JPS5812507B2 - Hybrid type absorption heat pump - Google Patents

Hybrid type absorption heat pump

Info

Publication number
JPS5812507B2
JPS5812507B2 JP52026383A JP2638377A JPS5812507B2 JP S5812507 B2 JPS5812507 B2 JP S5812507B2 JP 52026383 A JP52026383 A JP 52026383A JP 2638377 A JP2638377 A JP 2638377A JP S5812507 B2 JPS5812507 B2 JP S5812507B2
Authority
JP
Japan
Prior art keywords
evaporator
condenser
pressure
absorber
pressure stage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP52026383A
Other languages
Japanese (ja)
Other versions
JPS53114550A (en
Inventor
斉藤昭三
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Original Assignee
Ebara Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Corp filed Critical Ebara Corp
Priority to JP52026383A priority Critical patent/JPS5812507B2/en
Publication of JPS53114550A publication Critical patent/JPS53114550A/en
Publication of JPS5812507B2 publication Critical patent/JPS5812507B2/en
Expired legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明は高温水と冷水とを同時に生成することが可能な
ハイブリッド型吸収式ヒートポンプに関するものである
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a hybrid absorption heat pump capable of simultaneously producing high temperature water and cold water.

従来吸収冷凍サイクルにおいて冷房と同時に温水を得た
い場合は、例えば発生器において発生する蒸気の熱を利
用しての温水の生成を凝縮器や別途の専用温水熱交換器
などで行なわれていたが発生器での溶液加熱の熱源とし
て温水あるいは蒸気などを用いる場合、得られる温水の
温度は熱源温水あるいは蒸気などの温度よりも低く、特
に最近省エネルギー上、公害防止上問題になっている発
電所の温排水などの比較的低温の熱源温水を従来の吸収
式ヒートポンプに用いる場合には得られる温水の温度が
低く利用価値がないものであった。
Conventionally, in an absorption refrigeration cycle, if you wanted to obtain hot water at the same time as cooling, you would use a condenser or a separate dedicated hot water heat exchanger to generate hot water using the heat of steam generated in a generator, for example. When hot water or steam is used as a heat source for heating a solution in a generator, the temperature of the hot water obtained is lower than the temperature of the heat source hot water or steam, which is particularly important in power plants, which have recently become a problem in terms of energy conservation and pollution prevention. When using relatively low-temperature heat source hot water such as heated wastewater in a conventional absorption heat pump, the temperature of the hot water obtained is so low that it has no value.

これを解決するために、中間圧の発生器と凝縮器の高圧
側に吸収器と蒸発器を含むヒートポンプサイクル、低圧
側に吸収器と蒸発器を含む冷凍サイクルを備え比較的低
温の熱源温水を用いて熱源温水より高温水の生成と、冷
却水より低温の冷水の生成とを同時に行なうことができ
かつ一体構成で構造が極めて簡単なハイブリッド型吸収
式ヒートポンプが考えられているが、本発明はその改良
に係わるものである。
To solve this problem, we installed a heat pump cycle that includes an absorber and an evaporator on the high-pressure side of an intermediate-pressure generator and a condenser, and a refrigeration cycle that includes an absorber and evaporator on the low-pressure side. A hybrid absorption heat pump has been considered, which can simultaneously generate water at a higher temperature than the heat source hot water and cold water at a lower temperature than the cooling water, and has an extremely simple structure with an integrated structure. This is related to its improvement.

即ち、本発明の改良前のものの例を第1図に示して説明
すれば、Gは発生器、Cは凝縮器で発生器Gの方が僅か
に高いがほぼ同圧(これを中間圧と称す)に保たれてい
る。
That is, to explain an example before the improvement of the present invention as shown in FIG. ) is maintained.

AHは高圧段吸収器、EHは高圧段蒸発器であり中間圧
より高圧、ALは低圧段吸収器、ELは低圧段蒸発器で
あり中間圧より低圧となっている。
AH is a high-pressure stage absorber, EH is a high-pressure stage evaporator, and the pressure is higher than the intermediate pressure. AL is a low-pressure stage absorber, and EL is a low-pressure stage evaporator, which is lower than the intermediate pressure.

溶液側サイクルについては低圧段吸収器ALは溶液ポン
プ1、中間濃度溶液管2を経て高圧段吸収器AHと接続
し、高圧段吸収器AHは稀溶液管3、弁4を経て発生器
Gと接続し、発生器Gは濃溶液管5、弁6を経て低圧吸
収器ALに接続している。
Regarding the solution side cycle, the low pressure stage absorber AL is connected to the high pressure stage absorber AH via the solution pump 1 and intermediate concentration solution pipe 2, and the high pressure stage absorber AH is connected to the generator G via the dilute solution pipe 3 and valve 4. The generator G is connected to the low pressure absorber AL via a concentrated solution pipe 5 and a valve 6.

冷媒側サイクルについては、低圧蒸発器ELは冷媒ポン
プ7、冷媒管8、弁9,10を経て高圧蒸発器EHに接
続している。
Regarding the refrigerant side cycle, the low pressure evaporator EL is connected to the high pressure evaporator EH via a refrigerant pump 7, a refrigerant pipe 8, and valves 9 and 10.

また低圧段蒸発器EL内の冷媒液を循環せしめるために
弁11を有する分岐管12が冷媒管8に接続している。
Further, a branch pipe 12 having a valve 11 is connected to the refrigerant pipe 8 in order to circulate the refrigerant liquid in the low-pressure stage evaporator EL.

凝縮器Cと低圧蒸発器ELとは減圧弁29、戻り管30
により接続している。
The condenser C and the low pressure evaporator EL have a pressure reducing valve 29 and a return pipe 30.
Connected by

溶液側と冷媒側とを接続するものとして高圧段吸収器A
Hと高圧段蒸発器EHとを接続する蒸気管13、発生器
Gと凝縮器Cとを接続する蒸気管14、低圧段吸収器A
Lと低圧段蒸発器ELとを接続する蒸気管15とが備え
られている。
High pressure stage absorber A connects the solution side and refrigerant side.
Steam pipe 13 connecting H and high pressure stage evaporator EH, steam pipe 14 connecting generator G and condenser C, and low pressure stage absorber A
A steam pipe 15 is provided to connect L and the low pressure stage evaporator EL.

外部との熱の受授の関係としては熱源としての温水管1
6,17がそれぞれ発生器G、高圧段蒸発器EHに装備
されており、温水管16の入口部18には弁19を有し
三方弁20への分岐を有する入口管21が接続され出口
部22は三方弁20と接続し、三方弁20は他の三方弁
23と連絡管24により接続している。
Hot water pipe 1 as a heat source in relation to receiving and receiving heat from the outside
6 and 17 are respectively installed in the generator G and the high-pressure stage evaporator EH, and an inlet pipe 21 having a valve 19 and a branch to a three-way valve 20 is connected to the inlet part 18 of the hot water pipe 16, and the outlet part 22 is connected to a three-way valve 20, and the three-way valve 20 is connected to another three-way valve 23 through a communication pipe 24.

三方弁23の一つの口は温水管17の入口部26に、他
の口は出口部27に連なる出口管28に接続してさらに
熱交換器Xsに接続している。
One port of the three-way valve 23 is connected to the inlet section 26 of the hot water pipe 17, and the other port is connected to an outlet pipe 28 connected to the outlet section 27 and further connected to the heat exchanger Xs.

凝縮器Cと低圧段吸収器ALには冷却水を通ずる冷却水
管3L32が装備されている。
The condenser C and the low-pressure stage absorber AL are equipped with a cooling water pipe 3L32 through which cooling water flows.

冷却水管31の出口は熱交換器Xwに接続している。The outlet of the cooling water pipe 31 is connected to the heat exchanger Xw.

高圧段吸収器AHには所要の高温水を得るための高温水
管33が、低圧段蒸発器ELには所要の冷水を得るため
の冷水管34が装備されている。
The high pressure stage absorber AH is equipped with a high temperature water pipe 33 for obtaining the required high temperature water, and the low pressure stage evaporator EL is equipped with a cold water pipe 34 for obtaining the required cold water.

制御関係としては高温水関係としては高温水管33の出
口に温度検出器35が備えられ三方弁23と信号切換器
25を経て弁20を制御する。
As for the control related to high temperature water, a temperature detector 35 is provided at the outlet of the high temperature water pipe 33 and controls the valve 20 via the three-way valve 23 and the signal switch 25.

冷水管34の出口には温度検出器36が設けられ、信号
切換器25を経て三方弁20を制御する。
A temperature detector 36 is provided at the outlet of the cold water pipe 34 and controls the three-way valve 20 via a signal switch 25.

37 ,3Bは液面検出計でそれぞれ弁10あるいは弁
6を制御する。
37 and 3B are liquid level detectors that respectively control the valve 10 or the valve 6.

熱交換器Xs,Xwにより冷媒が加熱され熱の有効利用
をはかり効率が増大する。
The refrigerant is heated by the heat exchangers Xs and Xw, and the efficiency is increased by effectively utilizing the heat.

本従来例の作用、効果を説明するに、熱源温水の系統は
、外部から例えば発電所の排温水が入口管21に供給さ
れ弁19は開き、三方弁20は入口管21側は閉じ出口
部22と連絡管24とが連通する状態に置かれ、弁25
は閉じ、三方弁23は連絡管24と入口部26とが連通
する状態に置かれ、熱源温水は温水管16、連絡管24
、温水管17を経て出口管28より外部に排出されてい
る。
To explain the operation and effect of this conventional example, in a heat source hot water system, waste water from a power plant, for example, is supplied from the outside to the inlet pipe 21, the valve 19 is opened, and the three-way valve 20 is closed on the inlet pipe 21 side and the outlet part is 22 and the communication pipe 24 are placed in communication with each other, and the valve 25
is closed, the three-way valve 23 is placed in a state where the communication pipe 24 and the inlet part 26 communicate with each other, and the heat source hot water is connected to the hot water pipe 16 and the communication pipe 24.
, and is discharged to the outside from the outlet pipe 28 via the hot water pipe 17.

勿論、温水管16,17には直列でなく並列に温水を通
水することあるいは別個の温水源から別々に通水するこ
とも可能である。
Of course, hot water can be passed through the hot water pipes 16 and 17 not in series but in parallel, or separately from separate hot water sources.

低圧段蒸発器ELの冷媒液は冷媒ポンプ7により冷媒管
8、弁9,10を経て高圧段蒸発器EHに入り温水管1
7の温水により加熱されて蒸発し蒸気管13を経て高圧
段吸収器AHに入る。
The refrigerant liquid in the low pressure stage evaporator EL enters the high pressure stage evaporator EH via the refrigerant pipe 8 and valves 9 and 10 by the refrigerant pump 7 and into the hot water pipe 1.
It is heated and evaporated by the hot water of step 7, and enters the high pressure stage absorber AH through the steam pipe 13.

一方低圧段吸収器ALから中間濃度溶液は溶液ポンプ1
、中間濃度溶液管2を通り低圧段および高圧段熱交換器
XLおよびxHを経て加熱され高圧段吸収器AHに入り
前述の冷媒蒸気を吸収する。
On the other hand, the intermediate concentration solution is transferred from the low pressure stage absorber AL to the solution pump 1.
, passes through the intermediate concentration solution tube 2, passes through the low-pressure stage and high-pressure stage heat exchangers XL and xH, is heated, enters the high-pressure stage absorber AH, and absorbs the above-mentioned refrigerant vapor.

この際吸収熱により沸点上昇に相当する温度まで溶液が
加熱され高温水管33を加熱し、熱源温水より高い温度
の高温水を得ることができる。
At this time, the solution is heated by the absorbed heat to a temperature corresponding to an increase in the boiling point, heating the high temperature water pipe 33, and high temperature water having a higher temperature than the heat source hot water can be obtained.

冷媒を吸収して希薄となった稀溶液は稀溶液管3、弁を
経て発生器Gに入り、温水管16の温水により加熱され
て蒸気を発生し濃縮され、濃溶液は濃溶液管5、弁6を
経て低圧段吸収器ALに入り冷却水管32の冷却水に冷
やされ再び溶液ポンプ1にて送られサイクルを繰り返す
The dilute solution that has absorbed the refrigerant enters the generator G through the dilute solution pipe 3 and the valve, is heated by hot water in the hot water pipe 16, generates steam, and is concentrated, and the concentrated solution passes through the dilute solution pipe 5, The solution enters the low-pressure stage absorber AL via the valve 6, is cooled by the cooling water in the cooling water pipe 32, and is sent again by the solution pump 1 to repeat the cycle.

一方発生器Gにて発生した冷媒蒸気は蒸気管14を経て
凝縮器Cに達し冷却水管31の冷却水により冷やされて
凝縮し戻り管30減圧弁29を経て低圧段蒸発器ELに
入り冷水管34の冷水の熱により一部蒸発しその蒸気は
、蒸発管15を経て低圧段吸収器ALに入り溶液に吸収
される。
On the other hand, the refrigerant vapor generated in the generator G passes through the steam pipe 14, reaches the condenser C, is cooled and condensed by the cooling water in the cooling water pipe 31, passes through the return pipe 30, pressure reducing valve 29, enters the low pressure stage evaporator EL, and enters the chilled water pipe. Part of the vapor is evaporated by the heat of the cold water 34, and the vapor enters the low pressure stage absorber AL through the evaporation pipe 15 and is absorbed into the solution.

冷水管34内の冷水は冷媒蒸発により熱を奪われて低温
となり、出口からは冷却水より低温の冷水を得ることが
できる。
The cold water in the cold water pipe 34 loses heat by evaporation of the refrigerant and becomes low temperature, and cold water at a lower temperature than the cooling water can be obtained from the outlet.

冷媒ポンブ7により送られる冷媒のうち一部は分岐管1
2に入り再び低圧段蒸発器EI,に戻り蒸発が促進され
る。
Some of the refrigerant sent by the refrigerant pump 7 is transferred to the branch pipe 1.
2 and returns to the low pressure stage evaporator EI, where evaporation is promoted.

負荷の変動その他の熱的変動があった場合は出力端に設
けられた温度検出器35,36により検知し、三方弁2
0,23を操作し温水管16,17を通る熱源温水を制
御し高温水および冷水の温度を所要の値に保つようにな
っている。
If there is a load change or other thermal change, it is detected by the temperature detectors 35 and 36 installed at the output end, and the three-way valve 2
0 and 23 to control the heat source hot water passing through the hot water pipes 16 and 17 to maintain the temperatures of high temperature water and cold water at required values.

しかし、上記の如き、第1図で示される従来のものの例
においては、凝縮器Cで凝縮した冷媒液はすべて低圧段
蒸発器ELに送り、ここから必要個所に分配していたが
、この低圧段蒸発器ELは冷媒の温度レベルが冷媒サイ
クル中で最も低く、冷媒液にとっては最も低エネルギー
の個所である。
However, in the conventional example shown in Fig. 1 as described above, all of the refrigerant liquid condensed in the condenser C is sent to the low-pressure stage evaporator EL, from where it is distributed to the necessary locations; The stage evaporator EL has the lowest refrigerant temperature level in the refrigerant cycle and is the lowest energy point for the refrigerant liquid.

このため、凝縮器Cから低圧段蒸発器ELに冷媒液を送
ると、まずそれ自身の液温を下げ低エネルギー状態とな
るためフラシシュして冷媒蒸気を発生し、低圧段吸収器
ALの負荷を増大している。
Therefore, when the refrigerant liquid is sent from the condenser C to the low-pressure stage evaporator EL, it first lowers its own liquid temperature and enters a low-energy state, so it flushes and generates refrigerant vapor, reducing the load on the low-pressure stage absorber AL. It is increasing.

この低温となった冷媒液はポンプで高圧段蒸発器EHと
いう高い温度のエネルギー状態を要求される個所に揚液
されるので、他の熱源からの加熱により高圧段蒸発器E
Hに送られる予熱のための損失を防止する必要がある。
This low-temperature refrigerant liquid is pumped to the high-pressure evaporator EH, a location that requires a high-temperature energy state, and is heated by another heat source to the high-pressure evaporator EH.
It is necessary to prevent losses due to preheating sent to H.

また、発生器Gからの過熱冷媒は高温の溶液中から分離
されるためかなり高温の状態で凝縮器Cに導かれ、その
まま凝縮器Cの冷却水に捨られている。
Further, since the superheated refrigerant from the generator G is separated from the high-temperature solution, it is led to the condenser C in a considerably high temperature state, and is discarded as it is into the cooling water of the condenser C.

従来のものは上記の如き欠点を有するものであるが、本
発明は、凝縮器で凝縮した冷媒液は低圧蒸発器および高
圧蒸発器にそれぞれの所要量を配分して直接に送ること
により、従来のものの上記の欠点を除き、蒸発器におけ
るフラッシュ損失を最小とすることができるハイブリッ
ド型吸収式ヒートポンプを提供することを目的とするも
のである。
The conventional method has the above-mentioned drawbacks, but the present invention improves the conventional method by distributing the required amount of the refrigerant liquid condensed in the condenser to the low-pressure evaporator and the high-pressure evaporator and sending them directly. The object of the present invention is to provide a hybrid absorption heat pump capable of minimizing flash losses in the evaporator, while eliminating the above-mentioned drawbacks of the present invention.

また、本発明は、高圧側蒸発器への冷媒液供給は低圧段
蒸発器からでなく、凝縮器から比較高温度の高い冷媒液
を直接に高圧段蒸発器に送ることにより予熱の必要がな
いようなハイブリッド型吸収式ヒートポンプを提供する
ことも第2の目的とするものである。
In addition, in the present invention, the refrigerant liquid is supplied to the high-pressure side evaporator not from the low-pressure stage evaporator, but by sending relatively high-temperature refrigerant liquid directly from the condenser to the high-pressure stage evaporator, thereby eliminating the need for preheating. A second objective is to provide such a hybrid absorption heat pump.

本発明は、吸収器、発生器、蒸発器、凝縮器、稀濃溶液
熱交換器およびこれらを接続する流体径路を有し、発生
器と凝縮器とを中間圧に保ち、これより高圧に保持され
た少くとも一段の吸収器および蒸発器を備え、かつ上記
中間圧より低圧に保持された少くとも一段の吸収器およ
び蒸発器を備え、発生器と高圧段蒸発器に熱源として温
水などの加熱媒体を導びき、凝縮器と低圧段吸収器に冷
却水などの冷却媒体を導びき、前記熱源よりも高温の高
温水などの熱エネルギー源の生成と、冷却水などの冷却
媒体よりも低温の冷水などの冷熱源の生成とを同時に又
は必要に応じて何れか一方の生成を行なうことができる
ようにしたハイブリッド型吸収式ヒートポンプにおいて
、前記凝縮器から流出する冷媒の一部を直接前記高圧段
蒸発器に導き、前記低圧段蒸発器に流入する冷媒流量を
必要最少限とするよう制御することを特徴とするハイブ
リッド型吸収式ヒートポンプである。
The present invention has an absorber, a generator, an evaporator, a condenser, a dilute solution heat exchanger, and a fluid path connecting these, and maintains the generator and the condenser at an intermediate pressure, and maintains the generator and the condenser at a higher pressure. The generator and the high-pressure stage evaporator are provided with at least one stage of absorber and evaporator which are maintained at a pressure lower than the above-mentioned intermediate pressure. A cooling medium such as cooling water is introduced into a condenser and a low-pressure stage absorber to produce a thermal energy source such as high-temperature water that is hotter than the heat source and a cooling medium that is lower temperature than the cooling medium such as cooling water. In a hybrid absorption heat pump that can generate a cold heat source such as cold water or either one at the same time or as needed, a portion of the refrigerant flowing out from the condenser is directly supplied to the high pressure stage. This hybrid absorption heat pump is characterized in that the flow rate of refrigerant introduced into the evaporator and flowing into the low-pressure stage evaporator is controlled to the minimum necessary.

本発明を実施例につき図面を用いて説明すれは、第2図
に示す例はおおむね第1図と同様な構成であり、同一符
号の部分は同一の名称、構成、機能を有するものである
が、凝縮器Cからの冷媒液は、冷媒ポンプ39により冷
媒管8を経て直接高圧段蒸発器EHに送られる分と、重
力及び圧力差により低圧段蒸発器ELに送られる分とに
分けられ、冷媒ポンプ39の流量制御、弁9又は10の
流量制御により、高圧段蒸発器EHと低圧段蒸発器EL
への冷媒液の分配の割合を変化せしめて、低圧段蒸発器
ELへの冷媒量を必要最少限となして蒸発器におけるフ
ラッシュ損失を最小に抑えることができる。
To explain the present invention with reference to the drawings, the example shown in FIG. 2 has roughly the same configuration as that in FIG. , the refrigerant liquid from the condenser C is divided by a refrigerant pump 39 into a portion sent directly to the high-pressure stage evaporator EH via the refrigerant pipe 8, and a portion sent to the low-pressure stage evaporator EL due to gravity and pressure difference, By controlling the flow rate of the refrigerant pump 39 and the flow rate of the valve 9 or 10, the high pressure stage evaporator EH and the low pressure stage evaporator EL
By changing the distribution ratio of refrigerant liquid to the low-pressure stage evaporator EL, the amount of refrigerant to the low-pressure stage evaporator EL can be kept to the minimum necessary, thereby minimizing flash loss in the evaporator.

以下種々の実施例における冷媒サイクルにつき説明する
Refrigerant cycles in various embodiments will be explained below.

第3図は、第2図における冷媒サイクルを簡略化した系
統図である。
FIG. 3 is a simplified system diagram of the refrigerant cycle in FIG. 2.

第4図は別の実施例を示し、冷媒ポンプ39によって送
り出される冷媒液を高圧段蒸発器EH及び低圧段蒸発器
ELに分配するようにしたものである。
FIG. 4 shows another embodiment in which the refrigerant liquid sent out by the refrigerant pump 39 is distributed to the high pressure stage evaporator EH and the low pressure stage evaporator EL.

その場合必要に応じ弁9及び11の一方又は両方を設け
て分配の割合を調節することもできる。
In that case, one or both of valves 9 and 11 may be provided to adjust the distribution ratio, if necessary.

この種の弁は以後の例には特に示していないが、設けれ
ば配分比及び流量の調節が容易となる。
Although this type of valve is not particularly shown in the examples below, if provided, the distribution ratio and flow rate can be easily adjusted.

第5図は別の実施例を示し、高圧段蒸発器EHに対し、
圧力差に打勝つ重力落差がとれるような高さに凝縮器C
を設けたもので、前述の例の効果を有するほか、特に冷
媒ポンプを必要とせずに冷媒液を供給することができる
FIG. 5 shows another embodiment, in which for the high pressure stage evaporator EH,
Condenser C is placed at a height that allows for a gravitational drop that overcomes the pressure difference.
In addition to having the effects of the above-mentioned example, the refrigerant liquid can be supplied without particularly requiring a refrigerant pump.

第6図は別の実施例を示し、高圧段蒸発器BHの冷媒を
冷媒ポンプ39により冷媒管40 ,41.8を経て循
環させてスプレーせしめ、その循環系路の中にエゼクタ
43を設け、その吸引側に凝縮器Cからの冷媒管42を
接続したものである。
FIG. 6 shows another embodiment, in which the refrigerant of the high-pressure stage evaporator BH is circulated and sprayed by a refrigerant pump 39 through refrigerant pipes 40, 41.8, and an ejector 43 is provided in the circulation path. A refrigerant pipe 42 from the condenser C is connected to the suction side.

この循環系路の流れによって凝縮器C内の冷媒は高圧段
蒸発器EHに供されると共に、圧力差及び重力により低
圧段蒸発器ELにも分配される。
Due to the flow in this circulation path, the refrigerant in the condenser C is supplied to the high pressure stage evaporator EH, and is also distributed to the low pressure stage evaporator EL due to the pressure difference and gravity.

第7図は別の実施例を示し、第3図に示したものと同様
な構成のもので、凝縮器Cからの冷媒液は高温の過熱冷
媒蒸気と熱交換器44にて熱交換を行ない熱回収が行な
われ、前述の実施例の有する効果のほかに、冷却水に無
駄に捨てられる排熱が回収され熱交率の向上がはかれる
FIG. 7 shows another embodiment, which has the same configuration as that shown in FIG. Heat recovery is performed, and in addition to the effects of the above-described embodiments, waste heat that would be wasted in the cooling water is recovered and the heat exchange coefficient is improved.

第8図は別の実施例を示し、第7図における熱交換器4
4が凝縮器C内に設けられたものである。
FIG. 8 shows another embodiment, in which the heat exchanger 4 in FIG.
4 is provided in the condenser C.

第10図は別の実施例で、第9図における熱交換器44
が凝縮器Cの中に設けられたものである。
FIG. 10 shows another embodiment of the heat exchanger 44 in FIG.
is installed in the condenser C.

上述の例について高圧段蒸発器EH又は低圧段発発器E
L何れの場合でもチューブの伝熱向上のために必要に応
じて第9図の如くスプレー用の冷媒ポンプ7及びスプレ
ー管46を設けて冷媒液を循環せしめてスプレーを行な
うことができる。
For the above examples, the high pressure stage evaporator EH or the low pressure stage generator E
In either case, in order to improve heat transfer in the tube, a spray refrigerant pump 7 and a spray pipe 46 may be provided as shown in FIG. 9 to circulate the refrigerant liquid and perform spraying, if necessary.

本発明により、低圧段蒸発器への冷媒流量を最適の量と
なして低圧側蒸発器におけるフラッシュ損失を最小に抑
え、冷媒の予熱のためのエネルギを節減し、運転効率の
よいハイブリッド型吸収式ヒートポンプを提供すること
ができ、実用上、省エネルギ上極めて大なる効果を有す
るものである。
The present invention optimizes the refrigerant flow rate to the low-pressure stage evaporator to minimize flash loss in the low-pressure side evaporator, saves energy for preheating the refrigerant, and is a hybrid absorption type with high operational efficiency. It is possible to provide a heat pump, which has an extremely large effect in terms of practical use and energy saving.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来のものの例のフローシート、第2図は本発
明の実施例のフローシート、第3図ないし第9図は本発
明のそれぞれ異なる実施例の冷媒サイクルのフローシー
トである。 G・・・・・・発生器、C・・・・・・凝縮器、AH・
・・・・高圧段吸収器、AL・・・・・・低圧段吸収器
、EH・・・・・・高圧段蒸発器、BL・・・・・・低
圧段蒸発器、xH・・・・・・高圧段熱交換器、xL・
・・・・・低圧段熱交換器、1・・・・・・溶液ポンプ
、2・・・・・・中間濃度溶液管、3・・・・・・稀溶
液管、4,6,9,10,11 ,19・・・・・・弁
、5・・・・・・濃溶液管、7,39・・・・・・冷媒
ポンプ、8 , 40 ,41,42・・・・・・冷媒
管、12・・・・・・分岐管、13,14,15・・・
・・・蒸気管、16,17・・・・・・温水管、18,
26・・・・・・入口部、20 , 23・・・・・・
三方弁、21・・・・・・入口管、22 , 27・・
・・・・出口部、24・・・・・・連絡管、28・・・
・・・出口管、29・・・・・・減圧弁、30・・・・
・・戻り管、31,32・・・・・・冷却水管、33・
・・・・・高温水管、34・・・・・・冷水管、35,
36・・・温度検出器、37 , 3B・・・・・・液
面検出計、39・・・・・・冷媒ポンプ、43・・・・
・・エゼクタ、44・・・・・・熱交換器、46・・・
・・・スプレー管。
FIG. 1 is a flow sheet of a conventional example, FIG. 2 is a flow sheet of an embodiment of the present invention, and FIGS. 3 to 9 are flow sheets of refrigerant cycles of different embodiments of the present invention. G... Generator, C... Condenser, AH.
...High pressure stage absorber, AL...Low pressure stage absorber, EH...High pressure stage evaporator, BL...Low pressure stage evaporator, xH...・・High pressure stage heat exchanger, xL・
...low pressure stage heat exchanger, 1 ... solution pump, 2 ... intermediate concentration solution tube, 3 ... dilute solution tube, 4, 6, 9, 10, 11, 19... Valve, 5... Concentrated solution tube, 7, 39... Refrigerant pump, 8, 40, 41, 42... Refrigerant Pipe, 12... Branch pipe, 13, 14, 15...
...Steam pipe, 16,17...Hot water pipe, 18,
26... Entrance section, 20, 23...
Three-way valve, 21...Inlet pipe, 22, 27...
...Exit part, 24...Connection pipe, 28...
... Outlet pipe, 29 ... Pressure reducing valve, 30 ...
... Return pipe, 31, 32 ... Cooling water pipe, 33.
...High temperature water pipe, 34...Cold water pipe, 35,
36...Temperature detector, 37, 3B...Liquid level detector, 39...Refrigerant pump, 43...
...Ejector, 44...Heat exchanger, 46...
...Spray tube.

Claims (1)

【特許請求の範囲】 1 吸収器、発生器、蒸発器、凝縮器、稀濃溶液熱交換
器およびこれらを接続する流体径路を有し、発生器と凝
縮器とを中間圧に保ち、これより高圧に保持された少く
とも一段の吸収器および蒸発器を備え、かつ上記中間圧
より低圧に保持された少くとも一段の吸収器および蒸発
器を備え、発生器と高圧段蒸発器に熱源として温水など
の加熱媒体を導びき、凝縮器と低圧段吸収器に冷却水な
どの冷却媒体を導びき、前記熱源よりも高温の高温水な
どの熱エネルギー源の生成と、冷却水などの冷却媒体よ
りも低温の冷水などの冷熱源の生成とを同時に又は必要
に応じて何れか一方の生成を行なうことができるように
したハイブリッド型吸収式ヒートポンプにおいて、 前記凝縮器から流出する冷媒の一部を直接前記高圧段蒸
発器に導き、前記低圧段蒸発器に流入する冷媒流量を必
要最少限とするよう制御することを特徴とするハイブリ
ッド型吸収式ヒートポンプ。 2 前記凝縮器を前記高圧段蒸発器より高所に配置し、
重力及び内圧差により冷媒液を供給するようにした特許
請求の範囲第1項記載のヒートポンプ。 3 吸収器、発生器、蒸発器、凝縮器、稀濃溶液熱交換
器およびこれらを接続する流体径路を有し、発生器と凝
縮器とを中間圧に保ち、これより高圧に保持された少く
とも一段の吸収器および蒸発器を備え、かつ上記中間圧
より低圧に保持された少くとも一段の吸収器および蒸発
器を備え、発生器と高圧段蒸発器に熱源として温水など
の加熱媒体を導びき、凝縮器と低圧段吸収器に冷却水な
どの冷却媒体を導びき、前記熱源よりも高温の高温水な
どの熱エネルギー源の生成と、冷却水などの冷却媒体よ
りも低温の冷水などの冷熱源の生成とを同時に又は必要
に応じて何れか一方の生成を行なうことができるように
したハイブリッド型吸収式ヒートポンプにおいて、 前記高圧段蒸発器内の冷媒液を吸い込み、再び該高圧段
蒸発器内へ供給して循環せしめるポンプを有する循環回
路を備え、該ポンプの吐出側回路にエゼクタを挿入し、
該エゼクタの吸込口に前記凝縮器からの冷媒液を導くよ
うにしたことを特徴とするハイブリッド型吸収式ヒート
ポンプ。 4 吸収器、発生器、蒸発器、凝縮器、稀濃溶液熱交換
器およびこれらを接続する流体径路を有し、発生器と凝
縮器とを中間圧に保ち、これより高圧に保持された少く
とも一段の吸収器および蒸発器を備え、かつ上記中間圧
より低圧に保持された少くとも一段の吸収器および蒸発
器を備え、発生器と高圧段蒸発器に熱源として温水など
の加熱媒体を導びき、凝縮器と低圧段吸収器に冷却水な
どの冷却媒体を導びき、前記熱源よりも高温の高温水な
どの熱エネルギー源の生成と、冷却水などの冷却媒体よ
りも低温の冷水などの冷熱源の生成とを同時に又は必要
に応じて何れか一方の生成を行なうことができるように
したハイブリッド型吸収式ヒートポンプにおいて、 前記凝縮器から流出する冷媒の一部を直接前記高圧段蒸
発器に導き、前記低圧段蒸発器に流入する冷媒流量を必
要最少限とするよう制御し前記発生器から前記凝縮器内
までに至る冷媒径路の冷媒と、前記凝縮器から前記高圧
段蒸発器へ導かれる冷媒との間の熱交換を行なう熱交換
器を設けたことを特徴とするハイブリッド型吸収式ヒー
トポンプ。
[Scope of Claims] 1. It has an absorber, a generator, an evaporator, a condenser, a dilute solution heat exchanger, and a fluid path connecting these, and maintains the generator and the condenser at an intermediate pressure. at least one stage of absorber and evaporator held at a high pressure and at least one stage of absorber and evaporator held at a pressure lower than said intermediate pressure; A heating medium such as cooling water is introduced into the condenser and a low-pressure stage absorber, and a cooling medium such as cooling water is introduced into the condenser and a low-pressure stage absorber to generate a thermal energy source such as high-temperature water that is higher in temperature than the heat source, and a cooling medium such as cooling water is In a hybrid absorption heat pump that can generate a cold heat source such as low-temperature cold water at the same time or generate either one of them as necessary, a portion of the refrigerant flowing out from the condenser is directly A hybrid absorption heat pump characterized in that the flow rate of refrigerant introduced into the high-pressure stage evaporator and flowing into the low-pressure stage evaporator is controlled to the necessary minimum. 2 the condenser is located higher than the high pressure stage evaporator;
The heat pump according to claim 1, wherein the refrigerant liquid is supplied by gravity and an internal pressure difference. 3. It has an absorber, a generator, an evaporator, a condenser, a dilute solution heat exchanger, and a fluid path connecting these, and maintains the generator and condenser at an intermediate pressure, and maintains the generator and the condenser at an intermediate pressure. At least one stage of absorber and evaporator is provided at both sides, and at least one stage of absorber and evaporator is maintained at a pressure lower than the above-mentioned intermediate pressure, and a heating medium such as hot water is introduced as a heat source to the generator and the high-pressure stage evaporator. A cooling medium such as cooling water is introduced into a condenser and a low-pressure stage absorber to generate a thermal energy source such as high-temperature water that is higher temperature than the heat source, and to generate a thermal energy source such as high-temperature water that is lower temperature than the cooling medium such as cooling water. In a hybrid absorption heat pump that can generate a cold source and generate either one at the same time or as necessary, the refrigerant liquid in the high-pressure stage evaporator is sucked into the high-pressure stage evaporator again. a circulation circuit having a pump for supplying and circulating the air, an ejector is inserted into the discharge side circuit of the pump,
A hybrid absorption heat pump characterized in that the refrigerant liquid from the condenser is guided to the suction port of the ejector. 4 It has an absorber, a generator, an evaporator, a condenser, a dilute solution heat exchanger, and a fluid path connecting these, and maintains the generator and condenser at an intermediate pressure, and a small At least one stage of absorber and evaporator is provided at both sides, and at least one stage of absorber and evaporator is maintained at a pressure lower than the above-mentioned intermediate pressure, and a heating medium such as hot water is introduced as a heat source to the generator and the high-pressure stage evaporator. A cooling medium such as cooling water is introduced into a condenser and a low-pressure stage absorber to generate a thermal energy source such as high-temperature water that is higher temperature than the heat source, and to generate a thermal energy source such as high-temperature water that is lower temperature than the cooling medium such as cooling water. In a hybrid absorption heat pump that is capable of generating a cold heat source and generating either one at the same time or as necessary, a portion of the refrigerant flowing out from the condenser is directly supplied to the high-pressure stage evaporator. and control the flow rate of refrigerant flowing into the low pressure stage evaporator to the necessary minimum, so that the refrigerant in the refrigerant path leading from the generator to the inside of the condenser and the refrigerant being guided from the condenser to the high pressure stage evaporator. A hybrid absorption heat pump characterized by being equipped with a heat exchanger that exchanges heat with a refrigerant.
JP52026383A 1977-03-10 1977-03-10 Hybrid type absorption heat pump Expired JPS5812507B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP52026383A JPS5812507B2 (en) 1977-03-10 1977-03-10 Hybrid type absorption heat pump

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP52026383A JPS5812507B2 (en) 1977-03-10 1977-03-10 Hybrid type absorption heat pump

Publications (2)

Publication Number Publication Date
JPS53114550A JPS53114550A (en) 1978-10-06
JPS5812507B2 true JPS5812507B2 (en) 1983-03-08

Family

ID=12191993

Family Applications (1)

Application Number Title Priority Date Filing Date
JP52026383A Expired JPS5812507B2 (en) 1977-03-10 1977-03-10 Hybrid type absorption heat pump

Country Status (1)

Country Link
JP (1) JPS5812507B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ATE109880T1 (en) * 1981-03-24 1994-08-15 Alefeld Georg MULTISTAGE DEVICE WITH WORKING FLUID AND ABSORBENT CIRCUITS, AND METHODS OF OPERATION OF SUCH DEVICE.
JP2006207883A (en) * 2005-01-26 2006-08-10 Ebara Corp Absorption heat pump
CN101852510B (en) * 2010-06-03 2013-08-21 清华大学 Novel unit structure for absorption machines capable of realizing big temperature difference
JP5543941B2 (en) * 2011-05-02 2014-07-09 株式会社荏原製作所 Absorption heat pump
JP2016161201A (en) * 2015-02-27 2016-09-05 荏原冷熱システム株式会社 Absorption heat pump

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5281745A (en) * 1975-12-29 1977-07-08 Ebara Corp Hybrid type absorption heat pump

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5281745A (en) * 1975-12-29 1977-07-08 Ebara Corp Hybrid type absorption heat pump

Also Published As

Publication number Publication date
JPS53114550A (en) 1978-10-06

Similar Documents

Publication Publication Date Title
US4070870A (en) Heat pump assisted solar powered absorption system
US7827817B2 (en) Absorption heat pump
JPS5818574B2 (en) heat pump
CN1082650C (en) Two-section or multi-section hot water lithium bromide absorbing refrigerating unit
JPS5913670B2 (en) Dual effect absorption refrigeration equipment
US4470269A (en) Absorption refrigeration system utilizing low temperature heat source
JP3905986B2 (en) Waste heat utilization air conditioning system
JPS5812507B2 (en) Hybrid type absorption heat pump
US3550394A (en) Condensate heating of intermediate strength solution in two-stage absorption machine
JP5785800B2 (en) Vapor absorption refrigerator
KR20040047393A (en) Drink hot water heating apparatus of absorption refrigerator
JPS5830515B2 (en) Hybrid heat pump
JPS5844302B2 (en) Hybrid absorption heat pump
JPS6125987B2 (en)
JPH05280825A (en) Absorption heat pump
JP7080001B2 (en) Absorption chiller
JPS5829424Y2 (en) absorption cold water machine
JPS5829818Y2 (en) absorption refrigerator
JP2787182B2 (en) Single / double absorption chiller / heater
JPS5857667B2 (en) Dual effect absorption refrigeration device and its control method
JP3811632B2 (en) Waste heat input type absorption refrigerator
JP2645948B2 (en) Hot water absorption absorption chiller / heater
JPH0638009B2 (en) Air-cooled absorption cold / hot water unit
JPS6148064B2 (en)
JP3948549B2 (en) Exhaust gas driven absorption chiller / heater