JPS6125987B2 - - Google Patents

Info

Publication number
JPS6125987B2
JPS6125987B2 JP15399782A JP15399782A JPS6125987B2 JP S6125987 B2 JPS6125987 B2 JP S6125987B2 JP 15399782 A JP15399782 A JP 15399782A JP 15399782 A JP15399782 A JP 15399782A JP S6125987 B2 JPS6125987 B2 JP S6125987B2
Authority
JP
Japan
Prior art keywords
refrigerant
condenser
evaporator
pressure stage
low
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP15399782A
Other languages
Japanese (ja)
Other versions
JPS5849871A (en
Inventor
Shozo Saito
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Original Assignee
Ebara Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Corp filed Critical Ebara Corp
Priority to JP15399782A priority Critical patent/JPS5849871A/en
Publication of JPS5849871A publication Critical patent/JPS5849871A/en
Publication of JPS6125987B2 publication Critical patent/JPS6125987B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Sorption Type Refrigeration Machines (AREA)

Description

【発明の詳細な説明】 本発明は高温水と冷水とを同時に生成すること
が可能な吸収式ヒートポンプに関するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an absorption heat pump capable of simultaneously producing high temperature water and cold water.

従来吸収冷凍サイクルにおいて冷房と同時に温
水を得たい場合は、例えば発生器において発生す
る蒸気の熱を利用しての温水の生成を凝縮器や別
途の専用温水熱交換器などで行なわれていたが発
生器での溶液加熱の熱源として温水あるいは蒸気
などを用いる場合、得られる温水の温度は熱源温
水あるいは蒸気などの温度よりも低く、特に最近
省エネルギー上、公害防止上問題になつている発
電所の温排水などの比較的低温の熱源温水を従来
の吸収式ヒートポンプに用いる場合には得られる
温水の温度が低く利用価値がないものであつた。
Conventionally, in an absorption refrigeration cycle, if you wanted to obtain hot water at the same time as cooling, you would use a condenser or a separate dedicated hot water heat exchanger to generate hot water using the heat of steam generated in a generator, for example. When hot water or steam is used as a heat source for heating a solution in a generator, the temperature of the hot water obtained is lower than the temperature of the heat source hot water or steam. When using relatively low-temperature heat source hot water such as heated wastewater in a conventional absorption heat pump, the temperature of the hot water obtained is so low that it has no value.

これを解決するために、中間圧の発生器と凝縮
器の高圧側に吸収器と蒸発器を含むヒートポンプ
サイクル、低圧側に吸収器と蒸発器を含む冷凍サ
イクルを備え比較的低温の熱源温水を用いて熱源
温水より高温水の生成と、冷却水より低温の冷水
の生成とを同時に行なうことができかつ一体構成
で構造が極めて簡単な吸収式ヒートポンプが考え
られているが、本発明はその改良に係わるもので
ある。
To solve this problem, we installed a heat pump cycle that includes an absorber and an evaporator on the high-pressure side of an intermediate-pressure generator and a condenser, and a refrigeration cycle that includes an absorber and evaporator on the low-pressure side. Absorption heat pumps have been considered that can simultaneously generate water at a higher temperature than the heat source hot water and cold water at a lower temperature than the cooling water, and which have an extremely simple structure with an integrated structure. This is related to.

即ち、本発明の改良前のものの例を第1図に示
して説明すれば、Gは発生器、Cは凝縮器で発生
器Gの方が僅かに高いがほぼ同圧(これを中間圧
と称す)に保たれている。AHは高圧段吸収器、
Hは高圧段蒸発器であり中間圧より高圧、AL
低圧段吸収器、ELは低圧段蒸発器であり中間圧
より低圧となつている。溶液側サイクルについて
は低圧段吸収器ALは溶液ポンプ1、中間濃度溶
液管2を経て高圧段吸収器AHと接続し、高圧段
吸収器AHは稀溶液管3、弁4を経て発生器Gと
接続し、発生器Gは濃溶液管5、弁6を経て低圧
吸収器ALに接続している。冷媒側サイクルにつ
いては、低圧蒸発器ELは冷媒ポンプ7、冷媒管
8、弁9,10を経て高圧蒸発器EHに接続して
いる。また低圧段蒸発器EL内の冷媒液を循環せ
しめるために弁11を有する分岐管12が冷媒管
8に接続している。凝縮器Cと低圧蒸発器EL
は減圧弁29、戻り管30により接続している。
溶液側と冷媒側とを接続するものとして高圧段吸
収器AHと高圧段蒸発器EHとを接続する蒸気管1
3、発生器Gと凝縮器Cとを接続する蒸気管1
4、低圧段吸収器ALと低圧段蒸発器ELとを接続
する蒸気管15とが備えられている。外部との熱
の受授の関係としては熱源としての温水管16,
17がそれぞれ発生器G、高圧段蒸発器EHに装
備されており、温水管16の入口部18には弁1
9を有し三方弁20への分岐を有する入口管21
が接続され出口部22は三方弁20と接続し、三
方弁20は他の三方弁23と連絡管24により接
続している。三方弁23の一つの口は温水管17
の入口部26に、他の口は出口部27に連なる出
口管28に接続してさらに熱交換器XSに接続し
ている。凝縮器Cと低圧段吸収器ALには冷却水
を通ずる冷却水管31,32が装備されている。
冷却水管31の出口は熱交換器XWに接続してい
る。高圧段吸収器AHには所要の高温水を得るた
めの高温水管33が、低圧段蒸発器ELには所要
の冷水を得るための冷水管34が装備されてい
る。制御関係としては高温水関係としては高温水
管33の出口に温度検出器35が備えられ三方弁
23と信号切換器25を経て弁20を制御する。
冷水管34の出口には温度検出器36が設けら
れ、信号切換器25を経て三方弁20を制御す
る。37,38は液面検出計でそれぞれ弁10あ
るいは弁6を制御する。熱交換器XS,XWにより
冷媒が加熱され熱の有効利用をはかり効率が増大
する。
That is, to explain an example before the improvement of the present invention as shown in FIG. ) is maintained. A H is the high pressure stage absorber,
E H is a high pressure stage evaporator and has a pressure higher than the intermediate pressure, A L is a low pressure stage absorber, and E L is a low pressure stage evaporator and has a pressure lower than the intermediate pressure. Regarding the solution side cycle, the low pressure stage absorber A L is connected to the high pressure stage absorber A H via the solution pump 1 and intermediate concentration solution pipe 2, and the high pressure stage absorber A H is generated via the dilute solution pipe 3 and valve 4. The generator G is connected to the low pressure absorber A L via a concentrated solution pipe 5 and a valve 6. Regarding the refrigerant side cycle, the low pressure evaporator E L is connected to the high pressure evaporator E H via a refrigerant pump 7, a refrigerant pipe 8, and valves 9 and 10. Further, a branch pipe 12 having a valve 11 is connected to the refrigerant pipe 8 in order to circulate the refrigerant liquid in the low-pressure stage evaporator E L. The condenser C and the low pressure evaporator E L are connected by a pressure reducing valve 29 and a return pipe 30.
A steam pipe 1 that connects the high-pressure stage absorber A H and the high-pressure stage evaporator E H as a connection between the solution side and the refrigerant side.
3. Steam pipe 1 connecting generator G and condenser C
4. A steam pipe 15 connecting the low pressure stage absorber A L and the low pressure stage evaporator E L is provided. Regarding the relationship between receiving and receiving heat from the outside, hot water pipes 16 as heat sources,
17 are installed in the generator G and high-pressure stage evaporator E H, respectively, and a valve 1 is installed in the inlet section 18 of the hot water pipe 16.
9 and an inlet pipe 21 with a branch to a three-way valve 20
The outlet portion 22 is connected to the three-way valve 20, and the three-way valve 20 is connected to another three-way valve 23 by a communication pipe 24. One port of the three-way valve 23 is connected to the hot water pipe 17
The other port is connected to the inlet portion 26 of the heat exchanger 26, and the other port thereof is connected to an outlet pipe 28 which continues to the outlet portion 27, and is further connected to the heat exchanger Xs . The condenser C and the low-pressure stage absorber A L are equipped with cooling water pipes 31 and 32 through which cooling water flows.
The outlet of the cooling water pipe 31 is connected to a heat exchanger X W . The high-pressure stage absorber A H is equipped with a high-temperature water pipe 33 for obtaining the required high-temperature water, and the low-pressure stage evaporator E L is equipped with a cold water pipe 34 for obtaining the required cold water. As for the control related to high temperature water, a temperature detector 35 is provided at the outlet of the high temperature water pipe 33 and controls the valve 20 via the three-way valve 23 and the signal switch 25.
A temperature detector 36 is provided at the outlet of the cold water pipe 34 and controls the three-way valve 20 via a signal switch 25. 37 and 38 are liquid level detectors that control the valve 10 or the valve 6, respectively. The refrigerant is heated by the heat exchangers X S and X W , and the efficiency is increased by effectively utilizing the heat.

本従来例の作用、効果を説明するに、熱源温水
の系統は、外部から例えば発電所の排温水が入口
管21に供給され弁19は開き、三方弁20は入
口管21側は閉じ出口部22と連絡管24とが連
通する状態に置かれ、弁25は閉じ、三方弁23
は連絡管24と入口部26とが連通する状態に置
かれ、熱源温水は温水管16、連絡管24、温水
管17を経て出口管28より外部に排出されてい
る。勿論、温水管16,17には直列でなく並列
に温水を通水することあるいは別個の温水源から
別々に通水することも可能である。低圧段蒸発器
Lの冷媒液は冷媒ポンプ7により冷媒管8、弁
9,10を経て高圧段蒸発器EHに入り温水管1
7の温水により加熱されて蒸発し蒸気管13を経
て高圧段吸収器AHに入る。一方低圧段吸収器AL
から中間濃度液溶液は溶液ポンプ1、中間濃度溶
液管2を通り低圧段および高圧段熱交換器XL
よびXHを経て加熱され高圧段吸収器AHに入り前
述の冷媒蒸気を吸収する。この際吸収熱により沸
点上昇に相当する温度まで溶液が加熱され高温水
管33を加熱し、熱源温水より高い温度の高温水
を得ることができる。冷媒を吸収して希薄となつ
た稀溶液は稀溶液管3、弁を経て発生器Gに入
り、温水管16の温水により加熱されて蒸気を発
生し濃縮され、濃溶液は濃溶液管5、弁6を経て
低圧段吸収器ALに入り冷却水管32の冷却水に
冷やされ再び溶液ポンプ1にて送られサイクルを
繰り返す。
To explain the operation and effect of this conventional example, in a heat source hot water system, waste water from a power plant, for example, is supplied from the outside to the inlet pipe 21, the valve 19 is opened, and the three-way valve 20 is closed on the inlet pipe 21 side and the outlet part is 22 and the communication pipe 24 are placed in a state of communication, the valve 25 is closed, and the three-way valve 23
The connecting pipe 24 and the inlet part 26 are placed in communication with each other, and the heat source hot water is discharged to the outside from the outlet pipe 28 via the hot water pipe 16, the connecting pipe 24, and the hot water pipe 17. Of course, hot water can be passed through the hot water pipes 16 and 17 not in series but in parallel, or separately from separate hot water sources. The refrigerant liquid in the low pressure stage evaporator E L is passed through the refrigerant pipe 8 and valves 9 and 10 by the refrigerant pump 7, and then enters the high pressure stage evaporator E H into the hot water pipe 1.
It is heated and evaporated by the hot water 7 and enters the high pressure stage absorber A H via the steam pipe 13. On the other hand, the low pressure stage absorber A L
From there, the intermediate concentration liquid solution passes through the solution pump 1 and the intermediate concentration solution tube 2, passes through the low pressure stage and high pressure stage heat exchangers X L and X H , is heated, and enters the high pressure stage absorber A H to absorb the above-mentioned refrigerant vapor. At this time, the solution is heated by the absorbed heat to a temperature corresponding to an increase in the boiling point, heating the high temperature water pipe 33, and high temperature water having a higher temperature than the heat source hot water can be obtained. The dilute solution that has absorbed the refrigerant enters the generator G through the dilute solution pipe 3 and the valve, and is heated by the hot water in the hot water pipe 16 to generate steam and concentrate, and the concentrated solution passes through the dilute solution pipe 5, The solution enters the low-pressure stage absorber A L via the valve 6, is cooled by the cooling water in the cooling water pipe 32, and is sent again by the solution pump 1 to repeat the cycle.

一方発生器Gにて発生した冷媒蒸気は蒸気管1
4を経て凝縮器Cに達し冷却水管31の冷却水に
より冷やされて凝縮し戻り管30減圧弁29を経
て低圧段蒸発器ELに入り冷水管34の冷水の熱
により一部蒸発しその蒸気は、蒸気管15を経て
低圧段吸収器ALに入り溶液に吸収される。冷水
管34内の冷水は冷媒蒸発により熱を奪われて低
温となり、出口からは冷却水より低温の冷水を得
ることができる。冷媒ポンプ7により送られる冷
媒のうち一部は分岐管12に入り再び低圧段蒸発
器ELに戻り蒸発が促進される。負荷の変動その
他の熱的変動があつた場合は出力端に設けられた
温度検出器35,36により検知し、三方弁2
0,23を操作し温水管16,17を通る熱源温
水を制御し高温水および冷水の温度を所要の値に
保つようになつている。
On the other hand, the refrigerant vapor generated in generator G is steam pipe 1
4, reaches the condenser C, is cooled and condensed by the cooling water in the cooling water pipe 31, and enters the low pressure stage evaporator E L through the return pipe 30 and pressure reducing valve 29, where it is partially evaporated by the heat of the cold water in the cold water pipe 34, and its vapor is partially evaporated. enters the low pressure stage absorber A L through the steam pipe 15 and is absorbed into the solution. The cold water in the cold water pipe 34 loses heat by evaporation of the refrigerant and becomes low temperature, and cold water at a lower temperature than the cooling water can be obtained from the outlet. A portion of the refrigerant sent by the refrigerant pump 7 enters the branch pipe 12 and returns to the low-pressure stage evaporator E L to promote evaporation. If there is a load fluctuation or other thermal fluctuation, it is detected by the temperature detectors 35 and 36 installed at the output end, and the three-way valve 2
0 and 23 to control the heat source hot water passing through hot water pipes 16 and 17 to maintain the temperatures of high temperature water and cold water at required values.

しかし、上記の如き、第1図で示される従来の
ものの例においては、凝縮器Cで凝縮した冷媒液
を低圧段蒸発器ELに送り、ここから必要個所に
分配していたが、この低圧段蒸発器ELは冷媒の
温度レベルが冷媒サイクル中で最も低く、冷媒液
にとつては最も低エネルギーの個所である。この
ため、凝縮器Cから低圧段蒸発器ELに冷媒液を
送ると、まずそれ自身の液温を下げ低エネルギー
状態となるためフラツシユして冷媒蒸気を発生
し、低圧段吸収器ALの負荷を増大している。こ
の低温となつた冷媒液はポンプで高圧段蒸発器E
Hという高い温度のエネルギー状態を要求される
個所に揚液されるので、予熱することが好まし
い。しかし他の熱源により加熱すると、その分が
損失となるので、これを防ぐために、第1図の如
く熱交換器XS,XWを用いて系内からの排熱を回
収する方法も見られる。しかし、加熱側の温度が
低いため、熱交換器が大型になるか、或いは十分
な予熱を行なうことが困難であつた。また、発生
器Gからの過熱冷媒は高温の溶液中から分離され
るためかなり高温の状態で凝縮器Cに導かれ、そ
のまま凝縮器Cの冷却水に捨られている。
However, in the conventional example shown in Fig. 1 as described above, the refrigerant liquid condensed in the condenser C is sent to the low-pressure stage evaporator E L , from where it is distributed to the necessary locations. The stage evaporator E L has the lowest refrigerant temperature level in the refrigerant cycle and is the lowest energy point for the refrigerant liquid. For this reason, when the refrigerant liquid is sent from the condenser C to the low-pressure stage evaporator E L , it first lowers its own liquid temperature and enters a low-energy state, so it flashes and generates refrigerant vapor, which then flows into the low-pressure stage absorber A L. The load is increasing. This low-temperature refrigerant liquid is pumped to the high-pressure stage evaporator E.
It is preferable to preheat the liquid because it will be pumped to a location where the high temperature energy state of H is required. However, heating with another heat source results in a loss, so to prevent this, there is a method of recovering waste heat from the system using heat exchangers X S and X W as shown in Figure 1. . However, since the temperature on the heating side is low, the heat exchanger becomes large or it is difficult to perform sufficient preheating. Further, since the superheated refrigerant from the generator G is separated from the high-temperature solution, it is led to the condenser C in a considerably high temperature state, and is discarded as it is into the cooling water of the condenser C.

従来のものは上記の如き欠点を有するものであ
るが、本発明は、発生器からの高温の過熱冷媒蒸
気と、凝縮器から高圧側蒸発器に送る冷媒液と熱
交換すること、或いは低圧側蒸発器から高圧側蒸
発器に送る冷媒液と熱交換することにより、従来
の方法の上記の欠点を除き、凝縮器に放熱される
熱をできるだけ回収し、冷媒液の予熱に利用する
ことができ、かつ加熱側が高温なので小さな熱交
換器で有効な予熱が行なえる吸収式ヒートポンプ
を提供することも目的とするものである。
The conventional method has the above-mentioned drawbacks, but the present invention exchanges heat with the high-temperature superheated refrigerant vapor from the generator and the refrigerant liquid sent from the condenser to the high-pressure side evaporator, or the low-pressure side By exchanging heat with the refrigerant liquid sent from the evaporator to the high-pressure side evaporator, it is possible to eliminate the above-mentioned drawbacks of the conventional method and recover as much of the heat radiated to the condenser as possible and use it to preheat the refrigerant liquid. Another object of the present invention is to provide an absorption heat pump that can perform effective preheating with a small heat exchanger since the heating side is at a high temperature.

本発明は、吸収器、発生器、蒸発器、凝縮器、
稀濃溶液熱交換器およびこれらを接続する流体径
路を有し、発生器と凝縮器とを中間圧に保ち、こ
れより高圧に保持された少くとも一段の吸収器お
よび蒸発器を備え、かつ上記中間圧より低圧に保
持された少くとも一段の吸収器および蒸発器を備
え、発生器と高圧段蒸発器に熱源として温水など
の加熱媒体を導びき、凝縮器と低圧段吸収器に冷
却水などの冷却媒体を導びき、前記熱源よりも高
温の高温水などの熱エネルギー源の生成と、冷却
水などの冷却媒体よりも低温の冷水などの冷熱源
の生成とを同時に又は必要に応じて何れか一方の
生成を行なうことができるようにした吸収式ヒー
トポンプにおいて、前記発生器から前記凝縮器内
までに至る冷媒径路の冷媒と、前記凝縮器及び/
又は前記低圧段蒸発器から前記高圧段蒸発器へ導
かれる冷媒との間の熱交換を行なう熱交換器を設
けたことを特徴とする吸収式ヒートポンプであ
る。
The present invention provides absorbers, generators, evaporators, condensers,
having a dilute solution heat exchanger and a fluid path connecting them, maintaining the generator and condenser at an intermediate pressure, and at least one stage of absorber and evaporator maintained at a higher pressure; It is equipped with at least one stage of absorber and evaporator maintained at a pressure lower than intermediate pressure, and a heating medium such as hot water is introduced as a heat source to the generator and high-pressure stage evaporator, and cooling water etc. is led to the condenser and low-pressure stage absorber. of the cooling medium, and generate a thermal energy source such as high-temperature water having a higher temperature than the heat source, and generate a cold heat source such as cold water having a lower temperature than the cooling medium such as cooling water, either simultaneously or as necessary. In an absorption heat pump capable of generating one of the two, the refrigerant in the refrigerant path from the generator to the condenser and the condenser and/or
Alternatively, the absorption heat pump is characterized in that a heat exchanger is provided for exchanging heat with the refrigerant introduced from the low-pressure stage evaporator to the high-pressure stage evaporator.

本発明を実施例につき図面を用いて説明すれ
ば、第2図に示す例はおおむね第1図と同様な構
成であり、同一符号の部分は同一の名称、構成、
機能を有するものであるが、凝縮器Cからの冷媒
液は、冷媒ポンプ39により冷媒管8を経て直接
高圧段蒸発器EHに送られる分と、重力及び圧力
差により低圧段蒸発器ELに送られる分とに分け
られ、冷媒ポンプ39の流量制御、弁9又は10
の流量制御により、高圧段蒸発器EHと低圧段蒸
発器ELへの冷媒液の分配の割合を変化せしめ
て、蒸発器におけるフラツシユ損失を最小に抑え
ることができる。
The present invention will be described with reference to the drawings. The example shown in FIG. 2 has roughly the same configuration as that in FIG. 1, and parts with the same symbols have the same names, configurations,
However, the refrigerant liquid from the condenser C is sent directly to the high-pressure stage evaporator E H via the refrigerant pipe 8 by the refrigerant pump 39, and to the low-pressure stage evaporator E L due to gravity and pressure difference. Flow rate control of refrigerant pump 39, valve 9 or 10
By controlling the flow rate, the ratio of refrigerant liquid distribution to the high-pressure stage evaporator E H and the low-pressure stage evaporator E L can be changed to minimize flash losses in the evaporator.

また、凝縮器Cから冷媒ポンプ39により高圧
側蒸発器EHに供給される冷媒液は発生器Gから
凝縮器Cへ供給される高温の過熱冷媒蒸気と熱交
換器44にて熱交換器を行ない熱回収が行なわ
れ、冷却水に無駄に捨てられる排熱が回収され熱
交率の向上がはかれる。この蒸気は高温なので熱
交換器44は小型となり、有効な熱回収が行なわ
れる。第3図は冷媒サイクルのみ模型化して示し
たものである。
In addition, the refrigerant liquid supplied from the condenser C to the high-pressure side evaporator E H by the refrigerant pump 39 is exchanged with high-temperature superheated refrigerant vapor supplied from the generator G to the condenser C in a heat exchanger 44. The exhaust heat that would otherwise be wasted in the cooling water is recovered and the heat exchange rate is improved. Since this steam is at a high temperature, the heat exchanger 44 is small and effective heat recovery is performed. FIG. 3 shows only the refrigerant cycle as a model.

第4図は別の実施例を示し、第3図における熱
交換器44が凝縮器C内に設けられたものであ
る。
FIG. 4 shows another embodiment in which the heat exchanger 44 in FIG. 3 is provided within the condenser C.

第5図は別の実施例を示し、低圧段蒸発器EL
から高圧段蒸発器EHに所要量の冷媒液を冷媒ポ
ンプ7で配分しているものであり、熱交換器44
のほかに熱交換器45を用いて排熱を回収して、
他の熱源を用いることなく冷媒を予熱することが
でき、熱効率の向上がはかれる。こ冷媒ポンプ
は、冷媒液を蒸発器チユーブ上に均一に散布する
ためのスプレーポンプと兼用してもよい。
FIG. 5 shows another embodiment, in which the low pressure stage evaporator E L
The refrigerant pump 7 distributes the required amount of refrigerant liquid from the heat exchanger 44 to the high-pressure stage evaporator EH .
In addition, a heat exchanger 45 is used to recover exhaust heat,
The refrigerant can be preheated without using any other heat source, improving thermal efficiency. This refrigerant pump may also be used as a spray pump to uniformly spread the refrigerant liquid onto the evaporator tube.

第6図は別の実施例で、第5図における熱交換
器44が凝縮器Cの中に設けられたものである。
FIG. 6 shows another embodiment in which the heat exchanger 44 in FIG. 5 is installed in the condenser C.

上述の例について高圧段蒸発器EH又は低圧段
蒸発器EL何れの場合でもチユーブの伝熱向上の
ために必要に応じて第7図の如くスプレー用の冷
媒ポンプ7及びスプレー管46を設けて冷媒液を
循環せしめてスプレーを行なうことができる。
Regarding the above example, in either case of the high-pressure stage evaporator E H or the low-pressure stage evaporator E L , a refrigerant pump 7 for spraying and a spray pipe 46 are installed as necessary to improve heat transfer in the tube as shown in Fig. 7. Spraying can be performed by circulating the refrigerant liquid.

本発明により、他の熱源のエネルギーを必要と
せず、凝縮器にて無駄に捨てられる熱エネルギー
を有効に回収し、かつ熱交換器を小型にすること
ができ、運転効率のよい吸収式ヒートポンプを提
供することができ、実用上、省エネルギー上極め
て大なる効果を有するものである。
The present invention provides an absorption heat pump that does not require energy from other heat sources, effectively recovers the thermal energy wasted in the condenser, and downsizes the heat exchanger, and has high operational efficiency. It has an extremely large effect in terms of practical use and energy saving.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来のものの例のフローシート、第2
図は本発明の実施例のフローシート、第3図ない
し第7図は本発明のそれぞれ異なる実施例の冷媒
サイクルのフローシートである。 G……発生器、C……凝縮器、AH……高圧段
吸収器、AL……低圧段吸収器、EH……高圧段蒸
発器、EL……低圧段蒸発器、XH……高圧段熱交
換器、XL……低圧段熱交換器、1……溶液ポン
プ、2……中間濃度溶液管、3……稀溶液管、
4,6,9,10,11,19……弁、5……濃
溶液管、7,39……冷媒ポンプ、8,40,4
1,42……冷媒管、12……分岐管、13,1
4,15……蒸気管、16,17……温水管、1
8,26……入口部、20,23……三方弁、2
1……入口管、22,27……出口部、24……
連絡管、28……出口管、29……減圧弁、30
……戻り管、31,32……冷却水管、33……
高温水管、34……冷水管、35,36……温度
検出器、37,38……液面検出計、39……冷
媒ポンプ、44,45……熱交換器、46……ス
プレー管。
Figure 1 is a flow sheet of a conventional example;
The figure is a flow sheet of an embodiment of the present invention, and FIGS. 3 to 7 are flow sheets of refrigerant cycles of different embodiments of the present invention. G... Generator, C... Condenser, A H ... High pressure stage absorber, A L ... Low pressure stage absorber, E H ... High pressure stage evaporator, E L ... Low pressure stage evaporator, X H ...High pressure stage heat exchanger, X L ...Low pressure stage heat exchanger, 1...Solution pump, 2...Intermediate concentration solution tube, 3...Dilute solution tube,
4, 6, 9, 10, 11, 19... Valve, 5... Concentrated solution tube, 7, 39... Refrigerant pump, 8, 40, 4
1,42...refrigerant pipe, 12...branch pipe, 13,1
4, 15... Steam pipe, 16, 17... Hot water pipe, 1
8, 26...Inlet section, 20, 23...Three-way valve, 2
1... Inlet pipe, 22, 27... Outlet section, 24...
Communication pipe, 28... Outlet pipe, 29... Pressure reducing valve, 30
... Return pipe, 31, 32 ... Cooling water pipe, 33 ...
High temperature water pipe, 34... Cold water pipe, 35, 36... Temperature detector, 37, 38... Liquid level detector, 39... Refrigerant pump, 44, 45... Heat exchanger, 46... Spray pipe.

Claims (1)

【特許請求の範囲】 1 吸収器、発生器、蒸発器、凝縮器、稀濃溶液
熱交換器およびこれらを接続する流体径路を有
し、発生器と凝縮器とを中間圧に保ち、これより
高圧に保持された少くとも一段の吸収器および蒸
発器を備え、かつ上記中間圧より低圧に保持され
た少くとも一段の吸収器および蒸発器を備え、発
生器と高圧段蒸発器に熱源として温水などの加熱
媒体を導びき、凝縮器と低圧段吸収器に冷却水な
どの冷却媒体を導びき、前記熱源よりも高温の高
温水などの熱エネルギー源の生成と、冷却水など
の冷却媒体よりも低温の冷水などの冷熱源の生成
とを同時に又は必要に応じて何れか一方の生成を
行なうことができるようにした吸収式ヒートポン
プにおいて、 前記発生器から前記凝縮器内までに至る冷媒径
路の冷媒と、前記凝縮器及び/又は前記低圧段蒸
発器から前記高圧段蒸発器へ導かれる冷媒との間
の熱交換を行なう熱交換器を設けたことを特徴と
する吸収式ヒートポンプ。
[Scope of Claims] 1. It has an absorber, a generator, an evaporator, a condenser, a dilute solution heat exchanger, and a fluid path connecting these, and maintains the generator and the condenser at an intermediate pressure. at least one stage of absorber and evaporator held at a high pressure and at least one stage of absorber and evaporator held at a pressure lower than said intermediate pressure; A heating medium such as cooling water is introduced into the condenser and a low-pressure stage absorber, and a cooling medium such as cooling water is introduced into the condenser and a low-pressure stage absorber to generate a thermal energy source such as high-temperature water that is higher in temperature than the heat source, and a cooling medium such as cooling water is In an absorption heat pump that is capable of generating a cold heat source such as low-temperature cold water at the same time or generating either one of them as necessary, the refrigerant path from the generator to the condenser is An absorption heat pump characterized in that a heat exchanger is provided for exchanging heat between a refrigerant and a refrigerant introduced from the condenser and/or the low-pressure stage evaporator to the high-pressure stage evaporator.
JP15399782A 1982-09-06 1982-09-06 Hybrid type absorption system heat pump Granted JPS5849871A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15399782A JPS5849871A (en) 1982-09-06 1982-09-06 Hybrid type absorption system heat pump

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15399782A JPS5849871A (en) 1982-09-06 1982-09-06 Hybrid type absorption system heat pump

Publications (2)

Publication Number Publication Date
JPS5849871A JPS5849871A (en) 1983-03-24
JPS6125987B2 true JPS6125987B2 (en) 1986-06-18

Family

ID=15574653

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15399782A Granted JPS5849871A (en) 1982-09-06 1982-09-06 Hybrid type absorption system heat pump

Country Status (1)

Country Link
JP (1) JPS5849871A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006162113A (en) * 2004-12-03 2006-06-22 Ebara Corp Absorption heat pump

Also Published As

Publication number Publication date
JPS5849871A (en) 1983-03-24

Similar Documents

Publication Publication Date Title
WO2017185930A1 (en) Combined solar-powered seawater desalination and air-conditioned cooling method and system having high efficiency
JPS5913670B2 (en) Dual effect absorption refrigeration equipment
US4553409A (en) Multiple regeneration multiple absorption type heat pump
KR100509775B1 (en) Heat exchanger for high stage generator of absorption chiller
US4470269A (en) Absorption refrigeration system utilizing low temperature heat source
JPS5849781B2 (en) Absorption heat pump
JP3905986B2 (en) Waste heat utilization air conditioning system
JPS5812507B2 (en) Hybrid type absorption heat pump
JPS6125987B2 (en)
JPS5818575B2 (en) heat pump
JP2837058B2 (en) Absorption type heat pump device
KR20040047393A (en) Drink hot water heating apparatus of absorption refrigerator
KR20040095692A (en) Single-and Double-Effect Absorption Refrigerator
JPH05280825A (en) Absorption heat pump
JPS5844302B2 (en) Hybrid absorption heat pump
JPH05256535A (en) Sorption heat pump system
JPS5830515B2 (en) Hybrid heat pump
JPS6122225B2 (en)
JPS58219371A (en) Double effect absorption type heat pump
JP2575006Y2 (en) Absorption refrigeration cycle system
JP2787182B2 (en) Single / double absorption chiller / heater
JPS6148064B2 (en)
JP2004011928A (en) Absorption refrigerator
JP2645948B2 (en) Hot water absorption absorption chiller / heater
JPH0350373Y2 (en)