JP5543941B2 - Absorption heat pump - Google Patents

Absorption heat pump Download PDF

Info

Publication number
JP5543941B2
JP5543941B2 JP2011102855A JP2011102855A JP5543941B2 JP 5543941 B2 JP5543941 B2 JP 5543941B2 JP 2011102855 A JP2011102855 A JP 2011102855A JP 2011102855 A JP2011102855 A JP 2011102855A JP 5543941 B2 JP5543941 B2 JP 5543941B2
Authority
JP
Japan
Prior art keywords
refrigerant
liquid
refrigerant liquid
pressure
low
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2011102855A
Other languages
Japanese (ja)
Other versions
JP2011169586A (en
Inventor
修行 井上
毅一 入江
幸大 福住
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Original Assignee
Ebara Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Corp filed Critical Ebara Corp
Priority to JP2011102855A priority Critical patent/JP5543941B2/en
Publication of JP2011169586A publication Critical patent/JP2011169586A/en
Application granted granted Critical
Publication of JP5543941B2 publication Critical patent/JP5543941B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、排熱エネルギーを熱源とし、その熱源により高温の流体を得る吸収ヒートポンプに関するものである。   The present invention relates to an absorption heat pump that uses exhaust heat energy as a heat source and obtains a high-temperature fluid from the heat source.

従来の吸収ヒートポンプでは、凝縮器に冷媒ポンプを設け、凝縮器で凝縮された冷媒液を蒸発器に移送し、蒸発器の加熱器に冷媒液を散布し、冷媒液から冷媒蒸気が発生するよう構成していた。さらに蒸発器に専用の冷媒ポンプを設けて、蒸発器の下部に蓄積した冷媒液を蒸発器から取り出し再び蒸発器に供給して加熱器に循環散布し、蒸発器に供給される冷媒液の流量を増加させ、蒸発器で供給された冷媒液から冷媒蒸気を発生させるよう構成していた(例えば、特許文献1)。   In the conventional absorption heat pump, a refrigerant pump is provided in the condenser, the refrigerant liquid condensed in the condenser is transferred to the evaporator, the refrigerant liquid is sprayed on the heater of the evaporator, and refrigerant vapor is generated from the refrigerant liquid. It was composed. In addition, a dedicated refrigerant pump is provided in the evaporator, the refrigerant liquid accumulated in the lower part of the evaporator is taken out of the evaporator, supplied to the evaporator again, circulated and distributed to the heater, and the flow rate of the refrigerant liquid supplied to the evaporator The refrigerant vapor is generated from the refrigerant liquid supplied by the evaporator (for example, Patent Document 1).

また、2段昇温の場合には、低圧凝縮器に冷媒ポンプを設け、低圧凝縮器で凝縮された冷媒液を低圧蒸発器に移送し、低圧蒸発器の加熱器に冷媒液を散布し、冷媒液から冷媒蒸気が発生するよう構成し、高圧凝縮器に冷媒ポンプを設け、高圧凝縮器で凝縮された冷媒液を高圧蒸発器に移送し、高圧蒸発器の加熱器に冷媒液を散布し、冷媒液から冷媒蒸気が発生するように構成していた。さらに低圧、高圧蒸発器のそれぞれに専用の冷媒ポンプを設けて、低圧、高圧蒸発器の下部に蓄積した冷媒液を取り出し再び低圧、高圧蒸発器に供給して加熱器にそれぞれ循環散布し、蒸発器に供給される冷媒液の流量を増加させ、蒸発器で冷媒液から冷媒蒸気を発生させていた(例えば、特許文献1)。   In the case of two-stage temperature rise, a refrigerant pump is provided in the low-pressure condenser, the refrigerant liquid condensed in the low-pressure condenser is transferred to the low-pressure evaporator, and the refrigerant liquid is sprayed on the heater of the low-pressure evaporator, A refrigerant vapor is generated from the refrigerant liquid, a refrigerant pump is provided in the high-pressure condenser, the refrigerant liquid condensed in the high-pressure condenser is transferred to the high-pressure evaporator, and the refrigerant liquid is sprayed on the heater of the high-pressure evaporator. The refrigerant liquid is generated from the refrigerant liquid. In addition, a dedicated refrigerant pump is provided for each of the low-pressure and high-pressure evaporators, the refrigerant liquid accumulated in the lower part of the low-pressure and high-pressure evaporators is taken out, supplied again to the low-pressure and high-pressure evaporators, and circulated and sprayed to the heaters respectively. The flow rate of the refrigerant liquid supplied to the evaporator was increased, and the refrigerant vapor was generated from the refrigerant liquid by the evaporator (for example, Patent Document 1).

特公昭58−49780号公報Japanese Patent Publication No.58-49780

このような吸収ヒートポンプは、凝縮器から冷媒液を蒸発器に移送し、さらに蒸発器から冷媒液を取り出し再び蒸発器に戻して蒸発器の加熱部に対して循環させていた。したがって、蒸発器に移送する冷媒液の流れと、蒸発器に戻す冷媒液の別の流れとを別々の冷媒ポンプにより発生させていたが、これらの流れを同一の冷媒ポンプで発生させ、単純な構成とした吸収ヒートポンプとすることが望まれていた。   In such an absorption heat pump, the refrigerant liquid is transferred from the condenser to the evaporator, and the refrigerant liquid is further taken out from the evaporator and returned to the evaporator to be circulated to the heating unit of the evaporator. Therefore, the flow of the refrigerant liquid to be transferred to the evaporator and the other flow of the refrigerant liquid to be returned to the evaporator are generated by separate refrigerant pumps. There has been a demand for an absorption heat pump having a configuration.

そこで本発明は、冷媒液を蒸発部に移送する冷媒液の流れと、蒸発部から冷媒液を取り出した後に再び蒸発部に戻して循環させる冷媒液の流れとを同一冷媒ポンプによりにより発生させ、単純な構成とした吸収ヒートポンプを提供することを目的とする。   Therefore, the present invention generates the flow of the refrigerant liquid that transfers the refrigerant liquid to the evaporation section and the flow of the refrigerant liquid that is circulated back to the evaporation section after taking out the refrigerant liquid from the evaporation section by the same refrigerant pump, An object is to provide an absorption heat pump having a simple configuration.

上記目的を達成するために第1の態様に係る発明に係る吸収ヒートポンプ101は、例えば図1に示すように、冷媒蒸気CSを凝縮して冷媒液CLとする凝縮部C、5Aと;凝縮部C、5Aから供給される冷媒液CLを単一の圧力下で蒸発させて冷媒蒸気CSを発生させ、蒸発しない余剰の冷媒液CLを凝縮部C、5Aに戻す蒸発部Eと;凝縮部C、5Aで凝縮した冷媒液CLを昇圧し蒸発部Eへ供給する冷媒昇圧手段4とを備える。   In order to achieve the above object, the absorption heat pump 101 according to the first aspect of the invention includes, for example, as shown in FIG. 1, condensing units C and 5A that condense the refrigerant vapor CS into the refrigerant liquid CL; An evaporating section E that evaporates the refrigerant liquid CL supplied from C and 5A under a single pressure to generate refrigerant vapor CS, and returns excess refrigerant liquid CL that does not evaporate to the condensing sections C and 5A; And a refrigerant boosting means 4 that boosts the refrigerant liquid CL condensed at 5A and supplies the refrigerant liquid CL to the evaporation section E.

このように構成すると、冷媒液は冷媒昇圧手段によって昇圧され凝縮部から蒸発部に供給されるので、蒸発部の圧力を凝縮部の圧力より高くすることができる。よって、蒸発部と凝縮部との圧力差により、蒸発しない余剰の冷媒液を蒸発部から凝縮部に戻すことができ、凝縮部に戻った冷媒液は冷媒昇圧手段によって蒸発部に供給されるので、冷媒昇圧手段によって蒸発部と凝縮部の間を循環する冷媒液の流れを発生させることができる。なお、冷媒液は蒸発部で単一の圧力下で蒸発するので、冷媒液は蒸発部で単一の温度下で蒸発する。吸収ヒートポンプの蒸発部は単一の圧力下で冷媒液を蒸発するとは、吸収ヒートポンプの蒸発部は多段昇圧でないことを意味する。冷媒昇圧手段は、典型的には、冷媒ポンプである。   If comprised in this way, since a refrigerant | coolant liquid is pressure | voltage-risen by a refrigerant | coolant pressure | voltage rise means and is supplied to an evaporation part from a condensation part, the pressure of an evaporation part can be made higher than the pressure of a condensation part. Therefore, the excess refrigerant liquid that does not evaporate can be returned from the evaporating part to the condensing part due to the pressure difference between the evaporating part and the condensing part, and the refrigerant liquid returned to the condensing part is supplied to the evaporating part by the refrigerant boosting means. The refrigerant boosting means can generate a flow of the refrigerant liquid that circulates between the evaporation unit and the condensation unit. Since the refrigerant liquid evaporates at a single pressure in the evaporating unit, the refrigerant liquid evaporates at a single temperature in the evaporating unit. The evaporating part of the absorption heat pump evaporates the refrigerant liquid under a single pressure means that the evaporating part of the absorption heat pump is not a multistage pressure increase. The refrigerant booster is typically a refrigerant pump.

さらに、吸収ヒートポンプ101は、例えば図1に示すように、凝縮部C、5Aから蒸発部Eに供給される冷媒液CLと、蒸発部Eから凝縮部C、5Aに戻される冷媒液CLとの間で熱交換を行う冷媒熱交換器X11とを備えてもよい。
このように構成すると、凝縮部から蒸発部に供給される冷媒液と、蒸発部から凝縮部に戻される冷媒液との間で熱交換を行うので、凝縮部に戻される冷媒液の温度を下げることができ、蒸気発生を抑えて熱損失を防ぎ、また冷媒昇圧手段が冷媒ポンプである場合、冷媒ポンプのキャビテーション防止に役立つ。
Further, for example, as shown in FIG. 1, the absorption heat pump 101 includes a refrigerant liquid CL supplied from the condensing units C and 5A to the evaporation unit E and a refrigerant liquid CL returned from the evaporation unit E to the condensing units C and 5A. You may provide with refrigerant | coolant heat exchanger X11 which performs heat exchange between.
If comprised in this way, since the heat exchange is performed between the refrigerant liquid supplied to the evaporation part from the condensation part and the refrigerant liquid returned to the condensation part from the evaporation part, the temperature of the refrigerant liquid returned to the condensation part is lowered. Therefore, the generation of steam is suppressed to prevent heat loss, and when the refrigerant boosting means is a refrigerant pump, it is useful for preventing cavitation of the refrigerant pump.

上記目的を達成するために第2の態様に係る発明に係る吸収ヒートポンプ102は、例えば図3に示すように、冷媒蒸気CSを凝縮して冷媒液CLとする凝縮部C、5Aと;供給された冷媒液CLを蒸発させて冷媒蒸気CSを発生させる蒸発部ELと;凝縮部C、5Aで凝縮した冷媒液CLを昇圧し蒸発部ELへ供給する冷媒昇圧手段4とを備え;凝縮部C、5Aが、凝縮した冷媒液CLを冷媒昇圧手段4に供給する冷媒供給管路5Aを有し;蒸発部ELが、蒸発しない余剰の冷媒液CLを冷媒供給管路5Aに戻すよう構成される。   In order to achieve the above object, the absorption heat pump 102 according to the second aspect of the present invention is supplied with condensing parts C and 5A, for example, as shown in FIG. An evaporating part EL for evaporating the refrigerant liquid CL to generate the refrigerant vapor CS; and a refrigerant boosting means 4 for increasing the pressure of the refrigerant liquid CL condensed in the condensing parts C and 5A and supplying the refrigerant liquid CL to the evaporating part EL; 5A has a refrigerant supply line 5A for supplying the condensed refrigerant liquid CL to the refrigerant pressure increasing means 4, and the evaporation section EL is configured to return the excess refrigerant liquid CL that does not evaporate to the refrigerant supply line 5A. .

このように構成すると、冷媒液は冷媒昇圧手段によって昇圧され凝縮部から圧力の高い蒸発部に供給されるので、蒸発部の圧力を凝縮部の圧力より高くすることができる。よって、蒸発部と凝縮部の圧力差により、蒸発しない余剰の冷媒液を蒸発部から凝縮部の冷媒供給管路に戻すことができ、冷媒供給管路に戻った冷媒液は冷媒昇圧手段によって蒸発部に供給されるので、冷媒昇圧手段によって蒸発部と冷媒供給管路の間を循環する冷媒液の流れを発生させることができる。   If comprised in this way, since a refrigerant | coolant liquid is pressurized by the refrigerant | coolant pressure | voltage rise means and is supplied to the evaporation part with a high pressure from a condensation part, the pressure of an evaporation part can be made higher than the pressure of a condensation part. Therefore, due to the pressure difference between the evaporator and the condenser, excess refrigerant liquid that does not evaporate can be returned from the evaporator to the refrigerant supply line of the condenser, and the refrigerant liquid that has returned to the refrigerant supply line is evaporated by the refrigerant boosting means. Since the refrigerant is supplied to the section, the refrigerant pressure circulating means can generate a flow of the refrigerant liquid that circulates between the evaporation section and the refrigerant supply pipe.

上記目的を達成するために第3の態様に係る発明に係る吸収ヒートポンプ103は、例えば図5に示すように、冷媒蒸気CSを凝縮して冷媒液CLとする凝縮部C、5Aと;凝縮部C、5Aから供給される冷媒液CLを蒸発させて冷媒蒸気CSを発生させる高圧蒸発部EHと;凝縮部C、5Aから供給される冷媒液CL、及び高圧蒸発部EHで蒸発しない余剰の冷媒液CLであって高圧蒸発部EHから戻される冷媒液CLを、高圧蒸発部EHより低圧下で蒸発し、冷媒蒸気CSを発生させ、蒸発しない余剰の冷媒液CLを凝縮部C、5Aに戻す低圧蒸発部ELと;凝縮部C、5Aで凝縮した冷媒液CLを昇圧し高圧蒸発部EHと低圧蒸発部ELとへ供給する冷媒昇圧手段4とを備える。   In order to achieve the above object, the absorption heat pump 103 according to the third aspect of the invention includes, for example, as shown in FIG. 5, condensing units C and 5A that condense the refrigerant vapor CS into the refrigerant liquid CL; High-pressure evaporation section EH that evaporates refrigerant liquid CL supplied from C and 5A to generate refrigerant vapor CS; refrigerant liquid CL supplied from condensation sections C and 5A, and excess refrigerant that does not evaporate in high-pressure evaporation section EH The refrigerant liquid CL that is the liquid CL and is returned from the high-pressure evaporation section EH is evaporated at a lower pressure than the high-pressure evaporation section EH, generates the refrigerant vapor CS, and returns the excess refrigerant liquid CL that does not evaporate to the condensation sections C and 5A. A low-pressure evaporating unit EL; and a refrigerant pressurizing unit 4 that pressurizes the refrigerant liquid CL condensed in the condensing units C and 5A and supplies it to the high-pressure evaporating unit EH and the low-pressure evaporating unit EL.

このように構成すると、冷媒液は冷媒昇圧手段によって昇圧され凝縮部から高圧蒸発部と低圧蒸発部とへ供給され、低圧蒸発部では、冷媒液を高圧蒸発部より低圧下で蒸発させるので、圧力を高圧蒸発部、低圧蒸発部、凝縮部の順に大きくすることができる。よって、高圧蒸発部と低圧蒸発部の圧力差により、蒸発しない余剰の冷媒液を高圧蒸発部から低圧蒸発部に戻すことができ、低圧蒸発部と凝縮部の圧力差により、蒸発しない余剰の冷媒液を低圧蒸発部から凝縮部に戻すことができ、凝縮部に戻った冷媒液は冷媒昇圧手段によって高圧蒸発部と低圧蒸発部に供給されるので、冷媒昇圧手段によって高圧蒸発部から低圧蒸発部、低圧蒸発部から凝縮部、凝縮部から高圧蒸発部と低圧蒸発部へと循環する冷媒液の流れを発生させることができる。   With this configuration, the refrigerant liquid is boosted by the refrigerant boosting means and is supplied from the condensing unit to the high-pressure evaporation unit and the low-pressure evaporation unit. In the low-pressure evaporation unit, the refrigerant liquid is evaporated at a lower pressure than the high-pressure evaporation unit. Can be increased in the order of the high-pressure evaporator, the low-pressure evaporator, and the condenser. Therefore, surplus refrigerant liquid that does not evaporate can be returned from the high-pressure evaporator to the low-pressure evaporator due to the pressure difference between the high-pressure evaporator and the low-pressure evaporator, and excess refrigerant that does not evaporate due to the pressure difference between the low-pressure evaporator and the condenser. The liquid can be returned from the low-pressure evaporation unit to the condensation unit, and the refrigerant liquid returned to the condensation unit is supplied to the high-pressure evaporation unit and the low-pressure evaporation unit by the refrigerant boosting unit. It is possible to generate a flow of refrigerant liquid that circulates from the low-pressure evaporator to the condenser, and from the condenser to the high-pressure evaporator and the low-pressure evaporator.

さらに、吸収ヒートポンプ103は、例えば図5に示すように、凝縮部C、5Aから供給される冷媒液CLであって低圧蒸発部ELには供給されず高圧蒸発部EHに供給される冷媒液と、高圧蒸発部EHから低圧蒸発部ELに戻される冷媒液CLとの間で熱交換を行う高温冷媒熱交換器X12と;凝縮部Cから高圧蒸発部EHと低圧蒸発部ELとに供給される冷媒液CLと、低圧蒸発部EHから凝縮部Cに戻される冷媒液CLとの間で熱交換を行う低温冷媒熱交換器X11との少なくとも一方を備えるようにしてもよい。   Further, for example, as shown in FIG. 5, the absorption heat pump 103 is a refrigerant liquid CL supplied from the condensing units C and 5A, and is supplied to the high-pressure evaporation unit EH without being supplied to the low-pressure evaporation unit EL. , A high-temperature refrigerant heat exchanger X12 that exchanges heat with the refrigerant liquid CL returned to the low-pressure evaporator EL from the high-pressure evaporator EH; and supplied from the condenser C to the high-pressure evaporator EH and the low-pressure evaporator EL You may make it provide at least one of the low-temperature refrigerant | coolant heat exchanger X11 which performs heat exchange between the refrigerant | coolant liquid CL and the refrigerant | coolant liquid CL returned to the condensation part C from the low pressure evaporation part EH.

このように構成すると、凝縮部から高圧蒸発部に供給される冷媒液と、高圧蒸発部から低圧蒸発部に戻される冷媒液との間の熱交換と、凝縮部から高圧蒸発部と低圧蒸発部とに供給される冷媒液と、低圧蒸発部から凝縮部に戻される冷媒液との間の熱交換のうち少なくとも一方を行うので、高圧蒸発部からの冷媒液の保有熱が低圧蒸発部に逃げるのを防ぐこと、あるいは低圧蒸発部からの冷媒液の保有熱が凝縮部に逃げるのを防ぐことのうち少なくとも一方を達成することができ、熱損失を減らすことができる。   If comprised in this way, the heat exchange between the refrigerant | coolant liquid supplied to a high voltage | pressure evaporation part from a condensation part and the refrigerant | coolant liquid returned to a low voltage | pressure evaporation part from a high voltage | pressure evaporation part, and a high voltage | pressure evaporation part and a low voltage | pressure evaporation part from a condensation part At least one of the heat exchanges between the refrigerant liquid supplied to the refrigerant liquid and the refrigerant liquid returned from the low-pressure evaporator to the condenser, so that the heat retained in the refrigerant liquid from the high-pressure evaporator escapes to the low-pressure evaporator Can be achieved, or at least one of preventing the heat retained in the refrigerant liquid from the low-pressure evaporation section from escaping to the condensation section can be achieved, and heat loss can be reduced.

上記目的を達成するために第4の態様に係る発明に係る吸収ヒートポンプ104は、例えば図6に示すように、冷媒蒸気CSを凝縮して冷媒液CLとする凝縮部C、5Aと;凝縮部C、5Aから供給される冷媒液CLを蒸発させて冷媒蒸気CSを発生させ、蒸発しない余剰の冷媒液CLを凝縮部C、5Aに戻す高圧蒸発部EHと;凝縮部C、5Aから供給される冷媒液CLを、高圧蒸発部EHより低圧下で蒸発し、冷媒蒸気CSを発生させ、蒸発しない余剰の冷媒液を前記凝縮部に戻す低圧蒸発部ELと;凝縮部C、5Aで凝縮した冷媒液CLを昇圧し高圧蒸発部EHと低圧蒸発部ELとへ供給する冷媒昇圧手段4とを備える。   In order to achieve the above object, the absorption heat pump 104 according to the fourth aspect of the invention includes, for example, as shown in FIG. 6, condensing units C and 5A that condense the refrigerant vapor CS into the refrigerant liquid CL; A high-pressure evaporation section EH that evaporates the refrigerant liquid CL supplied from C and 5A to generate refrigerant vapor CS and returns excess refrigerant liquid CL that does not evaporate to the condensation sections C and 5A; The refrigerant liquid CL is evaporated at a lower pressure than the high-pressure evaporation section EH to generate the refrigerant vapor CS, and the excess refrigerant liquid not evaporated is returned to the condensing section; and condensed in the condensing sections C and 5A There is provided a refrigerant boosting means 4 that pressurizes the refrigerant liquid CL and supplies it to the high-pressure evaporator EH and the low-pressure evaporator EL.

このように構成すると、冷媒液は冷媒昇圧手段によって昇圧され凝縮部から高圧蒸発部と低圧蒸発部とへ供給され、低圧蒸発部では、冷媒液を高圧蒸発部より低圧下で蒸発させるので、圧力を高圧蒸発部、低圧蒸発部、凝縮部の順に大きくすることができる。よって、高圧蒸発部と凝縮部の圧力差により、蒸発しない余剰の冷媒液を高圧蒸発部から凝縮部に戻すことができ、低圧蒸発部と凝縮部の圧力差により、蒸発しない余剰の冷媒液を低圧蒸発部から凝縮部に戻すことができ、凝縮部に戻った冷媒液は冷媒昇圧手段によって高圧蒸発部と低圧蒸発部に供給されるので、冷媒昇圧手段によって高圧蒸発部と凝縮部の間を循環する冷媒液の流れ、低圧蒸発部と凝縮部の間を循環する冷媒液の流れを発生させることができる。   With this configuration, the refrigerant liquid is boosted by the refrigerant boosting means and is supplied from the condensing unit to the high-pressure evaporation unit and the low-pressure evaporation unit. In the low-pressure evaporation unit, the refrigerant liquid is evaporated at a lower pressure than the high-pressure evaporation unit. Can be increased in the order of the high-pressure evaporator, the low-pressure evaporator, and the condenser. Therefore, the excess refrigerant liquid that does not evaporate can be returned from the high pressure evaporation part to the condensation part due to the pressure difference between the high pressure evaporation part and the condensation part, and the excess refrigerant liquid that does not evaporate due to the pressure difference between the low pressure evaporation part and the condensation part. The refrigerant liquid returned to the condensing unit can be returned from the low pressure evaporating unit, and is supplied to the high pressure evaporating unit and the low pressure evaporating unit by the refrigerant boosting unit. It is possible to generate a circulating refrigerant liquid flow and a refrigerant liquid flow circulating between the low-pressure evaporator and the condenser.

さらに、吸収ヒートポンプ104は、例えば図6に示すように、凝縮部C、5Aから高圧蒸発部EHに供給される冷媒液CLと、高圧蒸発部EHから凝縮部C、5Aに戻される冷媒液CLとの間で熱交換を行う高温冷媒熱交換器X12と;凝縮部C、5Aから低圧蒸発部ELに供給される冷媒液CLと、低圧蒸発部ELから凝縮部C、5Aに戻される冷媒液との間で熱交換を行う低温冷媒熱交換器X13との少なくとも一方を備えるようにしてもよい。   Further, for example, as shown in FIG. 6, the absorption heat pump 104 includes a refrigerant liquid CL supplied from the condensing units C and 5A to the high-pressure evaporation unit EH, and a refrigerant liquid CL returned from the high-pressure evaporation unit EH to the condensing units C and 5A. A high-temperature refrigerant heat exchanger X12 that exchanges heat with the refrigerant; a refrigerant liquid CL that is supplied from the condensers C and 5A to the low-pressure evaporator EL; and a refrigerant liquid that is returned from the low-pressure evaporator EL to the condensers C and 5A At least one of the low-temperature refrigerant heat exchanger X13 that exchanges heat with the heat exchanger may be provided.

このように構成すると、凝縮部から高圧蒸発部に供給される冷媒液と、高圧蒸発部から凝縮部に戻される冷媒液との間の熱交換と、凝縮部から低圧蒸発部に供給される冷媒液と、低圧蒸発部から凝縮部に戻される冷媒液との間の熱交換のうち少なくとも一方を行うので、高圧蒸発部からの冷媒液の保有熱が凝縮部に逃げるのを防ぐこと、あるいは低圧蒸発部からの冷媒液の保有熱が凝縮部に逃げるのを防ぐことのうち少なくとも一方を達成することができ、熱損失を減らすことができる。   If comprised in this way, the heat exchange between the refrigerant | coolant liquid supplied to a high pressure evaporation part from a condensation part, and the refrigerant | coolant liquid returned to a condensation part from a high pressure evaporation part, and the refrigerant | coolant supplied to a low pressure evaporation part from a condensation part Since at least one of the heat exchanges between the liquid and the refrigerant liquid returned from the low-pressure evaporation unit to the condensation unit is performed, it is possible to prevent the retained heat of the refrigerant liquid from the high-pressure evaporation unit from escaping to the condensation unit, or At least one of preventing the retained heat of the refrigerant liquid from the evaporation section from escaping to the condensation section can be achieved, and heat loss can be reduced.

上記目的を達成するために第5の態様に係る発明に係る吸収ヒートポンプ105は、例えば図7に示すように、冷媒液CLを昇圧する冷媒昇圧手段47と;供給された冷媒液CLを蒸発させて冷媒蒸気CSを発生させ、蒸発しない余剰の冷媒液CLが冷媒昇圧手段47により取り出される低圧蒸発部ELと;供給された冷媒液CLを、低圧蒸発部ELより高圧下で蒸発し、冷媒蒸気CSを発生させ、蒸発しない余剰の冷媒液CLを低圧蒸発部ELに供給する高圧蒸発部EHとを備え;低圧蒸発部ELから取り出された冷媒液CLが、冷媒昇圧手段47により高圧蒸気部EHに供給され、または高圧蒸発部EHと低圧蒸発部ELとに供給される。   In order to achieve the above object, the absorption heat pump 105 according to the fifth aspect of the invention includes, for example, as shown in FIG. 7, a refrigerant boosting means 47 that boosts the refrigerant liquid CL; and evaporates the supplied refrigerant liquid CL. A low-pressure evaporation unit EL that generates a refrigerant vapor CS and an excess refrigerant liquid CL that does not evaporate is taken out by the refrigerant boosting means 47; and evaporates the supplied refrigerant liquid CL at a higher pressure than the low-pressure evaporation unit EL. A high-pressure evaporation section EH that generates CS and supplies an excess refrigerant liquid CL that does not evaporate to the low-pressure evaporation section EL; the refrigerant liquid CL taken out from the low-pressure evaporation section EL is Or is supplied to the high pressure evaporator EH and the low pressure evaporator EL.

このように構成すると、高圧蒸発部では冷媒液が低圧蒸発部より高圧下で蒸発するので、高圧蒸発部と低圧蒸発部との間には圧力差があり、この圧力差により、高圧蒸発部で蒸発しない余剰の冷媒液CLを低圧蒸発部ELに供給することができ、低圧蒸発部ELから取り出された冷媒液CLは、冷媒昇圧手段4により高圧蒸気部EHへ、または高圧蒸発部EHと低圧蒸発部ELへ供給することができる。よって、冷媒昇圧手段によって高圧蒸発部と低圧蒸発部の間を循環する冷媒液の流れ、低圧蒸発部から取り出され低圧蒸発部に戻る冷媒液の流れを発生させることができる。   With this configuration, since the refrigerant liquid evaporates at a higher pressure than the low pressure evaporator in the high pressure evaporator, there is a pressure difference between the high pressure evaporator and the low pressure evaporator. Excess refrigerant liquid CL that does not evaporate can be supplied to the low-pressure evaporation part EL, and the refrigerant liquid CL taken out from the low-pressure evaporation part EL is supplied to the high-pressure vapor part EH by the refrigerant pressure raising means 4 or the low-pressure evaporation part EH and the low-pressure evaporation part EH. It can supply to the evaporation part EL. Therefore, it is possible to generate a flow of the refrigerant liquid circulating between the high-pressure evaporation section and the low-pressure evaporation section by the refrigerant boosting means, and a flow of the refrigerant liquid taken out from the low-pressure evaporation section and returning to the low-pressure evaporation section.

さらに、吸収ヒートポンプ105は、例えば図7に示すように、低圧蒸発部ELから取り出されて高圧蒸発部EHに供給される冷媒液と、高圧蒸発部EHから取り出されて低圧蒸発部ELに供給される冷媒液との間で熱交換を行う高温冷媒熱交換器X15を備えるようにしてもよい。   Further, for example, as shown in FIG. 7, the absorption heat pump 105 is extracted from the low-pressure evaporation unit EL and supplied to the high-pressure evaporation unit EH, and is extracted from the high-pressure evaporation unit EH and supplied to the low-pressure evaporation unit EL. You may make it provide the high temperature refrigerant | coolant heat exchanger X15 which heat-exchanges with the refrigerant | coolant liquid which becomes.

このように構成すると、上述のように熱交換を行うので、高圧蒸発部からの冷媒液の保有熱が低圧蒸発部に逃げるのを防ぐことができ、熱損失を減らすことができる。   If comprised in this way, since heat exchange is performed as mentioned above, it can prevent that the retention heat | fever of the refrigerant | coolant liquid from a high pressure evaporation part escapes to a low pressure evaporation part, and can reduce a heat loss.

本発明の吸収ヒートポンプによれば、前述のように凝縮部と、蒸発部と、冷媒昇圧手段とを設けたので、冷媒液は冷媒昇圧手段によって昇圧され凝縮部から蒸発部に供給されるので、蒸発部の圧力を凝縮部の圧力より高くすることができ、蒸発部と凝縮部との圧力差により、蒸発しない余剰の冷媒液を蒸発部から取り出し凝縮部に戻すことができ、凝縮部に戻った冷媒液は冷媒昇圧手段によって蒸発部に供給されるので、冷媒昇圧手段によって蒸発部と凝縮部の間を循環する冷媒液の流れを発生させることができる。よって、冷媒液を蒸発部に供給する冷媒液の流れと、蒸発部から冷媒液を取り出した後に再び蒸発部に戻して循環させる冷媒液の流れとを同一の冷媒昇圧手段によりにより発生させ、単純な構成とした吸収ヒートポンプとすることができる。   According to the absorption heat pump of the present invention, since the condensing unit, the evaporating unit, and the refrigerant pressurizing unit are provided as described above, the refrigerant liquid is pressurized by the refrigerant pressurizing unit and supplied from the condensing unit to the evaporating unit. The pressure of the evaporation unit can be made higher than the pressure of the condensation unit, and due to the pressure difference between the evaporation unit and the condensation unit, excess refrigerant liquid that does not evaporate can be taken out from the evaporation unit and returned to the condensation unit, and returned to the condensation unit. Since the refrigerant liquid thus supplied is supplied to the evaporation section by the refrigerant boosting means, the refrigerant boosting means can generate a flow of the refrigerant liquid that circulates between the evaporation section and the condensation section. Therefore, the flow of the refrigerant liquid for supplying the refrigerant liquid to the evaporation unit and the flow of the refrigerant liquid to be circulated back to the evaporation unit after the refrigerant liquid is taken out from the evaporation unit are generated by the same refrigerant boosting means, An absorption heat pump with a simple structure can be obtained.

本発明の第1の実施の形態に係る吸収ヒートポンプの構成を示すフローシートである。It is a flow sheet which shows the composition of the absorption heat pump concerning a 1st embodiment of the present invention. 図1のフローシート上の吸収液の状態を示す線図である。It is a diagram which shows the state of the absorption liquid on the flow sheet of FIG. 本発明の第2の実施の形態に係る吸収ヒートポンプの構成を示すフローシートである。It is a flow sheet which shows the composition of the absorption heat pump concerning a 2nd embodiment of the present invention. 図3のフローシート上の吸収液の状態を示す線図である。It is a diagram which shows the state of the absorption liquid on the flow sheet of FIG. 本発明の第3の実施の形態に係る吸収ヒートポンプの構成を示すフローシートである。It is a flow sheet which shows the composition of the absorption heat pump concerning a 3rd embodiment of the present invention. 本発明の第4の実施の形態に係る吸収ヒートポンプの構成を示すフローシートである。It is a flow sheet which shows the composition of the absorption heat pump concerning a 4th embodiment of the present invention. 本発明の第5の実施の形態に係る吸収ヒートポンプの構成を示すフローシートである。It is a flow sheet which shows the composition of the absorption heat pump concerning a 5th embodiment of the present invention.

以下、本発明の実施の形態について、図面を参照して説明する。なお、各図において互いに同一あるいは相当する部材には同一符号を付し、重複した説明は省略する。   Embodiments of the present invention will be described below with reference to the drawings. In addition, in each figure, the same code | symbol is attached | subjected to the mutually same or equivalent member, and the overlapping description is abbreviate | omitted.

図1は、本第1の実施の形態の吸収ヒートポンプ101の構成を示すフローシートである。吸収ヒートポンプ101は、吸収液ALi(例えば、臭化リチウム水溶液)による冷媒蒸気CS(冷媒は例えば水)の吸収が行われる吸収部としての一つの吸収器Aと、吸収液ALiから冷媒蒸気CSを蒸発させ吸収液ALiの再生が行われる再生部としての一つの再生器Gと、冷媒液CLから冷媒蒸気CSを発生させる蒸発部としての一つの蒸発器Eと、冷媒蒸気CSを凝縮させ冷媒液CLとする凝縮部としての一つの凝縮器Cとを備える。吸収器A、再生器G、蒸発器E、凝縮器Cはそれぞれ一つの圧力下にあり、蒸発器Eの圧力と吸収器Aの圧力は実用上等しく、再生器Gの圧力と凝縮器Cの圧力は実用上等しい。   FIG. 1 is a flow sheet showing the configuration of the absorption heat pump 101 according to the first embodiment. The absorption heat pump 101 includes a single absorber A as an absorption unit in which the refrigerant vapor CS (the refrigerant is water, for example) is absorbed by the absorption liquid ALi (for example, lithium bromide aqueous solution), and the refrigerant vapor CS from the absorption liquid ALi. One regenerator G as a regenerating unit for evaporating and regenerating the absorbing liquid ALi, one evaporator E as an evaporating unit for generating the refrigerant vapor CS from the refrigerant liquid CL, and the refrigerant liquid by condensing the refrigerant vapor CS And one condenser C as a condensing part to be CL. The absorber A, the regenerator G, the evaporator E, and the condenser C are each under one pressure, the pressure of the evaporator E and the pressure of the absorber A are practically equal, and the pressure of the regenerator G and the condenser C The pressure is practically equal.

吸収器Aは、(1)濃溶液である吸収液ALiが移送(供給)され、移送された吸収液ALiを吸収器Aの内部に散布する吸収液スプレイ22と、(2)補給水W1が移送され、冷媒蒸気CSを吸収した希溶液である吸収液ALiによって、移送された補給水W1が加熱される被加熱管23と、(3)吸収器Aの下部に設置され、吸収器A内に蓄積した吸収液ALiの液面レベルを検出する液面レベルセンサL1とを備える。液面レベルセンサL1は、被加熱管23の鉛直方向下方に設置されている。   The absorber A includes (1) an absorbent liquid spray 22 for transferring (supplying) the absorbent liquid ALi, which is a concentrated solution, and spraying the transferred absorbent liquid ALi inside the absorber A, and (2) makeup water W1. Heated pipe 23 in which transferred replenishment water W1 is heated by absorption liquid ALi which is transferred and absorbs refrigerant vapor CS, and (3) installed in the lower part of absorber A, in absorber A And a liquid level sensor L1 for detecting the liquid level of the absorbing liquid ALi accumulated therein. The liquid level sensor L1 is installed below the heated pipe 23 in the vertical direction.

蒸発器Eは、(1)冷媒液CLが移送され、移送された冷媒液CLを蒸発器Eの内部に散布する冷媒液スプレイ44と、(2)排熱を有する温水WH1が移送され、蒸発器Eに移送された冷媒液CLを加熱する加熱管28と、(3)蒸発器Eの下部に設置され、蒸発器E内に蓄積した冷媒液CLの液面レベルを検出する液面レベルセンサL2とを備える。液面レベルセンサL2は加熱管28の鉛直方向下方に設置されている。吸収ヒートポンプ101では、蒸発器Eで蒸発した冷媒蒸気CSは、吸収器Aに送られるよう構成されている。   In the evaporator E, (1) the refrigerant liquid CL is transferred, and the refrigerant liquid spray 44 for spraying the transferred refrigerant liquid CL inside the evaporator E, and (2) the warm water WH1 having exhaust heat is transferred and evaporated. A heating pipe 28 for heating the refrigerant liquid CL transferred to the evaporator E; and (3) a liquid level sensor that is installed at the lower part of the evaporator E and detects the liquid level of the refrigerant liquid CL accumulated in the evaporator E. L2. The liquid level sensor L2 is installed below the heating pipe 28 in the vertical direction. The absorption heat pump 101 is configured such that the refrigerant vapor CS evaporated by the evaporator E is sent to the absorber A.

再生器Gは、(1)希溶液である吸収液ALiが移送され、移送された吸収液ALiを再生器Gの内部に散布する吸収液スプレイ25と、(2)排熱を有する温水WH2が移送され、移送された温水WH2によって散布された吸収液ALiを加熱し、吸収液ALiから冷媒蒸気CSを発生させ、吸収液ALiを濃溶液とする加熱管26とを備える。吸収ヒートポンプ101では、再生器Gで吸収液ALiから分離した冷媒蒸気CSは、凝縮器Cに送られるよう構成されている。   The regenerator G includes (1) an absorbing liquid spray 25 in which the absorbing liquid ALi which is a dilute solution is transferred, and the transferred absorbing liquid ALi is sprayed inside the regenerator G, and (2) hot water WH2 having exhaust heat. The absorption liquid ALi sprayed by the transferred warm water WH2 is heated, the refrigerant vapor CS is generated from the absorption liquid ALi, and the heating pipe 26 using the absorption liquid ALi as a concentrated solution is provided. The absorption heat pump 101 is configured such that the refrigerant vapor CS separated from the absorption liquid ALi by the regenerator G is sent to the condenser C.

凝縮器Cは、冷却水WCが移送され、再生器Gから凝縮器Cに送られた冷媒蒸気CSを冷却する冷却管30を備える。冷却水WCの温度は、例えば冷却管30の入口で32℃、出口で37℃である。   The condenser C includes a cooling pipe 30 to which the cooling water WC is transferred and the refrigerant vapor CS sent from the regenerator G to the condenser C is cooled. The temperature of the cooling water WC is, for example, 32 ° C. at the inlet of the cooling pipe 30 and 37 ° C. at the outlet.

吸収ヒートポンプ101は、(1)気液分離器11と、(2)気液分離器11に接続され気液分離器11に補給水W1を移送する補給水移送管路7と、(3)気液分離器11から吸収器Aの被加熱管23に補給水W1を移送する補給水移送管路6と、(4)被加熱管23から気液分離器11に補給水W1を移送して戻す補給水移送管路10と、(5)蒸気ヘッダ(不図示)に接続され、気液分離器11で発生した蒸気S(例えば、175℃)を蒸気ヘッダに供給する蒸気供給管路8とを備える。以下、吸収器Aの被加熱管23、補給水移送管路7,6、10、気液分離器11を含めて、蒸気発生部14と称する。   The absorption heat pump 101 includes (1) a gas-liquid separator 11, (2) a makeup water transfer pipe 7 that is connected to the gas-liquid separator 11 and transports makeup water W1 to the gas-liquid separator 11, and (3) gas A makeup water transfer conduit 6 for transporting makeup water W1 from the liquid separator 11 to the heated tube 23 of the absorber A; and (4) transporting the makeup water W1 from the heated tube 23 to the gas-liquid separator 11 and returning it. A makeup water transfer line 10 and (5) a steam supply line 8 connected to a steam header (not shown) and supplying steam S (for example, 175 ° C.) generated in the gas-liquid separator 11 to the steam header. Prepare. Hereinafter, the heated pipe 23 of the absorber A, the makeup water transfer pipes 7, 6, 10, and the gas-liquid separator 11 are referred to as a steam generation unit 14.

吸収ヒートポンプ101は、さらに、(6)再生器Gと吸収器Aとを繋ぎ、再生器Gで再生された濃溶液である吸収液ALiを吸収器Aの吸収液スプレイ22に移送する吸収液移送管路2と、(7)吸収器Aと再生器Gとを繋ぎ、吸収器Aに蓄積された希溶液である吸収液ALiを再生器Gの吸収液スプレイ25に移送する吸収液移送管路3と、(8)凝縮器Cと蒸発器Eとを繋ぎ、凝縮器Cで凝縮した冷媒液CLを蒸発器Eに移送する冷媒液移送管路5とを備える。   The absorption heat pump 101 further (6) connects the regenerator G and the absorber A, and absorbs the absorption liquid ALi, which is a concentrated solution regenerated by the regenerator G, to the absorption liquid spray 22 of the absorber A. Absorption liquid transfer pipe for connecting the absorption line ALi, which is a dilute solution accumulated in the absorber A, to the absorption liquid spray 25 of the regenerator G by connecting the pipe line 2 and (7) the absorber A and the regenerator G 3 and (8) a refrigerant liquid transfer line 5 that connects the condenser C and the evaporator E and transfers the refrigerant liquid CL condensed in the condenser C to the evaporator E.

冷媒液移送管路5は、後述の冷媒ポンプ4の上流側の冷媒供給管路5Aと、冷媒ポンプ4の下流側の冷媒液移送管路5Bとを含んで構成される。凝縮器Cと冷媒供給管路5Aとを含んで、本発明の凝縮部が構成される。   The refrigerant liquid transfer pipe 5 includes a refrigerant supply pipe 5A on the upstream side of the refrigerant pump 4 described later and a refrigerant liquid transfer pipe 5B on the downstream side of the refrigerant pump 4. Condensing part of this invention is comprised including the condenser C and 5 A of refrigerant | coolant supply pipe lines.

吸収ヒートポンプ101は、さらに、(9)蒸発器Eと冷媒供給管路5Aとを繋ぎ、蒸発器Eに蓄積された余剰の冷媒液CLを冷媒供給管路5Aに移送する冷媒液移送管路51と、(10)吸収液移送管路3(具体的には、吸収液移送管路3の後述の熱交換器X2の
上流側)から分岐して再び吸収液移送管路3(具体的には、吸収液移送管路3の熱交換器X2の下流側)に戻る吸収液移送管路52とを備える。
The absorption heat pump 101 further (9) connects the evaporator E and the refrigerant supply line 5A, and transfers the excess refrigerant liquid CL accumulated in the evaporator E to the refrigerant supply line 5A. And (10) the absorption liquid transfer pipe 3 (specifically, upstream of the heat exchanger X2 to be described later of the absorption liquid transfer pipe 3), and again the absorption liquid transfer pipe 3 (specifically, And an absorption liquid transfer pipe line 52 returning to the absorption liquid transfer pipe line 3 downstream of the heat exchanger X2.

吸収ヒートポンプ101は、さらに、(11)吸収液移送管路2を通って被加熱側に移送される濃溶液である吸収液ALiと、吸収液移送管路52を通って加熱側に移送される希溶液である吸収液ALiとの間で熱交換を行う冷媒熱交換器X1と、(12)補給水移送管路7を通って被加熱側に移送される補給水W1と、吸収液移送管路3を通って加熱側に移送される希溶液である吸収液ALiとの間で熱交換を行う熱交換器X2と、(13)冷媒液移送管路5を通って被加熱側に移送される冷媒液CLと、冷媒液移送配管51を通って加熱側に移送される冷媒液CLとの間で熱交換を行う冷媒熱交換器X11とを備える。
熱交換器X2と冷媒熱交換器X1とは並列に配置されている。また、冷媒液移送管路51の冷媒熱交換器X11の下流側には絞り61が設置されている。
The absorption heat pump 101 further transfers (11) the absorption liquid ALi that is a concentrated solution transferred to the heated side through the absorption liquid transfer pipe 2 and the heating liquid through the absorption liquid transfer pipe 52. Refrigerant heat exchanger X1 that exchanges heat with the absorbing liquid ALi that is a dilute solution, (12) makeup water W1 that is transferred to the heated side through the makeup water transfer pipe 7, and an absorption liquid transfer pipe A heat exchanger X2 for exchanging heat with the absorbing liquid ALi, which is a dilute solution transferred to the heating side through the path 3, and (13) transferred to the heated side through the refrigerant liquid transfer line 5. And a refrigerant heat exchanger X11 that performs heat exchange between the refrigerant liquid CL and the refrigerant liquid CL that is transferred to the heating side through the refrigerant liquid transfer pipe 51.
The heat exchanger X2 and the refrigerant heat exchanger X1 are arranged in parallel. In addition, a throttle 61 is installed on the downstream side of the refrigerant heat exchanger X11 in the refrigerant liquid transfer pipe 51.

吸収ヒートポンプ101は、さらに加熱側に排熱を有する温水WH3が移送され、被加熱側に補給水移送管路7を通って補給水W1が移送され、熱交換が行われる熱交換器X3を備える。   The absorption heat pump 101 further includes a heat exchanger X3 in which warm water WH3 having exhaust heat is transferred to the heating side, and makeup water W1 is transferred to the heated side through the makeup water transfer pipe 7 to perform heat exchange. .

吸収液移送管路2には、溶液ポンプ1が設置され、溶液ポンプ1は再生器Gで再生された吸収液ALiを吸収器Aに移送する。溶液ポンプ1は、冷媒熱交換器X1の上流側に設置されている。冷媒液移送管路5には、冷媒昇圧手段としての冷媒ポンプ4が設置され、冷媒ポンプ4は凝縮器Cで凝縮された冷媒液CLを蒸発器Eに移送する。補給水移送管路7には、給水ポンプ12が設置され、給水ポンプ12は補給水W1を蒸気発生部14の気液分離器11に移送する。補給水移送管路7の給水ポンプ12の直下流側には、逆止弁37が設置され、補給水W1が逆流するのを防止している。補給水移送管路6には、給水ポンプ13が設置され、給水ポンプ13は補給水W1を気液分離器11から被加熱管23に移送し、さらに補給水移送管路7を通って被加熱管23から気液分離器11に移送して戻し、補給水W1を循環させる。   A solution pump 1 is installed in the absorption liquid transfer pipe 2, and the solution pump 1 transfers the absorption liquid ALi regenerated by the regenerator G to the absorber A. The solution pump 1 is installed on the upstream side of the refrigerant heat exchanger X1. The refrigerant liquid transfer pipe 5 is provided with a refrigerant pump 4 as a refrigerant boosting means, and the refrigerant pump 4 transfers the refrigerant liquid CL condensed by the condenser C to the evaporator E. A water supply pump 12 is installed in the make-up water transfer pipe 7, and the water supply pump 12 transfers make-up water W <b> 1 to the gas-liquid separator 11 of the steam generation unit 14. A check valve 37 is installed immediately downstream of the feed water pump 12 in the makeup water transfer pipe 7 to prevent the makeup water W1 from flowing back. A water supply pump 13 is installed in the make-up water transfer pipe 6, and the water supply pump 13 transfers make-up water W 1 from the gas-liquid separator 11 to the heated pipe 23, and further through the make-up water transfer pipe 7 to be heated. It is transferred from the tube 23 to the gas-liquid separator 11 and returned to circulate the makeup water W1.

冷媒液移送管路5の冷媒熱交換器X11の下流側には、蒸発器Eに移送する冷媒液CLの流量を調整する冷媒供給弁V3が設置されている。   A refrigerant supply valve V <b> 3 that adjusts the flow rate of the refrigerant liquid CL to be transferred to the evaporator E is installed downstream of the refrigerant heat exchanger X <b> 11 in the refrigerant liquid transfer line 5.

蒸気発生部14の気液分離器11には、蒸気発生部14の圧力を検出する圧力センサPが設置され、下部に蓄積された補給水W1の液面レベルを検出する液面レベルセンサL3が設置されている。蒸気供給管路8には、供給する蒸気Sの圧力を調節する蒸気弁V1が設置されている。蒸気供給管路8に、図に示すように、蒸気ヘッダ(不図示)からの蒸気の逆流を防止する逆止弁38を設置してもよい。逆止弁38を設置すると、蒸気弁V1の作動に関係なく、確実に蒸気ヘッダからの蒸気の逆流を防止することができる。温水WH1、WH2、WH3の温度は、例えば入口90℃、出口85℃とするとよい。   The gas-liquid separator 11 of the steam generating unit 14 is provided with a pressure sensor P for detecting the pressure of the steam generating unit 14, and a liquid level sensor L3 for detecting the liquid level of the makeup water W1 accumulated in the lower part. is set up. The steam supply pipe 8 is provided with a steam valve V1 that adjusts the pressure of the steam S to be supplied. As shown in the figure, a check valve 38 for preventing the backflow of steam from a steam header (not shown) may be installed in the steam supply line 8. When the check valve 38 is installed, the backflow of steam from the steam header can be surely prevented regardless of the operation of the steam valve V1. The temperature of the hot water WH1, WH2, and WH3 may be, for example, 90 ° C. at the inlet and 85 ° C. at the outlet.

吸収ヒートポンプ101は、制御装置21を備える。液面レベルセンサL1からの、液面レベルを表す液面信号(不図示)は制御装置21に送られ、制御装置21から液面レベルを一定のレベルに保つよう回転数を制御する制御信号(不図示)がVVVFインバータ(不
図示)に送られ、当該インバータが溶液ポンプ1を駆動するモータ(不図示)の電源を制御
し、溶液ポンプ1の回転数を吸収器Aの液面レベルが一定になるよう制御する(但し、図
中、簡略化し制御信号が液面レベルセンサL1から溶液ポンプ1に送られるよう表されている)。
The absorption heat pump 101 includes a control device 21. A liquid level signal (not shown) representing the liquid level from the liquid level sensor L1 is sent to the control device 21, and a control signal (a control signal for controlling the number of revolutions so as to keep the liquid level at a constant level). (Not shown) is sent to a VVVF inverter (not shown), which controls the power supply of a motor (not shown) that drives the solution pump 1, and the number of revolutions of the solution pump 1 is constant at the liquid level of the absorber A. (However, in the drawing, the control signal is simplified and shown to be sent from the liquid level sensor L1 to the solution pump 1).

液面レベルセンサL2からの、液面レベルを表す液面信号(不図示)は制御装置21に送られ、制御装置21から液面レベルを一定のレベルに保つよう冷媒液CLの流量を制御する制御信号(不図示)が冷媒供給弁V3に送られ、冷媒供給弁V3の開度を蒸発器Eの液面レベルが一定になるよう制御する(図中、簡略化して、液面レベルセンサL2から冷媒供
給弁V3に信号が送られるように記載)。
A liquid level signal (not shown) representing the liquid level from the liquid level sensor L2 is sent to the control device 21, and the flow rate of the refrigerant liquid CL is controlled by the control device 21 so as to keep the liquid level at a constant level. A control signal (not shown) is sent to the refrigerant supply valve V3 to control the opening of the refrigerant supply valve V3 so that the liquid level of the evaporator E is constant (in the figure, the liquid level sensor L2 is simplified). From the refrigerant supply valve V3).

液面レベルセンサL3からの、液面レベルを表す液面信号(不図示)は制御装置21に送られ、制御装置21から液面レベルを一定のレベルに保つよう補給水W1の流量を制御する制御信号(不図示)が給水ポンプ12に送られ(実際には前述のように不図示のインバー
タ)、給水ポンプ12の回転数を気液分離器11の液面レベルが一定になるよう制御する(図中、簡略化して、液面レベルセンサL3から給水ポンプ12に信号が送られるように記載)。
A liquid level signal (not shown) representing the liquid level from the liquid level sensor L3 is sent to the control device 21, and the flow rate of the makeup water W1 is controlled by the control device 21 so as to keep the liquid level at a constant level. A control signal (not shown) is sent to the feed water pump 12 (actually an inverter not shown) as described above, and the rotation speed of the feed water pump 12 is controlled so that the liquid level of the gas-liquid separator 11 becomes constant. (In the figure, it is simplified so that a signal is sent from the liquid level sensor L3 to the water supply pump 12).

圧力センサPからの、圧力を表す圧力信号(図中、破線)は制御装置21に送られ、制御装置21から気液分離器11の圧力が所定の値P1になるよう蒸気Sの供給量を制御する制御信号が(図中、破線)が蒸気弁V1に送られ、蒸気弁V1の開度を気液分離器11の圧力が所定の値P1になるよう制御する。この場合、吸収ヒートポンプ101の蒸気発生能力は、制御装置21により、例えば、定格流量の蒸気Sを発生するように設定されている(例えば、効率が最大の運転点)。また、所定の値P1は、例えば、蒸気ヘッダ圧(絶対圧)が0.8MPaの場合、0.85MPaとするとよい。前述において、温水WH1、温水WH2、温水WH3は、並列に供給されるとして説明したが、直列、あるいは一部並列、一部直列に供給してもよい。   A pressure signal (a broken line in the figure) representing the pressure from the pressure sensor P is sent to the control device 21, and the supply amount of the steam S is adjusted from the control device 21 so that the pressure of the gas-liquid separator 11 becomes a predetermined value P1. A control signal to be controlled (broken line in the figure) is sent to the steam valve V1, and the opening of the steam valve V1 is controlled so that the pressure of the gas-liquid separator 11 becomes a predetermined value P1. In this case, the steam generation capacity of the absorption heat pump 101 is set by the control device 21 so as to generate, for example, steam S having a rated flow rate (for example, the operating point having the maximum efficiency). The predetermined value P1 may be set to 0.85 MPa, for example, when the steam header pressure (absolute pressure) is 0.8 MPa. In the above description, the hot water WH1, the hot water WH2, and the hot water WH3 have been described as being supplied in parallel. However, the hot water WH1, the hot water WH3, and the hot water WH3 may be supplied in series, or partially in parallel.

次に、本第1の実施の形態の作用を図1、図2を参照して説明する。図2は、吸収液および冷媒の状態を示す線図であり、縦軸が圧力、横軸が温度である。
吸収器Aを出た希溶液である吸収液ALi(状態は、図2中、B2の位置)は、吸収液移送管路3により移送され、一部が熱交換器X2を通過することにより補給水W1により冷却され、残りの一部が吸収液移送管路3から分岐し吸収液移送管路52により移送され冷媒熱交換器X1を通過することにより、吸収液移送配管2を通って再生器Gから吸収器Aに移送される濃溶液である吸収液ALiにより冷却される。分岐した吸収液移送管路52が熱交換器X2の下流側で吸収液移送管路3に再び合流するので、熱交換器X2により冷却された吸収液ALiと冷媒熱交換器X1により冷却された吸収液ALiとは、合流し(
合流した後の吸収液ALiの状態は、図2中、B8の位置)、合流後さらに再生器Gの吸
収液スプレイ25に移送される。
Next, the operation of the first embodiment will be described with reference to FIGS. FIG. 2 is a diagram showing states of the absorbing liquid and the refrigerant, in which the vertical axis represents pressure and the horizontal axis represents temperature.
Absorbing liquid ALi which is a dilute solution exiting the absorber A (state is the position of B2 in FIG. 2) is transferred by the absorbing liquid transfer pipe 3 and partly replenished by passing through the heat exchanger X2. It is cooled by the water W1 and the remaining part is branched from the absorbing liquid transfer pipe 3 and transferred by the absorbing liquid transfer pipe 52 and passes through the refrigerant heat exchanger X1, thereby passing through the absorbing liquid transfer pipe 2 and the regenerator. It is cooled by the absorbing liquid ALi which is a concentrated solution transferred from G to the absorber A. Since the branched absorption liquid transfer pipe 52 is joined again to the absorption liquid transfer pipe 3 on the downstream side of the heat exchanger X2, the absorption liquid ALi cooled by the heat exchanger X2 and the refrigerant heat exchanger X1 are cooled. Absorbing liquid ALi joins (
After the merge, the state of the absorption liquid ALi is transferred to the absorption liquid spray 25 of the regenerator G after the merge.

吸収液ALiは、吸収液スプレイ25から再生器G内に散布され(吸収液ALiの状態
は、図2中、B5の位置)、散布された吸収液ALiは加熱管26を介して温水WH2に
加熱され、吸収液ALiに吸収されていた冷媒は冷媒蒸気CSとして蒸発し、再生された濃溶液である吸収液ALiは再生器Gの底部に蓄積する。
The absorbing liquid ALi is sprayed from the absorbing liquid spray 25 into the regenerator G (the state of the absorbing liquid ALi is a position B5 in FIG. 2), and the sprayed absorbing liquid ALi is supplied to the hot water WH2 through the heating pipe 26. The refrigerant that has been heated and absorbed in the absorption liquid ALi evaporates as refrigerant vapor CS, and the absorption liquid ALi, which is a regenerated concentrated solution, accumulates at the bottom of the regenerator G.

濃溶液となった吸収液ALi(状態は、図2中、B4の位置)は、吸収液移送管路2を通り吸収器Aの吸収液スプレイ22に移送される。吸収液移送管路2を通る間、溶液ポンプ1により昇圧され、その後冷媒熱交換器X1で、吸収器Aから再生器Gに移送される希溶液である吸収液ALiに加熱され(吸収液移送管路2を通る吸収液ALiの状態は、図2
中、B7の位置)、吸収器Aの吸収液スプレイ22に移送される。
Absorbing liquid ALi that has become a concentrated solution (the state is the position B4 in FIG. 2) is transferred to the absorbing liquid spray 22 of the absorber A through the absorbing liquid transfer pipe 2. While passing through the absorption liquid transfer line 2, the pressure is increased by the solution pump 1, and then the refrigerant heat exchanger X 1 is heated to the absorption liquid ALi which is a dilute solution transferred from the absorber A to the regenerator G (absorption liquid transfer The state of the absorption liquid ALi passing through the pipe line 2 is shown in FIG.
Middle, position B7), and transferred to the absorbent liquid spray 22 of the absorber A.

吸収器Aで、吸収液スプレイ22から吸収器A内に散布された濃溶液である吸収液ALi(吸収液ALiの状態は、図2中、B6の位置)は、蒸発器Eで蒸発した冷媒蒸気CSを吸収し、被加熱管23を通る補給水W1を加熱し、吸収器Aの底部に蓄積する(吸収液A
Liの状態は、図2中、B2の位置)。
In the absorber A, the absorption liquid ALi (the state of the absorption liquid ALi is the position B6 in FIG. 2) which is a concentrated solution sprayed into the absorber A from the absorption liquid spray 22 is the refrigerant evaporated in the evaporator E. The vapor CS is absorbed, the make-up water W1 passing through the heated pipe 23 is heated and accumulated at the bottom of the absorber A (absorbing liquid A
The state of Li is the position B2 in FIG.

溶液ポンプ1は、吸収器Aに蓄積する吸収液ALiの液面レベルが一定となるような流量の吸収液ALiを再生器Gから吸収器Aに移送するよう制御装置21によって回転数が制御される。このような制御が行われるのは、吸収器Aと再生器Gの冷媒蒸気圧の差が大きく、吸収液ALiによる液シールで冷媒蒸気CSの混入を防げないためである。吸収器Aから再生器Gに戻る吸収液量に見合う吸収液ALiを送り込み、吸収器Aの液面を保っている(吸収液ALiの液面制御で冷媒蒸気CSの流出を防止)。   The rotation speed of the solution pump 1 is controlled by the control device 21 so as to transfer the absorption liquid ALi having a flow rate so that the liquid level of the absorption liquid ALi accumulated in the absorber A is constant from the regenerator G to the absorber A. The The reason why such control is performed is that the difference in refrigerant vapor pressure between the absorber A and the regenerator G is large, and mixing of the refrigerant vapor CS cannot be prevented by the liquid seal with the absorbing liquid ALi. Absorbing liquid ALi commensurate with the amount of absorbing liquid returning from absorber A to regenerator G is sent to maintain the liquid level of absorber A (the liquid level control of absorbing liquid ALi prevents the outflow of refrigerant vapor CS).

再生器Gで蒸発した冷媒蒸気CSは凝縮器Cに送られ、冷媒蒸気CSは凝縮器Cで冷却管30を通る冷却水WCにより冷却され凝縮して冷媒液CL(状態は、図2中、D1の位
置)となる。凝縮器Cの冷媒液CLは、冷媒液移送管路5を通り、冷媒ポンプ4の上流側
で(冷媒供給管路5Aで)蒸発器Eから冷媒液移送管路51を通り移送される冷媒液CLと合流し、合流後に冷媒ポンプ4により昇圧され、冷媒熱交換器X11で蒸発器Eから冷媒液移送管路51を通り移送されてくる冷媒液CLにより加熱され、その後冷媒供給弁V3により流量を制御されて、蒸発器Eに送られる。冷媒液CLは、蒸発器Eと冷媒供給管路5A(凝縮器C)との間の圧力差により蒸発器Eから冷媒液移送管路51を通り冷媒供給管路5Aに移送される。
The refrigerant vapor CS evaporated in the regenerator G is sent to the condenser C, and the refrigerant vapor CS is cooled and condensed by the cooling water WC passing through the cooling pipe 30 in the condenser C to be condensed into the refrigerant liquid CL (the state is shown in FIG. D1 position). The refrigerant liquid CL of the condenser C passes through the refrigerant liquid transfer pipe 5 and is transferred from the evaporator E through the refrigerant liquid transfer pipe 51 upstream of the refrigerant pump 4 (in the refrigerant supply pipe 5A). After joining, the pressure is increased by the refrigerant pump 4, heated by the refrigerant liquid CL transferred from the evaporator E through the refrigerant liquid transfer pipe 51 by the refrigerant heat exchanger X11, and then flowed by the refrigerant supply valve V3. And is sent to the evaporator E. The refrigerant liquid CL is transferred from the evaporator E through the refrigerant liquid transfer line 51 to the refrigerant supply line 5A due to a pressure difference between the evaporator E and the refrigerant supply line 5A (condenser C).

蒸発器Eに送られた冷媒液CLは、冷媒液スプレイ44から蒸発器E内部に散布され、加熱管28を介して温水WH1により加熱されて蒸発し、蒸発しない余剰の冷媒液CLは下部に蓄積する(冷媒の状態は、図2中、D2の位置)。蒸発した冷媒蒸気CSは吸収器Aに送られ、吸収器Aで吸収液ALiに吸収される。   The refrigerant liquid CL sent to the evaporator E is sprayed from the refrigerant liquid spray 44 to the inside of the evaporator E, heated by the hot water WH1 through the heating pipe 28 and evaporated, and the excess refrigerant liquid CL that does not evaporate is placed in the lower part. Accumulate (the state of the refrigerant is the position D2 in FIG. 2). The evaporated refrigerant vapor CS is sent to the absorber A, and is absorbed by the absorber ALi in the absorber A.

冷媒供給弁V3は、蒸発器Eに蓄積する冷媒液CLの液面レベルが一定になるような量の冷媒液CLが凝縮器Cから蒸発器Eに移送されるように、制御装置21によって開度が制御される。このような制御が行われるのは、冷媒液の蒸発した量を補給するためであり、冷媒蒸気が冷媒液移送管路51を冷媒液CLで満たされる状態に維持し、冷媒ポンプ4が気体を吸い込まないようにするためであり、また冷媒蒸気CSが凝縮器Cに流出して熱損失が発生するのを防ぐためでもある。なお、蒸発器は図示するものとは相違するが、加熱管が冷媒液に浸漬する浸漬式であってもよい。   The refrigerant supply valve V3 is opened by the control device 21 so that an amount of the refrigerant liquid CL is transferred from the condenser C to the evaporator E so that the liquid level of the refrigerant liquid CL accumulated in the evaporator E is constant. The degree is controlled. Such control is performed in order to replenish the evaporated amount of the refrigerant liquid. The refrigerant vapor keeps the refrigerant liquid transfer line 51 filled with the refrigerant liquid CL, and the refrigerant pump 4 emits gas. This is to prevent the refrigerant vapor CS from flowing into the condenser C and preventing heat loss from occurring. Although the evaporator is different from that shown in the figure, an immersion type in which the heating tube is immersed in the refrigerant liquid may be used.

補給水移送管路7に供給された補給水W1は、給水ポンプ12により昇圧され、蒸気発生部14の気液分離器11に移送される。給水ポンプ12を出た補給水W1は、熱交換器X3で温水WH3により加熱され、さらに熱交換器X2で吸収器Aから再生器Gに移送される吸収液ALiにより加熱され、気液分離器11に移送される。   The makeup water W <b> 1 supplied to the makeup water transfer pipe 7 is boosted by the feed water pump 12 and transferred to the gas-liquid separator 11 of the steam generator 14. The makeup water W1 exiting the feed water pump 12 is heated by the hot water WH3 in the heat exchanger X3, and further heated by the absorption liquid ALi transferred from the absorber A to the regenerator G in the heat exchanger X2, and the gas-liquid separator 11 is transferred.

蒸気発生部14に供給される補給水W1の流量は、気液分離器11内に蓄積される補給水W1の液面レベルが一定になるように、制御装置21により給水ポンプ12の回転数を制御することにより調節される。気液分離器11の補給水W1の液面レベルを一定に調節するのは、蒸気Sとして供給され失われた補給水W1に見合う分を気液分離器11に補給するためである。   The flow rate of the makeup water W1 supplied to the steam generator 14 is controlled by the controller 21 so that the level of the makeup water W1 accumulated in the gas-liquid separator 11 is constant. It is adjusted by controlling. The reason why the liquid level of the makeup water W1 of the gas-liquid separator 11 is adjusted to be constant is to replenish the gas-liquid separator 11 with an amount corresponding to the lost makeup water W1 supplied as steam S.

気液分離器11に移送された補給水W1は、補給水移送管路6を通り、給水ポンプ13により昇圧され吸収器Aの被加熱管23に送られ、吸収器Aで冷媒蒸気CSを吸収する吸収液ALiの吸収熱により加熱され、蒸気Sを発生させ、補給水移送管路10を通り、気液分離器11に戻り、蒸気と液を分離する。発生した蒸気Sは、蒸気供給管路8を通り、制御装置21により制御される蒸気弁V1により蒸気発生部14の圧力が第1の所定の圧力P1になるように流量調節されて、蒸気ヘッダ(不図示)に供給される。   The make-up water W1 transferred to the gas-liquid separator 11 passes through the make-up water transfer pipe 6 and is boosted by the feed water pump 13 and sent to the heated pipe 23 of the absorber A. The absorber A absorbs the refrigerant vapor CS. Is heated by the absorption heat of the absorbing liquid ALi to generate steam S, returns to the gas-liquid separator 11 through the make-up water transfer pipe 10, and separates the steam and liquid. The generated steam S passes through the steam supply line 8, and the flow rate is adjusted by the steam valve V <b> 1 controlled by the control device 21 so that the pressure of the steam generating unit 14 becomes the first predetermined pressure P <b> 1. (Not shown).

蒸気発生部14の圧力が所定の圧力P1になるように制御されるのは、蒸気発生部14の圧力が蒸気ヘッダ(不図示)の圧力より高い圧力に制御し、蒸気発生部14の圧力を常に蒸気ヘッダの圧力より一定の圧力だけ高い圧力とし、吸収ヒートポンプ101で発生した蒸気Sが常に蒸気ヘッダに供給されるようにし、負荷(不図示)側に安定して蒸気Sが供給されるようにするためである。   The steam generator 14 is controlled so that the pressure of the steam generator 14 becomes a predetermined pressure P1 because the pressure of the steam generator 14 is controlled to be higher than the pressure of the steam header (not shown). The pressure is always higher than the pressure of the steam header by a certain pressure so that the steam S generated by the absorption heat pump 101 is always supplied to the steam header so that the steam S is stably supplied to the load (not shown) side. It is to make it.

制御装置21によって以下の制御が行われる。すなわち、蒸気発生部14の圧力がP1より低くなると蒸気弁V1の開度を小さくして、蒸気発生部14から蒸気ヘッダ(不図示)に供給される蒸気Sの量を減少させて蒸気発生部14の圧力が上昇するようにする。一方、蒸気発生部14の圧力がP1より高くなると蒸気弁V1の開度を大きくして、蒸気発生部14から蒸気ヘッダに供給される蒸気Sの量を増加させて蒸気発生部14の圧力が下降するようにする。   The control device 21 performs the following control. That is, when the pressure of the steam generation unit 14 becomes lower than P1, the opening degree of the steam valve V1 is reduced, and the amount of the steam S supplied from the steam generation unit 14 to the steam header (not shown) is decreased, so that the steam generation unit 14 14 so that the pressure rises. On the other hand, when the pressure of the steam generation unit 14 becomes higher than P1, the opening of the steam valve V1 is increased to increase the amount of steam S supplied from the steam generation unit 14 to the steam header, so that the pressure of the steam generation unit 14 is increased. Try to descend.

本実施の形態の吸収ヒートポンプ101は、冷媒液移送管路5と冷媒ポンプ4とを備えるので、凝縮器Cの冷媒液CLを冷媒液移送管路5を通って蒸発器Eに供給することができ、さらに蒸発器Eと冷媒供給管路5A(冷媒液移送管路5の冷媒ポンプ4の上流側)とを繋ぐ冷媒液移送管路51を備えるので、凝縮器Cから蒸発器Eに移送される冷媒液CLの流れと、蒸発器Eから冷媒液CLを取り出した後に再び蒸発器Eに戻される冷媒液CLの流れとを合流させることができる。よって、冷媒ポンプ4によって冷媒液CLを凝縮器Cから蒸発器Eに移送し、同時に蒸発器Eから冷媒液CLを取り出し再び蒸発器Eに戻して循環させることができ、蒸発器Eから冷媒液CLを取り出し再び蒸発器Eに戻して循環させるためのポンプ(循環ポンプ)を兼ねることができ、循環ポンプを設ける必要をなくすことができる。   Since the absorption heat pump 101 of the present embodiment includes the refrigerant liquid transfer pipe 5 and the refrigerant pump 4, the refrigerant liquid CL of the condenser C can be supplied to the evaporator E through the refrigerant liquid transfer pipe 5. In addition, since the refrigerant liquid transfer pipe 51 that connects the evaporator E and the refrigerant supply pipe 5A (upstream of the refrigerant pump 4 in the refrigerant liquid transfer pipe 5) is provided, the refrigerant C is transferred from the condenser C to the evaporator E. The flow of the refrigerant liquid CL and the flow of the refrigerant liquid CL returned to the evaporator E after taking out the refrigerant liquid CL from the evaporator E can be merged. Therefore, the refrigerant liquid CL can be transferred from the condenser C to the evaporator E by the refrigerant pump 4, and at the same time, the refrigerant liquid CL can be taken out from the evaporator E and returned to the evaporator E to be circulated. It can also serve as a pump (circulation pump) for taking out CL and returning it to the evaporator E for circulation, eliminating the need to provide a circulation pump.

本実施の形態の吸収ヒートポンプ101は、冷媒ポンプ4によって蒸発器Eに冷媒液CLを供給する流れと蒸発器Eと冷媒供給管路5Aの間を循環する流れを発生させることができるので、蒸発器Eに供給される冷媒液CLの流量を多くすることができる。よって、蒸発器Eの伝熱効率を上昇させることができ、蒸発器Eのコンパクト化を図ることができ、また排熱の利用効率を高めることができる。   The absorption heat pump 101 of the present embodiment can generate a flow for supplying the refrigerant liquid CL to the evaporator E by the refrigerant pump 4 and a flow for circulating between the evaporator E and the refrigerant supply pipe 5A. The flow rate of the refrigerant liquid CL supplied to the container E can be increased. Therefore, the heat transfer efficiency of the evaporator E can be raised, the evaporator E can be made compact, and the utilization efficiency of exhaust heat can be increased.

本実施の形態の吸収ヒートポンプ101は、冷媒液移送管路5を通って凝縮器Cから蒸発器Eに移送される冷媒液CLと、冷媒液移送管路51を通って蒸発器Eから冷媒供給管路5Aに移送される冷媒液CLとの間で熱交換を行うので、蒸発器Eから凝縮器Cに冷媒液CLを戻す際の熱損失を減らすことができ、吸収ヒートポンプ101に供給される排熱をより有効に利用することができる。   The absorption heat pump 101 of the present embodiment is supplied with the refrigerant liquid CL transferred from the condenser C to the evaporator E through the refrigerant liquid transfer pipe 5 and the refrigerant supply from the evaporator E through the refrigerant liquid transfer pipe 51. Since heat exchange is performed with the refrigerant liquid CL transferred to the pipe line 5A, heat loss when returning the refrigerant liquid CL from the evaporator E to the condenser C can be reduced, and the heat is supplied to the absorption heat pump 101. Waste heat can be used more effectively.

本吸収ヒートポンプ101において、蒸発器Eで蒸発しない余剰の冷媒液CLを冷媒熱交換器X11で熱回収して、冷媒液移送管路5の冷媒ポンプ4の上流側である冷媒供給管路5Aに戻すので、冷媒液CLが凝縮器Cで冷却されることがなく、熱エネルギを無駄にすることがない。   In the present absorption heat pump 101, excess refrigerant liquid CL that does not evaporate in the evaporator E is recovered by the refrigerant heat exchanger X11, and is supplied to the refrigerant supply line 5A on the upstream side of the refrigerant pump 4 in the refrigerant liquid transfer line 5. Since it returns, the refrigerant | coolant liquid CL is not cooled with the condenser C, and a heat energy is not wasted.

前述において、冷媒液移送管路51は、冷媒液移送管路5の冷媒ポンプ4の上流側である冷媒液供給管路5Aに接続しているが、冷媒液移送管路51を凝縮器Cに接続し、蒸発器Eの冷媒液CLを凝縮器Cに戻すようにしてもよい。このようにしても、蒸発器Eで蒸発しない余剰の冷媒液CLの保有熱を冷媒熱交換器X11で熱回収するので、熱損失を防ぐことができ、吸収ヒートポンプ101に供給される排熱をより有効に利用することができる。   In the above description, the refrigerant liquid transfer pipe 51 is connected to the refrigerant liquid supply pipe 5A on the upstream side of the refrigerant pump 4 of the refrigerant liquid transfer pipe 5, but the refrigerant liquid transfer pipe 51 is connected to the condenser C. The refrigerant liquid CL of the evaporator E may be returned to the condenser C by connection. Even in this case, since the retained heat of the excess refrigerant liquid CL that does not evaporate in the evaporator E is recovered by the refrigerant heat exchanger X11, heat loss can be prevented, and the exhaust heat supplied to the absorption heat pump 101 can be reduced. It can be used more effectively.

図3は、本第2の実施の形態の吸収ヒートポンプ102の構成を示すフローシートである。以下、吸収ヒートポンプ101(図1)との構成の相違について述べ、構成が同じ点については確認的に記載するもの以外説明を省略する。吸収ヒートポンプ101(図1)では、吸収器A(図1)は一つであり、蒸発器E(図1)も一つであり、共に単一の圧力下にある。しかし、吸収ヒートポンプ102では、吸収器は、単一の圧力下にはなく、高圧吸収器AHと、高圧吸収器AHより低圧下にある低圧吸収器ALとを含んで構成され、蒸発器も、単一の圧力下にはなく、高圧蒸発部としての高圧蒸発器EHと、高圧蒸発器EHより低圧下にある低圧蒸発部としての低圧蒸発器ELとを含んで構成される。   FIG. 3 is a flow sheet showing the configuration of the absorption heat pump 102 of the second embodiment. Hereinafter, the difference in configuration from the absorption heat pump 101 (FIG. 1) will be described, and the description of the same configuration will be omitted except for what is confirmed. In the absorption heat pump 101 (FIG. 1), there is one absorber A (FIG. 1) and one evaporator E (FIG. 1), both under a single pressure. However, in the absorption heat pump 102, the absorber is not under a single pressure, but includes a high pressure absorber AH and a low pressure absorber AL that is under a lower pressure than the high pressure absorber AH. It is not under a single pressure, but includes a high-pressure evaporator EH as a high-pressure evaporator and a low-pressure evaporator EL as a low-pressure evaporator under a lower pressure than the high-pressure evaporator EH.

高圧吸収器AHは、吸収器A(図1)と同様に構成され、吸収液スプレイ22Hと、被加熱管23Hと、液面レベルセンサL1Hとを備える。
低圧吸収器ALは、吸収器Aと同様に構成され、吸収液スプレイ22Lと、液面レベルセンサL1Lとを備え、低圧吸収器ALには被加熱管23Lが設置されている。但し、被加熱管23Lには補給水W1ではなく後述の高圧蒸発器EHの気液分離器15から冷媒液CLが移送され、冷媒液CLは吸収液ALiによって加熱されて冷媒蒸気CSを発生する。すなわち、被加熱管23Lの被加熱側が高圧蒸発器EHの一部を構成する。
The high-pressure absorber AH is configured in the same manner as the absorber A (FIG. 1), and includes an absorbing liquid spray 22H, a heated pipe 23H, and a liquid level sensor L1H.
The low-pressure absorber AL is configured in the same manner as the absorber A, and includes an absorbing liquid spray 22L and a liquid level sensor L1L. The low-pressure absorber AL is provided with a heated pipe 23L. However, not the makeup water W1 but the refrigerant liquid CL is transferred from the gas-liquid separator 15 of the high-pressure evaporator EH described later to the heated pipe 23L, and the refrigerant liquid CL is heated by the absorption liquid ALi to generate the refrigerant vapor CS. . That is, the heated side of the heated tube 23L constitutes a part of the high-pressure evaporator EH.

高圧蒸発器EHは、気液分離器15と、前述のように被加熱管23Lの被加熱側とを含んで構成される。高圧蒸発器EHは、気液分離器15が、液面レベルセンサL2Hを備える点で蒸発器E(図1)と同様の構成であるが、冷媒液スプレイ44(図1)と加熱管28(
図1)とを備えない点、バッフル板39Hを気液分離器15の内部に備える点、高圧蒸発
器EHの気液分離器15から抜き出された冷媒液CLが低圧吸収器ALに設置された被加熱管23Lの内側を通り再び気液分離器15に供給されて循環する点、凝縮器Cから気液分離器15に移送された冷媒液CLがバッフル板39Hの下方から気液分離器15に供給される点で蒸発器Eの構成と相違する。
The high-pressure evaporator EH includes the gas-liquid separator 15 and the heated side of the heated tube 23L as described above. The high-pressure evaporator EH has the same configuration as the evaporator E (FIG. 1) in that the gas-liquid separator 15 includes a liquid level sensor L2H, but the refrigerant liquid spray 44 (FIG. 1) and the heating pipe 28 (
1), the baffle plate 39H is provided inside the gas-liquid separator 15, and the refrigerant liquid CL extracted from the gas-liquid separator 15 of the high-pressure evaporator EH is installed in the low-pressure absorber AL. The refrigerant liquid CL transferred from the condenser C to the gas-liquid separator 15 passes through the inside of the heated pipe 23L and is circulated again, and the gas-liquid separator is transferred from below the baffle plate 39H. 15 is different from the configuration of the evaporator E in that it is supplied to 15.

冷媒液CLは、気液分離器15から被加熱管23Lに供給されて、冷媒蒸気CSを発生する。本実施の形態では、低圧蒸発器ELでは、後述の加熱管28Lの外側で冷媒が蒸発し、外側の缶胴が気液分離器の役目も果たしているのに対し、高圧蒸発器EHでは、被加熱管23Lの内側で冷媒蒸気CSが発生し、被加熱管23Lの内容積が小さいため、気液分離器15を被加熱管23Lと別の容器として構成している。   The refrigerant liquid CL is supplied from the gas-liquid separator 15 to the heated pipe 23L to generate the refrigerant vapor CS. In the present embodiment, in the low pressure evaporator EL, the refrigerant evaporates outside the heating pipe 28L described later, and the outer can body also serves as a gas-liquid separator, whereas in the high pressure evaporator EH, Since the refrigerant vapor CS is generated inside the heating pipe 23L and the internal volume of the heated pipe 23L is small, the gas-liquid separator 15 is configured as a separate container from the heated pipe 23L.

低圧蒸発器ELは、蒸発器Eと同様に構成され、冷媒液スプレイ44と、加熱管28Lと、液面レベルセンサL2Lとを備える。   The low pressure evaporator EL is configured in the same manner as the evaporator E, and includes a refrigerant liquid spray 44, a heating pipe 28L, and a liquid level sensor L2L.

本実施の形態の2段式ヒートポンプでは最も高温である高圧吸収器AHから蒸気Sを作り出すように構成している。多段式ヒートポンプの場合は、多段の吸収器のうち最も高温である吸収器から蒸気を取り出すように構成するとよい。   In the two-stage heat pump of the present embodiment, the steam S is generated from the high-pressure absorber AH having the highest temperature. In the case of a multistage heat pump, it is good to comprise so that a vapor | steam may be taken out from the absorber of the highest temperature among multistage absorbers.

吸収ヒートポンプ102の補給水移送管路6と、補給水移送管路10とは、高圧吸収器AHの被加熱管23Hに接続されている。吸収ヒートポンプ102は、(1)再生器Gと高圧吸収器AHとを繋ぎ、再生器Gで再生された濃溶液である吸収液ALiを高圧吸収器AHの吸収液スプレイ22Hに移送する吸収液移送管路2と、(2)高圧吸収器AHと低圧吸収器ALとを繋ぎ、高圧吸収器AHに蓄積された中間濃度溶液である吸収液ALiを低圧吸収器ALの吸収液スプレイ22Lに移送する吸収液移送管路3Hと、(3)吸収液移送管路3H(吸収液移送管路3Hの後述の熱交換器X5の上流側)から分岐して再び吸収液移送管路3H(吸収液移送管路3Hの熱交換器X5の下流側)に戻る吸収液移送管路53と、(4)低圧吸収器ALと再生器Gとを繋ぎ、低圧吸収器ALに蓄積された希溶液である吸収液ALiを再生器Gの吸収液スプレイ25に移送する吸収液移送管路3Lと、(5)吸収液移送管路3L(具体的は、吸収液移送管路3Lの後述の熱交換器X2の上流側)から分岐して再び吸収液移送管路3L(具体的には、吸収液移送管路3Lの熱交換器X2の
下流側)に戻る吸収液移送管路52とを備える。
The make-up water transfer line 6 and the make-up water transfer line 10 of the absorption heat pump 102 are connected to the heated pipe 23H of the high-pressure absorber AH. The absorption heat pump 102 (1) connects the regenerator G and the high pressure absorber AH, and transfers the absorption liquid ALi, which is a concentrated solution regenerated by the regenerator G, to the absorption liquid spray 22H of the high pressure absorber AH. The pipeline 2 and (2) the high pressure absorber AH and the low pressure absorber AL are connected, and the intermediate liquid ALi accumulated in the high pressure absorber AH is transferred to the absorption liquid spray 22L of the low pressure absorber AL. Absorbing liquid transfer line 3H, and (3) Absorbing liquid transfer line 3H (absorbing liquid transfer line 3H upstream of heat exchanger X5 described later) and absorbing liquid transfer line 3H (absorbing liquid transfer) Absorption liquid transfer line 53 returning to the downstream side of heat exchanger X5 of pipe line 3H, and (4) Absorption which is a dilute solution accumulated in low pressure absorber AL by connecting low pressure absorber AL and regenerator G. Absorption liquid transfer pipe for transferring liquid ALi to the absorption liquid spray 25 of the regenerator G (3) Absorbing liquid transfer pipe 3L (specifically, upstream of the heat exchanger X2 described later of the absorbing liquid transfer pipe 3L) and again absorbing liquid transfer pipe 3L (specifically, Is provided with an absorption liquid transfer line 52 that returns to the downstream side of the heat exchanger X2 of the absorption liquid transfer line 3L.

吸収ヒートポンプ102は、さらに、(6)凝縮器Cと気液分離器15とを繋ぎ、凝縮器Cで凝縮した冷媒液CLを気液分離器15に移送する冷媒液移送管路5と、(7)低圧蒸発器ELと冷媒供給管路5A(冷媒液移送管路5の後述の冷媒ポンプ4の上流側)とを繋ぎ、低圧蒸発器ELに蓄積された冷媒液CLを冷媒供給管路5Aに移送する冷媒液移送管路51と、(8)冷媒液移送管路5から(後述のように凝縮器Cで冷媒蒸気CSを冷却し
た後の箇所で)分岐し、凝縮器Cで凝縮した冷媒液CLを低圧蒸発器ELに移送する冷媒
液移送管路5Lと、(9)気液分離器15と、低圧吸収器ALに設置された被加熱管23Lであって被加熱側で冷媒液を加熱し冷媒蒸気CSを発生させる被加熱管23Lとを繋ぎ、気液分離器15に蓄積した冷媒液CLを被加熱管23Lに移送する冷媒液移送管路40と、(10)低圧吸収器ALに設置された被加熱管23Lと気液分離器15とを繋ぎ、被加熱管23Lを出た冷媒液CLを含む冷媒蒸気CSを気液分離器15に戻す冷媒液移送管路41とを備える。冷媒液移送管路51の低温冷媒熱交換器X11の下流側には絞り61が設置されている。
The absorption heat pump 102 further includes (6) a refrigerant liquid transfer line 5 that connects the condenser C and the gas-liquid separator 15 and transfers the refrigerant liquid CL condensed in the condenser C to the gas-liquid separator 15; 7) The low-pressure evaporator EL is connected to the refrigerant supply line 5A (upstream side of the refrigerant pump 4 to be described later of the refrigerant liquid transfer line 5), and the refrigerant liquid CL accumulated in the low-pressure evaporator EL is connected to the refrigerant supply line 5A. And (8) branched from the refrigerant liquid transfer pipe 5 (at a place after the refrigerant vapor CS is cooled by the condenser C as described later) and condensed by the condenser C. A refrigerant liquid transfer line 5L for transferring the refrigerant liquid CL to the low-pressure evaporator EL, (9) a gas-liquid separator 15, and a heated pipe 23L installed in the low-pressure absorber AL, on the heated side, the refrigerant liquid The refrigerant liquid accumulated in the gas-liquid separator 15 is connected to the heated pipe 23L that generates the refrigerant vapor CS by heating Refrigerant liquid transfer line 40 that transfers CL to the heated pipe 23L, and (10) the heated pipe 23L installed in the low-pressure absorber AL and the gas-liquid separator 15 are connected, and the refrigerant exits the heated pipe 23L. And a refrigerant liquid transfer pipe 41 for returning the refrigerant vapor CS containing the liquid CL to the gas-liquid separator 15. A throttle 61 is installed downstream of the low-temperature refrigerant heat exchanger X11 in the refrigerant liquid transfer pipe 51.

冷媒液移送管路5は、冷媒液移送管路5Lが分岐する分岐点の上流側で、冷媒液移送管路5を通る冷媒液CLが、再生器Gから凝縮器Cに送られる冷媒蒸気CSによって加熱されるよう構成されている。再生器Gで加熱された吸収液ALiからは、吸収液ALiと同じ温度の冷媒蒸気CSが発生するが、この温度は凝縮器Cの温度より高温であり、再生器Gの熱源の温度に近い過熱蒸気になっているので、凝縮器Cを出る冷媒液CLを加熱することができる。再生器Gから凝縮器Cに向かう冷媒蒸気CSが冷媒液移送管路5を通る冷媒液CLにより凝縮された場合、凝縮により生じた冷媒液CLは邪魔板43によって再生器Gには流れず凝縮器Cに流れるよう凝縮器Cが構成されている。   The refrigerant liquid transfer line 5 is a refrigerant vapor CS in which the refrigerant liquid CL passing through the refrigerant liquid transfer line 5 is sent from the regenerator G to the condenser C on the upstream side of the branch point where the refrigerant liquid transfer line 5L branches. It is comprised so that it may be heated by. Although the refrigerant vapor CS having the same temperature as the absorption liquid ALi is generated from the absorption liquid ALi heated in the regenerator G, this temperature is higher than the temperature of the condenser C and close to the temperature of the heat source of the regenerator G. Since it is superheated steam, the refrigerant liquid CL that exits the condenser C can be heated. When the refrigerant vapor CS heading from the regenerator G to the condenser C is condensed by the refrigerant liquid CL passing through the refrigerant liquid transfer pipe 5, the refrigerant liquid CL generated by the condensation does not flow to the regenerator G by the baffle plate 43. Condenser C is configured to flow to vessel C.

吸収ヒートポンプ102は、さらに、(1)吸収液移送管路2を通って被加熱側に移送される濃溶液である吸収液ALiと、吸収液移送管路3Lから分岐する吸収液移送管路52を通って加熱側に移送される希溶液である吸収液ALiとの間で熱交換を行う冷媒熱交換器X1と、(2)補給水移送管路7を通って被加熱側に移送される補給水W1と、吸収液移送管路3Lを通って加熱側に移送される希溶液である吸収液ALiとの間で熱交換を行う熱交換器X2と、(3)吸収液移送管路3Hを通って加熱側に移送される中間濃度溶液である吸収液ALiと、熱交換器X2を出た後補給水移送管路7を通って被加熱側に移送される補給水W1との間で熱交換を行う熱交換器X5と、(4)冷媒熱交換器X1を出た後吸収液移送管路2を通って被加熱側に移送される濃溶液である吸収液ALiと、吸収液移送管路3Hから分岐する吸収液移送管路53を通って加熱側に移送される中間濃度溶液である吸収液ALiとの間で熱交換を行う冷媒熱交換器X4と、(5)冷媒液移送管路5を通って被加熱側に移送される冷媒液CLと、冷媒液移送管路51を通って加熱側に移送される冷媒液CLとの間で熱交換を行う低温冷媒熱交換器X11とを備える。
熱交換器X2と冷媒熱交換器X1とは並列に配置され、熱交換器X5と冷媒熱交換器X4とは並列に配置されている。
The absorption heat pump 102 further includes (1) an absorption liquid ALi that is a concentrated solution transferred to the heated side through the absorption liquid transfer pipe 2 and an absorption liquid transfer pipe 52 that branches from the absorption liquid transfer pipe 3L. The refrigerant heat exchanger X1 that exchanges heat with the absorbing liquid ALi that is a dilute solution that is transferred to the heating side through (2) is transferred to the heated side through the makeup water transfer line 7 A heat exchanger X2 for exchanging heat between the replenishing water W1 and the absorbing liquid ALi which is a dilute solution transferred to the heating side through the absorbing liquid transfer pipe 3L; and (3) an absorbing liquid transfer pipe 3H. Between the absorption liquid ALi, which is an intermediate concentration solution transferred through the heating side through the heat exchanger X2, and the replenishing water W1 transferred to the heated side through the replenishing water transfer line 7 after leaving the heat exchanger X2. Heat exchanger X5 for heat exchange, and (4) after passing through the refrigerant heat exchanger X1 and passing through the absorption liquid transfer pipe 2 Between the absorption liquid ALi which is a concentrated solution transferred to the heating side and the absorption liquid ALi which is an intermediate concentration solution transferred to the heating side through the absorption liquid transfer pipe 53 branched from the absorption liquid transfer pipe 3H The refrigerant heat exchanger X4 for exchanging heat, (5) the refrigerant liquid CL transferred to the heated side through the refrigerant liquid transfer line 5, and transferred to the heating side through the refrigerant liquid transfer line 51. A low-temperature refrigerant heat exchanger X11 that exchanges heat with the refrigerant liquid CL.
The heat exchanger X2 and the refrigerant heat exchanger X1 are arranged in parallel, and the heat exchanger X5 and the refrigerant heat exchanger X4 are arranged in parallel.

吸収ヒートポンプ102は、さらに(6)加熱側に温水WH3が移送され、被加熱側に補給水移送管路7を通って補給水W1が移送され、熱交換が行われる熱交換器X3と、(7)加熱側に排熱を有する温水WH4が移送され、被加熱側に冷媒液移送管路5を通って高圧蒸発器EHに供給される冷媒液CLが移送され、熱交換が行われる熱交換器X6とを備える。温水WH4の温度は、例えば入口90℃、出口85℃とするとよい。なお、補給水W1は、熱交換器X3の上流側で、凝縮器Cの冷媒蒸気CSなどで加熱してもよい。   The absorption heat pump 102 further includes (6) a heat exchanger X3 in which warm water WH3 is transferred to the heating side, makeup water W1 is transferred to the heated side through the makeup water transfer pipe 7, and heat exchange is performed. 7) Heat exchange in which warm water WH4 having exhaust heat is transferred to the heating side, refrigerant liquid CL supplied to high-pressure evaporator EH through refrigerant liquid transfer pipe 5 is transferred to the heated side, and heat exchange is performed. And a device X6. The temperature of the hot water WH4 may be, for example, an inlet 90 ° C. and an outlet 85 ° C. The makeup water W1 may be heated by the refrigerant vapor CS of the condenser C or the like on the upstream side of the heat exchanger X3.

吸収液移送管路2に設置された溶液ポンプ1は、再生器Gで再生された吸収液ALiを高圧吸収器AHに移送する。冷媒液移送管路5に設置された冷媒ポンプ4は、凝縮器Cで凝縮された冷媒液CLおよび低圧蒸発器ELから冷媒液移送管路5の冷媒ポンプ4の上流側に戻された冷媒液CLを、高圧蒸発器EHおよび低圧蒸発器ELに移送する。補給水移送管路6に設置された給水ポンプ13は、補給水W1を気液分離器11から高圧吸収器AHの被加熱管23Hに移送しさらに被加熱管23Hで蒸気Sを発生させて気液分離器11に移送し、補給水W1を循環させる。   The solution pump 1 installed in the absorbing liquid transfer pipe 2 transfers the absorbing liquid ALi regenerated by the regenerator G to the high pressure absorber AH. The refrigerant pump 4 installed in the refrigerant liquid transfer line 5 includes the refrigerant liquid CL condensed in the condenser C and the refrigerant liquid returned to the upstream side of the refrigerant pump 4 in the refrigerant liquid transfer line 5 from the low-pressure evaporator EL. CL is transferred to the high pressure evaporator EH and the low pressure evaporator EL. The feed water pump 13 installed in the make-up water transfer pipe 6 transfers make-up water W1 from the gas-liquid separator 11 to the heated pipe 23H of the high-pressure absorber AH, and generates steam S in the heated pipe 23H. It is transferred to the liquid separator 11 and the makeup water W1 is circulated.

吸収液移送管路3H上の熱交換器X5の下流であって、さらに冷媒熱交換器X4が設置されている吸収液移送管路53が吸収液移送管路3Hに合流する箇所の下流には、吸収液スプレイ22Lに移送される吸収液ALiの流量を調節する吸収液供給弁V4が設置されている。   Downstream of the heat exchanger X5 on the absorbing liquid transfer pipe 3H and further downstream of the place where the absorbing liquid transfer pipe 53 where the refrigerant heat exchanger X4 is installed joins the absorbing liquid transfer pipe 3H. An absorption liquid supply valve V4 for adjusting the flow rate of the absorption liquid ALi transferred to the absorption liquid spray 22L is provided.

液面レベルセンサL1Hからの、液面レベルを表す液面信号(不図示)は制御装置21に送られ、制御装置21から液面レベルを一定のレベルに保つよう回転数を制御する制御信号(不図示)がVVVFインバータ(不図示)に送られ、当該インバータが溶液ポンプ1を駆動するモータ(不図示)の電源を制御し、溶液ポンプ1の回転数を高圧吸収器AHの液面レベルが一定になるよう制御する(但し、図中簡略化し、液面レベルセンサL1Hから制御
信号が溶液ポンプ1に送られるよう記載)。
A liquid level signal (not shown) representing the liquid level from the liquid level sensor L1H is sent to the control device 21, and a control signal (a control signal for controlling the number of revolutions so as to keep the liquid level at a constant level). (Not shown) is sent to a VVVF inverter (not shown), which controls the power source of a motor (not shown) that drives the solution pump 1, and sets the rotational speed of the solution pump 1 to the liquid level of the high-pressure absorber AH. It is controlled so as to be constant (however, it is simplified in the drawing and described so that a control signal is sent from the liquid level sensor L1H to the solution pump 1).

液面レベルセンサL1Lからの、液面レベルを表す液面信号(不図示)は制御装置21に送られ、制御装置21から低圧吸収器ALの吸収液ALiの液面レベルを一定のレベルに保つよう高圧吸収器AHから低圧吸収器ALに移送する吸収液ALiの流量を制御する制御信号(不図示)が吸収液供給弁V4に送られる(図中、簡略化して、液面レベルセンサL
1Lから吸収液供給弁V4に信号が送られるように記載)。
A liquid level signal (not shown) representing the liquid level from the liquid level sensor L1L is sent to the control device 21, and the liquid level of the absorbing liquid ALi in the low pressure absorber AL is maintained at a constant level from the control device 21. A control signal (not shown) for controlling the flow rate of the absorption liquid ALi transferred from the high pressure absorber AH to the low pressure absorber AL is sent to the absorption liquid supply valve V4 (in the figure, the liquid level sensor L
1L is described so that a signal is sent to the absorption liquid supply valve V4).

液面レベルセンサL2Hからの、液面レベルを表す液面信号(不図示)は制御装置21に送られ、制御装置21から液面レベルを一定のレベルに保つよう冷媒液CLの流量を制御する制御信号(不図示)が冷媒供給弁V3Hに送られ、冷媒供給弁V3Hの開度を気液分離器15の冷媒液CLの液面レベルが一定になるよう制御する(図中、簡略化して、液面レ
ベルセンサL2Hから冷媒供給弁V3Hに信号が送られるように記載)。
A liquid level signal (not shown) representing the liquid level from the liquid level sensor L2H is sent to the control device 21, and the flow rate of the refrigerant liquid CL is controlled by the control device 21 so as to keep the liquid level at a constant level. A control signal (not shown) is sent to the refrigerant supply valve V3H, and the degree of opening of the refrigerant supply valve V3H is controlled so that the liquid level of the refrigerant liquid CL of the gas-liquid separator 15 is constant (in the figure, simplified). The signal is sent from the liquid level sensor L2H to the refrigerant supply valve V3H).

液面レベルセンサL2Lからの、液面レベルを表す液面信号(不図示)は制御装置21に送られ、制御装置21から液面レベルを一定のレベルに保つよう冷媒液CLの流量を制御する制御信号(不図示)が冷媒供給弁V3Lに送られ、冷媒供給弁V3Lの開度を低圧蒸発器ELの冷媒液CLの液面レベルが一定になるよう制御する(図中、簡略化して、液面レ
ベルセンサL2Lから冷媒供給弁V3Lに信号が送られるように記載)。
A liquid level signal (not shown) representing the liquid level from the liquid level sensor L2L is sent to the control device 21, and the flow rate of the refrigerant liquid CL is controlled by the control device 21 so as to keep the liquid level at a constant level. A control signal (not shown) is sent to the refrigerant supply valve V3L, and the opening of the refrigerant supply valve V3L is controlled so that the liquid level of the refrigerant liquid CL of the low-pressure evaporator EL is constant (in the figure, simplified, The description is such that a signal is sent from the liquid level sensor L2L to the refrigerant supply valve V3L).

次に、本第2の実施の形態の作用を図3、図4を参照して説明する。図4は、吸収液および冷媒の状態を示す線図であり、縦軸が圧力、横軸が温度である。
高圧吸収器AHを出た中間溶液である吸収液ALi(状態は、図4中、B2Hの位置)は、吸収液移送管路3Hにより移送され、一部が熱交換器X5を通過し、熱交換器X5で補給水W1により冷却され、残りの一部が吸収液移送管路3Hから分岐する吸収液移送管路53により移送され冷媒熱交換器X4を通過し、冷媒熱交換器X4で、冷媒熱交換器X1を出た、再生器Gから高圧吸収器AHに移送される濃溶液である吸収液ALiにより冷却される。分岐した吸収液移送管路53は、冷媒熱交換器X4の下流側で再び吸収液移送管路3Hに合流するので、熱交換器X5を通過した吸収液ALiと冷媒熱交換器X4を通過した吸収液ALiとは、再び合流し(吸収液移送管路3Hを通る吸収液ALiの合流後の
状態は、図4中、B11の位置)、吸収液供給弁V4により流量が制御され、さらに低圧
吸収器ALの吸収液スプレイ22Lに移送される。吸収液供給弁V4による流量制御は、低圧吸収器ALに一定レベルの吸収液ALiが蓄積するように行われる。
Next, the operation of the second embodiment will be described with reference to FIGS. FIG. 4 is a diagram showing the states of the absorbing liquid and the refrigerant, in which the vertical axis represents pressure and the horizontal axis represents temperature.
Absorption liquid ALi (the state is the position of B2H in FIG. 4), which is an intermediate solution that has exited high-pressure absorber AH, is transferred by absorption liquid transfer line 3H, and partly passes through heat exchanger X5, Cooled by make-up water W1 in the exchanger X5, the remaining part is transferred by the absorbent liquid transfer pipe 53 branched from the absorbent liquid transfer pipe 3H, passes through the refrigerant heat exchanger X4, and in the refrigerant heat exchanger X4, The refrigerant heat exchanger X1 exits from the regenerator G and is cooled by the absorbing liquid ALi that is a concentrated solution transferred to the high-pressure absorber AH. Since the branched absorption liquid transfer pipe 53 joins the absorption liquid transfer pipe 3H again on the downstream side of the refrigerant heat exchanger X4, the absorption liquid ALi and the refrigerant heat exchanger X4 that have passed through the heat exchanger X5 have passed. The absorption liquid ALi merges again (the state after the absorption liquid ALi passing through the absorption liquid transfer line 3H is the position B11 in FIG. 4), the flow rate is controlled by the absorption liquid supply valve V4, and the pressure is further reduced. It is transferred to the absorbing liquid spray 22L of the absorber AL. The flow rate control by the absorption liquid supply valve V4 is performed such that a certain level of the absorption liquid ALi accumulates in the low pressure absorber AL.

吸収液ALiは、吸収液スプレイ22Lから低圧吸収器AL内に散布され(吸収液AL
iの状態は、図4中、B6Lの位置)、散布された吸収液ALiは低圧蒸発器ELで蒸発
した冷媒蒸気CSを吸収し、被加熱管23L(被加熱管23Lの被加熱側は高圧蒸発器E
H)を介して、気液分離器15を出て気液分離器15に戻る冷媒液CLを加熱し、低圧吸
収器ALの底部に蓄積する。
The absorbing liquid ALi is sprayed from the absorbing liquid spray 22L into the low pressure absorber AL (absorbing liquid AL
The state of i is the position of B6L in FIG. 4), the sprayed absorption liquid ALi absorbs the refrigerant vapor CS evaporated in the low-pressure evaporator EL, and the heated pipe 23L (the heated side of the heated pipe 23L is at a high pressure). Evaporator E
The refrigerant liquid CL that leaves the gas-liquid separator 15 and returns to the gas-liquid separator 15 is heated via H) and is accumulated at the bottom of the low-pressure absorber AL.

低圧吸収器ALを出た希溶液である吸収液ALi(状態は、図4中、B2Lの位置)は、吸収液移送管路3Lにより移送され、一部が熱交換器X2を通過することにより補給水W1により冷却され、残りの一部が吸収液移送管路3Lから分岐する吸収液移送管路52により移送され冷媒熱交換器X1を通過し、再生器Gから高圧吸収器AHに移送される濃溶液である吸収液ALiにより冷却される。分岐した吸収液移送管路52は、冷媒熱交換器X4の下流側で再び吸収液移送管路3Lに合流するので、熱交換器X2を通過した吸収液ALiと冷媒熱交換器X1を通過した吸収液ALiとは、再び合流し(吸収液移送管路3
Lを通る吸収液ALiの状態は、図4中、B13の位置)、さらに再生器Gの吸収液スプ
レイ25に移送される。
Absorbing liquid ALi (state is the position of B2L in FIG. 4), which is a dilute solution that has exited low-pressure absorber AL, is transferred by absorbing liquid transfer pipe 3L, and partly passes through heat exchanger X2. It is cooled by the makeup water W1, and the remaining part is transferred by the absorption liquid transfer line 52 branched from the absorption liquid transfer line 3L, passes through the refrigerant heat exchanger X1, and transferred from the regenerator G to the high pressure absorber AH. It is cooled by the absorption liquid ALi which is a concentrated solution. Since the branched absorption liquid transfer pipe 52 joins the absorption liquid transfer pipe 3L again on the downstream side of the refrigerant heat exchanger X4, the absorption liquid ALi that has passed through the heat exchanger X2 and the refrigerant heat exchanger X1 have passed. Absorbing liquid ALi merges again (absorbing liquid transfer line 3
The state of the absorption liquid ALi passing through L is transferred to the absorption liquid spray 25 of the regenerator G, and the position of B13 in FIG.

吸収液ALiは、吸収液スプレイ25から再生器G内に散布され(吸収液ALiの状態は、図4中、B5の位置)、散布された吸収液ALiは加熱管26を介して温水WH2に加
熱され、吸収液ALiに吸収されていた冷媒は冷媒蒸気CSとして蒸発し、再生された濃溶液である吸収液ALiは再生器Gの底部に蓄積する。
The absorbing liquid ALi is sprayed into the regenerator G from the absorbing liquid spray 25 (the state of the absorbing liquid ALi is a position B5 in FIG. 4), and the sprayed absorbing liquid ALi is supplied to the hot water WH2 through the heating pipe 26. The refrigerant that has been heated and absorbed in the absorption liquid ALi evaporates as refrigerant vapor CS, and the absorption liquid ALi, which is a regenerated concentrated solution, accumulates at the bottom of the regenerator G.

濃溶液となった吸収液ALi(状態は、図4中、B4の位置)は、吸収液移送管路2を通り高圧吸収器AHの吸収液スプレイ22Hに移送される。吸収液移送管路2を通る間、溶液ポンプ1により昇圧され、その後冷媒熱交換器X1で、低圧吸収器ALから再生器Gに移送される希溶液である吸収液ALiに加熱され(吸収液移送管路2を通る吸収液ALi
の状態は、図4中、B7の位置)、さらに冷媒熱交換器X4で高圧吸収器AHから低圧吸
収器ALに移送される吸収液ALiにより加熱され(吸収液移送管路2を通る吸収液AL
iの状態は、図4中、B10の位置)、高圧吸収器AHの吸収液スプレイ22Hに移送さ
れる。
The absorption liquid ALi that has become a concentrated solution (the state is the position B4 in FIG. 4) is transferred to the absorption liquid spray 22H of the high-pressure absorber AH through the absorption liquid transfer pipe 2. While passing through the absorption liquid transfer pipe 2, the pressure is increased by the solution pump 1, and then heated by the refrigerant heat exchanger X 1 to the absorption liquid ALi that is a dilute solution transferred from the low pressure absorber AL to the regenerator G (absorption liquid Absorbing liquid ALi passing through transfer line 2
4 is a position B7 in FIG. 4) and is further heated by the refrigerant ALi transferred from the high-pressure absorber AH to the low-pressure absorber AL in the refrigerant heat exchanger X4 (the absorption liquid passing through the absorption liquid transfer line 2). AL
The state i is transferred to the absorbing liquid spray 22H of the high-pressure absorber AH at the position B10 in FIG.

高圧吸収器AHで、吸収液スプレイ22Hから高圧吸収器AH内に散布された濃溶液である吸収液ALi(吸収液ALiの状態は、図4中、B6Hの位置)は、気液分離器15で分離した冷媒蒸気CSを吸収し、被加熱管23Hを通る補給水W1を加熱し、高圧吸収器AHの底部に蓄積する(吸収液ALiの状態は、図4中、B2Hの位置)。   In the high-pressure absorber AH, the absorption liquid ALi (the state of the absorption liquid ALi is the position of B6H in FIG. 4) which is a concentrated solution sprayed from the absorption liquid spray 22H into the high-pressure absorber AH is the gas-liquid separator 15 The refrigerant vapor CS separated in step 1 is absorbed, the makeup water W1 passing through the heated pipe 23H is heated, and is accumulated at the bottom of the high-pressure absorber AH (the state of the absorbing liquid ALi is the position B2H in FIG. 4).

溶液ポンプ1は、高圧吸収器AHに蓄積する吸収液ALiの液面レベルが一定となるような流量の吸収液ALiを再生器Gから高圧吸収器AHに移送するよう制御装置21によって回転数が制御される。このような制御が行われるのは、高圧吸収器AHから低圧吸収器ALに送られ、高圧吸収器AHで減少した吸収液ALiの量に見合う量の吸収液ALiを再生器Gから高圧吸収器AHに移送するためである。   The rotation speed of the solution pump 1 is controlled by the controller 21 so as to transfer the absorption liquid ALi having a flow rate from the regenerator G to the high pressure absorber AH so that the liquid level of the absorption liquid ALi accumulated in the high pressure absorber AH is constant. Be controlled. Such control is performed from the high pressure absorber AH to the low pressure absorber AL, and from the regenerator G to the high pressure absorber, the amount of the absorption liquid ALi corresponding to the amount of the absorption liquid ALi decreased by the high pressure absorber AH. This is to transfer to AH.

再生器Gで蒸発した冷媒蒸気CSは凝縮器Cに送られ、冷媒液移送管路5を通る冷媒液CLに冷却され、さらに凝縮器Cで冷却管30を通る冷却水WCにより冷却され凝縮して冷媒液CLとなる(冷媒液CLの状態は、図4中、D1の位置)。凝縮器Cの冷媒液CLは、冷媒液移送管路5を通り、低圧蒸発器ELから冷媒液移送管路51を通って送られた冷媒液CLと混合し、冷媒ポンプ4により昇圧され、低温冷媒熱交換器X11を通り、低圧蒸発器ELから冷媒液移送管路5の冷媒ポンプ4の上流側に戻される冷媒液CLにより加熱され、さらに凝縮器Cの上部に導入され、再生器Gから凝縮器Cに送られる冷媒蒸気CSによって加熱される。冷媒液移送管路5を通る冷媒液CLは、さらに一部が冷媒供給弁V3Hにより流量を制御されて、熱交換器X6を通り温水WH4によって加熱された後に高圧蒸発器EHに送られ、残りの一部が冷媒液移送管路5から分岐し冷媒液移送管路5Lを通り、冷媒供給弁V3Lにより流量を制御されて、低圧蒸発器ELに送られる。冷媒液CLは、低圧蒸発器ELと冷媒供給管路5A(凝縮器C)との間の圧力差により低圧蒸発器ELから冷媒液移送管路51を通り冷媒供給管路5Aに移送される。   The refrigerant vapor CS evaporated in the regenerator G is sent to the condenser C, cooled to the refrigerant liquid CL passing through the refrigerant liquid transfer pipe 5, and further cooled and condensed by the cooling water WC passing through the cooling pipe 30 in the condenser C. The refrigerant liquid CL becomes (the state of the refrigerant liquid CL is a position D1 in FIG. 4). The refrigerant liquid CL of the condenser C passes through the refrigerant liquid transfer pipe 5 and is mixed with the refrigerant liquid CL sent from the low-pressure evaporator EL through the refrigerant liquid transfer pipe 51, and the pressure is increased by the refrigerant pump 4 to lower the temperature. It is heated by the refrigerant liquid CL that passes through the refrigerant heat exchanger X11 and is returned from the low-pressure evaporator EL to the upstream side of the refrigerant pump 4 in the refrigerant liquid transfer pipe 5, and is further introduced into the upper part of the condenser C. Heated by the refrigerant vapor CS sent to the condenser C. A part of the refrigerant liquid CL passing through the refrigerant liquid transfer pipe 5 is further controlled in flow rate by the refrigerant supply valve V3H, heated by the hot water WH4 through the heat exchanger X6, and then sent to the high-pressure evaporator EH, where it remains. Is branched from the refrigerant liquid transfer pipe 5, passes through the refrigerant liquid transfer pipe 5L, is controlled in flow rate by the refrigerant supply valve V3L, and is sent to the low-pressure evaporator EL. The refrigerant liquid CL is transferred from the low-pressure evaporator EL to the refrigerant supply pipe 5A through the refrigerant liquid transfer pipe 51 due to a pressure difference between the low-pressure evaporator EL and the refrigerant supply pipe 5A (condenser C).

高圧蒸発器EHに送られる冷媒液CLの流量は、気液分離器15の底部に蓄積する余剰冷媒液CLの液面レベルが一定になるように制御される。このように制御するのは、高圧蒸発器EHで蒸発し高圧吸収器AHに送られた冷媒液CLの量に見合う分の冷媒液CLを気液分離器15に移送するためである。   The flow rate of the refrigerant liquid CL sent to the high-pressure evaporator EH is controlled so that the liquid level of the excess refrigerant liquid CL accumulated at the bottom of the gas-liquid separator 15 is constant. The reason for this control is to transfer the refrigerant liquid CL corresponding to the amount of the refrigerant liquid CL evaporated by the high-pressure evaporator EH and sent to the high-pressure absorber AH to the gas-liquid separator 15.

低圧蒸発器ELに送られる冷媒液CLの流量は、低圧蒸発器ELの底部に蓄積する余剰冷媒液CLの液面レベルが一定になるように制御される。このように制御するのは、低圧蒸発器ELで蒸発し低圧吸収器ALに送られた冷媒液CLの量に見合う分の冷媒液CLを低圧蒸発器ELに移送するためであり、また低圧蒸発器ELの冷媒蒸気CSを凝縮器Cに流出させないためである。   The flow rate of the refrigerant liquid CL sent to the low-pressure evaporator EL is controlled so that the liquid level of the excess refrigerant liquid CL accumulated at the bottom of the low-pressure evaporator EL is constant. This control is performed in order to transfer the refrigerant liquid CL corresponding to the amount of the refrigerant liquid CL evaporated in the low-pressure evaporator EL and sent to the low-pressure absorber AL to the low-pressure evaporator EL. This is to prevent the refrigerant vapor CS of the condenser EL from flowing out to the condenser C.

気液分離器15に移送された冷媒液CLは、気液分離器15のバッフル板39Hの下側に入り冷媒蒸気CSに同伴されないようにし、底部に蓄積する(冷媒液CLの状態は、図
4中、D2Hの位置)。なお、冷媒液CLを底部に蓄積する冷媒液中に直接供給してもよ
い。蒸発した冷媒蒸気CSは高圧吸収器AHに送られ、高圧吸収器AH内で、吸収液ALiに吸収される。なお、気液分離器15に供給した冷媒液CLは、熱交換器X6で温水WH4により加熱されたものであって、冷媒蒸気CSからみれば過冷却状態になっている。供給された冷媒液CLは、過冷却のまま低圧吸収器ALに設置された被加熱管23Lに送られるのを防ぐため、冷媒蒸気に暴気して飽和状態にしてから被加熱管23Lに送られる。
The refrigerant liquid CL transferred to the gas-liquid separator 15 enters below the baffle plate 39H of the gas-liquid separator 15 so as not to be accompanied by the refrigerant vapor CS, and accumulates at the bottom (the state of the refrigerant liquid CL is shown in FIG. 4, the position of D2H). The refrigerant liquid CL may be directly supplied into the refrigerant liquid that accumulates at the bottom. The evaporated refrigerant vapor CS is sent to the high-pressure absorber AH and is absorbed by the absorption liquid ALi in the high-pressure absorber AH. The refrigerant liquid CL supplied to the gas-liquid separator 15 is heated by the hot water WH4 in the heat exchanger X6, and is in a supercooled state when viewed from the refrigerant vapor CS. In order to prevent the supplied refrigerant liquid CL from being sent to the heated pipe 23L installed in the low-pressure absorber AL while being supercooled, the refrigerant vapor is expelled to the refrigerant vapor and saturated, and then sent to the heated pipe 23L. It is done.

低圧蒸発器ELに移送された冷媒液CLは、加熱管28Lを通る温水WH1に加熱され、余剰分が低圧蒸発器ELの底部に蓄積する(冷媒液CLの状態は、図4中、D2Lの位
置)。加熱された冷媒液CLは、蒸発し、蒸発した冷媒蒸気CSは低圧吸収器ALに送ら
れ、低圧吸収器AL内で、吸収液ALiに吸収される。
The refrigerant liquid CL transferred to the low-pressure evaporator EL is heated by the hot water WH1 passing through the heating pipe 28L, and the surplus is accumulated at the bottom of the low-pressure evaporator EL (the state of the refrigerant liquid CL is D2L in FIG. 4). position). The heated refrigerant liquid CL evaporates, and the evaporated refrigerant vapor CS is sent to the low-pressure absorber AL and is absorbed by the absorption liquid ALi in the low-pressure absorber AL.

補給水移送管路7に供給された補給水W1は、給水ポンプ12により昇圧され、気液分離器11に移送される。給水ポンプ12を出た補給水W1は、熱交換器X3で温水WH3により加熱され、さらに熱交換器X2で低圧吸収器ALから再生器Gに移送される吸収液ALiの一部により加熱され、さらに熱交換器X5で高圧吸収器AHから低圧吸収器ALに移送される吸収液ALiの一部により加熱され、気液分離器11に移送される。   The makeup water W <b> 1 supplied to the makeup water transfer pipe 7 is pressurized by the feed water pump 12 and transferred to the gas-liquid separator 11. The makeup water W1 exiting the feed water pump 12 is heated by the hot water WH3 in the heat exchanger X3, and further heated by a part of the absorption liquid ALi transferred from the low pressure absorber AL to the regenerator G in the heat exchanger X2. Furthermore, it is heated by a part of the absorption liquid ALi transferred from the high pressure absorber AH to the low pressure absorber AL in the heat exchanger X5 and transferred to the gas-liquid separator 11.

本実施の形態の吸収ヒートポンプ102は、冷媒液移送管路5、5Lと冷媒ポンプ4とを備えるので、凝縮器Cの冷媒液CLを冷媒液移送管路5、5Lを通って冷媒液CLを低圧蒸発器ELに供給することができ、さらに低圧蒸発器ELと冷媒供給管路5A(冷媒液
移送管路5の冷媒ポンプ4の上流側)とを繋ぐ冷媒液移送管路51を備えるので、凝縮器
Cから低圧蒸発器ELに移送される冷媒液CLの流れと、低圧蒸発器ELから冷媒液CLを取り出した後に再び低圧蒸発器ELに戻される冷媒液CLの流れとを合流させることができる。よって、冷媒ポンプ4によって冷媒液CLを凝縮器Cから低圧蒸発器ELに移送し、同時に低圧蒸発器ELから冷媒液CLを取り出し再び低圧蒸発器ELに戻して循環させることができ、低圧蒸発器ELから冷媒液CLを取り出し再び低圧蒸発器ELに戻して循環させるためのポンプ(循環ポンプ)を兼ねることができ、循環ポンプを設ける必要をなくすことができる。
Since the absorption heat pump 102 of the present embodiment includes the refrigerant liquid transfer pipes 5 and 5L and the refrigerant pump 4, the refrigerant liquid CL of the condenser C passes through the refrigerant liquid transfer pipes 5 and 5L. Since it can be supplied to the low-pressure evaporator EL, and further includes a refrigerant liquid transfer line 51 that connects the low-pressure evaporator EL and the refrigerant supply line 5A (upstream of the refrigerant pump 4 of the refrigerant liquid transfer line 5), The flow of the refrigerant liquid CL transferred from the condenser C to the low-pressure evaporator EL and the flow of the refrigerant liquid CL returned to the low-pressure evaporator EL after taking out the refrigerant liquid CL from the low-pressure evaporator EL may be merged. it can. Therefore, the refrigerant liquid CL can be transferred from the condenser C to the low-pressure evaporator EL by the refrigerant pump 4, and at the same time, the refrigerant liquid CL can be taken out from the low-pressure evaporator EL and returned to the low-pressure evaporator EL for circulation. It can also serve as a pump (circulation pump) for taking out the refrigerant liquid CL from the EL and returning it to the low-pressure evaporator EL for circulation, eliminating the need for a circulation pump.

本実施の形態の吸収ヒートポンプ101は、冷媒ポンプ4によって低圧蒸発器ELに冷媒液CLを供給する流れと低圧蒸発器ELと冷媒供給管路5Aの間を循環する流れを発生させることができるので、低圧蒸発器ELに供給される冷媒液CLの流量を多くすることができる。よって、低圧蒸発器ELの伝熱効率を上昇させることができ、低圧蒸発器ELのコンパクト化を図ることができ、また排熱の利用効率を高めることができる。   The absorption heat pump 101 of the present embodiment can generate a flow for supplying the refrigerant liquid CL to the low-pressure evaporator EL by the refrigerant pump 4 and a flow for circulating between the low-pressure evaporator EL and the refrigerant supply line 5A. The flow rate of the refrigerant liquid CL supplied to the low-pressure evaporator EL can be increased. Therefore, the heat transfer efficiency of the low-pressure evaporator EL can be increased, the low-pressure evaporator EL can be made compact, and the exhaust heat utilization efficiency can be increased.

本実施の形態の吸収ヒートポンプ102では、吸収ヒートポンプ101(図1)の効果に加え、吸収器は高圧吸収器AHと低圧吸収器ALとを含んで構成され、蒸発器は高圧蒸発器EHと低圧蒸発器ELとを含んで構成されるので、吸収ヒートポンプ101(図1)と比較して、より高温の蒸気Sを発生することができるという効果を有する。   In the absorption heat pump 102 of the present embodiment, in addition to the effects of the absorption heat pump 101 (FIG. 1), the absorber includes a high-pressure absorber AH and a low-pressure absorber AL, and the evaporator includes a high-pressure evaporator EH and a low-pressure absorber. Since it is configured to include the evaporator EL, it has an effect that the steam S having a higher temperature can be generated as compared with the absorption heat pump 101 (FIG. 1).

本実施の形態の吸収ヒートポンプ102は、低温冷媒熱交換器X11を備え、凝縮器Cを出た冷媒液CLであって、冷媒ポンプ4に昇圧されて高圧蒸発器EHおよび低圧蒸発器ELに移送される冷媒液CLと、低圧蒸発器ELから冷媒ポンプ4の上流側に戻される冷媒液CLとの間で熱交換を行うので、凝縮器Cから高圧蒸発器EHおよび低圧蒸発器ELに送られる冷媒液CLの温度を上げることができ、吸収ヒートポンプ102に供給される排熱をより有効に利用することができる。   The absorption heat pump 102 of the present embodiment includes a low-temperature refrigerant heat exchanger X11, and is a refrigerant liquid CL that has exited the condenser C, and is boosted by the refrigerant pump 4 and transferred to the high-pressure evaporator EH and the low-pressure evaporator EL. Since the heat exchange is performed between the refrigerant liquid CL and the refrigerant liquid CL returned to the upstream side of the refrigerant pump 4 from the low-pressure evaporator EL, the heat is sent from the condenser C to the high-pressure evaporator EH and the low-pressure evaporator EL. The temperature of the refrigerant liquid CL can be raised, and the exhaust heat supplied to the absorption heat pump 102 can be used more effectively.

前述において、冷媒液移送管路51は、冷媒供給管路5Aに接続しているが、冷媒液移送管路51を凝縮器Cに接続し、低圧蒸発器ELの冷媒液CLを凝縮器Cに戻すようにしてもよい。このようにしても、同様に、凝縮器Cから高圧蒸発器EHおよび低圧蒸発器ELに送られる冷媒液CLの温度を上げることができ、吸収ヒートポンプ102に供給される排熱をより有効に利用することができる。   In the above description, the refrigerant liquid transfer line 51 is connected to the refrigerant supply line 5A. However, the refrigerant liquid transfer line 51 is connected to the condenser C, and the refrigerant liquid CL of the low-pressure evaporator EL is connected to the condenser C. You may make it return. Even in this case, similarly, the temperature of the refrigerant liquid CL sent from the condenser C to the high-pressure evaporator EH and the low-pressure evaporator EL can be raised, and the exhaust heat supplied to the absorption heat pump 102 can be used more effectively. can do.

図5は、本第3の実施の形態の吸収ヒートポンプ103の構成を示すフローシートである。以下、吸収ヒートポンプ102(図3)との構成の相違について述べ、構成が同じ点については確認的に記載するもの以外説明を省略する。
吸収ヒートポンプ103は、後述の高温冷媒熱交換器X12を追加で備える点、冷媒液移送管路の構成の点で、吸収ヒートポンプ102と相違する。以下具体的に説明する。
FIG. 5 is a flow sheet showing the configuration of the absorption heat pump 103 of the third embodiment. Hereinafter, the difference in configuration from the absorption heat pump 102 (FIG. 3) will be described, and the description of the same configuration will be omitted except for what is confirmed.
The absorption heat pump 103 is different from the absorption heat pump 102 in that it additionally includes a high-temperature refrigerant heat exchanger X12, which will be described later, and in the configuration of the refrigerant liquid transfer conduit. This will be specifically described below.

吸収ヒートポンプ103は、高圧蒸発器EHの気液分離器15の下部に蓄積した冷媒液CLを被加熱管23Lに移送していない。この代わりに、冷媒液移送管路5は熱交換器X6の下流側以降は、吸収ヒートポンプ102の冷媒液移送管路5(図3)とルートが相違する。すなわち、熱交換器X6の下流側の冷媒液移送管路5は、直接気液分離器15に接続することはせず、被加熱管23Lに接続し、被加熱管23Lを介して低圧吸収器ALでの吸収熱により冷媒液移送管路5を通る冷媒液CLが加熱されるようにし、その先の冷媒液移送管路5は、被加熱管23Lと気液分離器15とを繋ぎ、加熱された冷媒液CLを気液分離器15に移送する。   The absorption heat pump 103 does not transfer the refrigerant liquid CL accumulated in the lower part of the gas-liquid separator 15 of the high-pressure evaporator EH to the heated pipe 23L. Instead, the refrigerant liquid transfer pipe 5 has a different route from the refrigerant liquid transfer pipe 5 (FIG. 3) of the absorption heat pump 102 after the downstream side of the heat exchanger X6. That is, the refrigerant liquid transfer pipe 5 on the downstream side of the heat exchanger X6 is not directly connected to the gas-liquid separator 15, but is connected to the heated pipe 23L, and is connected to the low pressure absorber via the heated pipe 23L. The refrigerant liquid CL passing through the refrigerant liquid transfer pipe 5 is heated by the absorption heat at AL, and the refrigerant liquid transfer pipe 5 ahead is connected to the heated pipe 23L and the gas-liquid separator 15 and heated. The refrigerant liquid CL thus transferred is transferred to the gas-liquid separator 15.

吸収ヒートポンプ103は、気液分離器15と冷媒液移送管路5Lの冷媒供給弁V3Lの下流側とを繋ぎ、気液分離器15に蓄積した余剰の冷媒液CLを、凝縮器Cから冷媒液移送管路5および冷媒液移送管路5Lを経て移送されてきた冷媒液CLと混合させ、混合後に低圧蒸発器ELに移送する冷媒液移送管路45を備える。   The absorption heat pump 103 connects the gas-liquid separator 15 and the downstream side of the refrigerant supply valve V3L of the refrigerant liquid transfer line 5L, and the excess refrigerant liquid CL accumulated in the gas-liquid separator 15 is supplied from the condenser C to the refrigerant liquid. A refrigerant liquid transfer line 45 is provided which is mixed with the refrigerant liquid CL transferred via the transfer line 5 and the refrigerant liquid transfer line 5L and transferred to the low-pressure evaporator EL after mixing.

吸収ヒートポンプ103は、冷媒液移送管路45を通って加熱側に移送される冷媒液CLと、冷媒液移送管路5を通る冷媒液CLであって、熱交換器X6を出た後に被加熱管23Lに向かい被加熱側に移送される冷媒液CLとの間で熱交換を行う高温冷媒熱交換器X12をさらに備える。   The absorption heat pump 103 includes a refrigerant liquid CL that is transferred to the heating side through the refrigerant liquid transfer pipe 45 and a refrigerant liquid CL that passes through the refrigerant liquid transfer pipe 5 and is heated after leaving the heat exchanger X6. A high-temperature refrigerant heat exchanger X12 that performs heat exchange with the refrigerant liquid CL that is transferred to the heated side toward the pipe 23L is further provided.

次に、本実施の形態の吸収ヒートポンプ103の作用について述べる。吸収ヒートポンプ102(図3)の作用との相違点を説明し、同じ点は確認的に記載するもの以外説明を省略する。
凝縮器Cを出て冷媒液移送管路5を通る冷媒液CLは、熱交換器X6を出た後に、高温冷媒熱交換器X12を通り、高温冷媒熱交換器X12で高圧蒸発器EHの気液分離器15から低圧蒸発器ELへ移送される冷媒液CLによって加熱され、さらに被加熱管23Lを通り、被加熱管23Lを介して低圧吸収器ELにおいて吸収液ALiが冷媒蒸気CSを吸収する吸収熱により加熱され、その後気液分離器15に移送される。
Next, the operation of the absorption heat pump 103 of the present embodiment will be described. Differences from the operation of the absorption heat pump 102 (FIG. 3) will be described, and the description of the same points will be omitted except for what is confirmed.
The refrigerant liquid CL that exits the condenser C and passes through the refrigerant liquid transfer line 5 exits the heat exchanger X6, then passes through the high-temperature refrigerant heat exchanger X12, and passes through the high-pressure evaporator EH in the high-temperature refrigerant heat exchanger X12. Heated by the refrigerant liquid CL transferred from the liquid separator 15 to the low-pressure evaporator EL, further passes through the heated pipe 23L, and the absorbing liquid ALi absorbs the refrigerant vapor CS in the low-pressure absorber EL via the heated pipe 23L. It is heated by the absorption heat and then transferred to the gas-liquid separator 15.

気液分離器15の底部に蓄積した余剰の冷媒液CLは、気液分離器15を出て冷媒液移送管路45を通り、高温冷媒熱交換器X12に移送され、高温冷媒熱交換器X12で、凝縮器Cから気液分離器15に移送される冷媒液CLに冷却され、冷媒液移送管路5Lの冷媒供給弁V3Lの下流側に移送され、凝縮器Cから低圧蒸発器ELに移送される冷媒液CLと混合し、さらに低圧蒸発器ELに移送される。冷媒液CLは、気液分離器15と冷媒液移送管路5L(低圧蒸発器EL)との間の圧力差により気液分離器15から冷媒液移送管路45を通り冷媒液移送管路5Lに移送される。   Excess refrigerant liquid CL accumulated at the bottom of the gas-liquid separator 15 exits the gas-liquid separator 15, passes through the refrigerant liquid transfer line 45, is transferred to the high-temperature refrigerant heat exchanger X 12, and is then supplied to the high-temperature refrigerant heat exchanger X 12. Then, it is cooled to the refrigerant liquid CL transferred from the condenser C to the gas-liquid separator 15, transferred to the downstream side of the refrigerant supply valve V3L of the refrigerant liquid transfer line 5L, and transferred from the condenser C to the low-pressure evaporator EL. Is mixed with the refrigerant liquid CL and further transferred to the low-pressure evaporator EL. The refrigerant liquid CL passes from the gas-liquid separator 15 through the refrigerant liquid transfer line 45 due to the pressure difference between the gas-liquid separator 15 and the refrigerant liquid transfer line 5L (low pressure evaporator EL), and flows through the refrigerant liquid transfer line 5L. It is transferred to.

低圧吸収器ALにおいて、吸収液ALiは、吸収液スプレイ22Lから低圧吸収器AL内に散布され、散布された吸収液ALiは低圧蒸発器ELで蒸発した冷媒蒸気CSを吸収し、被加熱管23Lを介して、凝縮器Cを出て気液分離器15に移送される冷媒液CLを加熱し、低圧吸収器ALの底部に蓄積する。   In the low pressure absorber AL, the absorbing liquid ALi is sprayed from the absorbing liquid spray 22L into the low pressure absorber AL, and the sprayed absorbing liquid ALi absorbs the refrigerant vapor CS evaporated in the low pressure evaporator EL, and the heated pipe 23L The refrigerant liquid CL leaving the condenser C and transferred to the gas-liquid separator 15 is heated and accumulated at the bottom of the low-pressure absorber AL.

凝縮器Cを出た冷媒液CLに、低圧蒸発器ELから冷媒ポンプ4の上流側に戻された冷媒液CLが合流し、合流後に冷媒ポンプ4に昇圧され、低温冷媒熱交換器X11、冷媒供給弁V3Lを通過した後、気液分離器15を出て高温冷媒熱交換器X12を通過した冷媒液CLがさらに合流し、低圧蒸発器ELに移送される。   The refrigerant liquid CL returned from the low-pressure evaporator EL to the upstream side of the refrigerant pump 4 is merged with the refrigerant liquid CL that has exited the condenser C. After the merge, the refrigerant liquid CL is pressurized to the refrigerant pump 4, and the low-temperature refrigerant heat exchanger X11, refrigerant After passing through the supply valve V3L, the refrigerant liquid CL that exits the gas-liquid separator 15 and passes through the high-temperature refrigerant heat exchanger X12 further joins and is transferred to the low-pressure evaporator EL.

本実施の形態の吸収ヒートポンプ103は、冷媒液移送管路5、5Lと冷媒ポンプ4とを備えるので、凝縮器Cの冷媒液CLを冷媒液移送管路5、5Lを通って冷媒液CLを低圧蒸発器ELに供給することができ、さらに低圧蒸発器ELと冷媒供給管路5A(冷媒液
移送管路5の冷媒ポンプ4の上流側)とを繋ぐ冷媒液移送管路51を備えるので、凝縮器
Cから低圧蒸発器ELに移送される冷媒液CLの流れと、低圧蒸発器ELから冷媒液CLを取り出した後に再び低圧蒸発器ELに戻される冷媒液CLの流れとを合流させることができる。よって、冷媒ポンプ4によって冷媒液CLを凝縮器Cから低圧蒸発器ELに移送し、同時に低圧蒸発器ELから冷媒液CLを取り出し再び低圧蒸発器ELに戻して循環させることができ、低圧蒸発器ELから冷媒液CLを取り出し再び低圧蒸発器ELに戻して循環させるためのポンプ(循環ポンプ)を兼ねることができ、循環ポンプを設ける必要をなくすことができる。
Since the absorption heat pump 103 of the present embodiment includes the refrigerant liquid transfer pipes 5 and 5L and the refrigerant pump 4, the refrigerant liquid CL of the condenser C is passed through the refrigerant liquid transfer pipes 5 and 5L and the refrigerant liquid CL is supplied. Since it can be supplied to the low-pressure evaporator EL, and further includes a refrigerant liquid transfer line 51 that connects the low-pressure evaporator EL and the refrigerant supply line 5A (upstream of the refrigerant pump 4 of the refrigerant liquid transfer line 5), The flow of the refrigerant liquid CL transferred from the condenser C to the low-pressure evaporator EL and the flow of the refrigerant liquid CL returned to the low-pressure evaporator EL after taking out the refrigerant liquid CL from the low-pressure evaporator EL may be merged. it can. Therefore, the refrigerant liquid CL can be transferred from the condenser C to the low-pressure evaporator EL by the refrigerant pump 4, and at the same time, the refrigerant liquid CL can be taken out from the low-pressure evaporator EL and returned to the low-pressure evaporator EL for circulation. It can also serve as a pump (circulation pump) for taking out the refrigerant liquid CL from the EL and returning it to the low-pressure evaporator EL for circulation, eliminating the need for a circulation pump.

本実施の形態の吸収ヒートポンプ103は、冷媒液移送管路5と冷媒ポンプ4とを備えるので、凝縮器Cの冷媒液CLを冷媒液移送管路5を通って高圧蒸発器EH(気液分離器
15)に供給することができ、さらに高圧蒸発器EHと冷媒液移送管路5Lとを繋ぐ冷媒
液移送管路45を備えるので、凝縮器Cから高圧蒸発器EHに移送される冷媒液CLの流れと、高圧蒸発器EHから冷媒液CLを取り出した後に低圧蒸発器ELに移送し、低圧蒸発器ELから再び高圧蒸発器EHに戻される冷媒液CLの流れとを合流させることができる。よって、冷媒ポンプ4によって冷媒液CLを凝縮器Cから高圧蒸発器EHに移送し、同時に高圧蒸発器ELから冷媒液CLを取り出し低圧蒸発器ELに移送しさらに低圧蒸発
器ELから取り出し再び高圧蒸発器EHに戻して循環させることができ、高圧蒸発器EHから冷媒液CLを取り出し低圧蒸発器ELを経て再び高圧蒸発器EHに戻して循環させるためのポンプ(循環ポンプ)を兼ねることができ、循環ポンプを設ける必要をなくすことができる。
Since the absorption heat pump 103 of the present embodiment includes the refrigerant liquid transfer pipe 5 and the refrigerant pump 4, the refrigerant liquid CL of the condenser C passes through the refrigerant liquid transfer pipe 5 and passes through the high-pressure evaporator EH (gas-liquid separation). 15), and further includes a refrigerant liquid transfer line 45 that connects the high pressure evaporator EH and the refrigerant liquid transfer line 5L, so that the refrigerant liquid CL transferred from the condenser C to the high pressure evaporator EH is provided. And the flow of the refrigerant liquid CL taken out from the high-pressure evaporator EH and then transferred to the low-pressure evaporator EL and returned from the low-pressure evaporator EL to the high-pressure evaporator EH can be merged. Therefore, the refrigerant liquid CL is transferred from the condenser C to the high-pressure evaporator EH by the refrigerant pump 4, and at the same time, the refrigerant liquid CL is taken out from the high-pressure evaporator EL, transferred to the low-pressure evaporator EL, and taken out from the low-pressure evaporator EL again. The refrigerant liquid CL can be taken out from the high-pressure evaporator EH and returned to the high-pressure evaporator EH through the low-pressure evaporator EL and circulated back to the high-pressure evaporator EH (circulation pump). There is no need to provide a circulation pump.

本実施の形態の吸収ヒートポンプ103は、冷媒ポンプ4によって低圧蒸発器ELに冷媒液CLを供給する流れと低圧蒸発器ELと冷媒供給管路5Aの間を循環する流れを発生させることができる、さらに、高圧蒸発器EH(気液分離器15)に冷媒液CLを供給する流れと高圧蒸発器EH(気液分離器15)と低圧蒸発器ELを経て冷媒供給管路5Aの間を循環する流れを発生させることができるので、低圧蒸発器ELに供給される冷媒液CLの流量、高圧蒸発器EHに供給される冷媒液CLの流量を多くすることができる。よって、低圧蒸発器ELと高圧蒸発器EHの伝熱効率を上昇させることができ、低圧蒸発器ELと高圧蒸発器EHのコンパクト化を図ることができ、また排熱の利用効率を高めることができる。   The absorption heat pump 103 of the present embodiment can generate a flow for supplying the refrigerant liquid CL to the low-pressure evaporator EL by the refrigerant pump 4 and a flow for circulating between the low-pressure evaporator EL and the refrigerant supply line 5A. Further, the refrigerant liquid CL is supplied to the high-pressure evaporator EH (gas-liquid separator 15), circulates between the refrigerant supply line 5A via the high-pressure evaporator EH (gas-liquid separator 15) and the low-pressure evaporator EL. Since the flow can be generated, the flow rate of the refrigerant liquid CL supplied to the low-pressure evaporator EL and the flow rate of the refrigerant liquid CL supplied to the high-pressure evaporator EH can be increased. Therefore, the heat transfer efficiency of the low pressure evaporator EL and the high pressure evaporator EH can be increased, the compactness of the low pressure evaporator EL and the high pressure evaporator EH can be achieved, and the utilization efficiency of exhaust heat can be increased. .

本実施の形態の吸収ヒートポンプ103は、高温冷媒熱交換器X12を備え、凝縮器Cを出た冷媒液CLであって、冷媒ポンプ4に昇圧された後に高圧蒸発器EH(気液分離器
15)にのみ移送される冷媒液CLと、気液分離器15から低圧蒸発器ELに戻される冷
媒液CLとの間で熱交換を行うので、凝縮器Cから高圧蒸発器EH(気液分離器15)にのみ送られる冷媒液CLの温度を上げることができ、吸収ヒートポンプ103に供給される排熱をより有効に利用することができる。
The absorption heat pump 103 of the present embodiment includes a high-temperature refrigerant heat exchanger X12, and is a refrigerant liquid CL that has exited the condenser C. After being pressurized by the refrigerant pump 4, the high-pressure evaporator EH (gas-liquid separator 15 ) And the refrigerant liquid CL transferred from the gas-liquid separator 15 back to the low-pressure evaporator EL, heat exchange is performed between the condenser C and the high-pressure evaporator EH (gas-liquid separator). The temperature of the refrigerant liquid CL sent only to 15) can be raised, and the exhaust heat supplied to the absorption heat pump 103 can be used more effectively.

なお、本実施の形態の吸収ヒートポンプ103は、吸収ヒートポンプ102(図5)と同様に、低温冷媒熱交換器X11を備え、凝縮器Cを出た冷媒液CLであって、冷媒ポンプ4に昇圧されて高圧蒸発器EH(気液分離器15)および低圧蒸発器ELに移送される冷媒液CLと、低圧蒸発器ELから冷媒ポンプ4の上流側に戻される冷媒液CLとの間で熱交換を行うので、凝縮器Cから高圧蒸発器EH(気液分離器15)および低圧蒸発器ELに送られる冷媒液CLの温度を上げることができ、吸収ヒートポンプ103に供給される排熱をより有効に利用することができる。   In addition, the absorption heat pump 103 of this Embodiment is equipped with the low-temperature refrigerant | coolant heat exchanger X11 similarly to the absorption heat pump 102 (FIG. 5), is the refrigerant | coolant liquid CL which went out of the condenser C, Comprising: Heat exchange between the refrigerant liquid CL transferred to the high-pressure evaporator EH (gas-liquid separator 15) and the low-pressure evaporator EL and the refrigerant liquid CL returned to the upstream side of the refrigerant pump 4 from the low-pressure evaporator EL. Therefore, the temperature of the refrigerant liquid CL sent from the condenser C to the high-pressure evaporator EH (gas-liquid separator 15) and the low-pressure evaporator EL can be raised, and the exhaust heat supplied to the absorption heat pump 103 is more effective. Can be used.

図6は、本第4の実施の形態の吸収ヒートポンプ104の構成を示すフローシートである。以下、吸収ヒートポンプ103(図5)との構成の相違について述べ、構成が同じ点については確認的に記載するもの以外説明を省略する。
吸収ヒートポンプ104は、冷媒液移送管路45、低温冷媒熱交換器X11を備えず、後述の冷媒液移送管路48、冷媒熱交換器X13を備える点、冷媒液移送管路5L、冷媒液移送管路51、冷媒液移送管路5の構成の点で、吸収ヒートポンプ103と相違する。以下具体的に説明する。
FIG. 6 is a flow sheet showing the configuration of the absorption heat pump 104 of the fourth embodiment. Hereinafter, the difference in configuration from the absorption heat pump 103 (FIG. 5) will be described, and the description of the same configuration will be omitted except for what is confirmed.
The absorption heat pump 104 does not include the refrigerant liquid transfer line 45 and the low-temperature refrigerant heat exchanger X11, but includes a refrigerant liquid transfer line 48 and a refrigerant heat exchanger X13 described later, the refrigerant liquid transfer line 5L, and the refrigerant liquid transfer. It differs from the absorption heat pump 103 in the configuration of the pipe 51 and the refrigerant liquid transfer pipe 5. This will be specifically described below.

冷媒液移送管路5は、凝縮器Cと高圧蒸発器EHの気液分離器15とを繋ぎ、凝縮器Cで凝縮した冷媒液CLを気液分離器15に移送するが、低温冷媒熱交換器X11は存在しないので、低温冷媒熱交換器X11には接続されていない。冷媒液移送管路51は、低圧蒸発器ELと冷媒供給管路5A(冷媒液移送管路5の後述の冷媒ポンプ4の上流側)とを繋ぎ、低圧蒸発器ELに蓄積された余剰の冷媒液CLを冷媒液移送管路5に移送するが、低温冷媒熱交換器X11は存在しないので、低温冷媒熱交換器X11には接続されていない。   The refrigerant liquid transfer line 5 connects the condenser C and the gas-liquid separator 15 of the high-pressure evaporator EH, and transfers the refrigerant liquid CL condensed in the condenser C to the gas-liquid separator 15. Since the apparatus X11 does not exist, it is not connected to the low-temperature refrigerant heat exchanger X11. The refrigerant liquid transfer line 51 connects the low-pressure evaporator EL and the refrigerant supply line 5A (upstream side of the refrigerant pump 4 described later of the refrigerant liquid transfer line 5), and surplus refrigerant accumulated in the low-pressure evaporator EL. The liquid CL is transferred to the refrigerant liquid transfer pipe 5, but since the low-temperature refrigerant heat exchanger X11 does not exist, it is not connected to the low-temperature refrigerant heat exchanger X11.

吸収ヒートポンプ104は、冷媒液移送管路5から分岐する冷媒液移送管路5Lを通って被加熱側に移送される冷媒液CLと、冷媒液移送配管51を通って加熱側に移送される冷媒液CLとの間で熱交換を行う冷媒熱交換器X13を備える。したがって、冷媒液移送管路5Lの冷媒供給弁V3Lの上流側が冷媒熱交換器X13の被加熱側に接続され、冷媒液移送配管51が冷媒熱交換器X13の加熱側に接続されている。   The absorption heat pump 104 includes a refrigerant liquid CL that is transferred to the heated side through the refrigerant liquid transfer pipe 5L branched from the refrigerant liquid transfer pipe 5, and a refrigerant that is transferred to the heating side through the refrigerant liquid transfer pipe 51. A refrigerant heat exchanger X13 that performs heat exchange with the liquid CL is provided. Therefore, the upstream side of the refrigerant supply valve V3L of the refrigerant liquid transfer pipe line 5L is connected to the heated side of the refrigerant heat exchanger X13, and the refrigerant liquid transfer pipe 51 is connected to the heating side of the refrigerant heat exchanger X13.

吸収ヒートポンプ104は、吸収ヒートポンプ103(図5)と同様に、冷媒液移送管路48を通って加熱側に移送される冷媒液CLと、冷媒液移送管路5を通る冷媒液CLであって、熱交換器X6を出た後に被加熱管23Lに向かい被加熱側に移送される冷媒液CLとの間で熱交換を行う高温冷媒熱交換器X12をさらに備える。   Similarly to the absorption heat pump 103 (FIG. 5), the absorption heat pump 104 is a refrigerant liquid CL that is transferred to the heating side through the refrigerant liquid transfer pipe 48 and a refrigerant liquid CL that passes through the refrigerant liquid transfer pipe 5. And a high-temperature refrigerant heat exchanger X12 that performs heat exchange with the refrigerant liquid CL that is transferred to the heated side toward the heated pipe 23L after leaving the heat exchanger X6.

吸収ヒートポンプ104は、高圧蒸発器EHの気液分離器15と冷媒供給管路5Aとを繋ぎ、気液分離器15に蓄積された余剰の冷媒液CLを冷媒供給管路5Aに移送する冷媒液移送管路48を備え、冷媒液移送管路48の高温冷媒熱交換器X12の下流側には絞り62が設置されている。   The absorption heat pump 104 connects the gas-liquid separator 15 of the high-pressure evaporator EH and the refrigerant supply pipe 5A, and transfers the excess refrigerant liquid CL accumulated in the gas-liquid separator 15 to the refrigerant supply pipe 5A. A transfer pipe 48 is provided, and a throttle 62 is installed on the refrigerant liquid transfer pipe 48 downstream of the high-temperature refrigerant heat exchanger X12.

次に、本実施の形態の吸収ヒートポンプ104の作用について述べる。吸収ヒートポンプ103(図5)の作用との相違点を説明し、同じ点は確認的に記載するもの以外説明を省略する。
凝縮器Cの冷媒液CLは、冷媒液移送管路5を通り、低圧蒸発器ELから冷媒液移送管路51を通って送られた冷媒液CLと混合し、冷媒ポンプ4により昇圧され、さらに凝縮器Cの上部に導入され、再生器Gから凝縮器Cに送られる冷媒蒸気CSによって加熱される。
Next, the operation of the absorption heat pump 104 of the present embodiment will be described. Differences from the operation of the absorption heat pump 103 (FIG. 5) will be described, and the description of the same points will be omitted except for what is confirmed.
The refrigerant liquid CL of the condenser C is mixed with the refrigerant liquid CL sent from the low-pressure evaporator EL through the refrigerant liquid transfer pipe 51 through the refrigerant liquid transfer pipe 5, and is pressurized by the refrigerant pump 4. It is introduced into the upper part of the condenser C and heated by the refrigerant vapor CS sent from the regenerator G to the condenser C.

冷媒液移送管路5を通る冷媒液CLは、さらに一部が冷媒供給弁V3Hにより流量を制御されて、熱交換器X6を通り、熱交換器X6で温水WH4によって加熱された後に被加熱管23Lに送られ、被加熱管23Lを介して低圧吸収器ALにおいて吸収液ALiが冷媒蒸気CSを吸収する吸収熱により加熱され、その後高圧蒸発器EHの気液分離器15に移送される。
冷媒液移送管路5を通る冷媒液CLは、残りの一部が冷媒液移送管路5から分岐し冷媒液移送管路5Lを通り、冷媒供給弁V3Lの上流側で冷媒熱交換器X13を通り、冷媒熱交換器X13で、低圧蒸発器ELから冷媒供給管路5Aに戻される冷媒液CLにより加熱され、その後に冷媒供給弁V3Lにより流量を制御されて、低圧蒸発器ELに送られる。
A part of the refrigerant liquid CL passing through the refrigerant liquid transfer pipe 5 is further controlled in flow rate by the refrigerant supply valve V3H, passes through the heat exchanger X6, is heated by the hot water WH4 in the heat exchanger X6, and then is heated. The liquid ALi is heated by the absorption heat absorbing the refrigerant vapor CS in the low-pressure absorber AL through the heated pipe 23L, and then transferred to the gas-liquid separator 15 of the high-pressure evaporator EH.
The remaining part of the refrigerant liquid CL passing through the refrigerant liquid transfer pipe 5 branches from the refrigerant liquid transfer pipe 5 and passes through the refrigerant liquid transfer pipe 5L, and passes through the refrigerant heat exchanger X13 upstream of the refrigerant supply valve V3L. As described above, the refrigerant heat exchanger X13 is heated by the refrigerant liquid CL returned from the low pressure evaporator EL to the refrigerant supply pipe 5A, and then the flow rate is controlled by the refrigerant supply valve V3L to be sent to the low pressure evaporator EL.

高圧蒸発器EHの下部に蓄積した冷媒液CLは、冷媒液移送管路48を通り、高温冷媒熱交換器X12を通過する際に、高温冷媒熱交換器X12を介して、凝縮器Cから高圧蒸発器ELの気液分離器15に送られる冷媒液CLであって、凝縮器Cにおいて再生器Gから凝縮器Cに送られる冷媒蒸気CSにより加熱された後の冷媒液CLを加熱し、その後冷媒供給管路5Aに戻される。冷媒液CLは、気液分離器15(高圧蒸発器EH)と冷媒供給管路5A(凝縮器C)との間の圧力差により気液分離器15から冷媒液移送管路48を通り冷媒供給管路5Aに移送される。   The refrigerant liquid CL accumulated in the lower part of the high-pressure evaporator EH passes through the refrigerant liquid transfer line 48 and passes through the high-temperature refrigerant heat exchanger X12, and then passes through the high-temperature refrigerant heat exchanger X12 and then from the condenser C. The refrigerant liquid CL sent to the gas-liquid separator 15 of the evaporator EL, which has been heated by the refrigerant vapor CS sent from the regenerator G to the condenser C in the condenser C, is then heated. The refrigerant is returned to the refrigerant supply line 5A. The refrigerant liquid CL is supplied from the gas-liquid separator 15 through the refrigerant liquid transfer line 48 due to the pressure difference between the gas-liquid separator 15 (high pressure evaporator EH) and the refrigerant supply line 5A (condenser C). It is transferred to the pipeline 5A.

低圧蒸発器ELの下部に蓄積した冷媒液CLは、冷媒液移送管路51を通り、冷媒熱交換器X13を通過する際に、冷媒熱交換器X13を介して、凝縮器Cから低圧蒸発器ELに送られる冷媒液CLであって、凝縮器Cにおいて再生器Gから凝縮器Cに送られる冷媒蒸気CSにより加熱された後の冷媒液CLを加熱し、その後冷媒供給管路5Aに戻される。冷媒液CLは、低圧蒸発器ELと冷媒供給管路5A(凝縮器C)との間の圧力差により低圧蒸発器ELから冷媒液移送管路51を通り冷媒供給管路5Aに移送される。   The refrigerant liquid CL accumulated in the lower portion of the low-pressure evaporator EL passes from the condenser C to the low-pressure evaporator via the refrigerant heat exchanger X13 when passing through the refrigerant liquid transfer pipe 51 and passing through the refrigerant heat exchanger X13. The refrigerant liquid CL sent to the EL is heated in the condenser C by the refrigerant vapor CS sent from the regenerator G to the condenser C, and then returned to the refrigerant supply line 5A. . The refrigerant liquid CL is transferred from the low-pressure evaporator EL to the refrigerant supply pipe 5A through the refrigerant liquid transfer pipe 51 due to a pressure difference between the low-pressure evaporator EL and the refrigerant supply pipe 5A (condenser C).

本実施の形態の吸収ヒートポンプ104は、冷媒液移送管路5、5Lと冷媒ポンプ4とを備えるので、凝縮器Cの冷媒液CLを冷媒液移送管路5、5Lを通って低圧蒸発器ELに供給することができ、さらに低圧蒸発器ELと冷媒供給管路5Aとを繋ぐ冷媒液移送管路51を備えるので、冷媒液CLを凝縮器Cから低圧蒸発器ELに移送される冷媒液CLの流れと、低圧蒸発器ELから冷媒液CLを取り出した後に再び低圧蒸発器ELに戻され
る冷媒液CLの流れとを合流させることができる。よって、冷媒ポンプ4によって冷媒液CLを凝縮器Cから低圧蒸発器ELに移送し、同時に低圧蒸発器ELから冷媒液CLを取り出し再び低圧蒸発器ELに戻して循環させることができ、低圧蒸発器ELから冷媒液CLを取り出し再び低圧蒸発器ELに戻して循環させるためのポンプ(循環ポンプ)を兼ねることができ、循環ポンプを設ける必要をなくすことができる。
Since the absorption heat pump 104 of the present embodiment includes the refrigerant liquid transfer lines 5 and 5L and the refrigerant pump 4, the low-pressure evaporator EL passes the refrigerant liquid CL of the condenser C through the refrigerant liquid transfer lines 5 and 5L. And further includes a refrigerant liquid transfer pipe 51 that connects the low pressure evaporator EL and the refrigerant supply pipe 5A, so that the refrigerant liquid CL is transferred from the condenser C to the low pressure evaporator EL. And the flow of the refrigerant liquid CL returned to the low-pressure evaporator EL after the refrigerant liquid CL is taken out from the low-pressure evaporator EL can be merged. Therefore, the refrigerant liquid CL can be transferred from the condenser C to the low-pressure evaporator EL by the refrigerant pump 4, and at the same time, the refrigerant liquid CL can be taken out from the low-pressure evaporator EL and returned to the low-pressure evaporator EL for circulation. It can also serve as a pump (circulation pump) for taking out the refrigerant liquid CL from the EL and returning it to the low-pressure evaporator EL for circulation, eliminating the need for a circulation pump.

本実施の形態の吸収ヒートポンプ104は、冷媒液移送管路5と冷媒ポンプ4とを備えるので、凝縮器Cの冷媒液CLを冷媒液移送管路5を通って高圧蒸発器EHに供給することができ、さらに高圧蒸発器EHと冷媒供給管路5Aとを繋ぐ冷媒液移送管路48を備えるので、凝縮器Cから高圧蒸発器EHに移送される冷媒液CLの流れと、高圧蒸発器EHから冷媒液CLを取り出した後に再び高圧蒸発器EHに戻される冷媒液CLの流れとを合流させることができる。よって、冷媒ポンプ4によって冷媒液CLを凝縮器Cから高圧蒸発器EHに移送し、同時に高圧蒸発器EHから冷媒液CLを取り出し再び高圧蒸発器EHに戻して循環させることができ、高圧蒸発器EHから冷媒液CLを取り出し再び高圧蒸発器EHに戻して循環させるためのポンプ(循環ポンプ)を兼ねることができ、循環ポンプを設ける必要をなくすことができる。   Since the absorption heat pump 104 of the present embodiment includes the refrigerant liquid transfer pipe 5 and the refrigerant pump 4, the refrigerant liquid CL of the condenser C is supplied to the high-pressure evaporator EH through the refrigerant liquid transfer pipe 5. Furthermore, since the refrigerant liquid transfer pipe 48 connecting the high pressure evaporator EH and the refrigerant supply pipe 5A is provided, the flow of the refrigerant liquid CL transferred from the condenser C to the high pressure evaporator EH, and the high pressure evaporator EH After the refrigerant liquid CL is taken out of the refrigerant liquid CL, the refrigerant liquid CL returned to the high-pressure evaporator EH can be joined again. Therefore, the refrigerant liquid CL can be transferred from the condenser C to the high-pressure evaporator EH by the refrigerant pump 4, and at the same time, the refrigerant liquid CL can be taken out from the high-pressure evaporator EH and returned to the high-pressure evaporator EH for circulation. It can also serve as a pump (circulation pump) for taking out the refrigerant liquid CL from the EH and returning it to the high-pressure evaporator EH for circulation, eliminating the need to provide a circulation pump.

本実施の形態の吸収ヒートポンプ104は、冷媒ポンプ4によって低圧蒸発器ELに冷媒液CLを供給する流れと低圧蒸発器ELと冷媒供給管路5Aの間を循環する流れを発生させることができるので、低圧蒸発器ELに供給される冷媒液CLの流量を多くすることができる。よって、低圧蒸発器ELの伝熱効率を上昇させることができ、低圧蒸発器ELのコンパクト化を図ることができ、また排熱の利用効率を高めることができる。さらに、吸収ヒートポンプ104は、冷媒ポンプ4によって高圧蒸発器EHに冷媒液CLを供給する流れと高圧蒸発器EHと冷媒供給管路5Aの間を循環する流れを発生させることができるので、高圧蒸発器EHに供給される冷媒液CLの流量を多くすることができる。よって、高圧蒸発器EHの伝熱効率を上昇させることができ、高圧蒸発器EHのコンパクト化を図ることができ、また排熱の利用効率を高めることができる。   The absorption heat pump 104 of the present embodiment can generate a flow for supplying the refrigerant liquid CL to the low-pressure evaporator EL by the refrigerant pump 4 and a flow for circulating between the low-pressure evaporator EL and the refrigerant supply line 5A. The flow rate of the refrigerant liquid CL supplied to the low-pressure evaporator EL can be increased. Therefore, the heat transfer efficiency of the low-pressure evaporator EL can be increased, the low-pressure evaporator EL can be made compact, and the exhaust heat utilization efficiency can be increased. Further, the absorption heat pump 104 can generate a flow for supplying the refrigerant liquid CL to the high-pressure evaporator EH by the refrigerant pump 4 and a flow for circulating between the high-pressure evaporator EH and the refrigerant supply line 5A. The flow rate of the refrigerant liquid CL supplied to the container EH can be increased. Therefore, the heat transfer efficiency of the high-pressure evaporator EH can be increased, the high-pressure evaporator EH can be made compact, and the exhaust heat utilization efficiency can be increased.

本実施の形態の吸収ヒートポンプ104は、冷媒熱交換器X13を備え、凝縮器Cを出た冷媒液CLであって、冷媒ポンプ4に昇圧された後に低圧蒸発器ELにのみ移送される冷媒液CLと、低圧蒸発器ELから凝縮器Cに戻される冷媒液CLとの間で熱交換を行うので、凝縮器Cから低圧蒸発器ELにのみ送られる冷媒液CLの温度を上げることができ、吸収ヒートポンプ104に供給される排熱をより有効に利用することができる。   The absorption heat pump 104 of the present embodiment includes a refrigerant heat exchanger X13, and is a refrigerant liquid CL that has exited the condenser C and is transferred only to the low-pressure evaporator EL after being pressurized by the refrigerant pump 4. Since heat exchange is performed between CL and the refrigerant liquid CL returned to the condenser C from the low-pressure evaporator EL, the temperature of the refrigerant liquid CL sent only from the condenser C to the low-pressure evaporator EL can be increased, The exhaust heat supplied to the absorption heat pump 104 can be used more effectively.

本実施の形態の吸収ヒートポンプ104は、吸収ヒートポンプ103(図5)と同様に、高温冷媒熱交換器X12を備え、凝縮器Cを出た冷媒液CLであって、冷媒ポンプ4に昇圧された後に高圧蒸発器EH(気液分離器15)にのみ移送される冷媒液CLと、高圧蒸発器EH(気液分離器15)から低圧蒸発器ELに戻される冷媒液CLとの間で熱交換を行うので、凝縮器Cから高圧蒸発器EH(気液分離器15)にのみ送られる冷媒液CLの温度を上げることができ、吸収ヒートポンプ104に供給される排熱をより有効に利用することができる。   Similarly to the absorption heat pump 103 (FIG. 5), the absorption heat pump 104 of the present embodiment includes a high-temperature refrigerant heat exchanger X12 and is a refrigerant liquid CL that has exited the condenser C and has been boosted by the refrigerant pump 4. Heat exchange between the refrigerant liquid CL which is later transferred only to the high-pressure evaporator EH (gas-liquid separator 15) and the refrigerant liquid CL returned from the high-pressure evaporator EH (gas-liquid separator 15) to the low-pressure evaporator EL. Therefore, the temperature of the refrigerant liquid CL sent only from the condenser C to the high-pressure evaporator EH (gas-liquid separator 15) can be raised, and the exhaust heat supplied to the absorption heat pump 104 can be used more effectively. Can do.

図7は、本第5の実施の形態の吸収ヒートポンプ105の構成を示すフローシートである。以下、吸収ヒートポンプ104(図6)との構成の相違について述べ、構成が同じ点については確認的に記載するもの以外説明を省略する。
吸収ヒートポンプ105は、冷媒液移送管路54、冷媒液移送管路55、冷媒液移送管路56、冷媒熱交換器X14、高温冷媒熱交換器X15を備える点、高温冷媒熱交換器X12(図6)、冷媒熱交換器X13(図6)、冷媒液移送管路5(図6)、冷媒液移送管路5L(図6)、冷媒液移送管路51(図6)を備えない点で、吸収ヒートポンプ104と相違する。以下具体的に説明する。
FIG. 7 is a flow sheet showing the configuration of the absorption heat pump 105 of the fifth embodiment. Hereinafter, the difference in configuration from the absorption heat pump 104 (FIG. 6) will be described, and the description of the same configuration will be omitted except for what is confirmed.
The absorption heat pump 105 includes a refrigerant liquid transfer line 54, a refrigerant liquid transfer line 55, a refrigerant liquid transfer line 56, a refrigerant heat exchanger X14, and a high temperature refrigerant heat exchanger X15, a high temperature refrigerant heat exchanger X12 (FIG. 6) The refrigerant heat exchanger X13 (FIG. 6), the refrigerant liquid transfer pipe 5 (FIG. 6), the refrigerant liquid transfer pipe 5L (FIG. 6), and the refrigerant liquid transfer pipe 51 (FIG. 6) are not provided. This is different from the absorption heat pump 104. This will be specifically described below.

吸収ヒートポンプ105は、(1)凝縮器Cと低圧蒸発器ELとを繋ぎ、凝縮器Cで凝縮した冷媒液CLを低圧蒸発器ELに移送する冷媒液移送管路54と、(2)低圧蒸発器ELと高圧蒸発器EHの気液分離器15とを繋ぎ、低圧蒸発器ELの底部に蓄積した余剰の冷媒液CLを気液分離器15に移送する冷媒液移送管路55と、(3)冷媒液移送管路55から分離し、低圧蒸発器ELの冷媒液CLを低圧蒸発器ELに戻して循環させる冷媒液移送管路56とを備える。   The absorption heat pump 105 (1) connects the condenser C and the low-pressure evaporator EL, transfers the refrigerant liquid CL condensed in the condenser C to the low-pressure evaporator EL, and (2) low-pressure evaporation. A refrigerant liquid transfer line 55 that connects the evaporator EL and the gas-liquid separator 15 of the high-pressure evaporator EH and transfers the excess refrigerant liquid CL accumulated at the bottom of the low-pressure evaporator EL to the gas-liquid separator 15; ) A refrigerant liquid transfer line 56 that is separated from the refrigerant liquid transfer line 55 and circulates the refrigerant liquid CL of the low pressure evaporator EL back to the low pressure evaporator EL.

冷媒液移送管路45は、気液分離器15の底部に蓄積した冷媒液CLを、後述の高温冷媒熱交換器X15を経て冷媒液移送管路56に戻すよう構成されている。冷媒液移送管路54は、さらに、冷媒液移送管路54を通る冷媒液CLが、再生器Gから凝縮器Cに送られる冷媒蒸気CSによって加熱されるよう構成されている。冷媒液移送管路54は、冷媒液CLを低圧蒸発器ELに、底部に蓄積している冷媒液CLの上方から供給するよう構成されている。   The refrigerant liquid transfer line 45 is configured to return the refrigerant liquid CL accumulated at the bottom of the gas-liquid separator 15 to the refrigerant liquid transfer line 56 via a high-temperature refrigerant heat exchanger X15 described later. The refrigerant liquid transfer pipe 54 is further configured such that the refrigerant liquid CL passing through the refrigerant liquid transfer pipe 54 is heated by the refrigerant vapor CS sent from the regenerator G to the condenser C. The refrigerant liquid transfer conduit 54 is configured to supply the refrigerant liquid CL to the low-pressure evaporator EL from above the refrigerant liquid CL accumulated at the bottom.

吸収ヒートポンプ105は、(1)排熱を有する温水WH5が加熱側に移送され、冷媒液移送管路55を通って低圧蒸発器ELから気液分離器15に移送される冷媒液CLが被加熱側に移送され、熱交換が行われる冷媒熱交換器X14と、(2)冷媒液移送管路45を通って気液分離器15から移送される冷媒液CLが加熱側に移送され、冷媒液移送管路55を通る冷媒液CLであって、冷媒熱交換器X14を出た後に被加熱管23Lに向かい移送される冷媒液CLが被加熱側に移送され、熱交換が行われる高温冷媒熱交換器X15とを備える。温水WH5の温度は、例えば入口90℃、出口85℃とするとよい。   In the absorption heat pump 105, (1) hot water WH5 having exhaust heat is transferred to the heating side, and the refrigerant liquid CL transferred from the low-pressure evaporator EL to the gas-liquid separator 15 through the refrigerant liquid transfer line 55 is heated. The refrigerant heat exchanger X14 that is transferred to the side and performs heat exchange, and (2) the refrigerant liquid CL that is transferred from the gas-liquid separator 15 through the refrigerant liquid transfer pipe 45 is transferred to the heating side, and the refrigerant liquid The refrigerant liquid CL passing through the transfer line 55, which is transferred to the heated pipe 23L after leaving the refrigerant heat exchanger X14, is transferred to the heated side, and heat exchange is performed. And an exchanger X15. The temperature of the hot water WH5 may be, for example, an inlet 90 ° C and an outlet 85 ° C.

冷媒液移送管路54には、冷媒ポンプ46が設置され、冷媒ポンプ46は、凝縮器Cで凝縮した冷媒液CLを後述の冷媒供給弁V3Lを経て低圧蒸発器ELに移送する。冷媒液移送管路55には、冷媒ポンプ47が設置され、冷媒ポンプ47は、低圧蒸発器ELの底部に蓄積した冷媒液CLを一部低圧蒸発器ELに戻して循環させ、残った冷媒液CLを後述の冷媒供給弁V3H、冷媒熱交換器X14、高温冷媒熱交換器X15、被加熱管23Lを経て気液分離器15に移送する。   A refrigerant pump 46 is installed in the refrigerant liquid transfer line 54, and the refrigerant pump 46 transfers the refrigerant liquid CL condensed by the condenser C to the low-pressure evaporator EL through a refrigerant supply valve V3L described later. A refrigerant pump 47 is installed in the refrigerant liquid transfer pipe 55, and the refrigerant pump 47 partially circulates the refrigerant liquid CL accumulated at the bottom of the low-pressure evaporator EL back to the low-pressure evaporator EL, and the remaining refrigerant liquid. CL is transferred to the gas-liquid separator 15 via a refrigerant supply valve V3H, a refrigerant heat exchanger X14, a high-temperature refrigerant heat exchanger X15, and a heated pipe 23L which will be described later.

冷媒液移送管路55は、冷媒ポンプ46の上流側の冷媒供給管路55Aと、冷媒ポンプ4の下流側の冷媒液移送管路55Bとを含んで構成される。低圧蒸発器ELと冷媒供給管路55Aとを含んで、本発明の低圧蒸発部が構成される。   The refrigerant liquid transfer pipe 55 includes a refrigerant supply pipe 55 </ b> A on the upstream side of the refrigerant pump 46 and a refrigerant liquid transfer pipe 55 </ b> B on the downstream side of the refrigerant pump 4. The low pressure evaporator according to the present invention is configured including the low pressure evaporator EL and the refrigerant supply line 55A.

冷媒液移送管路54の、凝縮器Cにおいて再生器Gから凝縮器Cに向かう冷媒蒸気CSによって冷媒液CLが加熱される箇所の下流側に、凝縮器Cから低圧蒸発器ELに移送される冷媒液CLの流量を調節する冷媒供給弁V3Lが設置されている。冷媒液移送管路55の冷媒英移送管路56が分岐する分岐点の下流側であって、冷媒熱交換器X14の上流側に、低圧蒸発器ELから気液分離器15に移送される冷媒液CLの流量を調節する冷媒供給弁V3Hが設置されている。冷媒液移送管路56の冷媒液移送管路45が接続される箇所の上流側には絞り63が設置されている。   The refrigerant liquid transfer line 54 is transferred from the condenser C to the low-pressure evaporator EL downstream of the portion where the refrigerant liquid CL is heated by the refrigerant vapor CS from the regenerator G to the condenser C in the condenser C. A refrigerant supply valve V3L for adjusting the flow rate of the refrigerant liquid CL is installed. Refrigerant transferred from the low pressure evaporator EL to the gas-liquid separator 15 downstream of the branch point where the refrigerant transfer line 56 of the refrigerant liquid transfer line 55 branches and upstream of the refrigerant heat exchanger X14. A refrigerant supply valve V3H for adjusting the flow rate of the liquid CL is provided. A throttle 63 is installed on the upstream side of the refrigerant liquid transfer pipe 56 where the refrigerant liquid transfer pipe 45 is connected.

気液分離器15の液面レベルセンサL2Hからの、冷媒液CLの液面レベルを表す液面信号(不図示)は制御装置21に送られ、制御装置21から液面レベルを一定のレベルに保つよう冷媒液CLの流量を制御する制御信号(不図示)が冷媒供給弁V3Hに送られ、冷媒供給弁V3Hの開度を気液分離器15の冷媒液CLの液面レベルが一定になるよう制御する(図中、簡略化して、液面レベルセンサL2Hから冷媒供給弁V3Hに信号が送られる
ように記載)。
A liquid level signal (not shown) indicating the liquid level of the refrigerant liquid CL from the liquid level sensor L2H of the gas-liquid separator 15 is sent to the control device 21, and the liquid level is set to a constant level from the control device 21. A control signal (not shown) for controlling the flow rate of the refrigerant liquid CL is sent to the refrigerant supply valve V3H so as to maintain the opening of the refrigerant supply valve V3H, and the liquid level of the refrigerant liquid CL of the gas-liquid separator 15 becomes constant. (In the figure, it is simplified and described so that a signal is sent from the liquid level sensor L2H to the refrigerant supply valve V3H).

低圧蒸発器ELの液面レベルセンサL2Lからの、冷媒液CLの液面レベルを表す液面信号(不図示)は制御装置21に送られ、制御装置21から液面レベルを一定のレベルに保つよう冷媒液CLの流量を制御する制御信号(不図示)が冷媒供給弁V3Lに送られ、冷媒供給弁V3Lの開度を低圧蒸発器ELの冷媒液CLの液面レベルが一定になるよう制御する(図中、簡略化して、液面レベルセンサL2Lから冷媒供給弁V3Lに信号が送られる
ように記載)。
A liquid level signal (not shown) indicating the liquid level of the refrigerant liquid CL from the liquid level sensor L2L of the low-pressure evaporator EL is sent to the control device 21, and the liquid level is maintained at a constant level from the control device 21. A control signal (not shown) for controlling the flow rate of the refrigerant liquid CL is sent to the refrigerant supply valve V3L, and the opening of the refrigerant supply valve V3L is controlled so that the liquid level of the refrigerant liquid CL in the low-pressure evaporator EL becomes constant. (In the figure, it is simplified so that a signal is sent from the liquid level sensor L2L to the refrigerant supply valve V3L).

冷媒液移送管路45は気液分離器15の底部に蓄積した冷媒液CLを冷媒供給管路55Aに戻すようにしてもよい。   The refrigerant liquid transfer line 45 may return the refrigerant liquid CL accumulated at the bottom of the gas-liquid separator 15 to the refrigerant supply line 55A.

次に、本実施の形態の吸収ヒートポンプ105の作用について述べる。吸収ヒートポンプ104(図6)の作用との相違点を説明し、同じ点は確認的に記載するもの以外説明を省略する。
凝縮器Cを出て冷媒液移送配管54を通る冷媒液CLは、冷媒ポンプ46に昇圧され、凝縮器Cにおいて再生器Gから凝縮器Cに向かう冷媒蒸気CSに加熱され、冷媒供給弁V3Lに低圧蒸発器ELの冷媒液レベルが一定になるように流量を調節されて低圧蒸発器ELに移送される。
Next, the operation of the absorption heat pump 105 of the present embodiment will be described. Differences from the operation of the absorption heat pump 104 (FIG. 6) will be described, and the description of the same points will be omitted except for what is confirmed.
The refrigerant liquid CL that exits the condenser C and passes through the refrigerant liquid transfer pipe 54 is boosted by the refrigerant pump 46, heated in the condenser C by the refrigerant vapor CS from the regenerator G to the condenser C, and is supplied to the refrigerant supply valve V3L. The flow rate is adjusted so that the refrigerant liquid level of the low-pressure evaporator EL becomes constant, and the low-pressure evaporator EL is transferred to the low-pressure evaporator EL.

低圧蒸発器ELの底部に蓄積した余剰の冷媒液CLは、低圧蒸発器ELを出て、冷媒液移送管路54を通り冷媒昇圧手段としての冷媒ポンプ47により昇圧され、一部が低圧蒸発器ELに移送されて循環し、残りが冷媒供給弁V3Hにより気液分離器15の冷媒液レベルが一定になるように流量を調節されて、さらに冷媒熱交換器X14を介して温水WH5により加熱され、さらに高温冷媒熱交換器X15を介して気液分離器15から低圧蒸発器ELに戻される冷媒液CLにより加熱され、さらに被加熱管23Lを介して低圧吸収器ALにて発生する吸収熱により加熱され、気液分離器15に供給される。   The surplus refrigerant liquid CL accumulated at the bottom of the low-pressure evaporator EL exits the low-pressure evaporator EL, passes through the refrigerant liquid transfer line 54, and is boosted by a refrigerant pump 47 as a refrigerant boosting means. The flow rate is adjusted so that the refrigerant liquid level of the gas-liquid separator 15 becomes constant by the refrigerant supply valve V3H, and the remainder is heated by the hot water WH5 via the refrigerant heat exchanger X14. Further, the refrigerant is heated by the refrigerant liquid CL returned to the low-pressure evaporator EL from the gas-liquid separator 15 via the high-temperature refrigerant heat exchanger X15, and further, by the absorbed heat generated in the low-pressure absorber AL via the heated pipe 23L. Heated and supplied to the gas-liquid separator 15.

気液分離器15の底部に蓄積した余剰の冷媒液CLは、気液分離器15を出て冷媒液移送管路45を通り、高温冷媒熱交換器X15で低圧蒸発器ELから気液分離器15に移送される冷媒液CLを加熱し、冷媒液移送管路56に到達し低圧蒸発器ELの底部から冷媒液移送管路56を通って循環される冷媒液CLと合流し低圧蒸発器ELに移送される。冷媒液CLは、高圧蒸発器EHと冷媒液移送管路5L(低圧蒸発器EL)との間の圧力差により高圧蒸発器EHから冷媒液移送管路45を通り冷媒液移送管路56(絞り63の下流側)に移送される。   Excess refrigerant liquid CL accumulated at the bottom of the gas-liquid separator 15 exits the gas-liquid separator 15 and passes through the refrigerant liquid transfer line 45, and is then discharged from the low-pressure evaporator EL to the high-temperature refrigerant heat exchanger X15. The refrigerant liquid CL transferred to 15 is heated, reaches the refrigerant liquid transfer line 56, joins with the refrigerant liquid CL circulated from the bottom of the low pressure evaporator EL through the refrigerant liquid transfer line 56, and the low pressure evaporator EL It is transferred to. The refrigerant liquid CL passes from the high-pressure evaporator EH through the refrigerant liquid transfer line 45 due to the pressure difference between the high-pressure evaporator EH and the refrigerant liquid transfer line 5L (low-pressure evaporator EL). 63 downstream).

本実施の形態の吸収ヒートポンプ105は、冷媒ポンプ47によって、低圧蒸発器ELに冷媒液CLを供給する流れと高圧蒸発器EH(気液分離器15)と低圧蒸発器ELを経て冷媒供給管路55Aの間を循環する流れを発生させることができるので、高圧蒸発器EHおよび低圧蒸発器ELに供給される冷媒液CLの流量を多くすることができる。よって、高圧蒸発器EHおよび低圧蒸発器ELの伝熱効率を上昇させることができ、高圧蒸発器EHおよび低圧蒸発器ELのコンパクト化を図ることができ、また排熱の利用効率を高めることができる。   The absorption heat pump 105 of this embodiment is configured so that the refrigerant pump 47 supplies the refrigerant liquid CL to the low-pressure evaporator EL, the refrigerant supply line through the high-pressure evaporator EH (gas-liquid separator 15) and the low-pressure evaporator EL. Since a flow circulating between 55A can be generated, the flow rate of the refrigerant liquid CL supplied to the high-pressure evaporator EH and the low-pressure evaporator EL can be increased. Therefore, the heat transfer efficiency of the high-pressure evaporator EH and the low-pressure evaporator EL can be increased, the high-pressure evaporator EH and the low-pressure evaporator EL can be made compact, and the utilization efficiency of exhaust heat can be increased. .

本実施の形態の吸収ヒートポンプ105は、高温冷媒熱交換器X15を備え、低圧蒸発器ELを出た冷媒液CLであって、冷媒ポンプ47に昇圧された後に高圧蒸発器EH(気
液分離器15)にのみ移送される冷媒液CLと、高圧蒸発器EH(気液分離器15)から低
圧蒸発器ELに戻される冷媒液CLとの間で熱交換を行うので、低圧蒸発器ELから高圧蒸発器EL(気液分離器15)に送られる冷媒液CLの温度を上げることができ、吸収ヒートポンプ105に供給される排熱をより有効に利用することができる。
The absorption heat pump 105 of the present embodiment includes a high-temperature refrigerant heat exchanger X15, and is a refrigerant liquid CL that has exited the low-pressure evaporator EL. After being pressurized by the refrigerant pump 47, the high-pressure evaporator EH (gas-liquid separator) 15) and the refrigerant liquid CL transferred only to the high-pressure evaporator EH (gas-liquid separator 15) and the refrigerant liquid CL returned to the low-pressure evaporator EL, heat exchange is performed between the low-pressure evaporator EL and the high-pressure evaporator EL. The temperature of the refrigerant liquid CL sent to the evaporator EL (gas-liquid separator 15) can be raised, and the exhaust heat supplied to the absorption heat pump 105 can be used more effectively.

前述の第2から第5の実施の形態の吸収ヒートポンプは2段昇温であり、蒸発器は高圧蒸発器(2段目)と低圧蒸発器(1段目)とから構成されているとして説明したが、3段以上の多段昇温とし、N(自然数)段昇温の場合、N段の蒸発器(圧力の低い順に1段、2段・
・とする)から構成されるようにしてもよい。この場合、例えば、3段目以上の蒸発器に
は凝縮器または下位の段(N段目の場合は、N−1段目、N−2段目・・が該当)の蒸発器からそれぞれ冷媒液が供給されるようにし、3段目以上の蒸発器から蒸発しなかった余剰の冷媒液を下位の段(典型的には、直近下位の段とするとよい)の蒸発器および/または凝縮器に戻し、供給される冷媒液と、戻される冷媒液との間で熱交換を行うとよい。このようにすると3段目以上の蒸発器に供給される冷媒液の温度を上げることができ、吸収ヒートポンプ105に供給される排熱をより有効に利用することができる。
The absorption heat pump according to the second to fifth embodiments described above has a two-stage temperature rise, and the evaporator is assumed to be composed of a high-pressure evaporator (second stage) and a low-pressure evaporator (first stage). However, if the temperature rises to 3 or more stages and N (natural number) stages, the N-stage evaporator (1 stage, 2 stages,
May be configured. In this case, for example, the evaporators in the third and higher stages are respectively supplied from the condenser or the lower stage evaporator (in the case of the N stage, the N-1 stage, the N-2 stage,...) Respectively. The excess refrigerant liquid that has not been evaporated from the third and higher stages of evaporators is supplied to the lower stage (typically, the last lower stage may be used), and / or the condenser. The heat exchange may be performed between the supplied refrigerant liquid and the returned refrigerant liquid. If it does in this way, the temperature of the refrigerant | coolant liquid supplied to the 3rd or more stage | paragraph evaporator can be raised, and the waste heat supplied to the absorption heat pump 105 can be utilized more effectively.

1、46,47 溶液ポンプ
2、3 吸収液移送管路
4 冷媒ポンプ(冷媒昇圧手段)
5、5B、5L、40、41、45、51、54、55、56 冷媒液移送管路
5A 冷媒供給管路
7 補給水移送管路
8 蒸気供給管路
11 気液分離器
12、13 給水ポンプ
15 気液分離器
21 制御装置
101、102、103、104、105 吸収ヒートポンプ
A 吸収器(吸収部)
AH 高圧吸収器(吸収部)
AL 低圧吸収器(吸収部)
ALi 吸収液
C 凝縮器(凝縮部)
CS 冷媒蒸気
CL 冷媒液
E 蒸発器(蒸発部)
EH 高圧蒸発器(蒸発部)
EL 低圧蒸発器(蒸発部)
G 再生器(再生部)
L1、L2、L3、L1H,L1L、L2H,L2L 液面レベルセンサ
P 圧力センサ
S 蒸気
V1 蒸気弁
V2、V3、V3H、V3L 冷媒供給弁
V4 吸収液供給弁
W1 補給水
WC 冷却水
WH1、WH2、WH3、WH4、WH5 温水
X1、X4、X13、X14 冷媒熱交換器
X11 冷媒熱交換器、低温冷媒熱交換器
X12、X15 高温冷媒熱交換器
X2、X3、X5、X6 熱交換器
1, 46, 47 Solution pump 2, 3 Absorbing liquid transfer line 4 Refrigerant pump (refrigerant boosting means)
5, 5B, 5L, 40, 41, 45, 51, 54, 55, 56 Refrigerant liquid transfer line 5A Refrigerant supply line 7 Makeup water transfer line 8 Steam supply line 11 Gas-liquid separator 12, 13 Water supply pump 15 Gas-liquid separator 21 Control device 101,102,103,104,105 Absorption heat pump A Absorber (absorption part)
AH high pressure absorber (absorption part)
AL Low pressure absorber (absorption part)
ALi Absorbent C Condenser (Condenser)
CS Refrigerant vapor CL Refrigerant liquid E Evaporator (evaporator)
EH high pressure evaporator (evaporation part)
EL Low pressure evaporator (evaporation part)
G regenerator (reproduction unit)
L1, L2, L3, L1H, L1L, L2H, L2L Liquid level sensor P Pressure sensor S Steam V1 Steam valve V2, V3, V3H, V3L Refrigerant supply valve V4 Absorbing liquid supply valve W1 Supply water WC Cooling water WH1, WH2, WH3, WH4, WH5 Hot water X1, X4, X13, X14 Refrigerant heat exchanger X11 Refrigerant heat exchanger, low temperature refrigerant heat exchanger X12, X15 High temperature refrigerant heat exchanger X2, X3, X5, X6 Heat exchanger

Claims (4)

冷媒蒸気を凝縮して冷媒液とする凝縮部と;
前記凝縮部から供給される冷媒液を蒸発させる加熱管と、前記供給される冷媒液を前記加熱管に散布する冷媒液スプレイとを有する蒸発部であって、前記供給される冷媒液を蒸発させて冷媒蒸気を発生させ、蒸発しない余剰の冷媒液を前記凝縮部に戻す蒸発部と;
前記凝縮部で凝縮した冷媒液を昇圧し前記蒸発部の前記冷媒液スプレイへ前記凝縮部から供給する単一の冷媒ポンプとを備え;
前記凝縮部は、前記凝縮部が凝縮した冷媒液を前記単一の冷媒ポンプに供給する冷媒供給管路を有し;
さらに、前記単一の冷媒ポンプと前記冷媒液スプレイとを接続する第1の冷媒液移送管路と;
前記蒸発しない余剰の冷媒液を前記凝縮部に戻すための第2の冷媒液移送管路であって、前記蒸発部と前記冷媒供給管路とを繋ぎ、前記蒸発しない余剰の冷媒液を前記冷媒供給管路に戻す第2の冷媒液移送管路と;
前記蒸発部から前記冷媒供給管路に戻す、前記第2の冷媒液移送管路を移送される蒸発しない余剰の冷媒液と、前記凝縮部から前記冷媒液スプレイへ供給する冷媒液であって前記第1の冷媒移送管路を移送される冷媒液との間で熱交換を行う熱交換器を備え;
前記単一の冷媒ポンプが、前記冷媒供給管路と、前記第1の冷媒液移送管路とを介して、前記凝縮した冷媒液を前記冷媒液スプレイへ供給する;
吸収ヒートポンプ。
A condensing part that condenses the refrigerant vapor into a refrigerant liquid;
An evaporation section having a heating pipe for evaporating the refrigerant liquid supplied from the condensing section and a refrigerant liquid spray for spraying the supplied refrigerant liquid on the heating pipe, evaporating the supplied refrigerant liquid. An evaporating section that generates refrigerant vapor and returns the excess refrigerant liquid that does not evaporate to the condensing section;
A single refrigerant pump that pressurizes the refrigerant liquid condensed in the condensing unit and supplies the refrigerant liquid to the refrigerant liquid spray of the evaporation unit from the condensing unit;
The condensing unit has a refrigerant supply line that supplies the refrigerant liquid condensed by the condensing unit to the single refrigerant pump;
A first refrigerant liquid transfer line connecting the single refrigerant pump and the refrigerant liquid spray;
A second refrigerant liquid transfer line for returning the excess refrigerant liquid that does not evaporate to the condensing part, connecting the evaporation part and the refrigerant supply line, and removing the excess refrigerant liquid that does not evaporate to the refrigerant A second refrigerant liquid transfer line returning to the supply line;
A surplus refrigerant liquid that is not evaporated and returned to the refrigerant supply pipe from the evaporation section and is transferred through the second refrigerant liquid transfer pipe; and a refrigerant liquid that is supplied from the condensation section to the refrigerant liquid spray. A heat exchanger for exchanging heat with the refrigerant liquid transferred through the first refrigerant transfer line ;
The single refrigerant pump supplies the condensed refrigerant liquid to the refrigerant liquid spray via the refrigerant supply line and the first refrigerant liquid transfer line;
Absorption heat pump.
前記蒸発部が、前記蒸発部に蓄積する冷媒液の液面レベルを検出する液面レベルセンサを有し;
前記第1の冷媒液移送管路には前記冷媒液スプレイに供給する冷媒液の流量を調整する冷媒供給弁が設置され;
さらに、前記液面レベルセンサから前記検出した液面レベルの信号を受け、前記蒸発部の液面レベルを一定に保つよう前記冷媒供給弁の開度を制御する制御装置を備える;
請求項1に記載の吸収ヒートポンプ。
The evaporating unit has a liquid level sensor that detects a level of refrigerant liquid accumulated in the evaporating unit;
A refrigerant supply valve for adjusting a flow rate of the refrigerant liquid supplied to the refrigerant liquid spray is installed in the first refrigerant liquid transfer pipe;
And a control device that receives the signal of the detected liquid level from the liquid level sensor and controls the opening of the refrigerant supply valve so as to keep the liquid level of the evaporation unit constant;
The absorption heat pump according to claim 1.
前記蒸発部が低圧蒸発部であり;
前記凝縮部から供給される冷媒液を前記低圧蒸発部より高圧下で蒸発させて冷媒蒸気を発生させる高圧蒸発部を備え;
前記低圧蒸発部の加熱管は、前記高圧蒸発部で蒸発しない余剰の冷媒液であって前記高圧蒸発部から戻される冷媒液を蒸発させ;
前記低圧蒸発部の冷媒液スプレイは、前記高圧蒸発部から戻される冷媒液を前記加熱管に散布し;
前記低圧蒸発部は、前記高圧蒸発部から戻される冷媒液を蒸発し、冷媒蒸気を発生させ、前記低圧蒸発部で蒸発しない余剰の冷媒液を前記凝縮部に戻し;
前記単一の冷媒ポンプが、前記凝縮部で凝縮した冷媒液を昇圧し、前記凝縮部から前記高圧蒸発部へ供給する;
請求項1又は請求項2に記載の吸収ヒートポンプ。
The evaporator is a low pressure evaporator;
A high-pressure evaporation unit that generates refrigerant vapor by evaporating the refrigerant liquid supplied from the condensing unit at a higher pressure than the low-pressure evaporation unit;
The heating pipe of the low-pressure evaporation section evaporates the refrigerant liquid that is an excess refrigerant liquid that does not evaporate in the high-pressure evaporation section and is returned from the high-pressure evaporation section;
The refrigerant liquid spray of the low-pressure evaporation unit is configured to spray the refrigerant liquid returned from the high-pressure evaporation unit to the heating pipe;
The low-pressure evaporation section evaporates the refrigerant liquid returned from the high-pressure evaporation section, generates refrigerant vapor, and returns excess refrigerant liquid that does not evaporate in the low-pressure evaporation section to the condensing section;
The single refrigerant pump pressurizes the refrigerant liquid condensed in the condensing unit and supplies the refrigerant liquid from the condensing unit to the high-pressure evaporation unit;
The absorption heat pump according to claim 1 or 2.
前記蒸発部が低圧蒸発部であり;
前記凝縮部から供給される冷媒液を前記低圧蒸発部より高圧下で蒸発させて冷媒蒸気を発生させる高圧蒸発部を備え;
前記高圧蒸発部は、前記高圧蒸発部で蒸発しない余剰の冷媒液を前記凝縮部に戻し;
前記低圧蒸発部は、前記凝縮部から供給される冷媒液を蒸発し、冷媒蒸気を発生させ、前記低圧蒸発部で蒸発しない余剰の冷媒液を前記凝縮部に戻し;
前記単一の冷媒ポンプが、前記凝縮部で凝縮した冷媒液を昇圧し、前記凝縮部から前記高圧蒸発部へ供給する;
請求項1又は請求項2に記載の吸収ヒートポンプ。
The evaporator is a low pressure evaporator;
A high-pressure evaporation unit that generates refrigerant vapor by evaporating the refrigerant liquid supplied from the condensing unit at a higher pressure than the low-pressure evaporation unit;
The high-pressure evaporating unit returns excess refrigerant liquid that does not evaporate in the high-pressure evaporating unit to the condensing unit;
The low-pressure evaporation unit evaporates the refrigerant liquid supplied from the condensing unit, generates refrigerant vapor, and returns excess refrigerant liquid that does not evaporate in the low-pressure evaporation unit to the condensing unit;
The single refrigerant pump pressurizes the refrigerant liquid condensed in the condensing unit and supplies the refrigerant liquid from the condensing unit to the high-pressure evaporation unit;
The absorption heat pump according to claim 1 or 2.
JP2011102855A 2011-05-02 2011-05-02 Absorption heat pump Expired - Fee Related JP5543941B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011102855A JP5543941B2 (en) 2011-05-02 2011-05-02 Absorption heat pump

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011102855A JP5543941B2 (en) 2011-05-02 2011-05-02 Absorption heat pump

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2005018105A Division JP2006207883A (en) 2005-01-26 2005-01-26 Absorption heat pump

Publications (2)

Publication Number Publication Date
JP2011169586A JP2011169586A (en) 2011-09-01
JP5543941B2 true JP5543941B2 (en) 2014-07-09

Family

ID=44683882

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011102855A Expired - Fee Related JP5543941B2 (en) 2011-05-02 2011-05-02 Absorption heat pump

Country Status (1)

Country Link
JP (1) JP5543941B2 (en)

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5818574B2 (en) * 1975-12-23 1983-04-13 カブシキガイシヤ エバラセイサクシヨ heat pump
JPS5812507B2 (en) * 1977-03-10 1983-03-08 株式会社荏原製作所 Hybrid type absorption heat pump
JPS58150774A (en) * 1982-03-03 1983-09-07 三洋電機株式会社 Absorption heat pump
JPS59137765A (en) * 1983-01-27 1984-08-07 三洋電機株式会社 Absorption heat pump
JPS62294864A (en) * 1986-06-12 1987-12-22 三洋電機株式会社 Absorption heat pump
JPH0297855A (en) * 1988-10-04 1990-04-10 Babcock Hitachi Kk Absorption type refrigerator
JP4070348B2 (en) * 1999-03-30 2008-04-02 三洋電機株式会社 Absorption heat pump and control method thereof

Also Published As

Publication number Publication date
JP2011169586A (en) 2011-09-01

Similar Documents

Publication Publication Date Title
WO2013145406A1 (en) Feed water heating system
AU2390495A (en) Absorption-type refrigeration systems and methods
JP4648014B2 (en) Absorption heat pump
JPWO2015064347A1 (en) Steam generating apparatus and steam generating heat pump
JP2006207883A (en) Absorption heat pump
JP2008088892A (en) Non-azeotropic mixture medium cycle system
CN1204367C (en) Refrigerant storage device for absorption heating and refrigerating system
JP5605557B2 (en) Heat pump steam generator
JP6080598B2 (en) Absorption heat pump and operation method of absorption heat pump
JP5514003B2 (en) Absorption heat pump
JP5543941B2 (en) Absorption heat pump
JP6896968B2 (en) Absorption heat exchange system
JP2010169364A (en) Thermosiphon type steam generator
JP5560515B2 (en) Steam production system and startup control method for steam production system
CN106523050B (en) The composite power circulatory system and its operation method and electricity generation system
JP4602734B2 (en) Two-stage temperature rising type absorption heat pump
JP5676914B2 (en) Absorption heat pump
JP6084485B2 (en) Absorption heat pump and operation method of absorption heat pump
JP7192471B2 (en) steam generator
JP4007541B2 (en) Operation method for preventing flue wall corrosion at partial load in multi-effect absorption refrigerator / cooling / heating machine
KR102351454B1 (en) Heating and cooling system with heatpump
JP6801665B2 (en) Phase change cooling device and its control method
JP6337055B2 (en) Absorption heat pump
JP4199977B2 (en) Triple effect absorption refrigerator
JP5513979B2 (en) Absorption heat pump

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110531

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110706

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120827

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121113

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121227

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130423

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130617

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20130701

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20130726

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140509

R150 Certificate of patent or registration of utility model

Ref document number: 5543941

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees