JP2019074271A - Absorption type heat exchange system - Google Patents

Absorption type heat exchange system Download PDF

Info

Publication number
JP2019074271A
JP2019074271A JP2017201151A JP2017201151A JP2019074271A JP 2019074271 A JP2019074271 A JP 2019074271A JP 2017201151 A JP2017201151 A JP 2017201151A JP 2017201151 A JP2017201151 A JP 2017201151A JP 2019074271 A JP2019074271 A JP 2019074271A
Authority
JP
Japan
Prior art keywords
fluid
heat
absorption
heat exchange
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017201151A
Other languages
Japanese (ja)
Other versions
JP7015671B2 (en
Inventor
與四郎 竹村
Yoshiro Takemura
與四郎 竹村
青山 淳
Atsushi Aoyama
淳 青山
甲介 平田
Kosuke Hirata
甲介 平田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Refrigeration Equipment and Systems Co Ltd
Original Assignee
Ebara Refrigeration Equipment and Systems Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Refrigeration Equipment and Systems Co Ltd filed Critical Ebara Refrigeration Equipment and Systems Co Ltd
Priority to JP2017201151A priority Critical patent/JP7015671B2/en
Priority to CN201821567487.1U priority patent/CN209263411U/en
Priority to CN201811113922.8A priority patent/CN109668351A/en
Publication of JP2019074271A publication Critical patent/JP2019074271A/en
Application granted granted Critical
Publication of JP7015671B2 publication Critical patent/JP7015671B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B30/00Heat pumps
    • F25B30/06Heat pumps characterised by the source of low potential heat
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B30/00Heat pumps
    • F25B30/04Heat pumps of the sorption type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B33/00Boilers; Analysers; Rectifiers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B37/00Absorbers; Adsorbers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B39/00Evaporators; Condensers
    • F25B39/02Evaporators
    • F25B39/026Evaporators specially adapted for sorption type systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B39/00Evaporators; Condensers
    • F25B39/04Condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/20Disposition of valves, e.g. of on-off valves or flow control valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B43/00Arrangements for separating or purifying gases or liquids; Arrangements for vaporising the residuum of liquid refrigerant, e.g. by heat
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D2021/0019Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for
    • F28D2021/0068Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for for refrigerant cycles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/62Absorption based systems

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Sorption Type Refrigeration Machines (AREA)

Abstract

To provide an absorption type heat exchange system capable of taking out two types of heated fluids having different temperatures.SOLUTION: An absorption type heat exchange system 1 includes: an absorption section 10 for raising a temperature of a first heated fluid FL1 by using absorption heat; a condensation section 40 for raising a temperature of a second heated fluid FL2 by using condensation heat; an evaporation section 20 for depriving a heating source fluid FH of evaporative latent heat to lower a temperature of the heating source fluid FH; a regeneration section 30 for depriving the heating source fluid FH of heat required for converting a diluted solution Sw from the absorption section 10 into a concentrated solution Sa to lower a temperature of the heating source fluid FH; and a heat exchange section 80 for exchanging heat between the second heated fluid FL2 caused to flow out from the condensation section 40 and the temperature-raised fluid FH. An absorption heat pump cycle of the absorption solutions Sa, Sw and refrigerants Ve, Vf, Vg causes an inner pressure temperature of the absorption section 10 and the evaporation section 20 to become higher than that of the regeneration section 30 and the condensation section 40.SELECTED DRAWING: Figure 1

Description

本発明は吸収式熱交換システムに関し、特に温度が異なる2種類の被加熱流体を取り出すことができる吸収式熱交換システムに関する。   The present invention relates to an absorption heat exchange system, and more particularly to an absorption heat exchange system capable of extracting two types of heated fluids having different temperatures.

熱交換器は、高温の流体と低温の流体との間で熱を交換する装置として広く用いられている。2つの流体の間で直接熱交換が行われる熱交換器では、熱交換後に流出する低温の流体及び高温の流体の温度は、両者の交換熱量に見合った温度となる(例えば、特許文献1参照。)。   Heat exchangers are widely used as devices for exchanging heat between hot and cold fluids. In a heat exchanger in which heat exchange is performed directly between two fluids, the temperatures of the low temperature fluid and the high temperature fluid flowing out after the heat exchange become a temperature corresponding to the heat exchange between the two (for example, see Patent Document 1) ).

特許第5498809号公報(図11等参照)Patent 5498809 gazette (refer to figure 11 grade)

熱交換器の用途の1つとして、排熱を回収することが挙げられる。排熱は、使用されずに捨てられる熱であるため、回収できる熱量が多いほど熱を有効に利用することができることとなる。回収した熱を利用する側で、温度が異なる2種類の流体の需要があるとき、温度が異なる2種類の流体を取り出すことができれば、回収した熱の有効利用を図ることができる。   One of the applications of heat exchangers is to recover waste heat. Exhaust heat is heat that is discarded without being used, so the more heat that can be recovered, the more effective the heat can be used. When there is a demand for two types of fluid having different temperatures on the side of utilizing the recovered heat, if the two types of fluid having different temperatures can be taken out, the recovered heat can be effectively used.

本発明は上述の課題に鑑み、温度が異なる2種類の被加熱流体を取り出すことができる吸収式熱交換システムを提供することを目的とする。   An object of the present invention is to provide an absorption type heat exchange system which can take out two kinds of heated fluids different in temperature in view of the above-mentioned subject.

上記目的を達成するために、本発明の第1の態様に係る吸収式熱交換システムは、例えば図1に示すように、吸収液Saが冷媒の蒸気Veを吸収して濃度が低下した希溶液Swとなる際に放出した吸収熱によって第1の被加熱流体FL1の温度を上昇させる吸収部10と;冷媒の蒸気Vgが凝縮して冷媒液Vfとなる際に放出した凝縮熱によって第2の被加熱流体FL2の温度を上昇させる凝縮部40と;凝縮部40から冷媒液Vfを導入し、導入した冷媒液Vfが蒸発して吸収部10に供給される冷媒の蒸気Veとなる際に必要な蒸発潜熱を加熱源流体FHから奪うことで加熱源流体FHの温度を低下させる蒸発部20と;吸収部10から希溶液Swを導入し、導入した希溶液Swを加熱し希溶液Swから冷媒Vgを離脱させて濃度が上昇した濃溶液Saとするのに必要な熱を加熱源流体FHから奪うことで加熱源流体FHの温度を低下させる再生部30と;凝縮部40において温度が上昇した後の第2の被加熱流体FL2と、凝縮部40において温度が上昇した後の第2の被加熱流体FL2の温度を上昇させる昇温流体FHと、の間で熱交換を行わせる熱交換部80とを備え;吸収液Sa、Swと冷媒Ve、Vf、Vgとの吸収ヒートポンプサイクルによって、吸収部10は再生部30よりも内部の圧力及び温度が高くなり、蒸発部20は凝縮部40よりも内部の圧力及び温度が高くなるように構成されている。   In order to achieve the above object, in the absorption type heat exchange system according to the first aspect of the present invention, as shown, for example, in FIG. 1, the absorbing solution Sa absorbs the vapor Ve of the refrigerant to reduce the concentration thereof. Absorption unit 10 for raising the temperature of the first fluid to be heated FL1 by absorption heat released at the time of Sw; and condensation heat released when the refrigerant vapor Vg condenses to become the refrigerant liquid Vf; Necessary when the refrigerant liquid Vf is introduced from the condensation unit 40 and the condensation unit 40 which raise the temperature of the fluid to be heated FL2 and the introduced refrigerant liquid Vf evaporates and becomes the vapor Ve of the refrigerant supplied to the absorption unit 10 A dilute solution Sw is introduced from the absorbing unit 10 by reducing the temperature of the heating source fluid FH by deducting the latent heat of vaporization from the heating source fluid FH; the introduced dilute solution Sw is heated and the refrigerant from the dilute solution Sw is introduced Increase in concentration by releasing Vg A regenerating unit 30 for reducing the temperature of the heat source fluid FH by depriving the heat source fluid FH of heat necessary to form the concentrated solution Sa; and a second heated fluid after the temperature is increased in the condenser 40 And a heat exchange unit 80 for performing heat exchange between FL2 and a temperature raising fluid FH for raising the temperature of the second heated fluid FL2 after the temperature has risen in the condensation unit 40; The internal pressure and temperature of the absorption unit 10 are higher than that of the regeneration unit 30, and the internal pressure and temperature of the evaporation unit 20 are higher than that of the condensation unit 40 due to the absorption heat pump cycle of Sw and refrigerant Ve, Vf, and Vg. It is configured to be

このように構成すると、温度が異なる2種類の被加熱流体を取り出すことができる。   With this configuration, two types of heated fluids having different temperatures can be taken out.

また、本発明の第2の態様に係る吸収式熱交換システムは、例えば図1に示すように、上記本発明の第1の態様に係る吸収式熱交換システム1において、吸収部10で加熱された第1の被加熱流体FL1を導入して第1の被加熱流体FL1の液体Frと蒸気Fvとに分離する気液分離器16を備える。   The absorption heat exchange system according to the second aspect of the present invention is, for example, as shown in FIG. 1, in the absorption heat exchange system 1 according to the first aspect of the present invention, the absorption heat The gas-liquid separator 16 which introduces the first heated fluid FL1 and separates it into the liquid Fr and the vapor Fv of the first heated fluid FL1 is provided.

このように構成すると、利用価値の高い、第1の被加熱流体の蒸気を取り出すことができる。   With this configuration, it is possible to take out the vapor of the first heated fluid, which is highly useful.

また、本発明の第3の態様に係る吸収式熱交換システムは、例えば図1に示すように、上記本発明の第1の態様又は第2の態様に係る吸収式熱交換システム1において、熱交換部80は、蒸発部20において温度が低下した後の加熱源流体FH及び再生部30において温度が低下した後の加熱源流体FHの少なくとも一方を昇温流体として導入するように構成されている。   The absorption heat exchange system according to the third aspect of the present invention is, for example, as shown in FIG. 1, the heat absorption in the absorption heat exchange system 1 according to the first aspect or the second aspect of the present invention. The exchange unit 80 is configured to introduce at least one of the heat source fluid FH after the temperature is lowered in the evaporation unit 20 and the heat source fluid FH after the temperature is lowered in the regeneration unit 30 as the temperature rising fluid .

このように構成すると、吸収式熱交換システムから排出される加熱源流体からさらに熱を回収することができる。   With this configuration, heat can be further recovered from the heat source fluid discharged from the absorption heat exchange system.

また、本発明の第4の態様に係る吸収式熱交換システムは、例えば図3に示すように、上記本発明の第1の態様乃至第3の態様のいずれか1つの態様に係る吸収式熱交換システム2において、熱交換部80は、蒸発部20及び再生部30に導入される前の加熱源流体FHから分岐された一部の加熱源流体FHsを昇温流体として導入するように構成されている。   The absorption heat exchange system according to the fourth aspect of the present invention is, for example, as shown in FIG. 3, an absorption heat according to any one of the first to third aspects of the present invention. In the exchange system 2, the heat exchange unit 80 is configured to introduce a part of the heat source fluid FHs branched from the heat source fluid FH before being introduced into the evaporation unit 20 and the regeneration unit 30 as a temperature rising fluid. ing.

このように構成すると、熱交換部から流出する第2の被加熱流体の温度を高くすることができる。   According to this structure, the temperature of the second heated fluid flowing out of the heat exchange unit can be increased.

また、本発明の第5の態様に係る吸収式熱交換システムは、例えば図3を参照して示すと、上記本発明の第4の態様に係る吸収式熱交換システム2において、熱交換部80から流出した第2の被加熱流体FL2の温度が所定の温度になるように、蒸発部20及び再生部30に流入する加熱源流体FHの流量と熱交換部80に流入する加熱源流体FHsの流量との比が設定されている。   The absorption heat exchange system according to the fifth aspect of the present invention is, for example, as shown in FIG. 3, the heat exchange section 80 in the absorption heat exchange system 2 according to the fourth aspect of the present invention. The flow rate of the heat source fluid FH flowing into the evaporation unit 20 and the regeneration unit 30 and the flow rate of the heat source fluid FHs flowing into the heat exchange unit 80 so that the temperature of the second heated fluid FL2 flowing out from the The ratio to the flow rate is set.

このように構成すると、熱交換部から流出した第2の被加熱流体の温度を所定の温度に設定することができる。   With this configuration, the temperature of the second fluid to be heated that has flowed out of the heat exchange unit can be set to a predetermined temperature.

また、本発明の第6の態様に係る吸収式熱交換システムは、例えば図4に示すように、上記本発明の第1の態様乃至第5の態様のいずれか1つの態様に係る吸収式熱交換システム3において、蒸発部20及び再生部30に導入される前の加熱源流体FHから分岐された一部の加熱源流体FHを第1の被加熱流体FL1として吸収部10に導入するように構成されている。   The absorption heat exchange system according to the sixth aspect of the present invention is, for example, as shown in FIG. 4, an absorption heat according to any one of the first to fifth aspects of the present invention. In the exchange system 3, a part of the heating source fluid FH branched from the heating source fluid FH before being introduced into the evaporation unit 20 and the regeneration unit 30 is introduced into the absorbing unit 10 as the first heated fluid FL1. It is configured.

このように構成すると、第1の被加熱流体の温度を、分岐された加熱源流体の温度よりも高くすることができる。   With this configuration, the temperature of the first heated fluid can be higher than the temperature of the branched heating source fluid.

また、本発明の第7の態様に係る吸収式熱交換システムは、例えば図5に示すように、上記本発明の第1の態様乃至第6の態様のいずれか1つの態様に係る吸収式熱交換システム4において、凝縮部40から蒸発部20に搬送される冷媒液Vfと、熱交換部80から流出した昇温流体FHと、の間で熱交換を行わせる冷媒熱交換器99を備える。   The absorption heat exchange system according to the seventh aspect of the present invention is, for example, as shown in FIG. 5, an absorption heat according to any one of the first to sixth aspects of the present invention. The exchange system 4 includes a refrigerant heat exchanger 99 that performs heat exchange between the refrigerant liquid Vf conveyed from the condensation unit 40 to the evaporation unit 20 and the temperature increasing fluid FH flowing out from the heat exchange unit 80.

このように構成すると、吸収式熱交換システムから流出する昇温流体の温度を下げることができ、吸収式熱交換システムにおいて昇温流体から回収する熱量を増加させることができる。   With this configuration, the temperature of the temperature rising fluid flowing out of the absorption heat exchange system can be lowered, and the amount of heat recovered from the temperature rising fluid in the absorption heat exchange system can be increased.

上記目的を達成するために、本発明の第8の態様に係る吸収式熱交換システムは、例えば図6に示すように、吸収液Saが冷媒の蒸気Veを吸収して濃度が低下した希溶液Swとなる際に放出した吸収熱によって第1の被加熱流体FL1の温度を上昇させる吸収部10と;冷媒の蒸気Vgが凝縮して冷媒液Vfとなる際に放出した凝縮熱によって第2の被加熱流体FL2の温度を上昇させる凝縮部40と;凝縮部40から冷媒液Vfを導入し、導入した冷媒液Vfが蒸発して吸収部10に供給される冷媒の蒸気Veとなる際に必要な蒸発潜熱を加熱源流体FHから奪うことで加熱源流体FHの温度を低下させる蒸発部20と;吸収部10から希溶液Swを導入し、導入した希溶液Swを加熱し希溶液Swから冷媒を離脱させて濃度が上昇した濃溶液Saとするのに必要な熱を加熱源流体FHから奪うことで加熱源流体FHの温度を低下させる再生部30とを備え;吸収液Sa、Swと冷媒Ve、Vf、Vgとの吸収ヒートポンプサイクルによって、吸収部10は再生部30よりも内部の圧力及び温度が高くなり、蒸発部20は凝縮部40よりも内部の圧力及び温度が高くなるように構成され;さらに、凝縮部40から流出した第2の被加熱流体FL2を導入し、第2の被加熱流体FL2が保有する熱で加熱を必要とする物質を加熱する中温熱消費設備64を備える。   In order to achieve the above object, in the absorption type heat exchange system according to the eighth aspect of the present invention, as shown, for example, in FIG. 6, the absorbing solution Sa absorbs the vapor Ve of the refrigerant to reduce the concentration thereof. Absorption unit 10 for raising the temperature of the first fluid to be heated FL1 by absorption heat released at the time of Sw; and condensation heat released when the refrigerant vapor Vg condenses to become the refrigerant liquid Vf; Necessary when the refrigerant liquid Vf is introduced from the condensation unit 40 and the condensation unit 40 which raise the temperature of the fluid to be heated FL2 and the introduced refrigerant liquid Vf evaporates and becomes the vapor Ve of the refrigerant supplied to the absorption unit 10 A dilute solution Sw is introduced from the absorbing unit 10 by reducing the temperature of the heating source fluid FH by deducting the latent heat of vaporization from the heating source fluid FH; the introduced dilute solution Sw is heated and the refrigerant from the dilute solution Sw is introduced Concentration was increased by And a regenerating unit 30 for reducing the temperature of the heat source fluid FH by depriving the heat source fluid FH of the heat necessary to form the solution Sa; and an absorption heat pump of the absorbing liquids Sa, Sw and the refrigerants Ve, Vf, Vg By the cycle, the absorption unit 10 is configured to have a higher internal pressure and temperature than the regeneration unit 30, and the evaporation unit 20 is configured to have a higher internal pressure and temperature than the condensation unit 40; The medium temperature heat consuming equipment 64 is provided which introduces the second heated fluid FL2 and heats a substance requiring heating with the heat held by the second heated fluid FL2.

このように構成すると、温度が異なる2種類の被加熱流体を取り出して有効に利用することができる。   According to this structure, it is possible to take out and use effectively two types of heated fluids having different temperatures.

本発明によれば、温度が異なる2種類の被加熱流体を取り出すことができる。   According to the present invention, two types of heated fluids having different temperatures can be taken out.

本発明の第1の実施の形態に係る吸収式熱交換システムの模式的系統図である。It is a typical systematic diagram of an absorption-type heat exchange system concerning a 1st embodiment of the present invention. 本発明の第1の実施の形態の変形例に係る吸収式熱交換システムの模式的系統図である。It is a typical systematic diagram of the absorption type heat exchange system concerning the modification of the 1st embodiment of the present invention. 本発明の第2の実施の形態に係る吸収式熱交換システムの模式的系統図である。It is a typical systematic diagram of an absorption-type heat exchange system concerning a 2nd embodiment of the present invention. 本発明の第3の実施の形態に係る吸収式熱交換システムの模式的系統図である。It is a typical systematic diagram of the absorption-type heat exchange system concerning a 3rd embodiment of the present invention. 本発明の第4の実施の形態に係る吸収式熱交換システムの模式的系統図である。It is a typical systematic diagram of an absorption-type heat exchange system concerning a 4th embodiment of the present invention. 本発明の第5の実施の形態に係る吸収式熱交換システムの模式的系統図である。It is a typical systematic diagram of the absorption-type heat exchange system concerning a 5th embodiment of the present invention.

以下、図面を参照して本発明の実施の形態について説明する。なお、各図において互いに同一又は相当する部材には同一あるいは類似の符号を付し、重複した説明は省略する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. In each of the drawings, the same or corresponding members are denoted by the same or similar reference numerals, and the redundant description will be omitted.

まず図1を参照して、本発明の第1の実施の形態に係る吸収式熱交換システム1を説明する。図1は、吸収式熱交換システム1の模式的系統図である。吸収式熱交換システム1は、吸収液と冷媒との吸収ヒートポンプサイクルを利用して、第1低温流体FL1及び第2低温流体FL2と、高温流体FHとの熱交換を行わせるシステムである。ここで、第1低温流体FL1及び第2低温流体FL2は、吸収式熱交換システム1において温度を上昇させる対象となる流体であり、第1低温流体FL1は第1の被加熱流体に、第2低温流体FL2は第2の被加熱流体に、それぞれ相当する。高温流体FHは、吸収式熱交換システム1において温度が低下する流体であり、加熱源流体に相当する。吸収式熱交換システム1は、吸収液S(Sa、Sw)と冷媒V(Ve、Vg、Vf)との吸収ヒートポンプサイクルが行われる主要機器を構成する吸収器10、蒸発器20、再生器30、及び凝縮器40を備え、さらに、熱交換部80を備えている。吸収器10、蒸発器20、再生器30、凝縮器40は、それぞれ、吸収部、蒸発部、再生部、凝縮部に相当する。   First, an absorption heat exchange system 1 according to a first embodiment of the present invention will be described with reference to FIG. FIG. 1 is a schematic system diagram of the absorption type heat exchange system 1. The absorption type heat exchange system 1 is a system that performs heat exchange between the first low temperature fluid FL1 and the second low temperature fluid FL2 and the high temperature fluid FH using an absorption heat pump cycle of an absorption liquid and a refrigerant. Here, the first low-temperature fluid FL1 and the second low-temperature fluid FL2 are fluids to be raised in temperature in the absorption heat exchange system 1, and the first low-temperature fluid FL1 is a second heated fluid. The low temperature fluid FL2 corresponds to the second heated fluid, respectively. The high temperature fluid FH is a fluid whose temperature is reduced in the absorption heat exchange system 1 and corresponds to a heating source fluid. The absorption-type heat exchange system 1 includes an absorber 10, an evaporator 20, and a regenerator 30 which constitute main devices in which an absorption heat pump cycle of the absorption liquid S (Sa, Sw) and the refrigerant V (Ve, Vg, Vf) is performed. , And a condenser 40, and further includes a heat exchange unit 80. The absorber 10, the evaporator 20, the regenerator 30, and the condenser 40 correspond to an absorption unit, an evaporation unit, a regeneration unit, and a condensation unit, respectively.

本明細書においては、吸収液に関し、ヒートポンプサイクル上における区別を容易にするために、性状やヒートポンプサイクル上の位置に応じて「希溶液Sw」や「濃溶液Sa」等と呼称するが、性状等を不問にするときは総称して「吸収液S」ということとする。同様に、冷媒に関し、ヒートポンプサイクル上における区別を容易にするために、性状やヒートポンプサイクル上の位置に応じて「蒸発器冷媒蒸気Ve」、「再生器冷媒蒸気Vg」、「冷媒液Vf」等と呼称するが、性状等を不問にするときは総称して「冷媒V」ということとする。本実施の形態では、吸収液S(吸収剤と冷媒Vとの混合物)としてLiBr水溶液が用いられており、冷媒Vとして水(HO)が用いられている。 In the present specification, the absorbing liquid is referred to as “dilute solution Sw” or “concentrated solution Sa” according to the property or the position on the heat pump cycle in order to facilitate the distinction on the heat pump cycle. When making etc. unquestionable, it shall be generically called "the absorption liquid S". Similarly, with regard to refrigerants, in order to facilitate discrimination on the heat pump cycle, “evaporator refrigerant vapor Ve”, “regenerator refrigerant vapor Vg”, “refrigerant liquid Vf”, etc. according to the property or the position on the heat pump cycle The term “refrigerant V” is used generically when property and the like are not questioned. In the present embodiment, an LiBr aqueous solution is used as the absorbent S (a mixture of an absorbent and a refrigerant V), and water (H 2 O) is used as the refrigerant V.

吸収器10は、第1低温流体FL1の流路を構成する伝熱管12と、濃溶液Saを伝熱管12の表面に供給する濃溶液供給装置13とを内部に有している。吸収器10は、濃溶液供給装置13から濃溶液Saが伝熱管12の表面に供給され、濃溶液Saが蒸発器冷媒蒸気Veを吸収して希溶液Swとなる際に吸収熱を発生させる。この吸収熱を、伝熱管12を流れる第1低温流体FL1が受熱して、第1低温流体FL1が加熱されるように構成されている。   The absorber 10 internally includes a heat transfer tube 12 that constitutes a flow path of the first low temperature fluid FL 1, and a concentrated solution supply device 13 that supplies the concentrated solution Sa to the surface of the heat transfer tube 12. The absorber 10 generates the heat of absorption when the concentrated solution Sa is supplied from the concentrated solution supply device 13 to the surface of the heat transfer tube 12 and the concentrated solution Sa absorbs the evaporator refrigerant vapor Ve and becomes the dilute solution Sw. The absorption heat is received by the first low temperature fluid FL1 flowing through the heat transfer tube 12, and the first low temperature fluid FL1 is heated.

本実施の形態に係る吸収式熱交換システム1は、吸収器10の伝熱管12を流れて加熱された第1低温流体FL1を液体と蒸気とに分離する気液分離器16を備えている。気液分離器16と伝熱管12とは、加熱後流体管17及び分離液管18で接続されている。加熱後流体管17は、伝熱管12を流れて加熱された第1低温流体FL1を気液分離器16に導くものである。分離液管18は、伝熱管12を流れて加熱された第1低温流体FL1が気液分離器16内で分離された後の液体である分離液体Frを伝熱管12に導くものである。また、気液分離器16の上部(典型的には頂部)には、分離蒸気管19の一端が接続されている。分離蒸気管19は、伝熱管12を流れて加熱された第1低温流体FL1が気液分離器16内で分離された後の蒸気である分離蒸気Fvを吸収式熱交換システム1の外に導くものである。また、主に蒸気として吸収式熱交換システム1の外に供給された分の第1低温流体FL1を補うための補給液体Fsを吸収式熱交換システム1の外から導入する補導入管18sが設けられている。補導入管18sは、分離液管18に接続されており、分離液管18を流れる分離液体Frに補給液体Fsを合流させるように構成されている。補導入管18sには、分離液管18に向けて補給液体Fsを圧送する補給液体ポンプ18pが配設されている。分離液管18を流れる分離液体Frは、第1低温流体FL1として吸収器10の伝熱管12に導入されるように構成されている。   The absorption-type heat exchange system 1 according to the present embodiment includes a gas-liquid separator 16 that flows through the heat transfer pipe 12 of the absorber 10 to separate the heated first low-temperature fluid FL1 into a liquid and a vapor. The gas-liquid separator 16 and the heat transfer pipe 12 are connected by a fluid pipe 17 after heating and a separated liquid pipe 18. The post-heating fluid pipe 17 flows through the heat transfer pipe 12 and guides the heated first low-temperature fluid FL1 to the gas-liquid separator 16. The separated liquid pipe 18 guides the separated liquid Fr, which is a liquid after the first low temperature fluid FL1 heated in the heat transfer pipe 12 is separated in the gas-liquid separator 16, to the heat transfer pipe 12. Further, one end of a separation steam pipe 19 is connected to the upper portion (typically, the top portion) of the gas-liquid separator 16. The separated vapor pipe 19 guides the separated vapor Fv, which is the vapor after the heated first low-temperature fluid FL1 is separated in the gas-liquid separator 16 through the heat transfer pipe 12, to the outside of the absorption heat exchange system 1. It is a thing. Further, there is provided a co-introduction pipe 18s for introducing from the outside of the absorption type heat exchange system 1 a replenishing liquid Fs for supplementing the first low temperature fluid FL1 supplied to the outside of the absorption type heat exchange system 1 mainly as steam. ing. The supplemental introduction pipe 18s is connected to the separated liquid pipe 18, and is configured to merge the supplied liquid Fs with the separated liquid Fr flowing through the separated liquid pipe 18. A supplementary liquid pump 18p for pumping the supplementary liquid Fs toward the separated liquid pipe 18 is disposed in the supplementary inlet pipe 18s. The separated liquid Fr flowing through the separated liquid pipe 18 is configured to be introduced into the heat transfer pipe 12 of the absorber 10 as the first low temperature fluid FL1.

蒸発器20は、高温流体FHの流路を構成する熱源管22を、蒸発器缶胴21の内部に有している。蒸発器20は、蒸発器缶胴21の内部に冷媒液Vfを散布するノズルを有していない。このため、熱源管22は、蒸発器缶胴21内に貯留された冷媒液Vfに浸かるように配設されている(満液式蒸発器)。蒸発器20は、熱源管22周辺の冷媒液Vfが熱源管22内を流れる高温流体FHの熱で蒸発して蒸発器冷媒蒸気Veが発生するように構成されている。蒸発器缶胴21には、蒸発器缶胴21内に冷媒液Vfを供給する冷媒液管45が接続されている。   The evaporator 20 has a heat source pipe 22 constituting a flow path of the high temperature fluid FH inside the evaporator can barrel 21. The evaporator 20 does not have a nozzle for dispersing the refrigerant liquid Vf inside the evaporator can barrel 21. For this reason, the heat source pipe 22 is disposed so as to be immersed in the refrigerant liquid Vf stored in the evaporator can barrel 21 (full liquid type evaporator). The evaporator 20 is configured such that the refrigerant liquid Vf around the heat source pipe 22 is evaporated by the heat of the high temperature fluid FH flowing in the heat source pipe 22 to generate the evaporator refrigerant vapor Ve. A refrigerant liquid pipe 45 for supplying the refrigerant liquid Vf into the evaporator can body 21 is connected to the evaporator can body 21.

吸収器10と蒸発器20とは、相互に連通している。吸収器10と蒸発器20とが連通することにより、蒸発器20で発生した蒸発器冷媒蒸気Veを吸収器10に供給することができるように構成されている。   The absorber 10 and the evaporator 20 are in communication with each other. By communicating the absorber 10 with the evaporator 20, the evaporator refrigerant vapor Ve generated in the evaporator 20 can be supplied to the absorber 10.

再生器30は、希溶液Swを加熱する高温流体FHを内部に流す熱源管32と、希溶液Swを熱源管32の表面に供給する希溶液供給装置33とを有している。熱源管32内を流れる高温流体FHは、本実施の形態では、蒸発器20の熱源管22内を流れた後の高温流体FHとなっている。蒸発器20の熱源管22と再生器30の熱源管32とは、高温流体FHを流す高温流体連絡管25で接続されている。再生器30の熱源管32の高温流体連絡管25が接続された端部とは反対側の端部には、高温流体排出管39が接続されている。高温流体排出管39は、高温流体FHを系外へ導く流路を構成する管である。再生器30は、希溶液供給装置33から供給された希溶液Swが高温流体FHに加熱されることにより、希溶液Swから冷媒Vが蒸発して濃度が上昇した濃溶液Saが生成されるように構成されている。希溶液Swから蒸発した冷媒Vは再生器冷媒蒸気Vgとして凝縮器40に移動するように構成されている。   The regenerator 30 has a heat source pipe 32 through which the high temperature fluid FH for heating the dilute solution Sw flows and a dilute solution supply device 33 for supplying the dilute solution Sw to the surface of the heat source pipe 32. In the present embodiment, the high temperature fluid FH flowing in the heat source pipe 32 is the high temperature fluid FH after flowing in the heat source pipe 22 of the evaporator 20. The heat source pipe 22 of the evaporator 20 and the heat source pipe 32 of the regenerator 30 are connected by a high temperature fluid communication pipe 25 in which the high temperature fluid FH flows. A high temperature fluid discharge pipe 39 is connected to an end opposite to the end to which the high temperature fluid communication pipe 25 of the heat source pipe 32 of the regenerator 30 is connected. The high temperature fluid discharge pipe 39 is a pipe constituting a flow path for leading the high temperature fluid FH out of the system. In the regenerator 30, the dilute solution Sw supplied from the dilute solution supply device 33 is heated to the high temperature fluid FH so that the refrigerant V is evaporated from the dilute solution Sw to generate the concentrated solution Sa having an increased concentration. Is configured. The refrigerant V evaporated from the dilute solution Sw is configured to move to the condenser 40 as a regenerator refrigerant vapor Vg.

凝縮器40は、第2低温流体FL2が流れる伝熱管42を凝縮器缶胴41の内部に有している。凝縮器40は、再生器30で発生した再生器冷媒蒸気Vgを導入し、これが凝縮して冷媒液Vfとなる際に放出した凝縮熱を、伝熱管42内を流れる第2低温流体FL2が受熱して、第2低温流体FL2が加熱されるように構成されている。伝熱管42には、一端に第2低温流入管48が接続され、他端に第2低温排出管49が接続されている。第2低温流入管48は、伝熱管42に第2低温流体FL2を供給するものである。第2低温流体排出管49は、伝熱管42で加熱された第2低温流体FL2を流すものである。再生器30と凝縮器40とは、相互に連通するように、再生器30の缶胴と凝縮器缶胴41とが一体に形成されている。再生器30と凝縮器40とが連通することにより、再生器30で発生した再生器冷媒蒸気Vgを凝縮器40に供給することができるように構成されている。   The condenser 40 has a heat transfer pipe 42 in which the second low temperature fluid FL 2 flows, inside the condenser can barrel 41. The condenser 40 introduces the regenerator refrigerant vapor Vg generated by the regenerator 30, and the second low temperature fluid FL2 flowing in the heat transfer pipe 42 receives the heat of condensation released when the refrigerant condenses and becomes the refrigerant liquid Vf. The second low temperature fluid FL2 is configured to be heated. A second low temperature inflow pipe 48 is connected to one end of the heat transfer pipe 42, and a second low temperature discharge pipe 49 is connected to the other end. The second low temperature inflow pipe 48 supplies the heat transfer pipe 42 with the second low temperature fluid FL2. The second low temperature fluid discharge pipe 49 is for flowing the second low temperature fluid FL 2 heated by the heat transfer pipe 42. The regenerator 30 and the condenser 40 are integrally formed with the can barrel of the regenerator 30 and the condenser can barrel 41 so as to communicate with each other. By connecting the regenerator 30 and the condenser 40, the regenerator refrigerant vapor Vg generated by the regenerator 30 can be supplied to the condenser 40.

再生器30の濃溶液Saが貯留される部分と吸収器10の濃溶液供給装置13とは、濃溶液Saを流す濃溶液管35で接続されている。濃溶液管35には、濃溶液Saを圧送する溶液ポンプ35pが配設されている。吸収器10の希溶液Swが貯留される部分と希溶液供給装置33とは、希溶液Swを流す希溶液管36で接続されている。濃溶液管35及び希溶液管36には、濃溶液Saと希溶液Swとの間で熱交換を行わせる溶液熱交換器38が配設されている。凝縮器40の冷媒液Vfが貯留される部分と蒸発器缶胴21とは、冷媒液Vfを流す冷媒液管45で接続されている。冷媒液管45には、冷媒液Vfを圧送する冷媒ポンプ46が配設されている。   The portion of the regenerator 30 where the concentrated solution Sa is stored and the concentrated solution supply device 13 of the absorber 10 are connected by a concentrated solution pipe 35 through which the concentrated solution Sa flows. The concentrated solution pipe 35 is provided with a solution pump 35p for pressure-feeding the concentrated solution Sa. The portion of the absorber 10 where the dilute solution Sw is stored and the dilute solution supply device 33 are connected by a dilute solution pipe 36 through which the dilute solution Sw flows. The concentrated solution pipe 35 and the diluted solution pipe 36 are provided with a solution heat exchanger 38 for performing heat exchange between the concentrated solution Sa and the diluted solution Sw. The portion of the condenser 40 where the refrigerant liquid Vf is stored and the evaporator can body 21 are connected by a refrigerant liquid pipe 45 through which the refrigerant liquid Vf flows. The refrigerant liquid pipe 45 is provided with a refrigerant pump 46 for pressure-feeding the refrigerant liquid Vf.

熱交換部80は、高温流体排出管39及び第2低温排出管49に配設されており、高温流体排出管39を流れる高温流体FHと第2低温排出管49を流れる第2低温流体FL2とで熱交換を行わせるように構成されている。本実施の形態では、蒸発器20及び再生器30において温度が低下した高温流体FHが、昇温流体として機能し、第2低温流体FL2と熱交換するようになっている。熱交換部80は、典型的にはシェルアンドチューブ型熱交換器で構成されているが、プレート型熱交換器等の、2つの流体の間で熱交換させる機器であってもよい。   The heat exchange unit 80 is disposed in the high temperature fluid discharge pipe 39 and the second low temperature discharge pipe 49, and the high temperature fluid FH flowing through the high temperature fluid discharge pipe 39 and the second low temperature fluid FL2 flowing through the second low temperature discharge pipe 49. It is configured to perform heat exchange. In the present embodiment, the high temperature fluid FH whose temperature is lowered in the evaporator 20 and the regenerator 30 functions as a temperature rising fluid and exchanges heat with the second low temperature fluid FL2. The heat exchange unit 80 is typically configured of a shell and tube type heat exchanger, but may be a device that performs heat exchange between two fluids, such as a plate type heat exchanger.

吸収式熱交換システム1は、定常運転中、吸収器10の内部の圧力及び温度は再生器30の内部の圧力及び温度よりも高くなり、蒸発器20の内部の圧力及び温度は凝縮器40の内部の圧力及び温度よりも高くなる。吸収式熱交換システム1は、吸収器10、蒸発器20、再生器30、凝縮器40が、第2種吸収ヒートポンプの構成となっている。   In the absorption type heat exchange system 1, the pressure and temperature inside the absorber 10 become higher than the pressure and temperature inside the regenerator 30 during steady operation, and the pressure and temperature inside the evaporator 20 become It will be higher than the internal pressure and temperature. In the absorption type heat exchange system 1, the absorber 10, the evaporator 20, the regenerator 30, and the condenser 40 are components of a type 2 absorption heat pump.

引き続き図1を参照して、吸収式熱交換システム1の作用を説明する。まず、冷媒側の吸収ヒートポンプサイクルを説明する。凝縮器40では、再生器30で蒸発した再生器冷媒蒸気Vgを受け入れて、伝熱管42を流れる第2低温流体FL2によって再生器冷媒蒸気Vgが冷却されて凝縮し、冷媒液Vfとなる。このとき、第2低温流体FL2は、再生器冷媒蒸気Vgが凝縮する際に放出した凝縮熱によって温度が上昇する。凝縮した冷媒液Vfは、冷媒ポンプ46で蒸発器缶胴21に送られる。蒸発器缶胴21に送られた冷媒液Vfは、熱源管22内を流れる高温流体FHによって加熱され、蒸発して蒸発器冷媒蒸気Veとなる。このとき、高温流体FHは、冷媒液Vfに熱を奪われて温度が低下する。蒸発器20で発生した蒸発器冷媒蒸気Veは、蒸発器20と連通する吸収器10へと移動する。   Continuing to refer to FIG. 1, the operation of the absorptive heat exchange system 1 will be described. First, the absorption heat pump cycle on the refrigerant side will be described. In the condenser 40, the regenerator refrigerant vapor Vg evaporated in the regenerator 30 is received, and the regenerator refrigerant vapor Vg is cooled and condensed by the second low temperature fluid FL2 flowing through the heat transfer pipe 42, and becomes the refrigerant liquid Vf. At this time, the temperature of the second low temperature fluid FL2 rises due to the heat of condensation released when the regenerator refrigerant vapor Vg condenses. The condensed refrigerant liquid Vf is sent to the evaporator can body 21 by the refrigerant pump 46. The refrigerant liquid Vf sent to the evaporator can body 21 is heated by the high temperature fluid FH flowing in the heat source pipe 22, and is evaporated to become the evaporator refrigerant vapor Ve. At this time, the high temperature fluid FH loses its heat by the refrigerant liquid Vf and its temperature decreases. The evaporator refrigerant vapor Ve generated in the evaporator 20 moves to the absorber 10 in communication with the evaporator 20.

次に溶液側の吸収ヒートポンプサイクルを説明する。吸収器10では、濃溶液Saが濃溶液供給装置13から供給され、この供給された濃溶液Saが蒸発器20から移動してきた蒸発器冷媒蒸気Veを吸収する。蒸発器冷媒蒸気Veを吸収した濃溶液Saは、濃度が低下して希溶液Swとなる。吸収器10では、濃溶液Saが蒸発器冷媒蒸気Veを吸収する際に吸収熱が発生する。この吸収熱により、伝熱管12を流れる第1低温流体FL1が加熱され、第1低温流体FL1の温度が上昇する。吸収器10で蒸発器冷媒蒸気Veを吸収した濃溶液Saは、濃度が低下して希溶液Swとなり、吸収器10の下部に貯留される。貯留された希溶液Swは、吸収器10と再生器30との内圧の差により再生器30に向かって希溶液管36を流れ、溶液熱交換器38で濃溶液Saと熱交換して温度が低下して、再生器30に至る。   The solution side absorption heat pump cycle will now be described. In the absorber 10, the concentrated solution Sa is supplied from the concentrated solution supply device 13, and the supplied concentrated solution Sa absorbs the evaporator refrigerant vapor Ve transferred from the evaporator 20. The concentrated solution Sa that has absorbed the evaporator refrigerant vapor Ve is reduced in concentration to be a dilute solution Sw. In the absorber 10, absorption heat is generated when the concentrated solution Sa absorbs the evaporator refrigerant vapor Ve. The absorbed heat heats the first low temperature fluid FL1 flowing through the heat transfer tube 12, and the temperature of the first low temperature fluid FL1 rises. The concentrated solution Sa having absorbed the evaporator refrigerant vapor Ve in the absorber 10 is reduced in concentration to become a dilute solution Sw, and is stored in the lower part of the absorber 10. The stored dilute solution Sw flows through the dilute solution pipe 36 toward the regenerator 30 due to the difference in internal pressure between the absorber 10 and the regenerator 30, and the solution heat exchanger 38 exchanges heat with the concentrated solution Sa to make the temperature It falls to the regenerator 30.

再生器30に送られた希溶液Swは、希溶液供給装置33から供給され、熱源管32を流れる高温流体FHによって加熱され、供給された希溶液Sw中の冷媒が蒸発して濃溶液Saとなり、再生器30の下部に貯留される。このとき、高温流体FHは、希溶液Swに熱を奪われて温度が低下する。熱源管32を流れる高温流体FHは、蒸発器20の熱源管22を通過してきたものである。希溶液Swから蒸発した冷媒Vは、再生器冷媒蒸気Vgとして凝縮器40へと移動する。再生器30の下部に貯留された濃溶液Saは、溶液ポンプ35pにより、濃溶液管35を介して吸収器10の濃溶液供給装置13に圧送される。濃溶液管35を流れる濃溶液Saは、溶液熱交換器38で希溶液Swと熱交換して温度が上昇してから吸収器10に流入し、濃溶液供給装置13から供給され、以降、同様のサイクルを繰り返す。   The dilute solution Sw sent to the regenerator 30 is supplied from the dilute solution supply device 33, is heated by the high temperature fluid FH flowing through the heat source pipe 32, and the refrigerant in the supplied dilute solution Sw is evaporated to form a concentrated solution Sa. , Is stored in the lower part of the regenerator 30. At this time, the high temperature fluid FH is deprived of heat by the dilute solution Sw and the temperature drops. The high temperature fluid FH flowing through the heat source pipe 32 has passed through the heat source pipe 22 of the evaporator 20. The refrigerant V evaporated from the dilute solution Sw moves to the condenser 40 as a regenerator refrigerant vapor Vg. The concentrated solution Sa stored in the lower part of the regenerator 30 is pressure-fed by the solution pump 35 p to the concentrated solution supply device 13 of the absorber 10 through the concentrated solution pipe 35. The concentrated solution Sa flowing in the concentrated solution pipe 35 exchanges heat with the dilute solution Sw in the solution heat exchanger 38 and rises in temperature, and then flows into the absorber 10 to be supplied from the concentrated solution supply device 13 and so on Repeat the cycle of

吸収液S及び冷媒Vが上記のような吸収ヒートポンプサイクルを行う過程における、高温流体FH並びに第1低温流体FL1及び第2低温流体FL2の温度の変化を、具体例を挙げて説明する。95℃で蒸発器20の熱源管22に流入した高温流体FHは、冷媒液Vfに熱を奪われて89℃に温度が低下する。蒸発器20から流出した高温流体FHは、高温流体連絡管25を流れた後、89℃で再生器30の熱源管32に流入する。熱源管32に流入した高温流体FHは、希溶液Swに熱を奪われて84℃に温度が低下する。再生器30で温度が低下した高温流体FHは、84℃で再生器30を流出し、高温流体排出管39を流れて熱交換部80に流入する。   Changes in the temperatures of the high temperature fluid FH and the first low temperature fluid FL1 and the second low temperature fluid FL2 in the process of performing the absorption heat pump cycle as described above by the absorbing liquid S and the refrigerant V will be described by way of specific examples. The high temperature fluid FH that has flowed into the heat source pipe 22 of the evaporator 20 at 95 ° C. loses heat by the refrigerant liquid Vf, and the temperature drops to 89 ° C. The high temperature fluid FH flowing out of the evaporator 20 flows through the high temperature fluid communication pipe 25 and then flows into the heat source pipe 32 of the regenerator 30 at 89 ° C. The high temperature fluid FH flowing into the heat source tube 32 is deprived of heat by the dilute solution Sw and the temperature drops to 84 ° C. The high temperature fluid FH whose temperature has been lowered by the regenerator 30 flows out of the regenerator 30 at 84 ° C., flows through the high temperature fluid discharge pipe 39 and flows into the heat exchange unit 80.

他方、32℃で凝縮器40の伝熱管42に流入した第2低温流体FL2は、再生器冷媒蒸気Vgが凝縮する際に放出した凝縮熱を得て、50℃に温度が上昇する。凝縮器40から流出した第2低温流体FL2は、第2低温排出管49を流れて熱交換部80に流入する。熱交換部80では、高温流体排出管39を流れる高温流体FHと第2低温排出管49を流れる第2低温流体FL2との間で熱交換が行われ、84℃の高温流体FHは74℃に温度が低下し、50℃の第2低温流体FL2は80℃に温度が上昇する。74℃に温度が低下した高温流体FHは、引き続き高温流体排出管39を流れて吸収式熱交換システム1から排出される。80℃に温度が上昇した第2低温流体FL2は、中温度の熱を消費する設備(不図示)に供給される。吸収式熱交換システム1は、熱交換部80で加熱された第2低温流体FL2の温度が、蒸発器20及び再生器30から流出した高温流体FHの温度よりも高くないが、高温流体FHが中温度の熱を消費する設備で利用できない性質や種類の流体である場合には好適である。例えば、高温流体FHが生産プロセス内を循環する流体であって、生産プロセスから吸収式熱交換システム1に流入した高温流体FHを、熱を奪って冷却した後に生産プロセスに戻す場合、又は、高温流体FHが廃棄すべき流体であって、吸収式熱交換システム1で熱を奪って冷却した後に廃棄する場合等である。中温度の熱を消費する設備として、典型的には比較的近距離に設置された暖房設備が挙げられる。吸収式熱交換システム1では、第2低温流体FL2の流量を、高温流体FHの流量の約1/3としている。換言すれば、第2低温流体FL2と高温流体FHとの流量比を約1:3としている。この流量比は、あらかじめ決められた値にしたがって採用したサイズの配管やオリフィス等を用いることで固定してもよく、バルブ等を用いて自動又は手動で調節可能に構成してもよい。流量比がバルブ等を用いて自動で調節される場合、バルブ等は典型的には制御装置に制御される。   On the other hand, the second low temperature fluid FL2 that has flowed into the heat transfer pipe 42 of the condenser 40 at 32 ° C. obtains condensation heat released when the regenerator refrigerant vapor Vg condenses, and the temperature rises to 50 ° C. The second low temperature fluid FL 2 flowing out of the condenser 40 flows through the second low temperature discharge pipe 49 and flows into the heat exchange unit 80. In the heat exchange unit 80, heat exchange is performed between the high temperature fluid FH flowing through the high temperature fluid discharge pipe 39 and the second low temperature fluid FL2 flowing through the second low temperature discharge pipe 49, and the 84 ° C. high temperature fluid FH is 74 ° C. The temperature decreases, and the temperature of the 50 ° C. second cryogenic fluid FL 2 rises to 80 ° C. The high temperature fluid FH whose temperature has dropped to 74 ° C. continues to flow through the high temperature fluid discharge pipe 39 and is discharged from the absorption heat exchange system 1. The second low temperature fluid FL2 whose temperature has risen to 80 ° C. is supplied to a facility (not shown) that consumes medium temperature heat. In the absorption type heat exchange system 1, the temperature of the second low temperature fluid FL2 heated by the heat exchange unit 80 is not higher than the temperature of the high temperature fluid FH flowing out from the evaporator 20 and the regenerator 30, but the high temperature fluid FH is It is suitable if the fluid is of a nature or type that can not be used in equipment that consumes moderate temperature heat. For example, in the case where the high temperature fluid FH is a fluid circulating in the production process and the high temperature fluid FH flowing from the production process into the absorption heat exchange system 1 is removed by heat and then returned to the production process, or The fluid FH is a fluid to be discarded, and the heat is taken away by the absorption heat exchange system 1 to be cooled and then discarded. As equipment that consumes medium temperature heat, a heating equipment typically installed at a relatively short distance can be mentioned. In the absorption type heat exchange system 1, the flow rate of the second low temperature fluid FL2 is about 1/3 of the flow rate of the high temperature fluid FH. In other words, the flow ratio of the second low temperature fluid FL2 to the high temperature fluid FH is about 1: 3. The flow rate ratio may be fixed by using a pipe, an orifice, or the like of a size adopted according to a predetermined value, or may be adjusted automatically or manually by using a valve or the like. When the flow ratio is automatically adjusted using a valve or the like, the valve or the like is typically controlled by the controller.

また、82℃で吸収器10の伝熱管12に流入した第1低温流体FL1は、濃溶液Saが蒸発器冷媒蒸気Veを吸収する際に発生した吸収熱を得て110℃に温度が上昇する。第1低温流体FL1は、吸収器10で加熱された際に一部が沸騰して気液混合状態となる。吸収器10から流出した第1低温流体FL1は、加熱後流体管17を介して気液分離器16に流入する。気液分離器16に流入した第1低温流体FL1は、分離蒸気Fvと分離液体Frとに分離される。気液分離器16で分離された分離蒸気Fvは、分離蒸気管19に流出し、高温度の熱を消費する設備(不図示)に供給される。高温度の熱を消費する設備として、典型的には工場プロセスや遠方に設置された暖房設備が挙げられる。このように、吸収式熱交換システム1では、導入する高温流体FHの温度以上の分離蒸気Fv(第1低温流体FL1)を取り出すことができる。他方、気液分離器16で分離された分離液体Frは、分離液管18を流れ、途中で補導入管18sを流れてきた補給液体Fsが合流して温度が低下し、第1低温流体FL1として82℃で伝熱管12内に供給される。典型的には、分離蒸気Fvとして高温度の熱を消費する設備に供給された分が、補給液体Fsとして外部から供給される。   Further, the first low temperature fluid FL1 flowing into the heat transfer tube 12 of the absorber 10 at 82 ° C. gets the heat of absorption generated when the concentrated solution Sa absorbs the evaporator refrigerant vapor Ve, and the temperature rises to 110 ° C. . When the first low temperature fluid FL1 is heated by the absorber 10, a part thereof is boiled to be in a gas-liquid mixed state. The first cryogenic fluid FL1 flowing out of the absorber 10 flows into the gas-liquid separator 16 through the fluid pipe 17 after heating. The first low temperature fluid FL1 flowing into the gas-liquid separator 16 is separated into the separated vapor Fv and the separated liquid Fr. The separated steam Fv separated by the gas-liquid separator 16 flows out to the separated steam pipe 19 and is supplied to a facility (not shown) that consumes high-temperature heat. Facilities that consume high temperature heat typically include factory processes and remote heating facilities. Thus, in the absorption type heat exchange system 1, it is possible to take out the separated vapor Fv (first low temperature fluid FL1) which is equal to or higher than the temperature of the high temperature fluid FH to be introduced. On the other hand, the separated liquid Fr separated by the gas-liquid separator 16 flows through the separated liquid pipe 18, and the replenished liquid Fs flowing through the auxiliary inlet pipe 18s joins along the way to lower the temperature, and becomes the first low temperature fluid FL1. It is supplied into the heat transfer tube 12 at 82 ° C. Typically, the amount supplied to a facility that consumes high-temperature heat as separated vapor Fv is externally supplied as a make-up liquid Fs.

以上で説明したように、本実施の形態に係る吸収式熱交換システム1によれば、第2種吸収ヒートポンプの機能を発揮する吸収器10、蒸発器20、再生器30、凝縮器40における吸収液Sと冷媒Vとの吸収ヒートポンプサイクルを介して間接的に高温流体FHと第1低温流体FL1及び第2低温流体FL2との熱交換を行わせると共に、熱交換部80において直接的に高温流体FHと第2低温流体FL2との熱交換を行わせることで、温度が異なる2種類の被加熱流体(第1低温流体FL1、第2低温流体FL2)を取り出すことができる。また、吸収式熱交換システム1では、吸収器10から流出した第1低温流体FL1を気液分離器16において気液分離して分離蒸気Fvとして取り出すので、エンタルピが大きく利用価値の高い蒸気を供給することができる。なお、高温流体FH、第1低温流体FL1、第2低温流体FL2のそれぞれは、流体の性質や種類が、他の1つ又は2つと異なっていてもよく、同じであってもよい。   As explained above, according to the absorption type heat exchange system 1 according to the present embodiment, absorption in the absorber 10, the evaporator 20, the regenerator 30 and the condenser 40 that exhibits the function of the type 2 absorption heat pump The heat exchange between the high temperature fluid FH and the first low temperature fluid FL1 and the second low temperature fluid FL2 is indirectly performed through the absorption heat pump cycle of the liquid S and the refrigerant V, and the high temperature fluid is directly transmitted in the heat exchange unit 80. By performing heat exchange between FH and the second low temperature fluid FL2, it is possible to take out two types of heated fluids (first low temperature fluid FL1, second low temperature fluid FL2) having different temperatures. Further, in the absorption type heat exchange system 1, the first low temperature fluid FL1 flowing out of the absorber 10 is separated in the gas-liquid separator 16 by gas-liquid separation and is taken out as the separated vapor Fv. can do. Each of the high temperature fluid FH, the first low temperature fluid FL1, and the second low temperature fluid FL2 may be different in nature or type of fluid from the other one or two, or may be the same.

次に図2を参照して、本発明の第1の実施の形態の変形例に係る吸収式熱交換システム1Aを説明する。図2は、吸収式熱交換システム1Aの模式的系統図である。吸収式熱交換システム1Aは、主として以下の点で吸収式熱交換システム1(図1参照)と異なっている。吸収式熱交換システム1Aは、吸収器10から流出した第1低温流体FL1が、液体の状態で高温度の熱を消費する設備(不図示)に供給されるようになっている。したがって、吸収式熱交換システム1Aでは、吸収式熱交換システム1(図1参照)で設けられていた気液分離器16(図1参照)及びこのまわりの構成の分離蒸気管19(図1参照)、分離液管18(図1参照)、補給液体ポンプ18p(図1参照)が配設された補導入管18s(図1参照)が設けられておらず、高温度の熱を消費する設備等から送られてきた第1低温流体FL1が吸収器10の伝熱管12に流入し、吸収器10で加熱された第1低温流体FL1が加熱後流体管17を流れて高温度の熱を消費する設備に供給されるように構成されている。吸収式熱交換システム1Aの上記以外の構成は、吸収式熱交換システム1(図1参照)と同様である。   Next, with reference to FIG. 2, an absorption heat exchange system 1A according to a modification of the first embodiment of the present invention will be described. FIG. 2 is a schematic diagram of the absorption type heat exchange system 1A. The absorption heat exchange system 1A differs from the absorption heat exchange system 1 (see FIG. 1) mainly in the following points. The absorption type heat exchange system 1A is configured such that the first low temperature fluid FL1 flowing out of the absorber 10 is supplied to a facility (not shown) that consumes high temperature heat in a liquid state. Therefore, in the absorption type heat exchange system 1A, the gas-liquid separator 16 (see FIG. 1) provided in the absorption type heat exchange system 1 (see FIG. 1) and the separated vapor pipe 19 of the configuration around this (see FIG. 1) 1), separation liquid pipe 18 (see FIG. 1), and supplemental introduction pipe 18s (see FIG. 1) provided with the supply liquid pump 18p (see FIG. 1) are not provided, and facilities etc. that consume high temperature heat The first low temperature fluid FL1 sent from the source flows into the heat transfer tube 12 of the absorber 10, and the first low temperature fluid FL1 heated by the absorber 10 flows through the fluid tube 17 after heating and consumes high temperature heat It is configured to be supplied to the facility. The remaining configuration of the absorption-type heat exchange system 1A is similar to that of the absorption-type heat exchange system 1 (see FIG. 1).

上述のように構成された吸収式熱交換システム1Aでは、吸収器10、蒸発器20、再生器30、凝縮器40における吸収液Sと冷媒Vとの吸収ヒートポンプサイクルは、吸収式熱交換システム1(図1参照)と同様に作用する。また、高温流体FHの流路及び温度変化も、吸収式熱交換システム1(図1参照)と同様に作用する。また、第2低温流体FL2の流路及び温度変化も、吸収式熱交換システム1(図1参照)と同様に作用する。他方、第1低温流体FL1は、吸収器10の伝熱管12に流入し、吸収器10において濃溶液Saが蒸発器冷媒蒸気Veを吸収する際に発生した吸収熱を得て蒸発しない程度に温度が上昇して吸収器10から流出し、加熱後流体管17を介して高温度の熱を消費する設備(不図示)に供給される。このように、吸収式熱交換システム1Aは、気液分離器16(図1参照)まわりの構成を省略した簡便な構成で温度が異なる2種類の液体を取り出すことができる。   In the absorption type heat exchange system 1A configured as described above, the absorption heat exchange system between the absorbent S and the refrigerant V in the absorber 10, the evaporator 20, the regenerator 30 and the condenser 40 is the absorption heat exchange system 1 It works in the same way as (see FIG. 1). Moreover, the flow path and temperature change of the high temperature fluid FH also operate in the same manner as the absorption heat exchange system 1 (see FIG. 1). Further, the flow path and temperature change of the second low temperature fluid FL2 also work in the same manner as the absorption type heat exchange system 1 (see FIG. 1). On the other hand, the first low temperature fluid FL1 flows into the heat transfer tube 12 of the absorber 10, and the temperature is such that the absorbed heat generated when the concentrated solution Sa absorbs the evaporator refrigerant vapor Ve in the absorber 10 does not evaporate Rises and flows out of the absorber 10 and is supplied to a facility (not shown) that consumes high-temperature heat via the fluid pipe 17 after heating. Thus, the absorption type heat exchange system 1A can take out two kinds of liquids having different temperatures with a simple configuration in which the configuration around the gas-liquid separator 16 (see FIG. 1) is omitted.

次に図3を参照して、本発明の第2の実施の形態に係る吸収式熱交換システム2を説明する。図3は、吸収式熱交換システム2の模式的系統図である。吸収式熱交換システム2は、主として以下の点で吸収式熱交換システム1(図1参照)と異なっている。吸収式熱交換システム2は、蒸発器20に導入される前の高温流体FHの一部を分岐した部分高温流体FHsを、蒸発器20及び再生器30を迂回して、再生器30から流出した高温流体FHに合流させる高温流体迂回管29が設けられている。高温流体迂回管29の一端は、高温流体FHを熱源管22に導入する高温流体導入管24に接続されている。高温流体迂回管29の他端は、高温流体排出管39に接続されている。本実施の形態では、高温流体排出管39を流れる高温流体FHは、熱交換部80を介さずに系外に排出される。熱交換部80は、吸収式熱交換システム1(図1参照)においては高温流体排出管39及び第2低温排出管49に配設されていたことに代えて、第2低温排出管49及び高温流体迂回管29に配設されており、第2低温排出管49を流れる第2低温流体FL2と、高温流体迂回管29を流れる部分高温流体FHsとの間で熱交換を行わせるように構成されている。吸収式熱交換システム2の上記以外の構成は、吸収式熱交換システム1(図1参照)と同様である。   Next, with reference to FIG. 3, an absorption heat exchange system 2 according to a second embodiment of the present invention will be described. FIG. 3 is a schematic system diagram of the absorption type heat exchange system 2. The absorption heat exchange system 2 differs from the absorption heat exchange system 1 (see FIG. 1) mainly in the following points. In the absorption heat exchange system 2, the partial high temperature fluid FHs branched from a part of the high temperature fluid FH before being introduced into the evaporator 20 flows out of the regenerator 30 while bypassing the evaporator 20 and the regenerator 30. A high temperature fluid bypass pipe 29 for joining the high temperature fluid FH is provided. One end of the high temperature fluid bypass pipe 29 is connected to a high temperature fluid introduction pipe 24 for introducing the high temperature fluid FH into the heat source pipe 22. The other end of the high temperature fluid bypass pipe 29 is connected to the high temperature fluid discharge pipe 39. In the present embodiment, the high temperature fluid FH flowing through the high temperature fluid discharge pipe 39 is discharged out of the system without passing through the heat exchange unit 80. The heat exchange section 80 is replaced by the second low temperature discharge pipe 49 and the high temperature instead of being disposed in the high temperature fluid discharge pipe 39 and the second low temperature discharge pipe 49 in the absorption type heat exchange system 1 (see FIG. 1). The fluid bypass pipe 29 is disposed, and is configured to perform heat exchange between the second cryogenic fluid FL2 flowing through the second cryogenic discharge pipe 49 and the partial hot fluid FHs flowing through the hot fluid bypass pipe 29. ing. The remaining configuration of the absorptive heat exchange system 2 is the same as that of the absorptive heat exchange system 1 (see FIG. 1).

上述のように構成された吸収式熱交換システム2の作用は以下の通りである。吸収器10、蒸発器20、再生器30、凝縮器40における吸収液Sと冷媒Vとの吸収ヒートポンプサイクルは、吸収式熱交換システム1(図1参照)と同様に作用する。蒸発器20に向かって高温流体導入管24を流れる高温流体FHは、一部が分岐して部分高温流体FHsとして高温流体迂回管29に流入し、残りの高温流体FHが熱源管22に流入する。熱源管22に流入した高温流体FHは、冷媒液Vfに熱を奪われて温度が低下し、蒸発器20から流出して高温流体連絡管25を流れた後に再生器30の熱源管32に流入し、再生器30において希溶液Swに熱を奪われて温度が低下して再生器30を流出する。高温流体導入管24から高温流体迂回管29に流入した高温流体FHは、熱交換部80に流入する。他方、凝縮器40の伝熱管42に流入した第2低温流体FL2は、再生器冷媒蒸気Vgが凝縮する際に放出した凝縮熱を得て温度が上昇し、凝縮器40から流出して熱交換部80に流入する。熱交換部80では、高温流体迂回管29を流れる部分高温流体FHsと第2低温排出管49を流れる第2低温流体FL2との間で熱交換が行われ、部分高温流体FHsは温度が低下し、第2低温流体FL2は温度が上昇する。熱交換部80において温度が低下した部分高温流体FHsは、高温流体迂回管29を介して高温流体排出管39を流れる高温流体FHと合流し、吸収式熱交換システム2から排出される。熱交換部80において温度が上昇した第2低温流体FL2は、引き続き第2低温排出管49を流れて中温度の熱を消費する設備(不図示)に供給される。他方、第1低温流体FL1は、吸収式熱交換システム1(図1参照)と同様、吸収器10の伝熱管12に流入し、吸収器10において濃溶液Saが蒸発器冷媒蒸気Veを吸収する際に発生した吸収熱を得て温度が上昇して吸収器10を流出し、気液分離器16に流入して分離蒸気Fvと分離液体Frとに分離され、分離蒸気Fvは高温度の熱を消費する設備(不図示)に供給され、分離液体Frは必要な補給液体Fsが合流したうえで再び第1低温流体FL1として伝熱管12内に流入する。   The operation of the absorption heat exchange system 2 configured as described above is as follows. The absorption heat pump cycle of the absorbent S and the refrigerant V in the absorber 10, the evaporator 20, the regenerator 30, and the condenser 40 functions in the same manner as the absorption heat exchange system 1 (see FIG. 1). The high temperature fluid FH flowing through the high temperature fluid inlet pipe 24 toward the evaporator 20 is partially branched and flows into the high temperature fluid bypass pipe 29 as a partial high temperature fluid FHs, and the remaining high temperature fluid FH flows into the heat source pipe 22 . The high temperature fluid FH which has flowed into the heat source pipe 22 is deprived of heat by the refrigerant liquid Vf to decrease in temperature, and flows out from the evaporator 20 and flows through the high temperature fluid communication pipe 25 and then into the heat source pipe 32 of the regenerator 30. In the regenerator 30, heat is taken away by the dilute solution Sw, the temperature drops, and the regenerator 30 flows out. The high temperature fluid FH flowing from the high temperature fluid introduction pipe 24 into the high temperature fluid bypass pipe 29 flows into the heat exchange unit 80. On the other hand, the second low temperature fluid FL2 that has flowed into the heat transfer pipe 42 of the condenser 40 obtains condensation heat released when the regenerator refrigerant vapor Vg condenses, the temperature rises, and it flows out of the condenser 40 and exchanges heat It flows into the section 80. In the heat exchange unit 80, heat exchange is performed between the partial high temperature fluid FHs flowing through the high temperature fluid bypass pipe 29 and the second low temperature fluid FL2 flowing through the second low temperature exhaust pipe 49, and the temperature of the partial high temperature fluid FHs decreases. , The temperature of the second low temperature fluid FL2 rises. The partial high temperature fluid FHs whose temperature has been lowered in the heat exchange unit 80 joins the high temperature fluid FH flowing through the high temperature fluid discharge pipe 39 via the high temperature fluid bypass pipe 29 and is discharged from the absorption heat exchange system 2. The second low temperature fluid FL2 whose temperature has risen in the heat exchange unit 80 continues to flow through the second low temperature discharge pipe 49 and is supplied to a facility (not shown) that consumes medium temperature heat. On the other hand, the first low temperature fluid FL1 flows into the heat transfer tube 12 of the absorber 10 in the same manner as the absorption heat exchange system 1 (see FIG. 1), and the concentrated solution Sa absorbs the evaporator refrigerant vapor Ve in the absorber 10. The temperature rises due to absorption heat generated during the process, and the absorber 10 is discharged to flow into the gas-liquid separator 16 to be separated into the separated vapor Fv and the separated liquid Fr, and the separated vapor Fv is a high temperature heat Is supplied to a facility (not shown) that consumes the water, and the separated liquid Fr flows into the heat transfer pipe 12 again as the first low temperature fluid FL1 after the necessary replenishment liquid Fs is merged.

吸収式熱交換システム2によれば、高温流体導入管24を流れる高温流体FHの、熱源管22に流入する流量と高温流体迂回管29に流入する流量との比率に応じて、熱交換部80から流出して中温度の熱を消費する設備に供給される第2低温流体FL2の温度を調節することができる。換言すれば、熱交換部80から流出した第2低温流体FL2の温度が所定の温度になるように、熱源管22に流入する高温流体FHの流量と高温流体迂回管29に流入する高温流体FHの流量との比を設定することができる。この場合における流量比は、熱源管22及び高温流体迂回管29の各々についてあらかじめ決められた値にしたがって採用したサイズの配管やオリフィス等を用いることで固定してもよく、各々の管22、29のいずれかの位置に配置したバルブ等を用いて自動又は手動で調節可能に構成してもよい。また、本実施の形態における熱交換部80の加熱側流体である部分高温流体FHsの温度は、吸収式熱交換システム1(図1参照)における熱交換部80の加熱側流体である高温流体FHの温度よりも高いので、本実施の形態では、熱交換部80で加熱される第2低温流体FL2の温度を、吸収式熱交換システム1(図1参照)の場合よりも高くすることができる。なお、図示は省略するが、吸収式熱交換システム2の構成に加えて、図1に示すような高温流体排出管39及び第2低温排出管49に配設された熱交換部80を設け、2つの熱交換部80を備えることとしてもよい。この場合、高温流体迂回管29の高温流体排出管39への接続部を、高温流体排出管39及び第2低温排出管49に配設された熱交換部80の上流側として、部分高温流体FHsが合流した後の高温流体排出管39を流れる高温流体FHと、第2低温排出管49を流れる第2低温流体FL2とで熱交換を行わせるようにするとよい。換言すれば、第2低温排出管49を流れる第2低温流体FL2は、部分高温流体FHsが合流した後の高温流体排出管39を流れる高温流体FHと熱交換した後に、高温流体迂回管29を流れる部分高温流体FHsと熱交換するように構成すると、最初に高温流体FHで加熱され、次に高温流体FHよりも温度が高い部分高温流体FHsで加熱されることとなってよい。   According to the absorption type heat exchange system 2, the heat exchange unit 80 according to the ratio of the flow rate of the high temperature fluid FH flowing through the high temperature fluid introduction pipe 24 into the heat source pipe 22 and the flow rate of the high temperature fluid bypass pipe 29. The temperature of the second low-temperature fluid FL2 supplied to the facility that flows out and consumes the medium temperature heat can be adjusted. In other words, the flow rate of the high temperature fluid FH flowing into the heat source pipe 22 and the high temperature fluid FH flowing into the high temperature fluid bypass pipe 29 so that the temperature of the second low temperature fluid FL2 flowing out of the heat exchange unit 80 becomes a predetermined temperature. The ratio to the flow rate can be set. In this case, the flow rate ratio may be fixed by using a pipe, an orifice, or the like of a size adopted in accordance with a predetermined value for each of the heat source pipe 22 and the high temperature fluid bypass pipe 29. It may be configured to be adjustable automatically or manually by using a valve or the like placed at any position of. Further, the temperature of the partial high temperature fluid FHs that is the heating side fluid of the heat exchange unit 80 in the present embodiment is the high temperature fluid FH that is the heating side fluid of the heat exchange unit 80 in the absorption type heat exchange system 1 (see FIG. 1). In the present embodiment, the temperature of the second low temperature fluid FL2 heated by the heat exchange unit 80 can be made higher than in the case of the absorption heat exchange system 1 (see FIG. 1). . Although not illustrated, in addition to the configuration of the absorption type heat exchange system 2, a heat exchange unit 80 disposed in the high temperature fluid discharge pipe 39 and the second low temperature discharge pipe 49 as shown in FIG. Two heat exchange units 80 may be provided. In this case, the connection portion of the high temperature fluid bypass pipe 29 to the high temperature fluid discharge pipe 39 is the upstream side of the heat exchange unit 80 disposed in the high temperature fluid discharge pipe 39 and the second low temperature discharge pipe 49. It is preferable that heat exchange be performed between the high temperature fluid FH flowing through the high temperature fluid discharge pipe 39 and the second low temperature fluid FL2 flowing through the second low temperature discharge pipe 49 after the. In other words, the second low temperature fluid FL2 flowing through the second low temperature discharge pipe 49 exchanges heat with the high temperature fluid FH flowing through the high temperature fluid discharge pipe 39 after the partial high temperature fluid FHs merges. When configured to exchange heat with the flowing partial hot fluid FHs, it may be heated first with the hot fluid FH and then with the partial hot fluid FHs whose temperature is higher than the hot fluid FH.

次に図4を参照して、本発明の第3の実施の形態に係る吸収式熱交換システム3を説明する。図4は、吸収式熱交換システム3の模式的系統図である。吸収式熱交換システム3は、主として以下の点で吸収式熱交換システム1A(図2参照)と異なっている。吸収式熱交換システム3は、蒸発器20に導入される前の高温流体FHから分岐された一部の高温流体FHを、第1低温流体FL1として吸収器10の伝熱管12に流入させる分岐流体流入管15が設けられている。分岐流体流入管15の一端は、高温流体FHを熱源管22に導入する高温流体導入管24に接続されている。分岐流体流入管15の他端は、伝熱管12の、加熱後流体管17が接続された端部とは反対側の端部に接続されている。吸収式熱交換システム3の上記以外の構成は、吸収式熱交換システム1A(図2参照)と同様である。   Next, with reference to FIG. 4, an absorption heat exchange system 3 according to a third embodiment of the present invention will be described. FIG. 4 is a schematic system diagram of the absorption type heat exchange system 3. The absorption heat exchange system 3 differs from the absorption heat exchange system 1A (see FIG. 2) mainly in the following points. The absorption heat exchange system 3 causes a part of the high temperature fluid FH branched from the high temperature fluid FH before being introduced into the evaporator 20 to flow into the heat transfer tube 12 of the absorber 10 as the first low temperature fluid FL1. An inflow tube 15 is provided. One end of the branched fluid inflow pipe 15 is connected to a high temperature fluid inlet pipe 24 for introducing the high temperature fluid FH into the heat source pipe 22. The other end of the branch fluid inflow pipe 15 is connected to the end of the heat transfer pipe 12 opposite to the end to which the post-heating fluid pipe 17 is connected. The remaining configuration of the absorption-type heat exchange system 3 is the same as that of the absorption-type heat exchange system 1A (see FIG. 2).

上述のように構成された吸収式熱交換システム3では、吸収器10、蒸発器20、再生器30、凝縮器40における吸収液Sと冷媒Vとの吸収ヒートポンプサイクルは、吸収式熱交換システム1A(図2参照)と同様に作用する。また、第2低温流体FL2の流路及び温度変化も、吸収式熱交換システム1A(図2参照)と同様に作用する。蒸発器20に向かって高温流体導入管24を流れる高温流体FHは、一部が分岐して第1低温流体FL1として分岐流体流入管15に流入し、残りの高温流体FHが熱源管22に流入する。熱源管22に流入した高温流体FHは、冷媒液Vfに熱を奪われて温度が低下し、蒸発器20から流出して高温流体連絡管25を流れた後に再生器30の熱源管32に流入し、再生器30において希溶液Swに熱を奪われて温度が低下して再生器30を流出する。再生器30を流出した高温流体FHは、高温流体排出管39を流れ、熱交換部80において第2低温流体FL2と熱交換して温度が低下したうえで、吸収式熱交換システム3から排出される。他方、高温流体導入管24から分岐流体流入管15に流入した第1低温流体FL1(分岐された一部の高温流体FH)は、吸収器10の伝熱管12に流入し、吸収器10において濃溶液Saが蒸発器冷媒蒸気Veを吸収する際に発生した吸収熱を得て温度が上昇して吸収器10を流出し、加熱後流体管17を介して高温度の熱を消費する設備(不図示)に供給される。このように、吸収式熱交換システム3では、蒸発器20に導入される前の高温流体FHから分岐された一部の高温流体FHを第1低温流体FL1として吸収器10に導入するので、吸収器10から流出した第1低温流体FL1の温度を蒸発器20に導入される前の高温流体FHの温度よりも高くすることができる。   In the absorption type heat exchange system 3 configured as described above, the absorption heat pump cycle of the absorption liquid S and the refrigerant V in the absorber 10, the evaporator 20, the regenerator 30 and the condenser 40 is the absorption heat exchange system 1A. It works in the same way as (see Figure 2). Further, the flow path and temperature change of the second low temperature fluid FL2 also operate in the same manner as the absorption heat exchange system 1A (see FIG. 2). The high temperature fluid FH flowing through the high temperature fluid inlet pipe 24 toward the evaporator 20 branches partially and flows into the branch fluid inflow pipe 15 as the first low temperature fluid FL1, and the remaining high temperature fluid FH flows into the heat source pipe 22. Do. The high temperature fluid FH which has flowed into the heat source pipe 22 is deprived of heat by the refrigerant liquid Vf to decrease in temperature, and flows out from the evaporator 20 and flows through the high temperature fluid communication pipe 25 and then into the heat source pipe 32 of the regenerator 30. In the regenerator 30, heat is taken away by the dilute solution Sw, the temperature drops, and the regenerator 30 flows out. The high temperature fluid FH which has flowed out of the regenerator 30 flows through the high temperature fluid discharge pipe 39 and exchanges heat with the second low temperature fluid FL2 in the heat exchange section 80, and the temperature is lowered. Ru. On the other hand, the first low temperature fluid FL1 (part of the high temperature fluid FH branched) which has flowed into the branch fluid inflow pipe 15 from the high temperature fluid inlet pipe 24 flows into the heat transfer pipe 12 of the absorber 10 and is concentrated in the absorber 10 A facility that obtains the absorbed heat generated when the solution Sa absorbs the evaporator refrigerant vapor Ve, the temperature rises and flows out the absorber 10, and consumes high-temperature heat through the fluid pipe 17 after heating (Shown). As described above, in the absorption heat exchange system 3, since a part of the high temperature fluid FH branched from the high temperature fluid FH before being introduced into the evaporator 20 is introduced into the absorber 10 as the first low temperature fluid FL1, The temperature of the first low-temperature fluid FL1 flowing out of the vessel 10 can be higher than the temperature of the high-temperature fluid FH before being introduced into the evaporator 20.

次に図5を参照して、本発明の第4の実施の形態に係る吸収式熱交換システム4を説明する。図5は、吸収式熱交換システム4の模式的系統図である。吸収式熱交換システム4は、主として以下の点で吸収式熱交換システム1(図1参照)と異なっている。吸収式熱交換システム4は、吸収式熱交換システム1(図1参照)の構成に加えて、冷媒熱交換器99を備えている。冷媒熱交換器99は、凝縮器40から蒸発器20に向かう冷媒液Vfと、熱交換部80から流出した高温流体FHとの間で熱交換を行わせる機器である。冷媒熱交換器99は、冷媒ポンプ46よりも下流側の冷媒液管45及び熱交換部80よりも下流側の高温流体排出管39に配設されている。冷媒熱交換器99には、シェルアンドチューブ型やプレート型の熱交換器が用いられる。吸収式熱交換システム3の上記以外の構成は、吸収式熱交換システム1(図1参照)と同様である。   Next, with reference to FIG. 5, an absorption heat exchange system 4 according to a fourth embodiment of the present invention will be described. FIG. 5 is a schematic system diagram of the absorption type heat exchange system 4. The absorption heat exchange system 4 differs from the absorption heat exchange system 1 (see FIG. 1) mainly in the following points. The absorption-type heat exchange system 4 includes a refrigerant heat exchanger 99 in addition to the configuration of the absorption-type heat exchange system 1 (see FIG. 1). The refrigerant heat exchanger 99 is a device for performing heat exchange between the refrigerant liquid Vf traveling from the condenser 40 to the evaporator 20 and the high temperature fluid FH flowing out from the heat exchange unit 80. The refrigerant heat exchanger 99 is disposed in the refrigerant liquid pipe 45 downstream of the refrigerant pump 46 and the high temperature fluid discharge pipe 39 downstream of the heat exchange unit 80. As the refrigerant heat exchanger 99, a shell and tube type or plate type heat exchanger is used. The remaining configuration of the absorption-type heat exchange system 3 is the same as that of the absorption-type heat exchange system 1 (see FIG. 1).

上述のように構成された吸収式熱交換システム4の作用は以下の通りである。吸収器10、蒸発器20、再生器30、凝縮器40における吸収液Sと冷媒Vとの吸収ヒートポンプサイクルは、凝縮器40から蒸発器20に向かう冷媒液Vfの温度変化を除き、吸収式熱交換システム1(図1参照)と同様に作用する。高温流体FHの流路及び温度変化は、熱交換部80から流出するまでは、吸収式熱交換システム1(図1参照)と同様に作用する。第1低温流体FL1及び第2低温流体FL2の流路及び温度変化は、吸収式熱交換システム1(図1参照)と同様に作用する。そして、冷媒熱交換器99を備える吸収式熱交換システム4においては、凝縮器40から蒸発器20に向かう冷媒液Vfと、熱交換部80から流出した高温流体FHとの間で熱交換が行われ、冷媒液Vfの温度が上昇し、高温流体FHの温度が低下する。冷媒熱交換器99から流出した冷媒液Vfは、温度が上昇して蒸発器20に流入するので、蒸発器20において蒸発するのに必要な熱量を抑制することができ、これに伴って温度低下が抑制された高温流体FHが保有する熱量を熱交換部80における熱交換に利用することができて、熱交換部80から流出する第2低温流体FL2の温度を上昇させることができる。他方、冷媒熱交換器99から流出した高温流体FHは、温度が低下して吸収式熱交換システム4から排出されることとなり、吸収式熱交換システム4における高温流体FHの回収熱量を増やすことができる。なお、冷媒熱交換器99は、吸収式熱交換システム1A(図2参照)、吸収式熱交換システム2(図3参照)、吸収式熱交換システム3(図4参照)のそれぞれに設置することもできる。   The operation of the absorption heat exchange system 4 configured as described above is as follows. The absorption heat pump cycle of the absorbent S and the refrigerant V in the absorber 10, the evaporator 20, the regenerator 30 and the condenser 40 excludes the temperature change of the refrigerant liquid Vf from the condenser 40 to the evaporator 20, and the absorption heat It works in the same way as the switching system 1 (see FIG. 1). The flow path and temperature change of the high temperature fluid FH acts in the same manner as the absorption heat exchange system 1 (see FIG. 1) until it flows out from the heat exchange unit 80. The flow path and temperature change of the first cryogenic fluid FL1 and the second cryogenic fluid FL2 operate in the same manner as the absorption heat exchange system 1 (see FIG. 1). And in absorption type heat exchange system 4 provided with refrigerant heat exchanger 99, heat exchange is performed between refrigerant liquid Vf which goes from condenser 40 to evaporator 20, and high temperature fluid FH which flowed out from heat exchange part 80. The temperature of the refrigerant liquid Vf rises, and the temperature of the high temperature fluid FH falls. The temperature of the refrigerant liquid Vf flowing out of the refrigerant heat exchanger 99 rises and flows into the evaporator 20, so the amount of heat necessary for evaporation in the evaporator 20 can be suppressed, and the temperature drops accordingly. The amount of heat held by the high-temperature fluid FH suppressed can be used for heat exchange in the heat exchange unit 80, and the temperature of the second low-temperature fluid FL2 flowing out of the heat exchange unit 80 can be raised. On the other hand, the high temperature fluid FH flowing out of the refrigerant heat exchanger 99 is lowered in temperature and discharged from the absorption heat exchange system 4, thereby increasing the heat recovery of the high temperature fluid FH in the absorption heat exchange system 4. it can. The refrigerant heat exchanger 99 should be installed in each of the absorption heat exchange system 1A (see FIG. 2), the absorption heat exchange system 2 (see FIG. 3), and the absorption heat exchange system 3 (see FIG. 4). You can also.

次に図6を参照して、本発明の第5の実施の形態に係る吸収式熱交換システム5を説明する。図6は、吸収式熱交換システム5の模式的系統図である。吸収式熱交換システム5は、主として以下の点で吸収式熱交換システム1(図1参照)と異なっている。吸収式熱交換システム5は、熱交換部80(図1参照)が設けられておらず、中温熱消費設備64が設けられている。中温熱消費設備64は、第2低温流体FL2が保有する熱によって、加熱を必要とする物質を加熱する設備であり、典型的には暖房設備が挙げられる。中温熱消費設備64が暖房設備の場合、暖房対象空間の加熱に用いられる温水又は空気が、加熱を必要とする物質に該当する。中温熱消費設備64には、それぞれの一端が凝縮器40の伝熱管42に接続された第2低温流入管48及び第2低温排出管49それぞれの他端が接続されている。なお、中温熱消費設備64から流出した第2低温流体FL2を、伝熱管42に流入させる前に冷却する冷却塔CTを設けてもよい。ここで、冷却塔CTは、熱の放出先である大気が加熱を必要とする訳ではないので、中温熱消費設備64には該当しない。冷却塔CTが設けられる場合、典型的には、冷却塔CTはバイパス管48Bに配設され、バイパス管48Bの両端は間隔をあけて第2低温流入管48に接続され、バイパス管48Bの両端の間の第2低温流入管48には開閉弁48vが設けられ、開閉弁48vの開閉によって第2低温流体FL2が冷却塔CTを通過しないのと通過するのとを切り替えることができるように構成される。さらに、バイパス管48Bにバイパス開閉弁48Bvを設けて、開閉弁48vとバイパス開閉弁48Bvとの開度を各々所定の開度に調節することによって、第2低温流体FL2の一部が冷却塔CTを通過できるように構成してもよい。また、第1低温流体FL1の系統について、典型的には、分離蒸気Fvを高温熱消費設備HFに供給できるように分離蒸気管19の端部と高温熱消費設備HFとが蒸気供給管78で接続され、高温熱消費設備HFから流出した液体を補給液体Fsとして分離液管18に流入させることができるように高温熱消費設備HFと補導入管18sの端部とが戻り液管77で接続される。なお、高温熱消費設備HFに供給されるのが、分離蒸気Fvに代えて液体の第1低温流体FL1でもよく、この場合は吸収式熱交換システム1A(図2参照)に倣って気液分離器16まわりの構成を省略することができる。吸収式熱交換システム5の上記以外の構成は、吸収式熱交換システム1(図1参照)と同様である。   Next, an absorption heat exchange system 5 according to a fifth embodiment of the present invention will be described with reference to FIG. FIG. 6 is a schematic system diagram of the absorption type heat exchange system 5. The absorption heat exchange system 5 differs from the absorption heat exchange system 1 (see FIG. 1) mainly in the following points. In the absorption type heat exchange system 5, the heat exchange unit 80 (see FIG. 1) is not provided, and the medium heat consumption equipment 64 is provided. The medium-temperature heat-consuming facility 64 is a facility that heats a substance that needs to be heated by the heat held by the second low-temperature fluid FL2, and typically includes a heating facility. When the medium heat consumption equipment 64 is a heating equipment, warm water or air used to heat the space to be heated corresponds to a substance that requires heating. The other end of each of the second low temperature inflow pipe 48 and the second low temperature discharge pipe 49 whose one end is connected to the heat transfer pipe 42 of the condenser 40 is connected to the medium temperature heat consuming equipment 64. A cooling tower CT may be provided to cool the second low temperature fluid FL2 flowing out of the medium temperature heat consuming facility 64 before it flows into the heat transfer tube. Here, the cooling tower CT does not correspond to the medium heat consumption equipment 64 because the atmosphere to which the heat is discharged does not require heating. When the cooling tower CT is provided, typically, the cooling tower CT is disposed in the bypass pipe 48B, both ends of the bypass pipe 48B are connected to the second low temperature inlet pipe 48 at intervals, and both ends of the bypass pipe 48B The second low temperature inflow pipe 48 between them is provided with an on-off valve 48v, and it is configured to be able to switch between passing and not passing the second low-temperature fluid FL2 through the cooling tower CT by opening and closing the on-off valve 48v. Be done. Furthermore, a bypass on-off valve 48Bv is provided in the bypass pipe 48B, and a part of the second low-temperature fluid FL2 is the cooling tower CT by adjusting the opening degree of the on-off valve 48v and the bypass on-off valve 48Bv to a predetermined opening degree. May be configured to pass through. Also, for the system of the first low temperature fluid FL 1, typically, the end of the separated steam pipe 19 and the high temperature heat consuming facility HF are steam feeding pipes 78 so that the separated steam Fv can be supplied to the high temperature heat consuming facility HF. The high temperature heat consuming facility HF and the end of the supplemental inlet tube 18s are connected by a return fluid pipe 77 so that the liquid flowing out of the high temperature heat consuming facility HF can be made to flow into the separated liquid pipe 18 as the replenished liquid Fs. Ru. Note that instead of the separated vapor Fv, the first low temperature fluid FL1 of liquid may be supplied to the high temperature heat consuming facility HF, and in this case, the gas-liquid separation is performed according to the absorption type heat exchange system 1A (see FIG. 2) The configuration around the vessel 16 can be omitted. The remaining configuration of the absorptive heat exchange system 5 is similar to that of the absorptive heat exchange system 1 (see FIG. 1).

上述のように構成された吸収式熱交換システム5では、吸収器10、蒸発器20、再生器30、凝縮器40における吸収液Sと冷媒Vとの吸収ヒートポンプサイクルは、吸収式熱交換システム1(図1参照)と同様に作用する。また、第1低温流体FL1の流路及び温度変化も、吸収式熱交換システム1(図1参照)と同様に作用する。高温流体FHは、再生器30の熱源管32から流出するまでは流路及び温度変化が吸収式熱交換システム1(図1参照)と同様に作用し、熱源管32から流出すると吸収式熱交換システム5の外に排出される。第2低温流体FL2は、凝縮器40の伝熱管42では、吸収式熱交換システム1(図1参照)と同様に昇温する。伝熱管42から流出した第2低温流体FL2は、第2低温排出管49を介して中温熱消費設備64に供給され、中温熱消費設備64で熱が利用されて温度が低下し、第2低温流入管48を介して再び伝熱管42に流入する。ここで、第2低温流入管48を流れる第2低温流体FL2が冷却塔CTを通るのは、典型的には、吸収ヒートポンプサイクルにおいて凝縮器40の伝熱管42へ流入する流体に許容される温度の上限値より高い温度の第2低温流体FL2(説明の便宜上、以降これを「高温第2低温流体FL2h」という。)が、中温熱消費設備64から流出する場合である。高温第2低温流体FL2hが冷却塔CTを通る場合、高温第2低温流体FL2hの全量がバイパス管48Bを経由して冷却塔CTに導入されて冷却された後に、高温第2低温流体FL2hは吸収ヒートポンプサイクルに対して適正な温度に減温された後に伝熱管42に導入される。又は、高温第2低温流体FL2hの一部がバイパス管48Bを経由して冷却塔CTに導入されて冷却され、バイパス管48Bを経由しなかった高温第2低温流体FL2hと合流した後に、高温第2低温流体FL2hは吸収ヒートポンプサイクルに対して適正な温度に減温されて伝熱管42に導入される。他方、中温熱消費設備64から流出する第2低温流体FL2の温度が、吸収ヒートポンプサイクルが許容する温度範囲内にある場合には、第2低温流体FL2は冷却塔CTを経由せずに伝熱管42に流入する。このように、吸収式熱交換システム5では、吸収式熱交換システム1(図1参照)で設けられているような熱交換部80を省略した比較的簡便な構成で、温度が異なる2つの流体を、中温熱消費設備64と例えば高温熱消費設備HFとに供給することができる。   In the absorption type heat exchange system 5 configured as described above, the absorption heat exchange system between the absorption liquid S and the refrigerant V in the absorber 10, the evaporator 20, the regenerator 30 and the condenser 40 is the absorption heat exchange system 1 It works in the same way as (see FIG. 1). Further, the flow path and temperature change of the first low temperature fluid FL1 also operate in the same manner as the absorption heat exchange system 1 (see FIG. 1). Until the high temperature fluid FH flows out of the heat source pipe 32 of the regenerator 30, the flow path and temperature change act in the same manner as the absorption heat exchange system 1 (see FIG. 1). It is discharged out of the system 5. The second low temperature fluid FL2 is heated in the heat transfer tube 42 of the condenser 40 in the same manner as the absorption heat exchange system 1 (see FIG. 1). The second low temperature fluid FL2 that has flowed out of the heat transfer pipe 42 is supplied to the medium heat consumption facility 64 through the second low temperature discharge pipe 49, and heat is used in the medium temperature heat consumption facility 64 to lower the temperature. It flows into the heat transfer pipe 42 again via the inflow pipe 48. Here, the temperature of the fluid flowing into the heat transfer tube 42 of the condenser 40 in the absorption heat pump cycle that the second low temperature fluid FL2 flowing through the second low temperature inlet tube 48 passes through the cooling tower CT is typically a temperature that is acceptable The second low temperature fluid FL2 (hereinafter, referred to as "high temperature second low temperature fluid FL2h" for convenience of explanation) having a temperature higher than the upper limit value of the above flows out from the medium temperature heat consuming facility 64. When the high temperature second low temperature fluid FL2h passes through the cooling tower CT, after the entire amount of the high temperature second low temperature fluid FL2h is introduced into the cooling tower CT via the bypass pipe 48B and cooled, the high temperature second low temperature fluid FL2h is absorbed After the temperature is reduced to an appropriate temperature for the heat pump cycle, it is introduced into the heat transfer tube. Alternatively, after a part of the high-temperature second low-temperature fluid FL2h is introduced into the cooling tower CT via the bypass pipe 48B and cooled, and joins with the high-temperature second low-temperature fluid FL2h not passing through the bypass pipe 48B, 2) The low temperature fluid FL2h is reduced to the appropriate temperature for the absorption heat pump cycle and introduced into the heat transfer tube 42. On the other hand, when the temperature of the second low-temperature fluid FL2 flowing out of the medium-temperature heat consuming facility 64 is within the temperature range that the absorption heat pump cycle allows, the second low-temperature fluid FL2 does not pass through the cooling tower CT and the heat transfer tube It flows into 42. As described above, in the absorption heat exchange system 5, two fluids having different temperatures with a relatively simple configuration in which the heat exchange unit 80 as provided in the absorption heat exchange system 1 (see FIG. 1) is omitted. Can be supplied to the medium heat consumption equipment 64 and, for example, the high temperature heat consumption equipment HF.

なお、図6に示す吸収式熱交換システム5が備える、加熱を必要とする物質を加熱する設備である中温熱消費設備64、バイパス管48B、冷却塔CT、開閉弁48v、バイパス開閉弁48Bvを、吸収式熱交換システム1(図1参照)、1A(図2参照)、2(図3参照)、3(図4参照)、4(図5参照)のそれぞれに設けて、これら(吸収式熱交換システム1(図1参照)乃至4(図5参照))を、温度が異なる2つの流体が中温熱消費設備64と高温熱消費設備HFとに供給されるように構成してもよい。このようにすると、加熱を必要とする物質を加熱する設備である中温熱消費設備64に、吸収式熱交換システム5の場合より温度が高い第2低温流体FL2を供給することができる。   The medium-temperature heat-consuming equipment 64, which is a facility for heating a substance requiring heating, the bypass pipe 48B, the cooling tower CT, the on-off valve 48v, and the bypass on-off valve 48Bv that are included in the absorption type heat exchange system 5 shown in FIG. , Absorption heat exchange systems 1 (see FIG. 1), 1A (see FIG. 2), 2 (see FIG. 3), 3 (see FIG. 4), 4 (see FIG. 5) The heat exchange systems 1 (see FIG. 1) to 4 (see FIG. 5) may be configured such that two fluids having different temperatures are supplied to the medium heat consumption facility 64 and the high temperature heat consumption facility HF. In this way, it is possible to supply the second low-temperature fluid FL2 whose temperature is higher than that of the absorption heat exchange system 5 to the medium-temperature heat-consuming equipment 64 which is a facility that heats a substance requiring heating.

以上の説明では、蒸発器20が満液式であるとしたが、流下液膜式であってもよい。蒸発器を流下液膜式とする場合は、蒸発器缶胴21内の上部に冷媒液Vfを供給する冷媒液供給装置を設け、満液式の場合に蒸発器缶胴21に接続することとしていた冷媒液管45の端部を、冷媒液供給装置に接続すればよい。また、蒸発器缶胴21の下部の冷媒液Vfを冷媒液供給装置に供給する配管及びポンプを設けてもよい。   In the above description, although the evaporator 20 is full liquid type, it may be falling liquid film type. In the case where the evaporator is a falling liquid film type, a refrigerant liquid supply device for supplying the refrigerant liquid Vf is provided in the upper part in the evaporator can barrel 21 and connected to the evaporator can barrel 21 in the case of full liquid type. The end portion of the refrigerant liquid pipe 45 may be connected to the refrigerant liquid supply device. Moreover, you may provide piping and a pump which supply the refrigerant liquid Vf of the lower part of the evaporator can-drum 21 to a refrigerant liquid supply apparatus.

以上の説明では、高温流体FHが、蒸発器20から再生器30に直列に流れることとしたが、再生器30から蒸発器20に直列に流れることとしてもよく、蒸発器20と再生器30とに並列に流れることとしてもよい。高温流体FHが、蒸発器20から再生器30に直列に流れることとすると吸収液Sが結晶する確率をより低減することができ、再生器30から蒸発器20に直列に流れることとするとCOPを向上させることができ、蒸発器20と再生器30とに並列に流れることとすると高温流体FHとして液体のみならず蒸気がより使いやすくなる。   In the above description, the high temperature fluid FH flows in series from the evaporator 20 to the regenerator 30. However, the high temperature fluid FH may flow in series from the regenerator 30 to the evaporator 20, and the evaporator 20 and the regenerator 30 Flow in parallel. If the high temperature fluid FH flows in series from the evaporator 20 to the regenerator 30, the probability that the absorbing liquid S crystallizes can be further reduced, and if it flows in series from the regenerator 30 to the evaporator 20, COP It can be improved, and if it flows in parallel to the evaporator 20 and the regenerator 30, not only the liquid but also the vapor becomes easier to use as the high temperature fluid FH.

1 吸収式熱交換システム
10 吸収器
16 気液分離器
20 蒸発器
30 再生器
40 凝縮器
64 中温熱消費設備
80 熱交換部
99 冷媒熱交換器
FL1 第1低温流体
FL2 第2低温流体
FH 高温流体
FHs 部分高温流体
Sa 濃溶液
Sw 希溶液
Ve 蒸発器冷媒蒸気
Vf 冷媒液
Vg 再生器冷媒蒸気
DESCRIPTION OF SYMBOLS 1 absorption type heat exchange system 10 absorber 16 gas-liquid separator 20 evaporator 30 regenerator 40 condenser 64 medium temperature heat consumption installation 80 heat exchange part 99 refrigerant heat exchanger FL1 1st low temperature fluid FL2 2nd low temperature fluid FH high temperature fluid FHs Partial high temperature fluid Sa Concentrated solution Sw Dilute solution Ve Evaporator refrigerant vapor Vf refrigerant liquid Vg regenerator refrigerant vapor

Claims (8)

吸収液が冷媒の蒸気を吸収して濃度が低下した希溶液となる際に放出した吸収熱によって第1の被加熱流体の温度を上昇させる吸収部と;
冷媒の蒸気が凝縮して冷媒液となる際に放出した凝縮熱によって第2の被加熱流体の温度を上昇させる凝縮部と;
前記凝縮部から前記冷媒液を導入し、導入した前記冷媒液が蒸発して前記吸収部に供給される前記冷媒の蒸気となる際に必要な蒸発潜熱を加熱源流体から奪うことで前記加熱源流体の温度を低下させる蒸発部と;
前記吸収部から前記希溶液を導入し、導入した前記希溶液を加熱し前記希溶液から冷媒を離脱させて濃度が上昇した濃溶液とするのに必要な熱を加熱源流体から奪うことで前記加熱源流体の温度を低下させる再生部と;
前記凝縮部において温度が上昇した後の前記第2の被加熱流体と、前記凝縮部において温度が上昇した後の前記第2の被加熱流体の温度を上昇させる昇温流体と、の間で熱交換を行わせる熱交換部とを備え;
前記吸収液と前記冷媒との吸収ヒートポンプサイクルによって、前記吸収部は前記再生部よりも内部の圧力及び温度が高くなり、前記蒸発部は前記凝縮部よりも内部の圧力及び温度が高くなるように構成された;
吸収式熱交換システム。
An absorbing section that raises the temperature of the first fluid to be heated by the absorption heat released when the absorbing liquid absorbs the vapor of the refrigerant and becomes a dilute solution having a lowered concentration;
A condensation unit that raises the temperature of the second fluid to be heated by the heat of condensation released when the refrigerant vapor condenses into a refrigerant liquid;
The heat source is introduced by introducing the refrigerant liquid from the condensation section, and removing the latent heat of vaporization necessary when the introduced refrigerant liquid evaporates and becomes vapor of the refrigerant supplied to the absorption section. An evaporation unit for reducing the temperature of the fluid;
The dilute solution is introduced from the absorbing portion, and the introduced dilute solution is heated to separate the refrigerant from the dilute solution to thereby remove heat necessary for forming a concentrated solution having an increased concentration from the heating source fluid. A regeneration unit for reducing the temperature of the heating source fluid;
Heat is generated between the second fluid to be heated after the temperature rises in the condenser and the temperature raising fluid to raise the temperature of the second fluid after the temperature rises in the condensation Equipped with a heat exchange unit to carry out replacement;
By the absorption heat pump cycle of the absorption liquid and the refrigerant, the pressure and temperature of the absorption unit are higher than that of the regeneration unit, and the pressure and temperature of the evaporation unit are higher than that of the condensation unit. Configured;
Absorption heat exchange system.
前記吸収部で加熱された前記第1の被加熱流体を導入して前記第1の被加熱流体の液体と蒸気とに分離する気液分離器を備える;
請求項1に記載の吸収式熱交換システム。
A gas-liquid separator that introduces the first heated fluid heated by the absorption unit and separates the first heated fluid into liquid and vapor;
The absorption heat exchange system according to claim 1.
前記熱交換部は、前記蒸発部において温度が低下した後の前記加熱源流体及び前記再生部において温度が低下した後の前記加熱源流体の少なくとも一方を前記昇温流体として導入するように構成された;
請求項1又は請求項2に記載の吸収式熱交換システム。
The heat exchange unit is configured to introduce at least one of the heat source fluid after the temperature is lowered in the evaporation unit and the heat source fluid after the temperature is lowered in the regeneration unit as the temperature rising fluid. T;
The absorption heat exchange system according to claim 1 or 2.
前記熱交換部は、前記蒸発部及び前記再生部に導入される前の前記加熱源流体から分岐された一部の前記加熱源流体を前記昇温流体として導入するように構成された;
請求項1乃至請求項3のいずれか1項に記載の吸収式熱交換システム。
The heat exchange unit is configured to introduce a part of the heat source fluid branched from the heat source fluid before being introduced into the evaporation unit and the regeneration unit as the temperature rising fluid;
The absorption-type heat exchange system according to any one of claims 1 to 3.
前記熱交換部から流出した前記第2の被加熱流体の温度が所定の温度になるように、前記蒸発部及び再生部に流入する前記加熱源流体の流量と前記熱交換部に流入する前記加熱源流体の流量との比が設定された;
請求項4に記載の吸収式熱交換システム。
The flow rate of the heat source fluid flowing into the evaporation unit and the regeneration unit and the heating flowing into the heat exchange unit so that the temperature of the second heated fluid flowing out from the heat exchange unit becomes a predetermined temperature The ratio to the flow rate of the source fluid has been set;
The absorption heat exchange system according to claim 4.
前記蒸発部及び前記再生部に導入される前の前記加熱源流体から分岐された一部の前記加熱源流体を前記第1の被加熱流体として前記吸収部に導入するように構成された;
請求項1乃至請求項5のいずれか1項に記載の吸収式熱交換システム。
The heating source fluid branched from the heating source fluid before being introduced into the evaporation unit and the regeneration unit is introduced into the absorption unit as the first heated fluid;
The absorption-type heat exchange system according to any one of claims 1 to 5.
前記凝縮部から前記蒸発部に搬送される前記冷媒液と、前記熱交換部から流出した前記昇温流体と、の間で熱交換を行わせる冷媒熱交換器を備える;
請求項1乃至請求項6のいずれか1項に記載の吸収式熱交換システム。
A refrigerant heat exchanger for performing heat exchange between the refrigerant liquid transported from the condensation section to the evaporation section and the temperature-rising fluid flowing out of the heat exchange section;
The absorption-type heat exchange system according to any one of claims 1 to 6.
吸収液が冷媒の蒸気を吸収して濃度が低下した希溶液となる際に放出した吸収熱によって第1の被加熱流体の温度を上昇させる吸収部と;
冷媒の蒸気が凝縮して冷媒液となる際に放出した凝縮熱によって第2の被加熱流体の温度を上昇させる凝縮部と;
前記凝縮部から前記冷媒液を導入し、導入した前記冷媒液が蒸発して前記吸収部に供給される前記冷媒の蒸気となる際に必要な蒸発潜熱を加熱源流体から奪うことで前記加熱源流体の温度を低下させる蒸発部と;
前記吸収部から前記希溶液を導入し、導入した前記希溶液を加熱し前記希溶液から冷媒を離脱させて濃度が上昇した濃溶液とするのに必要な熱を加熱源流体から奪うことで前記加熱源流体の温度を低下させる再生部とを備え;
前記吸収液と前記冷媒との吸収ヒートポンプサイクルによって、前記吸収部は前記再生部よりも内部の圧力及び温度が高くなり、前記蒸発部は前記凝縮部よりも内部の圧力及び温度が高くなるように構成され;
さらに、前記凝縮部から流出した前記第2の被加熱流体を導入し、前記第2の被加熱流体が保有する熱で加熱を必要とする物質を加熱する中温熱消費設備を備える;
吸収式熱交換システム。
An absorbing section that raises the temperature of the first fluid to be heated by the absorption heat released when the absorbing liquid absorbs the vapor of the refrigerant and becomes a dilute solution having a lowered concentration;
A condensation unit that raises the temperature of the second fluid to be heated by the heat of condensation released when the refrigerant vapor condenses into a refrigerant liquid;
The heat source is introduced by introducing the refrigerant liquid from the condensation section, and removing the latent heat of vaporization necessary when the introduced refrigerant liquid evaporates and becomes vapor of the refrigerant supplied to the absorption section. An evaporation unit for reducing the temperature of the fluid;
The dilute solution is introduced from the absorbing portion, and the introduced dilute solution is heated to separate the refrigerant from the dilute solution to thereby remove heat necessary for forming a concentrated solution having an increased concentration from the heating source fluid. And a regeneration unit for reducing the temperature of the heating source fluid;
By the absorption heat pump cycle of the absorption liquid and the refrigerant, the pressure and temperature of the absorption unit are higher than that of the regeneration unit, and the pressure and temperature of the evaporation unit are higher than that of the condensation unit. Configured;
Furthermore, the medium temperature heat consuming facility is provided which introduces the second heated fluid that has flowed out of the condensing unit and heats a substance that requires heating with the heat held by the second heated fluid;
Absorption heat exchange system.
JP2017201151A 2017-10-17 2017-10-17 Absorption heat exchange system Active JP7015671B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2017201151A JP7015671B2 (en) 2017-10-17 2017-10-17 Absorption heat exchange system
CN201821567487.1U CN209263411U (en) 2017-10-17 2018-09-25 Absorption type heat exchange system
CN201811113922.8A CN109668351A (en) 2017-10-17 2018-09-25 Absorption type heat exchange system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017201151A JP7015671B2 (en) 2017-10-17 2017-10-17 Absorption heat exchange system

Publications (2)

Publication Number Publication Date
JP2019074271A true JP2019074271A (en) 2019-05-16
JP7015671B2 JP7015671B2 (en) 2022-02-03

Family

ID=66142396

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017201151A Active JP7015671B2 (en) 2017-10-17 2017-10-17 Absorption heat exchange system

Country Status (2)

Country Link
JP (1) JP7015671B2 (en)
CN (2) CN109668351A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7015671B2 (en) * 2017-10-17 2022-02-03 荏原冷熱システム株式会社 Absorption heat exchange system
CN114322354B (en) * 2021-12-20 2023-07-28 安徽普泛能源技术有限公司 Absorption type circulating refrigeration system and process thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006207883A (en) * 2005-01-26 2006-08-10 Ebara Corp Absorption heat pump
JP2007309555A (en) * 2006-05-17 2007-11-29 Hitachi Appliances Inc Absorption-type heat pump
JP2008202853A (en) * 2007-02-20 2008-09-04 Osaka Gas Co Ltd Absorption type heat pump system
JP2015183967A (en) * 2014-03-25 2015-10-22 荏原冷熱システム株式会社 absorption heat pump
CN107144042A (en) * 2017-06-30 2017-09-08 荏原冷热系统(中国)有限公司 A kind of second-kind absorption-type heat pump

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000081253A (en) * 1998-09-04 2000-03-21 Ebara Corp Absorptive freezer
CN201218628Y (en) * 2008-05-19 2009-04-08 张茂勇 Cold-hot bidirectional and simultaneous utilizing dual- effect type third-kind absorption heat pump
JP5086947B2 (en) * 2008-09-08 2012-11-28 大阪瓦斯株式会社 Type 2 absorption heat pump system
CN105987538B (en) * 2016-04-14 2019-03-08 中国科学院工程热物理研究所 The composite absorption heat pump of middle temperature-heat-source driving dual temperature heat output
JP7015671B2 (en) * 2017-10-17 2022-02-03 荏原冷熱システム株式会社 Absorption heat exchange system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006207883A (en) * 2005-01-26 2006-08-10 Ebara Corp Absorption heat pump
JP2007309555A (en) * 2006-05-17 2007-11-29 Hitachi Appliances Inc Absorption-type heat pump
JP2008202853A (en) * 2007-02-20 2008-09-04 Osaka Gas Co Ltd Absorption type heat pump system
JP2015183967A (en) * 2014-03-25 2015-10-22 荏原冷熱システム株式会社 absorption heat pump
CN107144042A (en) * 2017-06-30 2017-09-08 荏原冷热系统(中国)有限公司 A kind of second-kind absorption-type heat pump

Also Published As

Publication number Publication date
JP7015671B2 (en) 2022-02-03
CN109668351A (en) 2019-04-23
CN209263411U (en) 2019-08-16

Similar Documents

Publication Publication Date Title
JP3883838B2 (en) Absorption refrigerator
CN106482381B (en) The steam type first-class lithium bromide absorption type heat pump unit of carrying vapour direct heating
JP2019074271A (en) Absorption type heat exchange system
JP2010276304A (en) Steam generation system
JP2006177570A (en) Absorption heat pump
CN108180670B (en) Absorption heat exchange system
JP6896968B2 (en) Absorption heat exchange system
JP2012202589A (en) Absorption heat pump apparatus
JP6903852B2 (en) Absorption heat exchange system
KR102165443B1 (en) Absoption chiller
JP4148830B2 (en) Single double effect absorption refrigerator
CN210751315U (en) Air source multiple-effect vacuum evaporation system applied to cutting fluid concentration
CN107388617A (en) Fume hot-water compound type lithium bromide absorption type refrigeration unit
CN209801851U (en) Absorption heat exchange system
JP5785800B2 (en) Vapor absorption refrigerator
JP6364238B2 (en) Absorption type water heater
JP6907438B2 (en) Absorption heat exchange system
CN107477907A (en) Fume hot-water compound type lithium bromide absorption type handpiece Water Chilling Units
CN112402995B (en) Air source multi-effect vacuum evaporation system applied to cutting fluid concentration
JP2006064346A (en) Single and double effect absorption refrigerating machine and its operation control method
JPH0445363A (en) Absorption refrigerating and heating hot water supply machine
CN107504710A (en) Fume hot-water single-double effect compound type lithium bromide absorption type handpiece Water Chilling Units
JPS5829424Y2 (en) absorption cold water machine
JP4334319B2 (en) Operation method of absorption refrigerator
JP4260099B2 (en) Absorption refrigerator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200803

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20200803

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210422

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210518

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210707

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211109

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211216

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220104

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220124