exchange system.

また、本発明の第4の態様に係る吸収式熱交換システムは、例えば図3に示すように、上記本発明の第1の態様乃至第3の態様のいずれか1つの態様に係る吸収式熱交換システム2において、熱交換部80は、蒸発部20及び再生部30に導入される前の加熱源流体FHから分岐された一部の加熱源流体FHsを昇温流体として導入するように構成されている。 Further, the absorption type heat exchange system according to the fourth aspect of the present invention has, for example, as shown in FIG. 3, the absorption type heat according to any one of the first to third aspects of the present invention. In the exchange system 2, the heat exchange unit 80 is configured to introduce a part of the heat source fluid FHs branched from the heat source fluid FH before being introduced into the evaporation unit 20 and the regeneration unit 30 as the temperature rising fluid. ing.

このように構成すると、熱交換部から流出する第2の被加熱流体の温度を高くすることができる。 With this configuration, the temperature of the second heated fluid flowing out of the heat exchange section can be raised.

また、本発明の第5の態様に係る吸収式熱交換システムは、例えば図3を参照して示すと、上記本発明の第4の態様に係る吸収式熱交換システム2において、熱交換部80から流出した第2の被加熱流体FL2の温度が所定の温度になるように、蒸発部20及び再生部30に流入する加熱源流体FHの流量と熱交換部80に流入する加熱源流体FHsの流量との比が設定されている。 Further, the absorption type heat exchange system according to the fifth aspect of the present invention is, for example, as shown with reference to FIG. 3, in the absorption type heat exchange system 2 according to the fourth aspect of the present invention, the heat exchange unit 80. The flow rate of the heating source fluid FH flowing into the evaporating section 20 and the regenerating section 30 and the heating source fluid FHs flowing into the heat exchange section 80 so that the temperature of the second heated fluid FL2 flowing out of the heating section 20 becomes a predetermined temperature. The ratio with the flow rate is set.

このように構成すると、熱交換部から流出した第2の被加熱流体の温度を所定の温度に設定することができる。 With this configuration, the temperature of the second heated fluid flowing out of the heat exchange unit can be set to a predetermined temperature.

また、本発明の第6の態様に係る吸収式熱交換システムは、例えば図4に示すように、上記本発明の第1の態様乃至第5の態様のいずれか1つの態様に係る吸収式熱交換システム3において、蒸発部20及び再生部30に導入される前の加熱源流体FHから分岐された一部の加熱源流体FHを第1の被加熱流体FL1として吸収部10に導入するように構成されている。 Further, the absorption heat exchange system according to the sixth aspect of the present invention is, for example, as shown in FIG. 4, the absorption heat according to any one of the first to fifth aspects of the present invention. In the exchange system 3, a part of the heat source fluid FH branched from the heat source fluid FH before being introduced into the evaporation unit 20 and the regeneration unit 30 is introduced into the absorption unit 10 as the first heated fluid FL1. It is configured.

このように構成すると、第1の被加熱流体の温度を、分岐された加熱源流体の温度よりも高くすることができる。 With this configuration, the temperature of the first heated fluid can be made higher than the temperature of the branched heating source fluid.

また、本発明の第7の態様に係る吸収式熱交換システムは、例えば図5に示すように、上記本発明の第1の態様乃至第6の態様のいずれか1つの態様に係る吸収式熱交換システム4において、凝縮部40から蒸発部20に搬送される冷媒液Vfと、熱交換部80から流出した昇温流体FHと、の間で熱交換を行わせる冷媒熱交換器99を備える。 Further, the absorption heat exchange system according to the seventh aspect of the present invention is, for example, as shown in FIG. 5, the absorption heat according to any one of the first to sixth aspects of the present invention. The exchange system 4 includes a refrigerant heat exchanger 99 that exchanges heat between the refrigerant liquid Vf conveyed from the condensing unit 40 to the evaporation unit 20 and the temperature rising fluid FH flowing out of the heat exchange unit 80.

このように構成すると、吸収式熱交換システムから流出する昇温流体の温度を下げることができ、吸収式熱交換システムにおいて昇温流体から回収する熱量を増加させることができる。 With this configuration, the temperature of the heating fluid flowing out of the absorption heat exchange system can be lowered, and the amount of heat recovered from the heating fluid in the absorption heat exchange system can be increased.

上記目的を達成するために、本発明の第8の態様に係る吸収式熱交換システムは、例えば図6に示すように、吸収液Saが冷媒の蒸気Veを吸収して濃度が低下した希溶液Swとなる際に放出した吸収熱によって第1の被加熱流体FL1の温度を上昇させる吸収部10と;冷媒の蒸気Vgが凝縮して冷媒液Vfとなる際に放出した凝縮熱によって第2の被加熱流体FL2の温度を上昇させる凝縮部40と;凝縮部40から冷媒液Vfを導入し、導入した冷媒液Vfが蒸発して吸収部10に供給される冷媒の蒸気Veとなる際に必要な蒸発潜熱を加熱源流体FHから奪うことで加熱源流体FHの温度を低下させる蒸発部20と;吸収部10から希溶液Swを導入し、導入した希溶液Swを加熱し希溶液Swから冷媒を離脱させて濃度が上昇した濃溶液Saとするのに必要な熱を加熱源流体FHから奪うことで加熱源流体FHの温度を低下させる再生部30とを備え;吸収液Sa、Swと冷媒Ve、Vf、Vgとの吸収ヒートポンプサイクルによって、吸収部10は再生部30よりも内部の圧力及び温度が高くなり、蒸発部20は凝縮部40よりも内部の圧力及び温度が高くなるように構成され;さらに、凝縮部40から流出した第2の被加熱流体FL2を導入し、第2の被加熱流体FL2が保有する熱で加熱を必要とする物質を加熱する中温熱消費設備64を備える。 In order to achieve the above object, in the absorption type heat exchange system according to the eighth aspect of the present invention, for example, as shown in FIG. 6, the absorption fluid Sa absorbs the steam Ve of the refrigerant and the concentration is reduced. The absorption unit 10 that raises the temperature of the first fluid to be heated FL1 by the absorption heat released when it becomes Sw; Condensation section 40 that raises the temperature of the fluid to be heated FL2; Necessary when the refrigerant liquid Vf is introduced from the condensing section 40 and the introduced refrigerant liquid Vf evaporates to become steam Ve of the refrigerant supplied to the absorption section 10. Evaporation section 20 that lowers the temperature of the heating source fluid FH by removing the latent heat of evaporation from the heating source fluid FH; It is provided with a regenerator 30 for lowering the temperature of the heating source fluid FH by removing the heat required for removing the heat from the heating source fluid FH to obtain a concentrated solution Sa having an increased concentration; absorption liquids Sa, Sw and a refrigerant. Due to the absorption heat pump cycle with Ve, Vf, and Vg, the absorption unit 10 is configured to have a higher internal pressure and temperature than the regeneration unit 30, and the evaporation unit 20 is configured to have a higher internal pressure and temperature than the condensing unit 40. Further, the second heated fluid FL2 flowing out from the condensing portion 40 is introduced, and a medium temperature heat consumption facility 64 for heating a substance requiring heating with the heat possessed by the second heated fluid FL2 is provided.

このように構成すると、温度が異なる2種類の被加熱流体を取り出して有効に利用することができる。 With this configuration, two types of fluids to be heated with different temperatures can be taken out and effectively used.

本発明によれば、温度が異なる2種類の被加熱流体を取り出すことができる。 According to the present invention, it is possible to take out two types of fluids to be heated having different temperatures.

本発明の第1の実施の形態に係る吸収式熱交換システムの模式的系統図である。It is a schematic system diagram of the absorption type heat exchange system which concerns on 1st Embodiment of this invention. 本発明の第1の実施の形態の変形例に係る吸収式熱交換システムの模式的系統図である。It is a schematic system diagram of the absorption type heat exchange system which concerns on the modification of 1st Embodiment of this invention. 本発明の第2の実施の形態に係る吸収式熱交換システムの模式的系統図である。It is a schematic system diagram of the absorption type heat exchange system which concerns on the 2nd Embodiment of this invention. 本発明の第3の実施の形態に係る吸収式熱交換システムの模式的系統図である。It is a schematic system diagram of the absorption type heat exchange system which concerns on 3rd Embodiment of this invention. 本発明の第4の実施の形態に係る吸収式熱交換システムの模式的系統図である。It is a schematic system diagram of the absorption type heat exchange system which concerns on 4th Embodiment of this invention. 本発明の第5の実施の形態に係る吸収式熱交換システムの模式的系統図である。It is a schematic system diagram of the absorption type heat exchange system which concerns on 5th Embodiment of this invention.

以下、図面を参照して本発明の実施の形態について説明する。なお、各図において互いに同一又は相当する部材には同一あるいは類似の符号を付し、重複した説明は省略する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. In each figure, members that are the same as or correspond to each other are designated by the same or similar reference numerals, and duplicated description will be omitted.

まず図1を参照して、本発明の第1の実施の形態に係る吸収式熱交換システム1を説明する。図1は、吸収式熱交換システム1の模式的系統図である。吸収式熱交換システム1は、吸収液と冷媒との吸収ヒートポンプサイクルを利用して、第1低温流体FL1及び第2低温流体FL2と、高温流体FHとの熱交換を行わせるシステムである。ここで、第1低温流体FL1及び第2低温流体FL2は、吸収式熱交換システム1において温度を上昇させる対象となる流体であり、第1低温流体FL1は第1の被加熱流体に、第2低温流体FL2は第2の被加熱流体に、それぞれ相当する。高温流体FHは、吸収式熱交換システム1において温度が低下する流体であり、加熱源流体に相当する。吸収式熱交換システム1は、吸収液S(Sa、Sw)と冷媒V(Ve、Vg、Vf)との吸収ヒートポンプサイクルが行われる主要機器を構成する吸収器10、蒸発器20、再生器30、及び凝縮器40を備え、さらに、熱交換部80を備えている。吸収器10、蒸発器20、再生器30、凝縮器40は、それぞれ、吸収部、蒸発部、再生部、凝縮部に相当する。 First, the absorption heat exchange system 1 according to the first embodiment of the present invention will be described with reference to FIG. FIG. 1 is a schematic system diagram of the absorption heat exchange system 1. The absorption heat exchange system 1 is a system that exchanges heat between the first low-temperature fluid FL1 and the second low-temperature fluid FL2 and the high-temperature fluid FH by utilizing the absorption heat pump cycle between the absorption liquid and the refrigerant. Here, the first low-temperature fluid FL1 and the second low-temperature fluid FL2 are fluids for which the temperature is to be raised in the absorption-type heat exchange system 1, and the first low-temperature fluid FL1 is used as the first heated fluid and the second. The low temperature fluid FL2 corresponds to the second heated fluid, respectively. The high temperature fluid FH is a fluid whose temperature drops in the absorption heat exchange system 1, and corresponds to a heating source fluid. The absorption heat exchange system 1 comprises an absorber 10, an evaporator 20, and a regenerator 30 that constitute a main device in which an absorption heat pump cycle of an absorption liquid S (Sa, Sw) and a refrigerant V (Ve, Vg, Vf) is performed. , And a condenser 40, and further includes a heat exchange unit 80. The absorber 10, the evaporator 20, the regenerator 30, and the condenser 40 correspond to an absorption unit, an evaporation unit, a regeneration unit, and a condensation unit, respectively.

本明細書においては、吸収液に関し、ヒートポンプサイクル上における区別を容易にするために、性状やヒートポンプサイクル上の位置に応じて「希溶液Sw」や「濃溶液Sa」等と呼称するが、性状等を不問にするときは総称して「吸収液S」ということとする。同様に、冷媒に関し、ヒートポンプサイクル上における区別を容易にするために、性状やヒートポンプサイクル上の位置に応じて「蒸発器冷媒蒸気Ve」、「再生器冷媒蒸気Vg」、「冷媒液Vf」等と呼称するが、性状等を不問にするときは総称して「冷媒V」ということとする。本実施の形態では、吸収液S(吸収剤と冷媒Vとの混合物)としてLiBr水溶液が用いられており、冷媒Vとして水(HO)が用いられている。 In the present specification, the absorbent liquid is referred to as "rare solution Sw" or "concentrated solution Sa" depending on the properties and the position on the heat pump cycle in order to facilitate the distinction on the heat pump cycle. When it does not matter, it is collectively referred to as "absorbent solution S". Similarly, regarding the refrigerant, in order to facilitate the distinction on the heat pump cycle, "evaporator refrigerant steam Ve", "regenerator refrigerant steam Vg", "refrigerant liquid Vf", etc., depending on the properties and the position on the heat pump cycle. However, when the properties are unquestioned, they are collectively referred to as "refrigerant V". In this embodiment, a LiBr aqueous solution is used as the absorbing liquid S (a mixture of the absorbing agent and the refrigerant V), and water (H 2 O) is used as the refrigerant V.

吸収器10は、第1低温流体FL1の流路を構成する伝熱管12と、濃溶液Saを伝熱管12の表面に供給する濃溶液供給装置13とを内部に有している。吸収器10は、濃溶液供給装置13から濃溶液Saが伝熱管12の表面に供給され、濃溶液Saが蒸発器冷媒蒸気Veを吸収して希溶液Swとなる際に吸収熱を発生させる。この吸収熱を、伝熱管12を流れる第1低温流体FL1が受熱して、第1低温流体FL1が加熱されるように構成されている。 The absorber 10 has a heat transfer tube 12 constituting the flow path of the first low temperature fluid FL1 and a concentrated solution supply device 13 for supplying the concentrated solution Sa to the surface of the heat transfer tube 12. The absorber 10 generates heat of absorption when the concentrated solution Sa is supplied to the surface of the heat transfer tube 12 from the concentrated solution supply device 13 and the concentrated solution Sa absorbs the evaporator refrigerant vapor Ve to become a dilute solution Sw. The first low-temperature fluid FL1 flowing through the heat transfer tube 12 receives the absorbed heat, and the first low-temperature fluid FL1 is heated.

本実施の形態に係る吸収式熱交換システム1は、吸収器10の伝熱管12を流れて加熱された第1低温流体FL1を液体と蒸気とに分離する気液分離器16を備えている。気液分離器16と伝熱管12とは、加熱後流体管17及び分離液管18で接続されている。加熱後流体管17は、伝熱管12を流れて加熱された第1低温流体FL1を気液分離器16に導くものである。分離液管18は、伝熱管12を流れて加熱された第1低温流体FL1が気液分離器16内で分離された後の液体である分離液体Frを伝熱管12に導くものである。また、気液分離器16の上部(典型的には頂部)には、分離蒸気管19の一端が接続されている。分離蒸気管19は、伝熱管12を流れて加熱された第1低温流体FL1が気液分離器16内で分離された後の蒸気である分離蒸気Fvを吸収式熱交換システム1の外に導くものである。また、主に蒸気として吸収式熱交換システム1の外に供給された分の第1低温流体FL1を補うための補給液体Fsを吸収式熱交換システム1の外から導入する補導入管18sが設けられている。補導入管18sは、分離液管18に接続されており、分離液管18を流れる分離液体Frに補給液体Fsを合流させるように構成されている。補導入管18sには、分離液管18に向けて補給液体Fsを圧送する補給液体ポンプ18pが配設されている。分離液管18を流れる分離液体Frは、第1低温流体FL1として吸収器10の伝熱管12に導入されるように構成されている。 The absorption heat exchange system 1 according to the present embodiment includes a gas-liquid separator 16 that separates the first low-temperature fluid FL1 heated by flowing through the heat transfer tube 12 of the absorber 10 into a liquid and a vapor. The gas-liquid separator 16 and the heat transfer tube 12 are connected by a fluid tube 17 and a separation liquid tube 18 after heating. After heating, the fluid tube 17 guides the heated first low-temperature fluid FL1 flowing through the heat transfer tube 12 to the gas-liquid separator 16. The separation liquid tube 18 guides the separation liquid Fr, which is the liquid after the first low-temperature fluid FL1 that has flowed through the heat transfer tube 12 and is heated in the gas-liquid separator 16, to the heat transfer tube 12. Further, one end of the separation steam pipe 19 is connected to the upper part (typically the top) of the gas-liquid separator 16. The separation steam pipe 19 guides the separation steam Fv, which is the steam after the first low-temperature fluid FL1 heated through the heat transfer tube 12 is separated in the gas-liquid separator 16, to the outside of the absorption heat exchange system 1. It is a thing. Further, a supplementary introduction pipe 18s for introducing the replenishment liquid Fs for supplementing the first low temperature fluid FL1 mainly supplied to the outside of the absorption heat exchange system 1 as steam from the outside of the absorption heat exchange system 1 is provided. ing. The supplementary introduction pipe 18s is connected to the separation liquid pipe 18, and is configured to join the replenishment liquid Fs with the separation liquid Fr flowing through the separation liquid pipe 18. The supplementary introduction pipe 18s is provided with a replenishment liquid pump 18p that pumps the replenishment liquid Fs toward the separation liquid pipe 18. The separation liquid Fr flowing through the separation liquid tube 18 is configured to be introduced into the heat transfer tube 12 of the absorber 10 as the first low temperature fluid FL1.

蒸発器20は、高温流体FHの流路を構成する熱源管22を、蒸発器缶胴21の内部に有している。蒸発器20は、蒸発器缶胴21の内部に冷媒液Vfを散布するノズルを有していない。このため、熱源管22は、蒸発器缶胴21内に貯留された冷媒液Vfに浸かるように配設されている(満液式蒸発器)。蒸発器20は、熱源管22周辺の冷媒液Vfが熱源管22内を流れる高温流体FHの熱で蒸発して蒸発器冷媒蒸気Veが発生するように構成されている。蒸発器缶胴21には、蒸発器缶胴21内に冷媒液Vfを供給する冷媒液管45が接続されている。 The evaporator 20 has a heat source tube 22 constituting a flow path of the high-temperature fluid FH inside the evaporator can body 21. The evaporator 20 does not have a nozzle for spraying the refrigerant liquid Vf inside the evaporator can body 21. Therefore, the heat source pipe 22 is arranged so as to be immersed in the refrigerant liquid Vf stored in the evaporator can body 21 (full-liquid evaporator). The evaporator 20 is configured so that the refrigerant liquid Vf around the heat source pipe 22 evaporates with the heat of the high temperature fluid FH flowing in the heat source pipe 22 to generate the evaporator refrigerant steam Ve. A refrigerant liquid pipe 45 for supplying the refrigerant liquid Vf is connected to the evaporator can body 21 in the evaporator can body 21.

吸収器10と蒸発器20とは、相互に連通している。吸収器10と蒸発器20とが連通することにより、蒸発器20で発生した蒸発器冷媒蒸気Veを吸収器10に供給することができるように構成されている。 The absorber 10 and the evaporator 20 communicate with each other. By communicating the absorber 10 and the evaporator 20, the evaporator refrigerant vapor Ve generated in the evaporator 20 can be supplied to the absorber 10.

再生器30は、希溶液Swを加熱する高温流体FHを内部に流す熱源管32と、希溶液Swを熱源管32の表面に供給する希溶液供給装置33とを有している。熱源管32内を流れる高温流体FHは、本実施の形態では、蒸発器20の熱源管22内を流れた後の高温流体FHとなっている。蒸発器20の熱源管22と再生器30の熱源管32とは、高温流体FHを流す高温流体連絡管25で接続されている。再生器30の熱源管32の高温流体連絡管25が接続された端部とは反対側の端部には、高温流体排出管39が接続されている。高温流体排出管39は、高温流体FHを系外へ導く流路を構成する管である。再生器30は、希溶液供給装置33から供給された希溶液Swが高温流体FHに加熱されることにより、希溶液Swから冷媒Vが蒸発して濃度が上昇した濃溶液Saが生成されるように構成されている。希溶液Swから蒸発した冷媒Vは再生器冷媒蒸気Vgとして凝縮器40に移動するように構成されている。 The regenerator 30 has a heat source tube 32 for flowing a high-temperature fluid FH for heating the dilute solution Sw inside, and a rare solution supply device 33 for supplying the dilute solution Sw to the surface of the heat source tube 32. In the present embodiment, the high temperature fluid FH flowing in the heat source pipe 32 is the high temperature fluid FH after flowing in the heat source pipe 22 of the evaporator 20. The heat source pipe 22 of the evaporator 20 and the heat source pipe 32 of the regenerator 30 are connected by a high temperature fluid connecting pipe 25 through which the high temperature fluid FH flows. A high-temperature fluid discharge pipe 39 is connected to an end of the heat source pipe 32 of the regenerator 30 opposite to the end to which the high-temperature fluid connecting pipe 25 is connected. The high temperature fluid discharge pipe 39 is a pipe constituting a flow path for guiding the high temperature fluid FH to the outside of the system. In the regenerator 30, the dilute solution Sw supplied from the dilute solution supply device 33 is heated by the high temperature fluid FH, so that the refrigerant V evaporates from the dilute solution Sw to generate a concentrated solution Sa having an increased concentration. It is configured in. The refrigerant V evaporated from the dilute solution Sw is configured to move to the condenser 40 as the regenerator refrigerant vapor Vg.

凝縮器40は、第2低温流体FL2が流れる伝熱管42を凝縮器缶胴41の内部に有している。凝縮器40は、再生器30で発生した再生器冷媒蒸気Vgを導入し、これが凝縮して冷媒液Vfとなる際に放出した凝縮熱を、伝熱管42内を流れる第2低温流体FL2が受熱して、第2低温流体FL2が加熱されるように構成されている。伝熱管42には、一端に第2低温流入管48が接続され、他端に第2低温排出管49が接続されている。第2低温流入管48は、伝熱管42に第2低温流体FL2を供給するものである。第2低温流体排出管49は、伝熱管42で加熱された第2低温流体FL2を流すものである。再生器30と凝縮器40とは、相互に連通するように、再生器30の缶胴と凝縮器缶胴41とが一体に形成されている。再生器30と凝縮器40とが連通することにより、再生器30で発生した再生器冷媒蒸気Vgを凝縮器40に供給することができるように構成されている。 The condenser 40 has a heat transfer tube 42 through which the second low-temperature fluid FL2 flows inside the condenser can body 41. The condenser 40 introduces the regenerator refrigerant vapor Vg generated in the regenerator 30, and the second low-temperature fluid FL2 flowing in the heat transfer tube 42 receives the heat of condensation released when this is condensed into the refrigerant liquid Vf. Then, the second low temperature fluid FL2 is configured to be heated. A second low temperature inflow pipe 48 is connected to one end of the heat transfer tube 42, and a second low temperature discharge pipe 49 is connected to the other end. The second low temperature inflow pipe 48 supplies the second low temperature fluid FL2 to the heat transfer pipe 42. The second low-temperature fluid discharge pipe 49 allows the second low-temperature fluid FL2 heated by the heat transfer pipe 42 to flow. The regenerator 30 and the condenser 40 are integrally formed with the can body of the regenerator 30 and the condenser can body 41 so as to communicate with each other. By communicating the regenerator 30 and the condenser 40, the regenerator refrigerant vapor Vg generated in the regenerator 30 can be supplied to the condenser 40.

再生器30の濃溶液Saが貯留される部分と吸収器10の濃溶液供給装置13とは、濃溶液Saを流す濃溶液管35で接続されている。濃溶液管35には、濃溶液Saを圧送する溶液ポンプ35pが配設されている。吸収器10の希溶液Swが貯留される部分と希溶液供給装置33とは、希溶液Swを流す希溶液管36で接続されている。濃溶液管35及び希溶液管36には、濃溶液Saと希溶液Swとの間で熱交換を行わせる溶液熱交換器38が配設されている。凝縮器40の冷媒液Vfが貯留される部分と蒸発器缶胴21とは、冷媒液Vfを流す冷媒液管45で接続されている。冷媒液管45には、冷媒液Vfを圧送する冷媒ポンプ46が配設されている。 The portion of the regenerator 30 in which the concentrated solution Sa is stored and the concentrated solution supply device 13 of the absorber 10 are connected by a concentrated solution tube 35 through which the concentrated solution Sa flows. The concentrated solution tube 35 is provided with a solution pump 35p for pumping the concentrated solution Sa. The portion of the absorber 10 in which the dilute solution Sw is stored and the dilute solution supply device 33 are connected by a dilute solution tube 36 through which the dilute solution Sw flows. A solution heat exchanger 38 for exchanging heat between the concentrated solution Sa and the dilute solution Sw is provided in the concentrated solution tube 35 and the dilute solution tube 36. The portion of the condenser 40 in which the refrigerant liquid Vf is stored and the evaporator can body 21 are connected by a refrigerant liquid pipe 45 through which the refrigerant liquid Vf flows. The refrigerant liquid pipe 45 is provided with a refrigerant pump 46 for pressure-feeding the refrigerant liquid Vf.

熱交換部80は、高温流体排出管39及び第2低温排出管49に配設されており、高温流体排出管39を流れる高温流体FHと第2低温排出管49を流れる第2低温流体FL2とで熱交換を行わせるように構成されている。本実施の形態では、蒸発器20及び再生器30において温度が低下した高温流体FHが、昇温流体として機能し、第2低温流体FL2と熱交換するようになっている。熱交換部80は、典型的にはシェルアンドチューブ型熱交換器で構成されているが、プレート型熱交換器等の、2つの流体の間で熱交換させる機器であってもよい。 The heat exchange unit 80 is arranged in the high temperature fluid discharge pipe 39 and the second low temperature discharge pipe 49, and includes the high temperature fluid FH flowing through the high temperature fluid discharge pipe 39 and the second low temperature fluid FL2 flowing through the second low temperature discharge pipe 49. It is configured to exchange heat with. In the present embodiment, the high temperature fluid FH whose temperature has dropped in the evaporator 20 and the regenerator 30 functions as a temperature rising fluid and exchanges heat with the second low temperature fluid FL2. The heat exchange unit 80 is typically composed of a shell-and-tube heat exchanger, but may be a device such as a plate heat exchanger that exchanges heat between two fluids.

吸収式熱交換システム1は、定常運転中、吸収器10の内部の圧力及び温度は再生器30の内部の圧力及び温度よりも高くなり、蒸発器20の内部の圧力及び温度は凝縮器40の内部の圧力及び温度よりも高くなる。吸収式熱交換システム1は、吸収器10、蒸発器20、再生器30、凝縮器40が、第2種吸収ヒートポンプの構成となっている。 In the absorption type heat exchange system 1, during steady operation, the pressure and temperature inside the absorber 10 are higher than the pressure and temperature inside the regenerator 30, and the pressure and temperature inside the evaporator 20 are higher than those inside the condenser 40. It will be higher than the internal pressure and temperature. In the absorption type heat exchange system 1, the absorber 10, the evaporator 20, the regenerator 30, and the condenser 40 are configured as a type 2 absorption heat pump.

引き続き図1を参照して、吸収式熱交換システム1の作用を説明する。まず、冷媒側の吸収ヒートポンプサイクルを説明する。凝縮器40では、再生器30で蒸発した再生器冷媒蒸気Vgを受け入れて、伝熱管42を流れる第2低温流体FL2によって再生器冷媒蒸気Vgが冷却されて凝縮し、冷媒液Vfとなる。このとき、第2低温流体FL2は、再生器冷媒蒸気Vgが凝縮する際に放出した凝縮熱によって温度が上昇する。凝縮した冷媒液Vfは、冷媒ポンプ46で蒸発器缶胴21に送られる。蒸発器缶胴21に送られた冷媒液Vfは、熱源管22内を流れる高温流体FHによって加熱され、蒸発して蒸発器冷媒蒸気Veとなる。このとき、高温流体FHは、冷媒液Vfに熱を奪われて温度が低下する。蒸発器20で発生した蒸発器冷媒蒸気Veは、蒸発器20と連通する吸収器10へと移動する。 Subsequently, with reference to FIG. 1, the operation of the absorption heat exchange system 1 will be described. First, the absorption heat pump cycle on the refrigerant side will be described. The condenser 40 receives the regenerator refrigerant vapor Vg evaporated in the regenerator 30, and the regenerator refrigerant vapor Vg is cooled and condensed by the second low-temperature fluid FL2 flowing through the heat transfer tube 42 to become the refrigerant liquid Vf. At this time, the temperature of the second low-temperature fluid FL2 rises due to the heat of condensation released when the regenerator refrigerant vapor Vg condenses. The condensed refrigerant liquid Vf is sent to the evaporator can body 21 by the refrigerant pump 46. The refrigerant liquid Vf sent to the evaporator can body 21 is heated by the high-temperature fluid FH flowing in the heat source pipe 22 and evaporates to become the evaporator refrigerant steam Ve. At this time, the temperature of the high-temperature fluid FH is lowered by being deprived of heat by the refrigerant liquid Vf. The evaporator refrigerant vapor Ve generated in the evaporator 20 moves to the absorber 10 communicating with the evaporator 20.

次に溶液側の吸収ヒートポンプサイクルを説明する。吸収器10では、濃溶液Saが濃溶液供給装置13から供給され、この供給された濃溶液Saが蒸発器20から移動してきた蒸発器冷媒蒸気Veを吸収する。蒸発器冷媒蒸気Veを吸収した濃溶液Saは、濃度が低下して希溶液Swとなる。吸収器10では、濃溶液Saが蒸発器冷媒蒸気Veを吸収する際に吸収熱が発生する。この吸収熱により、伝熱管12を流れる第1低温流体FL1が加熱され、第1低温流体FL1の温度が上昇する。吸収器10で蒸発器冷媒蒸気Veを吸収した濃溶液Saは、濃度が低下して希溶液Swとなり、吸収器10の下部に貯留される。貯留された希溶液Swは、吸収器10と再生器30との内圧の差により再生器30に向かって希溶液管36を流れ、溶液熱交換器38で濃溶液Saと熱交換して温度が低下して、再生器30に至る。 Next, the absorption heat pump cycle on the solution side will be described. In the absorber 10, the concentrated solution Sa is supplied from the concentrated solution supply device 13, and the supplied concentrated solution Sa absorbs the evaporator refrigerant vapor Ve that has moved from the evaporator 20. The concentration of the concentrated solution Sa that has absorbed the evaporator refrigerant vapor Ve decreases to become a dilute solution Sw. In the absorber 10, absorption heat is generated when the concentrated solution Sa absorbs the evaporator refrigerant vapor Ve. The absorbed heat heats the first low-temperature fluid FL1 flowing through the heat transfer tube 12, and the temperature of the first low-temperature fluid FL1 rises. The concentration of the concentrated solution Sa that has absorbed the evaporator refrigerant vapor Ve in the absorber 10 decreases to become a dilute solution Sw, which is stored in the lower part of the absorber 10. The stored dilute solution Sw flows through the dilute solution tube 36 toward the regenerator 30 due to the difference in internal pressure between the absorber 10 and the regenerator 30, and heats with the concentrated solution Sa in the solution heat exchanger 38 to change the temperature. It drops to reach the regenerator 30.

再生器30に送られた希溶液Swは、希溶液供給装置33から供給され、熱源管32を流れる高温流体FHによって加熱され、供給された希溶液Sw中の冷媒が蒸発して濃溶液Saとなり、再生器30の下部に貯留される。このとき、高温流体FHは、希溶液Swに熱を奪われて温度が低下する。熱源管32を流れる高温流体FHは、蒸発器20の熱源管22を通過してきたものである。希溶液Swから蒸発した冷媒Vは、再生器冷媒蒸気Vgとして凝縮器40へと移動する。再生器30の下部に貯留された濃溶液Saは、溶液ポンプ35pにより、濃溶液管35を介して吸収器10の濃溶液供給装置13に圧送される。濃溶液管35を流れる濃溶液Saは、溶液熱交換器38で希溶液Swと熱交換して温度が上昇してから吸収器10に流入し、濃溶液供給装置13から供給され、以降、同様のサイクルを繰り返す。 The dilute solution Sw sent to the regenerator 30 is supplied from the dilute solution supply device 33, heated by the high temperature fluid FH flowing through the heat source tube 32, and the refrigerant in the supplied dilute solution Sw evaporates to become a concentrated solution Sa. , Stored in the lower part of the regenerator 30. At this time, the temperature of the high-temperature fluid FH is lowered by being deprived of heat by the dilute solution Sw. The high-temperature fluid FH flowing through the heat source tube 32 has passed through the heat source tube 22 of the evaporator 20. The refrigerant V evaporated from the dilute solution Sw moves to the condenser 40 as the regenerator refrigerant vapor Vg. The concentrated solution Sa stored in the lower part of the regenerator 30 is pumped by the solution pump 35p to the concentrated solution supply device 13 of the absorber 10 via the concentrated solution tube 35. The concentrated solution Sa flowing through the concentrated solution tube 35 exchanges heat with the dilute solution Sw in the solution heat exchanger 38, flows into the absorber 10 after the temperature rises, is supplied from the concentrated solution supply device 13, and so on. Repeat the cycle of.

吸収液S及び冷媒Vが上記のような吸収ヒートポンプサイクルを行う過程における、高温流体FH並びに第1低温流体FL1及び第2低温流体FL2の温度の変化を、具体例を挙げて説明する。95℃で蒸発器20の熱源管22に流入した高温流体FHは、冷媒液Vfに熱を奪われて89℃に温度が低下する。蒸発器20から流出した高温流体FHは、高温流体連絡管25を流れた後、89℃で再生器30の熱源管32に流入する。熱源管32に流入した高温流体FHは、希溶液Swに熱を奪われて84℃に温度が低下する。再生器30で温度が低下した高温流体FHは、84℃で再生器30を流出し、高温流体排出管39を流れて熱交換部80に流入する。 The changes in temperature of the high temperature fluid FH and the first low temperature fluid FL1 and the second low temperature fluid FL2 in the process of the absorption liquid S and the refrigerant V performing the absorption heat pump cycle as described above will be described with reference to specific examples. The high temperature fluid FH flowing into the heat source pipe 22 of the evaporator 20 at 95 ° C. is deprived of heat by the refrigerant liquid Vf, and the temperature drops to 89 ° C. The high-temperature fluid FH flowing out of the evaporator 20 flows through the high-temperature fluid connecting pipe 25 and then flows into the heat source pipe 32 of the regenerator 30 at 89 ° C. The high temperature fluid FH flowing into the heat source tube 32 loses heat to the dilute solution Sw, and the temperature drops to 84 ° C. The high-temperature fluid FH whose temperature has dropped in the regenerator 30 flows out of the regenerator 30 at 84 ° C., flows through the high-temperature fluid discharge pipe 39, and flows into the heat exchange unit 80.

他方、32℃で凝縮器40の伝熱管42に流入した第2低温流体FL2は、再生器冷媒蒸気Vgが凝縮する際に放出した凝縮熱を得て、50℃に温度が上昇する。凝縮器40から流出した第2低温流体FL2は、第2低温排出管49を流れて熱交換部80に流入する。熱交換部80では、高温流体排出管39を流れる高温流体FHと第2低温排出管49を流れる第2低温流体FL2との間で熱交換が行われ、84℃の高温流体FHは74℃に温度が低下し、50℃の第2低温流体FL2は80℃に温度が上昇する。74℃に温度が低下した高温流体FHは、引き続き高温流体排出管39を流れて吸収式熱交換システム1から排出される。80℃に温度が上昇した第2低温流体FL2は、中温度の熱を消費する設備(不図示)に供給される。吸収式熱交換システム1は、熱交換部80で加熱された第2低温流体FL2の温度が、蒸発器20及び再生器30から流出した高温流体FHの温度よりも高くないが、高温流体FHが中温度の熱を消費する設備で利用できない性質や種類の流体である場合には好適である。例えば、高温流体FHが生産プロセス内を循環する流体であって、生産プロセスから吸収式熱交換システム1に流入した高温流体FHを、熱を奪って冷却した後に生産プロセスに戻す場合、又は、高温流体FHが廃棄すべき流体であって、吸収式熱交換システム1で熱を奪って冷却した後に廃棄する場合等である。中温度の熱を消費する設備として、典型的には比較的近距離に設置された暖房設備が挙げられる。吸収式熱交換システム1では、第2低温流体FL2の流量を、高温流体FHの流量の約1/3としている。換言すれば、第2低温流体FL2と高温流体FHとの流量比を約1:3としている。この流量比は、あらかじめ決められた値にしたがって採用したサイズの配管やオリフィス等を用いることで固定してもよく、バルブ等を用いて自動又は手動で調節可能に構成してもよい。流量比がバルブ等を用いて自動で調節される場合、バルブ等は典型的には制御装置に制御される。 On the other hand, the second low-temperature fluid FL2 flowing into the heat transfer tube 42 of the condenser 40 at 32 ° C. obtains the heat of condensation released when the regenerator refrigerant vapor Vg condenses, and the temperature rises to 50 ° C. The second low-temperature fluid FL2 flowing out of the condenser 40 flows through the second low-temperature discharge pipe 49 and flows into the heat exchange unit 80. In the heat exchange unit 80, heat exchange is performed between the high temperature fluid FH flowing through the high temperature fluid discharge pipe 39 and the second low temperature fluid FL2 flowing through the second low temperature discharge pipe 49, and the high temperature fluid FH at 84 ° C. becomes 74 ° C. The temperature drops, and the temperature of the second low temperature fluid FL2 at 50 ° C. rises to 80 ° C. The high temperature fluid FH whose temperature has dropped to 74 ° C. continues to flow through the high temperature fluid discharge pipe 39 and is discharged from the absorption heat exchange system 1. The second low temperature fluid FL2 whose temperature has risen to 80 ° C. is supplied to a facility (not shown) that consumes heat at a medium temperature. In the absorption type heat exchange system 1, the temperature of the second low temperature fluid FL2 heated by the heat exchange unit 80 is not higher than the temperature of the high temperature fluid FH flowing out from the evaporator 20 and the regenerator 30, but the high temperature fluid FH is generated. It is suitable when the fluid has properties or types that cannot be used in equipment that consumes medium temperature heat. For example, when the high-temperature fluid FH is a fluid that circulates in the production process and the high-temperature fluid FH that has flowed into the absorption-type heat exchange system 1 from the production process is cooled by removing heat, or is returned to the production process, or is high temperature. This is a case where the fluid FH is a fluid to be discarded and is discarded after being cooled by taking heat with the absorption type heat exchange system 1. Equipment that consumes medium temperature heat typically includes heating equipment installed at relatively short distances. In the absorption type heat exchange system 1, the flow rate of the second low temperature fluid FL2 is set to about 1/3 of the flow rate of the high temperature fluid FH. In other words, the flow rate ratio between the second low temperature fluid FL2 and the high temperature fluid FH is about 1: 3. This flow rate ratio may be fixed by using a pipe, an orifice or the like of a size adopted according to a predetermined value, or may be configured to be automatically or manually adjustable by using a valve or the like. When the flow rate ratio is automatically adjusted using a valve or the like, the valve or the like is typically controlled by a control device.

また、82℃で吸収器10の伝熱管12に流入した第1低温流体FL1は、濃溶液Saが蒸発器冷媒蒸気Veを吸収する際に発生した吸収熱を得て110℃に温度が上昇する。第1低温流体FL1は、吸収器10で加熱された際に一部が沸騰して気液混合状態となる。吸収器10から流出した第1低温流体FL1は、加熱後流体管17を介して気液分離器16に流入する。気液分離器16に流入した第1低温流体FL1は、分離蒸気Fvと分離液体Frとに分離される。気液分離器16で分離された分離蒸気Fvは、分離蒸気管19に流出し、高温度の熱を消費する設備(不図示)に供給される。高温度の熱を消費する設備として、典型的には工場プロセスや遠方に設置された暖房設備が挙げられる。このように、吸収式熱交換システム1では、導入する高温流体FHの温度以上の分離蒸気Fv(第1低温流体FL1)を取り出すことができる。他方、気液分離器16で分離された分離液体Frは、分離液管18を流れ、途中で補導入管18sを流れてきた補給液体Fsが合流して温度が低下し、第1低温流体FL1として82℃で伝熱管12内に供給される。典型的には、分離蒸気Fvとして高温度の熱を消費する設備に供給された分が、補給液体Fsとして外部から供給される。 Further, the temperature of the first low temperature fluid FL1 flowing into the heat transfer tube 12 of the absorber 10 at 82 ° C. rises to 110 ° C. by obtaining the absorption heat generated when the concentrated solution Sa absorbs the evaporator refrigerant vapor Ve. .. When the first low-temperature fluid FL1 is heated by the absorber 10, a part thereof boils and becomes a gas-liquid mixed state. The first low-temperature fluid FL1 flowing out of the absorber 10 flows into the gas-liquid separator 16 via the fluid pipe 17 after heating. The first low-temperature fluid FL1 that has flowed into the gas-liquid separator 16 is separated into the separated steam Fv and the separated liquid Fr. The separated steam Fv separated by the gas-liquid separator 16 flows out to the separated steam pipe 19, and is supplied to a facility (not shown) that consumes high temperature heat. Equipment that consumes high temperature heat typically includes factory processes and distant heating equipment. As described above, in the absorption heat exchange system 1, the separated steam Fv (first low temperature fluid FL1) having a temperature higher than the temperature of the high temperature fluid FH to be introduced can be taken out. On the other hand, the separated liquid Fr separated by the gas-liquid separator 16 flows through the separation liquid pipe 18, and the replenishing liquid Fs flowing through the supplementary introduction pipe 18s joins in the middle to lower the temperature, and becomes the first low-temperature fluid FL1. It is supplied into the heat transfer tube 12 at 82 ° C. Typically, the amount supplied to the equipment that consumes high temperature heat as the separated steam Fv is supplied from the outside as the replenishing liquid Fs.

以上で説明したように、本実施の形態に係る吸収式熱交換システム1によれば、第2種吸収ヒートポンプの機能を発揮する吸収器10、蒸発器20、再生器30、凝縮器40における吸収液Sと冷媒Vとの吸収ヒートポンプサイクルを介して間接的に高温流体FHと第1低温流体FL1及び第2低温流体FL2との熱交換を行わせると共に、熱交換部80において直接的に高温流体FHと第2低温流体FL2との熱交換を行わせることで、温度が異なる2種類の被加熱流体(第1低温流体FL1、第2低温流体FL2)を取り出すことができる。また、吸収式熱交換システム1では、吸収器10から流出した第1低温流体FL1を気液分離器16において気液分離して分離蒸気Fvとして取り出すので、エンタルピが大きく利用価値の高い蒸気を供給することができる。なお、高温流体FH、第1低温流体FL1、第2低温流体FL2のそれぞれは、流体の性質や種類が、他の1つ又は2つと異なっていてもよく、同じであってもよい。 As described above, according to the absorption type heat exchange system 1 according to the present embodiment, absorption in the absorber 10, the evaporator 20, the regenerator 30, and the condenser 40 exhibiting the functions of the type 2 absorption heat pump. Heat exchange between the high temperature fluid FH and the first low temperature fluid FL1 and the second low temperature fluid FL2 is indirectly performed via the absorption heat pump cycle between the liquid S and the refrigerant V, and the high temperature fluid is directly exchanged in the heat exchange unit 80. By exchanging heat between the FH and the second low-temperature fluid FL2, two types of heated fluids (first low-temperature fluid FL1 and second low-temperature fluid FL2) having different temperatures can be taken out. Further, in the absorption type heat exchange system 1, the first low-temperature fluid FL1 flowing out from the absorber 10 is separated into gas and liquid by the gas-liquid separator 16 and taken out as separated steam Fv, so that steam having a large enthalpy and high utility value is supplied. can do. In addition, each of the high temperature fluid FH, the first low temperature fluid FL1, and the second low temperature fluid FL2 may have different or the same fluid properties and types from the other one or two.

次に図2を参照して、本発明の第1の実施の形態の変形例に係る吸収式熱交換システム1Aを説明する。図2は、吸収式熱交換システム1Aの模式的系統図である。吸収式熱交換システム1Aは、主として以下の点で吸収式熱交換システム1(図1参照)と異なっている。吸収式熱交換システム1Aは、吸収器10から流出した第1低温流体FL1が、液体の状態で高温度の熱を消費する設備(不図示)に供給されるようになっている。したがって、吸収式熱交換システム1Aでは、吸収式熱交換システム1(図1参照)で設けられていた気液分離器16(図1参照)及びこのまわりの構成の分離蒸気管19(図1参照)、分離液管18(図1参照)、補給液体ポンプ18p(図1参照)が配設された補導入管18s(図1参照)が設けられておらず、高温度の熱を消費する設備等から送られてきた第1低温流体FL1が吸収器10の伝熱管12に流入し、吸収器10で加熱された第1低温流体FL1が加熱後流体管17を流れて高温度の熱を消費する設備に供給されるように構成されている。吸収式熱交換システム1Aの上記以外の構成は、吸収式熱交換システム1(図1参照)と同様である。 Next, with reference to FIG. 2, the absorption heat exchange system 1A according to the modified example of the first embodiment of the present invention will be described. FIG. 2 is a schematic system diagram of the absorption heat exchange system 1A. The absorption heat exchange system 1A differs from the absorption heat exchange system 1 (see FIG. 1) mainly in the following points. In the absorption heat exchange system 1A, the first low-temperature fluid FL1 flowing out of the absorber 10 is supplied to a facility (not shown) that consumes high-temperature heat in a liquid state. Therefore, in the absorption type heat exchange system 1A, the gas-liquid separator 16 (see FIG. 1) provided in the absorption type heat exchange system 1 (see FIG. 1) and the separation steam pipe 19 (see FIG. 1) having a configuration around the gas-liquid separator 16 (see FIG. 1). ), A supplementary introduction pipe 18s (see FIG. 1) in which the separation liquid pipe 18 (see FIG. 1) and the replenishment liquid pump 18p (see FIG. 1) are arranged, and equipment that consumes high temperature heat, etc. The first low-temperature fluid FL1 sent from the above flows into the heat transfer tube 12 of the absorber 10, and the first low-temperature fluid FL1 heated by the absorber 10 flows through the fluid tube 17 after heating and consumes high-temperature heat. It is configured to be supplied to the equipment. The configuration of the absorption heat exchange system 1A other than the above is the same as that of the absorption heat exchange system 1 (see FIG. 1).

上述のように構成された吸収式熱交換システム1Aでは、吸収器10、蒸発器20、再生器30、凝縮器40における吸収液Sと冷媒Vとの吸収ヒートポンプサイクルは、吸収式熱交換システム1(図1参照)と同様に作用する。また、高温流体FHの流路及び温度変化も、吸収式熱交換システム1(図1参照)と同様に作用する。また、第2低温流体FL2の流路及び温度変化も、吸収式熱交換システム1(図1参照)と同様に作用する。他方、第1低温流体FL1は、吸収器10の伝熱管12に流入し、吸収器10において濃溶液Saが蒸発器冷媒蒸気Veを吸収する際に発生した吸収熱を得て蒸発しない程度に温度が上昇して吸収器10から流出し、加熱後流体管17を介して高温度の熱を消費する設備(不図示)に供給される。このように、吸収式熱交換システム1Aは、気液分離器16(図1参照)まわりの構成を省略した簡便な構成で温度が異なる2種類の液体を取り出すことができる。 In the absorption heat exchange system 1A configured as described above, the absorption heat pump cycle between the absorption liquid S and the refrigerant V in the absorber 10, the evaporator 20, the regenerator 30 and the condenser 40 is the absorption heat exchange system 1. It works in the same manner as (see FIG. 1). Further, the flow path and temperature change of the high temperature fluid FH also operate in the same manner as in the absorption heat exchange system 1 (see FIG. 1). Further, the flow path and the temperature change of the second low temperature fluid FL2 also operate in the same manner as in the absorption type heat exchange system 1 (see FIG. 1). On the other hand, the first low-temperature fluid FL1 flows into the heat transfer tube 12 of the absorber 10, and the temperature is such that the concentrated solution Sa obtains the absorption heat generated when the concentrated solution Sa absorbs the evaporator refrigerant vapor Ve in the absorber 10 and does not evaporate. Ascends and flows out of the absorber 10, and after heating, is supplied to a facility (not shown) that consumes high-temperature heat via a fluid tube 17. As described above, the absorption heat exchange system 1A can take out two kinds of liquids having different temperatures with a simple configuration omitting the configuration around the gas-liquid separator 16 (see FIG. 1).

次に図3を参照して、本発明の第2の実施の形態に係る吸収式熱交換システム2を説明する。図3は、吸収式熱交換システム2の模式的系統図である。吸収式熱交換システム2は、主として以下の点で吸収式熱交換システム1(図1参照)と異なっている。吸収式熱交換システム2は、蒸発器20に導入される前の高温流体FHの一部を分岐した部分高温流体FHsを、蒸発器20及び再生器30を迂回して、再生器30から流出した高温流体FHに合流させる高温流体迂回管29が設けられている。高温流体迂回管29の一端は、高温流体FHを熱源管22に導入する高温流体導入管24に接続されている。高温流体迂回管29の他端は、高温流体排出管39に接続されている。本実施の形態では、高温流体排出管39を流れる高温流体FHは、熱交換部80を介さずに系外に排出される。熱交換部80は、吸収式熱交換システム1(図1参照)においては高温流体排出管39及び第2低温排出管49に配設されていたことに代えて、第2低温排出管49及び高温流体迂回管29に配設されており、第2低温排出管49を流れる第2低温流体FL2と、高温流体迂回管29を流れる部分高温流体FHsとの間で熱交換を行わせるように構成されている。吸収式熱交換システム2の上記以外の構成は、吸収式熱交換システム1(図1参照)と同様である。 Next, with reference to FIG. 3, the absorption heat exchange system 2 according to the second embodiment of the present invention will be described. FIG. 3 is a schematic system diagram of the absorption heat exchange system 2. The absorption heat exchange system 2 differs from the absorption heat exchange system 1 (see FIG. 1) mainly in the following points. In the absorption heat exchange system 2, the partial high temperature fluid FHs obtained by branching a part of the high temperature fluid FH before being introduced into the evaporator 20 was bypassed the evaporator 20 and the regenerator 30 and flowed out from the regenerator 30. A high temperature fluid detour pipe 29 for merging with the high temperature fluid FH is provided. One end of the high temperature fluid detour pipe 29 is connected to a high temperature fluid introduction pipe 24 that introduces the high temperature fluid FH into the heat source pipe 22. The other end of the high temperature fluid detour pipe 29 is connected to the high temperature fluid discharge pipe 39. In the present embodiment, the high temperature fluid FH flowing through the high temperature fluid discharge pipe 39 is discharged to the outside of the system without going through the heat exchange unit 80. In the absorption type heat exchange system 1 (see FIG. 1), the heat exchange unit 80 is arranged in the high temperature fluid discharge pipe 39 and the second low temperature discharge pipe 49, instead of being arranged in the second low temperature discharge pipe 49 and the high temperature discharge pipe 49. It is arranged in the fluid detour pipe 29 and is configured to exchange heat between the second low temperature fluid FL2 flowing through the second low temperature discharge pipe 49 and the partial high temperature fluid FHs flowing through the high temperature fluid detour pipe 29. ing. The configuration of the absorption heat exchange system 2 other than the above is the same as that of the absorption heat exchange system 1 (see FIG. 1).

上述のように構成された吸収式熱交換システム2の作用は以下の通りである。吸収器10、蒸発器20、再生器30、凝縮器40における吸収液Sと冷媒Vとの吸収ヒートポンプサイクルは、吸収式熱交換システム1(図1参照)と同様に作用する。蒸発器20に向かって高温流体導入管24を流れる高温流体FHは、一部が分岐して部分高温流体FHsとして高温流体迂回管29に流入し、残りの高温流体FHが熱源管22に流入する。熱源管22に流入した高温流体FHは、冷媒液Vfに熱を奪われて温度が低下し、蒸発器20から流出して高温流体連絡管25を流れた後に再生器30の熱源管32に流入し、再生器30において希溶液Swに熱を奪われて温度が低下して再生器30を流出する。高温流体導入管24から高温流体迂回管29に流入した高温流体FHは、熱交換部80に流入する。他方、凝縮器40の伝熱管42に流入した第2低温流体FL2は、再生器冷媒蒸気Vgが凝縮する際に放出した凝縮熱を得て温度が上昇し、凝縮器40から流出して熱交換部80に流入する。熱交換部80では、高温流体迂回管29を流れる部分高温流体FHsと第2低温排出管49を流れる第2低温流体FL2との間で熱交換が行われ、部分高温流体FHsは温度が低下し、第2低温流体FL2は温度が上昇する。熱交換部80において温度が低下した部分高温流体FHsは、高温流体迂回管29を介して高温流体排出管39を流れる高温流体FHと合流し、吸収式熱交換システム2から排出される。熱交換部80において温度が上昇した第2低温流体FL2は、引き続き第2低温排出管49を流れて中温度の熱を消費する設備(不図示)に供給される。他方、第1低温流体FL1は、吸収式熱交換システム1(図1参照)と同様、吸収器10の伝熱管12に流入し、吸収器10において濃溶液Saが蒸発器冷媒蒸気Veを吸収する際に発生した吸収熱を得て温度が上昇して吸収器10を流出し、気液分離器16に流入して分離蒸気Fvと分離液体Frとに分離され、分離蒸気Fvは高温度の熱を消費する設備(不図示)に供給され、分離液体Frは必要な補給液体Fsが合流したうえで再び第1低温流体FL1として伝熱管12内に流入する。 The operation of the absorption heat exchange system 2 configured as described above is as follows. The absorption heat pump cycle of the absorption liquid S and the refrigerant V in the absorber 10, the evaporator 20, the regenerator 30, and the condenser 40 operates in the same manner as in the absorption heat exchange system 1 (see FIG. 1). The high-temperature fluid FH flowing through the high-temperature fluid introduction pipe 24 toward the evaporator 20 is partially branched and flows into the high-temperature fluid detour pipe 29 as partial high-temperature fluid FHs, and the remaining high-temperature fluid FH flows into the heat source pipe 22. .. The high-temperature fluid FH that has flowed into the heat source tube 22 is deprived of heat by the refrigerant liquid Vf, the temperature drops, flows out of the evaporator 20, flows through the high-temperature fluid connecting tube 25, and then flows into the heat source tube 32 of the regenerator 30. Then, in the regenerator 30, heat is taken by the dilute solution Sw, the temperature drops, and the regenerator 30 flows out. The high-temperature fluid FH that has flowed from the high-temperature fluid introduction pipe 24 into the high-temperature fluid detour pipe 29 flows into the heat exchange unit 80. On the other hand, the second low-temperature fluid FL2 that has flowed into the heat transfer tube 42 of the condenser 40 obtains the heat of condensation released when the regenerator refrigerant vapor Vg is condensed, and the temperature rises, and the heat is exchanged by flowing out of the condenser 40. It flows into the part 80. In the heat exchange unit 80, heat exchange is performed between the partial high temperature fluid FHs flowing through the high temperature fluid detour pipe 29 and the second low temperature fluid FL2 flowing through the second low temperature discharge pipe 49, and the temperature of the partial high temperature fluid FHs drops. , The temperature of the second low temperature fluid FL2 rises. The partial high-temperature fluid FHs whose temperature has dropped in the heat exchange unit 80 merge with the high-temperature fluid FH flowing through the high-temperature fluid discharge pipe 39 via the high-temperature fluid detour pipe 29, and are discharged from the absorption-type heat exchange system 2. The second low-temperature fluid FL2 whose temperature has risen in the heat exchange unit 80 continues to flow through the second low-temperature discharge pipe 49 and is supplied to equipment (not shown) that consumes medium-temperature heat. On the other hand, the first low-temperature fluid FL1 flows into the heat transfer tube 12 of the absorber 10 and the concentrated solution Sa absorbs the evaporator refrigerant steam Ve in the absorber 10 as in the absorption type heat exchange system 1 (see FIG. 1). The absorbed heat generated at this time is obtained, the temperature rises and flows out of the absorber 10, flows into the gas-liquid separator 16 and is separated into the separated steam Fv and the separated liquid Fr, and the separated steam Fv is the heat of high temperature. The separated liquid Fr is supplied to a facility (not shown) that consumes the liquid, and after the necessary replenishing liquid Fs is merged, the separated liquid Fr flows into the heat transfer tube 12 again as the first low temperature fluid FL1.

吸収式熱交換システム2によれば、高温流体導入管24を流れる高温流体FHの、熱源管22に流入する流量と高温流体迂回管29に流入する流量との比率に応じて、熱交換部80から流出して中温度の熱を消費する設備に供給される第2低温流体FL2の温度を調節することができる。換言すれば、熱交換部80から流出した第2低温流体FL2の温度が所定の温度になるように、熱源管22に流入する高温流体FHの流量と高温流体迂回管29に流入する高温流体FHの流量との比を設定することができる。この場合における流量比は、熱源管22及び高温流体迂回管29の各々についてあらかじめ決められた値にしたがって採用したサイズの配管やオリフィス等を用いることで固定してもよく、各々の管22、29のいずれかの位置に配置したバルブ等を用いて自動又は手動で調節可能に構成してもよい。また、本実施の形態における熱交換部80の加熱側流体である部分高温流体FHsの温度は、吸収式熱交換システム1(図1参照)における熱交換部80の加熱側流体である高温流体FHの温度よりも高いので、本実施の形態では、熱交換部80で加熱される第2低温流体FL2の温度を、吸収式熱交換システム1(図1参照)の場合よりも高くすることができる。なお、図示は省略するが、吸収式熱交換システム2の構成に加えて、図1に示すような高温流体排出管39及び第2低温排出管49に配設された熱交換部80を設け、2つの熱交換部80を備えることとしてもよい。この場合、高温流体迂回管29の高温流体排出管39への接続部を、高温流体排出管39及び第2低温排出管49に配設された熱交換部80の上流側として、部分高温流体FHsが合流した後の高温流体排出管39を流れる高温流体FHと、第2低温排出管49を流れる第2低温流体FL2とで熱交換を行わせるようにするとよい。換言すれば、第2低温排出管49を流れる第2低温流体FL2は、部分高温流体FHsが合流した後の高温流体排出管39を流れる高温流体FHと熱交換した後に、高温流体迂回管29を流れる部分高温流体FHsと熱交換するように構成すると、最初に高温流体FHで加熱され、次に高温流体FHよりも温度が高い部分高温流体FHsで加熱されることとなってよい。 According to the absorption type heat exchange system 2, the heat exchange unit 80 corresponds to the ratio of the flow rate of the high temperature fluid FH flowing through the high temperature fluid introduction pipe 24 to the flow rate flowing into the heat source tube 22 and the flow rate flowing into the high temperature fluid detour pipe 29. The temperature of the second low temperature fluid FL2 that flows out of and is supplied to the equipment that consumes the heat of the medium temperature can be adjusted. In other words, the flow rate of the high temperature fluid FH flowing into the heat source pipe 22 and the high temperature fluid FH flowing into the high temperature fluid detour pipe 29 so that the temperature of the second low temperature fluid FL2 flowing out from the heat exchange unit 80 becomes a predetermined temperature. You can set the ratio to the flow rate of. In this case, the flow rate ratio may be fixed by using a pipe, an orifice, or the like of a size adopted for each of the heat source pipe 22 and the high temperature fluid detour pipe 29 according to a predetermined value, and the pipes 22 and 29, respectively. It may be configured to be automatically or manually adjustable by using a valve or the like arranged at any of the above positions. Further, the temperature of the partial high temperature fluid FHs which is the heating side fluid of the heat exchange unit 80 in the present embodiment is the high temperature fluid FH which is the heating side fluid of the heat exchange unit 80 in the absorption type heat exchange system 1 (see FIG. 1). In the present embodiment, the temperature of the second low temperature fluid FL2 heated by the heat exchange unit 80 can be made higher than that of the absorption type heat exchange system 1 (see FIG. 1). .. Although not shown, in addition to the configuration of the absorption heat exchange system 2, heat exchange units 80 arranged in the high temperature fluid discharge pipe 39 and the second low temperature discharge pipe 49 as shown in FIG. 1 are provided. Two heat exchange units 80 may be provided. In this case, the connection portion of the high temperature fluid detour pipe 29 to the high temperature fluid discharge pipe 39 is set as the upstream side of the heat exchange portion 80 arranged in the high temperature fluid discharge pipe 39 and the second low temperature discharge pipe 49, and the partial high temperature fluid FHs It is preferable to exchange heat between the high temperature fluid FH flowing through the high temperature fluid discharge pipe 39 and the second low temperature fluid FL2 flowing through the second low temperature discharge pipe 49. In other words, the second low-temperature fluid FL2 flowing through the second low-temperature discharge pipe 49 exchanges heat with the high-temperature fluid FH flowing through the high-temperature fluid discharge pipe 39 after the partial high-temperature fluid FHs merges, and then forms the high-temperature fluid detour pipe 29. When configured to exchange heat with the flowing partial high temperature fluid FHs, it may be first heated by the high temperature fluid FH and then heated by the partial high temperature fluid FHs having a temperature higher than that of the high temperature fluid FH.

次に図4を参照して、本発明の第3の実施の形態に係る吸収式熱交換システム3を説明する。図4は、吸収式熱交換システム3の模式的系統図である。吸収式熱交換システム3は、主として以下の点で吸収式熱交換システム1A(図2参照)と異なっている。吸収式熱交換システム3は、蒸発器20に導入される前の高温流体FHから分岐された一部の高温流体FHを、第1低温流体FL1として吸収器10の伝熱管12に流入させる分岐流体流入管15が設けられている。分岐流体流入管15の一端は、高温流体FHを熱源管22に導入する高温流体導入管24に接続されている。分岐流体流入管15の他端は、伝熱管12の、加熱後流体管17が接続された端部とは反対側の端部に接続されている。吸収式熱交換システム3の上記以外の構成は、吸収式熱交換システム1A(図2参照)と同様である。 Next, with reference to FIG. 4, the absorption heat exchange system 3 according to the third embodiment of the present invention will be described. FIG. 4 is a schematic system diagram of the absorption heat exchange system 3. The absorption heat exchange system 3 differs from the absorption heat exchange system 1A (see FIG. 2) mainly in the following points. The absorption heat exchange system 3 is a branched fluid in which a part of the high temperature fluid FH branched from the high temperature fluid FH before being introduced into the evaporator 20 flows into the heat transfer tube 12 of the absorber 10 as the first low temperature fluid FL1. An inflow pipe 15 is provided. One end of the branch fluid inflow pipe 15 is connected to a high temperature fluid introduction pipe 24 that introduces the high temperature fluid FH into the heat source pipe 22. The other end of the branched fluid inflow pipe 15 is connected to the end of the heat transfer pipe 12 opposite to the end to which the heated fluid pipe 17 is connected. The configuration of the absorption heat exchange system 3 other than the above is the same as that of the absorption heat exchange system 1A (see FIG. 2).

上述のように構成された吸収式熱交換システム3では、吸収器10、蒸発器20、再生器30、凝縮器40における吸収液Sと冷媒Vとの吸収ヒートポンプサイクルは、吸収式熱交換システム1A(図2参照)と同様に作用する。また、第2低温流体FL2の流路及び温度変化も、吸収式熱交換システム1A(図2参照)と同様に作用する。蒸発器20に向かって高温流体導入管24を流れる高温流体FHは、一部が分岐して第1低温流体FL1として分岐流体流入管15に流入し、残りの高温流体FHが熱源管22に流入する。熱源管22に流入した高温流体FHは、冷媒液Vfに熱を奪われて温度が低下し、蒸発器20から流出して高温流体連絡管25を流れた後に再生器30の熱源管32に流入し、再生器30において希溶液Swに熱を奪われて温度が低下して再生器30を流出する。再生器30を流出した高温流体FHは、高温流体排出管39を流れ、熱交換部80において第2低温流体FL2と熱交換して温度が低下したうえで、吸収式熱交換システム3から排出される。他方、高温流体導入管24から分岐流体流入管15に流入した第1低温流体FL1(分岐された一部の高温流体FH)は、吸収器10の伝熱管12に流入し、吸収器10において濃溶液Saが蒸発器冷媒蒸気Veを吸収する際に発生した吸収熱を得て温度が上昇して吸収器10を流出し、加熱後流体管17を介して高温度の熱を消費する設備(不図示)に供給される。このように、吸収式熱交換システム3では、蒸発器20に導入される前の高温流体FHから分岐された一部の高温流体FHを第1低温流体FL1として吸収器10に導入するので、吸収器10から流出した第1低温流体FL1の温度を蒸発器20に導入される前の高温流体FHの温度よりも高くすることができる。 In the absorption heat exchange system 3 configured as described above, the absorption heat pump cycle between the absorption liquid S and the refrigerant V in the absorber 10, the evaporator 20, the regenerator 30, and the condenser 40 is the absorption heat exchange system 1A. It works in the same manner as (see FIG. 2). Further, the flow path and the temperature change of the second low temperature fluid FL2 also operate in the same manner as the absorption type heat exchange system 1A (see FIG. 2). The high temperature fluid FH flowing through the high temperature fluid introduction pipe 24 toward the evaporator 20 is partially branched and flows into the branched fluid inflow pipe 15 as the first low temperature fluid FL1, and the remaining high temperature fluid FH flows into the heat source pipe 22. do. The high-temperature fluid FH that has flowed into the heat source tube 22 is deprived of heat by the refrigerant liquid Vf, the temperature drops, flows out of the evaporator 20, flows through the high-temperature fluid connecting tube 25, and then flows into the heat source tube 32 of the regenerator 30. Then, in the regenerator 30, heat is taken by the dilute solution Sw, the temperature drops, and the regenerator 30 flows out. The high-temperature fluid FH flowing out of the regenerator 30 flows through the high-temperature fluid discharge pipe 39, exchanges heat with the second low-temperature fluid FL2 in the heat exchange unit 80 to lower the temperature, and is discharged from the absorption-type heat exchange system 3. To. On the other hand, the first low-temperature fluid FL1 (a part of the branched high-temperature fluid FH) that has flowed from the high-temperature fluid introduction pipe 24 into the branched fluid inflow pipe 15 flows into the heat transfer tube 12 of the absorber 10 and is concentrated in the absorber 10. Equipment that obtains the absorption heat generated when the solution Sa absorbs the evaporator refrigerant vapor Ve, raises the temperature, flows out of the absorber 10, and consumes the high temperature heat through the fluid tube 17 after heating (non-existence). (Illustrated). As described above, in the absorption type heat exchange system 3, a part of the high temperature fluid FH branched from the high temperature fluid FH before being introduced into the evaporator 20 is introduced into the absorber 10 as the first low temperature fluid FL1 and thus absorbed. The temperature of the first low temperature fluid FL1 flowing out of the vessel 10 can be made higher than the temperature of the high temperature fluid FH before being introduced into the evaporator 20.

次に図5を参照して、本発明の第4の実施の形態に係る吸収式熱交換システム4を説明する。図5は、吸収式熱交換システム4の模式的系統図である。吸収式熱交換システム4は、主として以下の点で吸収式熱交換システム1(図1参照)と異なっている。吸収式熱交換システム4は、吸収式熱交換システム1(図1参照)の構成に加えて、冷媒熱交換器99を備えている。冷媒熱交換器99は、凝縮器40から蒸発器20に向かう冷媒液Vfと、熱交換部80から流出した高温流体FHとの間で熱交換を行わせる機器である。冷媒熱交換器99は、冷媒ポンプ46よりも下流側の冷媒液管45及び熱交換部80よりも下流側の高温流体排出管39に配設されている。冷媒熱交換器99には、シェルアンドチューブ型やプレート型の熱交換器が用いられる。吸収式熱交換システム3の上記以外の構成は、吸収式熱交換システム1(図1参照)と同様である。 Next, with reference to FIG. 5, the absorption heat exchange system 4 according to the fourth embodiment of the present invention will be described. FIG. 5 is a schematic system diagram of the absorption heat exchange system 4. The absorption heat exchange system 4 differs from the absorption heat exchange system 1 (see FIG. 1) mainly in the following points. The absorption heat exchange system 4 includes a refrigerant heat exchanger 99 in addition to the configuration of the absorption heat exchange system 1 (see FIG. 1). The refrigerant heat exchanger 99 is a device that exchanges heat between the refrigerant liquid Vf heading from the condenser 40 to the evaporator 20 and the high-temperature fluid FH flowing out of the heat exchange unit 80. The refrigerant heat exchanger 99 is arranged in the refrigerant liquid pipe 45 on the downstream side of the refrigerant pump 46 and the high temperature fluid discharge pipe 39 on the downstream side of the heat exchange unit 80. As the refrigerant heat exchanger 99, a shell-and-tube type or plate type heat exchanger is used. The configuration of the absorption heat exchange system 3 other than the above is the same as that of the absorption heat exchange system 1 (see FIG. 1).

上述のように構成された吸収式熱交換システム4の作用は以下の通りである。吸収器10、蒸発器20、再生器30、凝縮器40における吸収液Sと冷媒Vとの吸収ヒートポンプサイクルは、凝縮器40から蒸発器20に向かう冷媒液Vfの温度変化を除き、吸収式熱交換システム1(図1参照)と同様に作用する。高温流体FHの流路及び温度変化は、熱交換部80から流出するまでは、吸収式熱交換システム1(図1参照)と同様に作用する。第1低温流体FL1及び第2低温流体FL2の流路及び温度変化は、吸収式熱交換システム1(図1参照)と同様に作用する。そして、冷媒熱交換器99を備える吸収式熱交換システム4においては、凝縮器40から蒸発器20に向かう冷媒液Vfと、熱交換部80から流出した高温流体FHとの間で熱交換が行われ、冷媒液Vfの温度が上昇し、高温流体FHの温度が低下する。冷媒熱交換器99から流出した冷媒液Vfは、温度が上昇して蒸発器20に流入するので、蒸発器20において蒸発するのに必要な熱量を抑制することができ、これに伴って温度低下が抑制された高温流体FHが保有する熱量を熱交換部80における熱交換に利用することができて、熱交換部80から流出する第2低温流体FL2の温度を上昇させることができる。他方、冷媒熱交換器99から流出した高温流体FHは、温度が低下して吸収式熱交換システム4から排出されることとなり、吸収式熱交換システム4における高温流体FHの回収熱量を増やすことができる。なお、冷媒熱交換器99は、吸収式熱交換システム1A(図2参照)、吸収式熱交換システム2(図3参照)、吸収式熱交換システム3(図4参照)のそれぞれに設置することもできる。 The operation of the absorption heat exchange system 4 configured as described above is as follows. The absorption heat pump cycle between the absorber S and the refrigerant V in the absorber 10, the evaporator 20, the regenerator 30, and the condenser 40 excludes the temperature change of the refrigerant liquid Vf from the condenser 40 to the evaporator 20. It operates in the same manner as the exchange system 1 (see FIG. 1). The flow path and temperature change of the high temperature fluid FH operate in the same manner as the absorption heat exchange system 1 (see FIG. 1) until they flow out from the heat exchange unit 80. The flow path and temperature change of the first low temperature fluid FL1 and the second low temperature fluid FL2 operate in the same manner as in the absorption heat exchange system 1 (see FIG. 1). Then, in the absorption type heat exchange system 4 provided with the refrigerant heat exchanger 99, heat is exchanged between the refrigerant liquid Vf heading from the condenser 40 to the evaporator 20 and the high temperature fluid FH flowing out from the heat exchange unit 80. As a result, the temperature of the refrigerant liquid Vf rises, and the temperature of the high-temperature fluid FH decreases. Since the temperature of the refrigerant liquid Vf flowing out of the refrigerant heat exchanger 99 rises and flows into the evaporator 20, the amount of heat required for evaporation in the evaporator 20 can be suppressed, and the temperature drops accordingly. The amount of heat possessed by the high-temperature fluid FH in which the heat is suppressed can be used for heat exchange in the heat exchange unit 80, and the temperature of the second low-temperature fluid FL2 flowing out of the heat exchange unit 80 can be raised. On the other hand, the temperature of the high-temperature fluid FH flowing out of the refrigerant heat exchanger 99 drops and is discharged from the absorption-type heat exchange system 4, so that the amount of heat recovered by the high-temperature fluid FH in the absorption-type heat exchange system 4 can be increased. can. The refrigerant heat exchanger 99 shall be installed in each of the absorption type heat exchange system 1A (see FIG. 2), the absorption type heat exchange system 2 (see FIG. 3), and the absorption type heat exchange system 3 (see FIG. 4). You can also.

次に図6を参照して、本発明の第5の実施の形態に係る吸収式熱交換システム5を説明する。図6は、吸収式熱交換システム5の模式的系統図である。吸収式熱交換システム5は、主として以下の点で吸収式熱交換システム1(図1参照)と異なっている。吸収式熱交換システム5は、熱交換部80(図1参照)が設けられておらず、中温熱消費設備64が設けられている。中温熱消費設備64は、第2低温流体FL2が保有する熱によって、加熱を必要とする物質を加熱する設備であり、典型的には暖房設備が挙げられる。中温熱消費設備64が暖房設備の場合、暖房対象空間の加熱に用いられる温水又は空気が、加熱を必要とする物質に該当する。中温熱消費設備64には、それぞれの一端が凝縮器40の伝熱管42に接続された第2低温流入管48及び第2低温排出管49それぞれの他端が接続されている。なお、中温熱消費設備64から流出した第2低温流体FL2を、伝熱管42に流入させる前に冷却する冷却塔CTを設けてもよい。ここで、冷却塔CTは、熱の放出先である大気が加熱を必要とする訳ではないので、中温熱消費設備64には該当しない。冷却塔CTが設けられる場合、典型的には、冷却塔CTはバイパス管48Bに配設され、バイパス管48Bの両端は間隔をあけて第2低温流入管48に接続され、バイパス管48Bの両端の間の第2低温流入管48には開閉弁48vが設けられ、開閉弁48vの開閉によって第2低温流体FL2が冷却塔CTを通過しないのと通過するのとを切り替えることができるように構成される。さらに、バイパス管48Bにバイパス開閉弁48Bvを設けて、開閉弁48vとバイパス開閉弁48Bvとの開度を各々所定の開度に調節することによって、第2低温流体FL2の一部が冷却塔CTを通過できるように構成してもよい。また、第1低温流体FL1の系統について、典型的には、分離蒸気Fvを高温熱消費設備HFに供給できるように分離蒸気管19の端部と高温熱消費設備HFとが蒸気供給管78で接続され、高温熱消費設備HFから流出した液体を補給液体Fsとして分離液管18に流入させることができるように高温熱消費設備HFと補導入管18sの端部とが戻り液管77で接続される。なお、高温熱消費設備HFに供給されるのが、分離蒸気Fvに代えて液体の第1低温流体FL1でもよく、この場合は吸収式熱交換システム1A(図2参照)に倣って気液分離器16まわりの構成を省略することができる。吸収式熱交換システム5の上記以外の構成は、吸収式熱交換システム1(図1参照)と同様である。 Next, with reference to FIG. 6, the absorption heat exchange system 5 according to the fifth embodiment of the present invention will be described. FIG. 6 is a schematic system diagram of the absorption heat exchange system 5. The absorption heat exchange system 5 differs from the absorption heat exchange system 1 (see FIG. 1) mainly in the following points. The absorption heat exchange system 5 is not provided with a heat exchange unit 80 (see FIG. 1), but is provided with a medium temperature heat consumption facility 64. The medium-temperature heat consumption facility 64 is a facility that heats a substance that requires heating by the heat possessed by the second low-temperature fluid FL2, and typically includes a heating facility. When the medium temperature heat consumption facility 64 is a heating facility, the hot water or air used for heating the heating target space corresponds to a substance that requires heating. The middle temperature heat consuming equipment 64 is connected to the other ends of the second low temperature inflow pipe 48 and the second low temperature discharge pipe 49, one of which is connected to the heat transfer tube 42 of the condenser 40. A cooling tower CT may be provided to cool the second low-temperature fluid FL2 flowing out of the medium-temperature heat consumption facility 64 before flowing it into the heat transfer tube 42. Here, the cooling tower CT does not correspond to the medium-temperature heat consumption facility 64 because the atmosphere to which the heat is released does not require heating. When the cooling tower CT is provided, typically, the cooling tower CT is arranged in the bypass pipe 48B, both ends of the bypass pipe 48B are connected to the second low temperature inflow pipe 48 at intervals, and both ends of the bypass pipe 48B are provided. An on-off valve 48v is provided in the second low-temperature inflow pipe 48 between the two, and the opening and closing of the on-off valve 48v is configured so that the second low-temperature fluid FL2 can be switched between not passing through the cooling tower CT and passing through the cooling tower CT. Will be done. Further, by providing a bypass on-off valve 48Bv on the bypass pipe 48B and adjusting the opening degree of the on-off valve 48v and the bypass on-off valve 48Bv to a predetermined opening degree, a part of the second low-temperature fluid FL2 is a cooling tower CT. It may be configured to be able to pass through. Further, regarding the system of the first low temperature fluid FL1, typically, the end of the separation steam pipe 19 and the high temperature heat consumption equipment HF are connected to the steam supply pipe 78 so that the separation steam Fv can be supplied to the high temperature heat consumption equipment HF. The high temperature heat consuming equipment HF and the end of the auxiliary introduction pipe 18s are connected by a return liquid pipe 77 so that the liquid that is connected and flows out from the high temperature heat consuming equipment HF can flow into the separation liquid pipe 18 as the replenishing liquid Fs. To. The liquid first low-temperature fluid FL1 may be supplied to the high-temperature heat consumption facility HF instead of the separation steam Fv. In this case, gas-liquid separation is performed following the absorption heat exchange system 1A (see FIG. 2). The configuration around the vessel 16 can be omitted. The configuration of the absorption heat exchange system 5 other than the above is the same as that of the absorption heat exchange system 1 (see FIG. 1).

上述のように構成された吸収式熱交換システム5では、吸収器10、蒸発器20、再生器30、凝縮器40における吸収液Sと冷媒Vとの吸収ヒートポンプサイクルは、吸収式熱交換システム1(図1参照)と同様に作用する。また、第1低温流体FL1の流路及び温度変化も、吸収式熱交換システム1(図1参照)と同様に作用する。高温流体FHは、再生器30の熱源管32から流出するまでは流路及び温度変化が吸収式熱交換システム1(図1参照)と同様に作用し、熱源管32から流出すると吸収式熱交換システム5の外に排出される。第2低温流体FL2は、凝縮器40の伝熱管42では、吸収式熱交換システム1(図1参照)と同様に昇温する。伝熱管42から流出した第2低温流体FL2は、第2低温排出管49を介して中温熱消費設備64に供給され、中温熱消費設備64で熱が利用されて温度が低下し、第2低温流入管48を介して再び伝熱管42に流入する。ここで、第2低温流入管48を流れる第2低温流体FL2が冷却塔CTを通るのは、典型的には、吸収ヒートポンプサイクルにおいて凝縮器40の伝熱管42へ流入する流体に許容される温度の上限値より高い温度の第2低温流体FL2(説明の便宜上、以降これを「高温第2低温流体FL2h」という。)が、中温熱消費設備64から流出する場合である。高温第2低温流体FL2hが冷却塔CTを通る場合、高温第2低温流体FL2hの全量がバイパス管48Bを経由して冷却塔CTに導入されて冷却された後に、高温第2低温流体FL2hは吸収ヒートポンプサイクルに対して適正な温度に減温された後に伝熱管42に導入される。又は、高温第2低温流体FL2hの一部がバイパス管48Bを経由して冷却塔CTに導入されて冷却され、バイパス管48Bを経由しなかった高温第2低温流体FL2hと合流した後に、高温第2低温流体FL2hは吸収ヒートポンプサイクルに対して適正な温度に減温されて伝熱管42に導入される。他方、中温熱消費設備64から流出する第2低温流体FL2の温度が、吸収ヒートポンプサイクルが許容する温度範囲内にある場合には、第2低温流体FL2は冷却塔CTを経由せずに伝熱管42に流入する。このように、吸収式熱交換システム5では、吸収式熱交換システム1(図1参照)で設けられているような熱交換部80を省略した比較的簡便な構成で、温度が異なる2つの流体を、中温熱消費設備64と例えば高温熱消費設備HFとに供給することができる。 In the absorption heat exchange system 5 configured as described above, the absorption heat pump cycle between the absorption liquid S and the refrigerant V in the absorber 10, the evaporator 20, the regenerator 30, and the condenser 40 is the absorption heat exchange system 1. It works in the same manner as (see FIG. 1). Further, the flow path and the temperature change of the first low temperature fluid FL1 also operate in the same manner as in the absorption type heat exchange system 1 (see FIG. 1). In the high temperature fluid FH, the flow path and temperature change act in the same manner as the absorption heat exchange system 1 (see FIG. 1) until it flows out from the heat source tube 32 of the regenerator 30, and when it flows out from the heat source tube 32, the absorption heat exchange occurs. It is discharged to the outside of the system 5. The temperature of the second low-temperature fluid FL2 is raised in the heat transfer tube 42 of the condenser 40 in the same manner as in the absorption heat exchange system 1 (see FIG. 1). The second low-temperature fluid FL2 flowing out of the heat transfer tube 42 is supplied to the medium-temperature heat consumption facility 64 via the second low-temperature discharge pipe 49, and the heat is used in the medium-temperature heat consumption facility 64 to lower the temperature, resulting in a second low temperature. It flows into the heat transfer tube 42 again through the inflow tube 48. Here, the temperature at which the second low temperature fluid FL2 flowing through the second low temperature inflow pipe 48 passes through the cooling tower CT is typically the temperature allowed for the fluid flowing into the heat transfer tube 42 of the condenser 40 in the absorption heat pump cycle. This is a case where the second low temperature fluid FL2 having a temperature higher than the upper limit of the above value (for convenience of explanation, hereinafter referred to as “high temperature second low temperature fluid FL2h”) flows out from the medium temperature heat consumption facility 64. When the high temperature second low temperature fluid FL2h passes through the cooling tower CT, the high temperature second low temperature fluid FL2h is absorbed after the entire amount of the high temperature second low temperature fluid FL2h is introduced into the cooling tower CT via the bypass pipe 48B and cooled. It is introduced into the heat transfer tube 42 after the temperature has been reduced to an appropriate temperature for the heat pump cycle. Alternatively, a part of the high-temperature second low-temperature fluid FL2h is introduced into the cooling tower CT via the bypass pipe 48B and cooled, and after merging with the high-temperature second low-temperature fluid FL2h that did not pass through the bypass pipe 48B, the high-temperature second low-temperature fluid FL2h is used. 2 The low temperature fluid FL2h is cooled to an appropriate temperature for the absorption heat pump cycle and introduced into the heat transfer tube 42. On the other hand, when the temperature of the second low temperature fluid FL2 flowing out from the medium temperature heat consumption facility 64 is within the temperature range allowed by the absorption heat pump cycle, the second low temperature fluid FL2 does not pass through the cooling tower CT but is a heat transfer tube. It flows into 42. As described above, the absorption heat exchange system 5 has a relatively simple configuration in which the heat exchange unit 80 as provided in the absorption heat exchange system 1 (see FIG. 1) is omitted, and two fluids having different temperatures are used. Can be supplied to the medium temperature heat consumption facility 64 and, for example, the high temperature heat consumption facility HF.

なお、図6に示す吸収式熱交換システム5が備える、加熱を必要とする物質を加熱する設備である中温熱消費設備64、バイパス管48B、冷却塔CT、開閉弁48v、バイパス開閉弁48Bvを、吸収式熱交換システム1(図1参照)、1A(図2参照)、2(図3参照)、3(図4参照)、4(図5参照)のそれぞれに設けて、これら(吸収式熱交換システム1(図1参照)乃至4(図5参照))を、温度が異なる2つの流体が中温熱消費設備64と高温熱消費設備HFとに供給されるように構成してもよい。このようにすると、加熱を必要とする物質を加熱する設備である中温熱消費設備64に、吸収式熱交換システム5の場合より温度が高い第2低温流体FL2を供給することができる。 The medium temperature heat consumption facility 64, the bypass pipe 48B, the cooling tower CT, the on-off valve 48v, and the bypass on-off valve 48Bv, which are the facilities for heating the substance requiring heating, provided in the absorption heat exchange system 5 shown in FIG. , Absorption heat exchange system 1 (see FIG. 1), 1A (see FIG. 2), 2 (see FIG. 3), 3 (see FIG. 4), and 4 (see FIG. 5). The heat exchange systems 1 (see FIG. 1) to 4 (see FIG. 5) may be configured such that two fluids having different temperatures are supplied to the medium temperature heat consumption facility 64 and the high temperature heat consumption facility HF. In this way, the second low-temperature fluid FL2, which has a higher temperature than that of the absorption heat exchange system 5, can be supplied to the medium-temperature heat consumption facility 64, which is a facility for heating a substance that requires heating.

以上の説明では、蒸発器20が満液式であるとしたが、流下液膜式であってもよい。蒸発器を流下液膜式とする場合は、蒸発器缶胴21内の上部に冷媒液Vfを供給する冷媒液供給装置を設け、満液式の場合に蒸発器缶胴21に接続することとしていた冷媒液管45の端部を、冷媒液供給装置に接続すればよい。また、蒸発器缶胴21の下部の冷媒液Vfを冷媒液供給装置に供給する配管及びポンプを設けてもよい。 In the above description, it is assumed that the evaporator 20 is a full liquid type, but it may be a flowing liquid film type. When the evaporator is of the flowing liquid film type, a refrigerant liquid supply device for supplying the refrigerant liquid Vf is provided in the upper part of the evaporator can body 21, and in the case of the full liquid type, it is connected to the evaporator can body 21. The end of the refrigerant liquid pipe 45 may be connected to the refrigerant liquid supply device. Further, a pipe and a pump for supplying the refrigerant liquid Vf at the lower part of the evaporator can body 21 to the refrigerant liquid supply device may be provided.

以上の説明では、高温流体FHが、蒸発器20から再生器30に直列に流れることとしたが、再生器30から蒸発器20に直列に流れることとしてもよく、蒸発器20と再生器30とに並列に流れることとしてもよい。高温流体FHが、蒸発器20から再生器30に直列に流れることとすると吸収液Sが結晶する確率をより低減することができ、再生器30から蒸発器20に直列に流れることとするとCOPを向上させることができ、蒸発器20と再生器30とに並列に流れることとすると高温流体FHとして液体のみならず蒸気がより使いやすくなる。 In the above description, it is assumed that the high temperature fluid FH flows from the evaporator 20 to the regenerator 30 in series, but it may also flow from the regenerator 30 to the evaporator 20 in series, and the evaporator 20 and the regenerator 30 It may flow in parallel with. If the high temperature fluid FH flows from the evaporator 20 to the regenerator 30 in series, the probability that the absorbent liquid S will crystallize can be further reduced, and if it flows from the regenerator 30 to the evaporator 20 in series, the COP is generated. It can be improved, and if it flows in parallel with the evaporator 20 and the regenerator 30, not only the liquid but also the steam becomes easier to use as the high temperature fluid FH.

1 吸収式熱交換システム
10 吸収器
16 気液分離器
20 蒸発器
30 再生器
40 凝縮器
64 中温熱消費設備
80 熱交換部
99 冷媒熱交換器
FL1 第1低温流体
FL2 第2低温流体
FH 高温流体
FHs 部分高温流体
Sa 濃溶液
Sw 希溶液
Ve 蒸発器冷媒蒸気
Vf 冷媒液
Vg 再生器冷媒蒸気
1 Absorption-type heat exchange system 10 Absorber 16 Gas-liquid separator 20 Evaporator 30 Regenerator 40 Condenser 64 Medium-temperature heat consumption equipment 80 Heat exchanger 99 Refrigerator heat exchanger FL1 First low-temperature fluid FL2 Second low-temperature fluid FH High-temperature fluid FHs Partial high temperature fluid Sa Concentrated solution Sw Rare solution Ve Evaporator refrigerant steam Vf Refrigerator liquid Vg Regenerator refrigerant steam

Claims (7)

吸収液が冷媒の蒸気を吸収して濃度が低下した希溶液となる際に放出した吸収熱によって第1の被加熱流体の温度を上昇させる吸収部と;
冷媒の蒸気が凝縮して冷媒液となる際に放出した凝縮熱によって第2の被加熱流体の温度を上昇させる凝縮部と;
前記凝縮部から前記冷媒液を導入し、導入した前記冷媒液が蒸発して前記吸収部に供給される前記冷媒の蒸気となる際に必要な蒸発潜熱を加熱源流体から奪うことで前記加熱源流体の温度を低下させる蒸発部と;
前記吸収部から前記希溶液を導入し、導入した前記希溶液を加熱し前記希溶液から冷媒を離脱させて濃度が上昇した濃溶液とするのに必要な熱を加熱源流体から奪うことで前記加熱源流体の温度を低下させる再生部と;
前記凝縮部において温度が上昇した後の前記第2の被加熱流体と、前記凝縮部において温度が上昇した後の前記第2の被加熱流体の温度を上昇させる昇温流体と、の間で熱交換を行わせる熱交換部とを備え;
前記吸収液と前記冷媒との吸収ヒートポンプサイクルによって、前記吸収部は前記再生部よりも内部の圧力及び温度が高くなり、前記蒸発部は前記凝縮部よりも内部の圧力及び温度が高くなるように構成され;
前記熱交換部は、前記蒸発部において温度が低下した後の前記加熱源流体及び前記再生部において温度が低下した後の前記加熱源流体の少なくとも一方を前記昇温流体として導入するように構成された;
吸収式熱交換システム。
With an absorption part that raises the temperature of the first fluid to be heated by the absorption heat released when the absorption liquid absorbs the vapor of the refrigerant and becomes a dilute solution with a reduced concentration;
With a condensing part that raises the temperature of the second heated fluid by the heat of condensation released when the vapor of the refrigerant condenses into a refrigerant liquid;
The refrigerant liquid is introduced from the condensed portion, and the latent heat of evaporation required when the introduced refrigerant liquid evaporates to become the vapor of the refrigerant supplied to the absorption portion is taken from the heating source fluid to the heating source. With an evaporative part that lowers the temperature of the fluid;
The dilute solution is introduced from the absorbing portion, and the introduced dilute solution is heated to remove the refrigerant from the dilute solution to obtain a concentrated solution having an increased concentration, thereby removing the heat required for producing the concentrated solution from the heating source fluid. With a regenerator that lowers the temperature of the heating source fluid;
Heat between the second heated fluid after the temperature rises in the condensing portion and the heating fluid that raises the temperature of the second heated fluid after the temperature rises in the condensing portion. Equipped with a heat exchange unit for replacement;
Due to the absorption heat pump cycle of the absorbing liquid and the refrigerant, the internal pressure and temperature of the absorbing portion are higher than those of the regenerating portion, and the internal pressure and temperature of the evaporating portion are higher than those of the condensed portion. Consists of;
The heat exchange section is configured to introduce at least one of the heating source fluid after the temperature has dropped in the evaporation section and the heating source fluid after the temperature has dropped in the regeneration section as the heating fluid. rice field;
Absorption heat exchange system.
前記熱交換部は、前記蒸発部及び前記再生部に導入される前の前記加熱源流体から分岐された一部の前記加熱源流体を前記昇温流体として導入するように構成された;
請求項1に記載の吸収式熱交換システム。
The heat exchange unit is configured to introduce a part of the heat source fluid branched from the heat source fluid before being introduced into the evaporation unit and the regeneration unit as the temperature rising fluid;
The absorption heat exchange system according to claim 1.
前記熱交換部から流出した前記第2の被加熱流体の温度が所定の温度になるように、前記蒸発部及び再生部に流入する前記加熱源流体の流量と前記熱交換部に流入する前記加熱源流体の流量との比が設定された;
請求項2に記載の吸収式熱交換システム。
The flow rate of the heating source fluid flowing into the evaporation section and the regeneration section and the heating flowing into the heat exchange section so that the temperature of the second heated fluid flowing out of the heat exchange section becomes a predetermined temperature. The ratio to the flow rate of the source fluid was set;
The absorption heat exchange system according to claim 2 .
前記蒸発部及び前記再生部に導入される前の前記加熱源流体から分岐された一部の前記加熱源流体を前記第1の被加熱流体として前記吸収部に導入するように構成された;
請求項1乃至請求項のいずれか1項に記載の吸収式熱交換システム。
A part of the heating source fluid branched from the heating source fluid before being introduced into the evaporation section and the regeneration section was configured to be introduced into the absorption section as the first heated fluid;
The absorption heat exchange system according to any one of claims 1 to 3 .
前記凝縮部から前記蒸発部に搬送される前記冷媒液と、前記熱交換部から流出した前記昇温流体と、の間で熱交換を行わせる冷媒熱交換器を備える;
請求項1乃至請求項のいずれか1項に記載の吸収式熱交換システム。
A refrigerant heat exchanger that exchanges heat between the refrigerant liquid conveyed from the condensing unit to the evaporating unit and the heating fluid flowing out of the heat exchange unit is provided;
The absorption heat exchange system according to any one of claims 1 to 4 .
吸収液が冷媒の蒸気を吸収して濃度が低下した希溶液となる際に放出した吸収熱によって第1の被加熱流体の温度を上昇させる吸収部と;
冷媒の蒸気が凝縮して冷媒液となる際に放出した凝縮熱によって第2の被加熱流体の温度を上昇させる凝縮部と;
前記凝縮部から前記冷媒液を導入し、導入した前記冷媒液が蒸発して前記吸収部に供給される前記冷媒の蒸気となる際に必要な蒸発潜熱を加熱源流体から奪うことで前記加熱源流体の温度を低下させる蒸発部と;
前記吸収部から前記希溶液を導入し、導入した前記希溶液を加熱し前記希溶液から冷媒を離脱させて濃度が上昇した濃溶液とするのに必要な熱を加熱源流体から奪うことで前記加熱源流体の温度を低下させる再生部と;
前記凝縮部において温度が上昇した後の前記第2の被加熱流体と、前記凝縮部において温度が上昇した後の前記第2の被加熱流体の温度を上昇させる昇温流体と、の間で熱交換を行わせる熱交換部とを備え;
前記吸収液と前記冷媒との吸収ヒートポンプサイクルによって、前記吸収部は前記再生部よりも内部の圧力及び温度が高くなり、前記蒸発部は前記凝縮部よりも内部の圧力及び温度が高くなるように構成され;
前記凝縮部から前記蒸発部に搬送される前記冷媒液と、前記熱交換部から流出した前記昇温流体と、の間で熱交換を行わせる冷媒熱交換器を備える;
吸収式熱交換システム。
With an absorption part that raises the temperature of the first fluid to be heated by the absorption heat released when the absorption liquid absorbs the vapor of the refrigerant and becomes a dilute solution with a reduced concentration;
With a condensing part that raises the temperature of the second heated fluid by the heat of condensation released when the vapor of the refrigerant condenses into a refrigerant liquid;
The refrigerant liquid is introduced from the condensed portion, and the latent heat of evaporation required when the introduced refrigerant liquid evaporates to become the vapor of the refrigerant supplied to the absorption portion is taken from the heating source fluid to the heating source. With an evaporative part that lowers the temperature of the fluid;
The dilute solution is introduced from the absorbing portion, and the introduced dilute solution is heated to remove the refrigerant from the dilute solution to obtain a concentrated solution having an increased concentration, thereby removing the heat required for producing the concentrated solution from the heating source fluid. With a regenerator that lowers the temperature of the heating source fluid;
Heat between the second heated fluid after the temperature rises in the condensing portion and the heating fluid that raises the temperature of the second heated fluid after the temperature rises in the condensing portion. Equipped with a heat exchange unit for replacement;
Due to the absorption heat pump cycle of the absorbing liquid and the refrigerant, the internal pressure and temperature of the absorbing portion are higher than those of the regenerating portion, and the internal pressure and temperature of the evaporating portion are higher than those of the condensed portion. Consists of;
A refrigerant heat exchanger that exchanges heat between the refrigerant liquid conveyed from the condensing unit to the evaporating unit and the heating fluid flowing out of the heat exchange unit is provided;
Absorption heat exchange system.
前記吸収部で加熱された前記第1の被加熱流体を導入して前記第1の被加熱流体の液体と蒸気とに分離する気液分離器を備える;
請求項1乃至請求項のいずれか1項に記載の吸収式熱交換システム。
It is provided with a gas-liquid separator that introduces the first heated fluid heated by the absorbing portion and separates the liquid and the vapor of the first heated fluid;
The absorption heat exchange system according to any one of claims 1 to 6 .
JP2017201151A 2017-10-17 2017-10-17 Absorption heat exchange system Active JP7015671B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2017201151A JP7015671B2 (en) 2017-10-17 2017-10-17 Absorption heat exchange system
CN201821567487.1U CN209263411U (en) 2017-10-17 2018-09-25 Absorption type heat exchange system
CN201811113922.8A CN109668351A (en) 2017-10-17 2018-09-25 Absorption type heat exchange system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017201151A JP7015671B2 (en) 2017-10-17 2017-10-17 Absorption heat exchange system

Publications (2)

Publication Number Publication Date
JP2019074271A JP2019074271A (en) 2019-05-16
JP7015671B2 true JP7015671B2 (en) 2022-02-03

Family

ID=66142396

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017201151A Active JP7015671B2 (en) 2017-10-17 2017-10-17 Absorption heat exchange system

Country Status (2)

Country Link
JP (1) JP7015671B2 (en)
CN (2) CN109668351A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7015671B2 (en) * 2017-10-17 2022-02-03 荏原冷熱システム株式会社 Absorption heat exchange system
CN114322354B (en) * 2021-12-20 2023-07-28 安徽普泛能源技术有限公司 Absorption type circulating refrigeration system and process thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006207883A (en) 2005-01-26 2006-08-10 Ebara Corp Absorption heat pump
JP2007309555A (en) 2006-05-17 2007-11-29 Hitachi Appliances Inc Absorption-type heat pump
JP2008202853A (en) 2007-02-20 2008-09-04 Osaka Gas Co Ltd Absorption type heat pump system
JP2015183967A (en) 2014-03-25 2015-10-22 荏原冷熱システム株式会社 absorption heat pump
CN107144042A (en) 2017-06-30 2017-09-08 荏原冷热系统(中国)有限公司 A kind of second-kind absorption-type heat pump

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000081253A (en) * 1998-09-04 2000-03-21 Ebara Corp Absorptive freezer
CN201218628Y (en) * 2008-05-19 2009-04-08 张茂勇 Cold-hot bidirectional and simultaneous utilizing dual- effect type third-kind absorption heat pump
JP5086947B2 (en) * 2008-09-08 2012-11-28 大阪瓦斯株式会社 Type 2 absorption heat pump system
CN105987538B (en) * 2016-04-14 2019-03-08 中国科学院工程热物理研究所 The composite absorption heat pump of middle temperature-heat-source driving dual temperature heat output
JP7015671B2 (en) * 2017-10-17 2022-02-03 荏原冷熱システム株式会社 Absorption heat exchange system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006207883A (en) 2005-01-26 2006-08-10 Ebara Corp Absorption heat pump
JP2007309555A (en) 2006-05-17 2007-11-29 Hitachi Appliances Inc Absorption-type heat pump
JP2008202853A (en) 2007-02-20 2008-09-04 Osaka Gas Co Ltd Absorption type heat pump system
JP2015183967A (en) 2014-03-25 2015-10-22 荏原冷熱システム株式会社 absorption heat pump
CN107144042A (en) 2017-06-30 2017-09-08 荏原冷热系统(中国)有限公司 A kind of second-kind absorption-type heat pump

Also Published As

Publication number Publication date
JP2019074271A (en) 2019-05-16
CN109668351A (en) 2019-04-23
CN209263411U (en) 2019-08-16

Similar Documents

Publication Publication Date Title
JP3883838B2 (en) Absorption refrigerator
KR101710072B1 (en) Triple effect absorption chiller using heat source
JP7015671B2 (en) Absorption heat exchange system
KR101702952B1 (en) Triple effect absorption chiller
JP2006177570A (en) Absorption heat pump
JP6896968B2 (en) Absorption heat exchange system
KR101060776B1 (en) Absorption Chiller
CN108180670B (en) Absorption heat exchange system
JP2012202589A (en) Absorption heat pump apparatus
JP6903852B2 (en) Absorption heat exchange system
CN107388617A (en) Fume hot-water compound type lithium bromide absorption type refrigeration unit
EP2212629A1 (en) Non-vacuum absorption refrigeration
CN209801851U (en) Absorption heat exchange system
JP6907438B2 (en) Absorption heat exchange system
JP6364238B2 (en) Absorption type water heater
CN107477907A (en) Fume hot-water compound type lithium bromide absorption type handpiece Water Chilling Units
KR20200120186A (en) Absorption type chiller-heater
JPS5812507B2 (en) Hybrid type absorption heat pump
CN107504710A (en) Fume hot-water single-double effect compound type lithium bromide absorption type handpiece Water Chilling Units
JPH0445363A (en) Absorption refrigerating and heating hot water supply machine
KR100496444B1 (en) absorption chiller
CN105546868B (en) The regenerative apparatus of absorption installation
CN107477906A (en) Fume hot-water single-double effect compound type lithium bromide absorption type refrigeration unit
JP3486382B2 (en) Absorption refrigerator
CN111023624A (en) Absorption heat exchange system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200803

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20200803

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210422

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210518

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210707

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211109

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211216

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220104

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220124