JP2008088892A - Non-azeotropic mixture medium cycle system - Google Patents

Non-azeotropic mixture medium cycle system Download PDF

Info

Publication number
JP2008088892A
JP2008088892A JP2006270623A JP2006270623A JP2008088892A JP 2008088892 A JP2008088892 A JP 2008088892A JP 2006270623 A JP2006270623 A JP 2006270623A JP 2006270623 A JP2006270623 A JP 2006270623A JP 2008088892 A JP2008088892 A JP 2008088892A
Authority
JP
Japan
Prior art keywords
working fluid
liquid
gas
phase
concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006270623A
Other languages
Japanese (ja)
Inventor
Mitsuhisa Kushibe
光央 櫛部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xenesys Inc
Original Assignee
Xenesys Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xenesys Inc filed Critical Xenesys Inc
Priority to JP2006270623A priority Critical patent/JP2008088892A/en
Publication of JP2008088892A publication Critical patent/JP2008088892A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a non-azeotropic mixture medium cycle system capable of adjusting the concentration of a low boiling point medium in a circulating operating fluid by storing a part of the operating fluid in a liquid phase in a state of the operating fluid being separated into a gas phase and a liquid phase in a power cycle, stably operating by adjusting the concentration with respect to fluctuations in external conditions, and displaying its performance to the maximum. <P>SOLUTION: A concentration adjusting storage part 15 is disposed for storing a part of the liquid phase operating fluid in a liquid phase operating fluid flow passage, a high boiling point medium in the operating fluid circulating in a main flow passage 1a is increased or decreased by controlling the storage amount, and the percentage of each of the mediums in the operating fluid in the main flow passage 1a is made adjustable. Thereby, the concentration of the low boiling point medium in the operating fluid circulating in the main flow passage 1a can be adjusted without an external adjusting equipment, the concentration of the low boiling point medium in the operating fluid can be appropriately adjusted in response to the temperature fluctuations in each heat source, and the entire system can display its performance to the maximum in a stable operating condition. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は複数物質の混合媒体である作動流体を加熱、冷却させつつ循環させ、相変化を繰返す作動流体に仕事を行わせて動力エネルギを得る非共沸混合媒体サイクルシステムに関し、特に、循環する作動流体における、気相の作動流体の主成分である低沸点媒体の濃度を調整可能とし、適切な濃度調整により安定した運転が可能な非共沸混合媒体サイクルシステムに関する。   The present invention relates to a non-azeotropic mixed medium cycle system that circulates a working fluid, which is a mixed medium of a plurality of substances, while heating and cooling, and obtains motive energy by performing work on the working fluid that repeats phase change, and in particular, circulates. The present invention relates to a non-azeotropic mixed medium cycle system that can adjust the concentration of a low-boiling-point medium that is a main component of a gas-phase working fluid in a working fluid and can be stably operated by adjusting the appropriate concentration.

蒸気動力サイクルを用いるにあたり、高温熱源と低温熱源の温度差が小さい場合には、熱効率を高めて有効に熱を動力に変換できるようにするため、水と水より沸点の低い流体との混合媒体、又は水以外の互いに沸点の異なる複数種類の流体が混合されたものを作動流体として用いる蒸気動力サイクルが従来から提案されており、このような従来の非共沸混合媒体サイクルシステムの一例として、特開平7−91361号公報に記載されるものがある。   When using a steam power cycle, if the temperature difference between the high-temperature heat source and the low-temperature heat source is small, a mixed medium of water and a fluid having a lower boiling point than water in order to increase heat efficiency and effectively convert heat into power Or, a steam power cycle using a mixture of a plurality of types of fluids having different boiling points other than water as a working fluid has been proposed, and as an example of such a conventional non-azeotropic mixed medium cycle system, There is one described in JP-A-7-91361.

前記従来の非共沸混合媒体サイクルシステムは、蒸気動力サイクルとして一般的なランキンサイクル同様に蒸発器、タービン、凝縮器及びポンプを有する他に、蒸発器で加熱された作動流体を気相作動流体と液相作動流体とに分離する気液分離器と、凝縮器の前段側で膨張後の気相作動流体を液相作動流体に一部吸収させる吸収器と、蒸発器で加熱された作動流体のうち、液相の作動流体を蒸発器で熱交換する前の低温液相の作動流体と熱交換させる再生器と、複数段配設されたタービンの中間から抽気された高温気相の作動流体を低温液相の作動流体と熱交換させる加熱器とを備える構成である。   The conventional non-azeotropic mixed medium cycle system includes an evaporator, a turbine, a condenser and a pump as well as a general Rankine cycle as a steam power cycle, and a working fluid heated by the evaporator is a gas phase working fluid. -Liquid separator that separates the liquid-phase working fluid into a liquid-phase working fluid, an absorber that partially absorbs the gas-phase working fluid expanded on the front side of the condenser into the liquid-phase working fluid, and the working fluid heated by the evaporator Among them, a regenerator for exchanging heat between the liquid-phase working fluid and the low-temperature liquid-phase working fluid before exchanging heat with the evaporator, and a high-temperature gas-phase working fluid extracted from the middle of a turbine arranged in multiple stages And a heater that exchanges heat with a low-temperature liquid-phase working fluid.

この従来の非共沸混合媒体サイクルシステムは、単一の作動流体を用いる一般的なランキンサイクルに比べて熱効率を高めることができ、特に、タービンから抽気を行うと共に吸収器で気相の作動流体を液相の作動流体に一部吸収させ、凝縮器で低温熱源と熱交換する作動流体の量を抑えることで、凝縮器の負荷を低減して全体の効率上昇と共に凝縮器の過度の大型化とこれに伴うコスト上昇を抑制できるという利点を有していた。
特開平7−91361号公報
This conventional non-azeotropic mixed medium cycle system can increase the thermal efficiency as compared with a general Rankine cycle using a single working fluid. The liquid phase working fluid is partially absorbed, and the amount of working fluid that exchanges heat with the low-temperature heat source in the condenser is reduced, thereby reducing the load on the condenser and increasing the overall efficiency and excessively increasing the size of the condenser. And it has the advantage that the cost increase accompanying this can be suppressed.
Japanese Patent Laid-Open No. 7-91361

従来の非共沸混合媒体サイクルシステムは、前記特許文献に示される構成となっており、作動流体は低沸点媒体と高沸点媒体との混合媒体であるため、気液分離器で分離された気相の作動流体と液相の作動流体とでは、各媒体成分の濃度割合が異なる。作動流体における各成分の割合は定常状態ではほぼ一定となるが、高温熱源や低温熱源の変化やタービン負荷の変化といった外的要因により、サイクルの主流路における作動流体の濃度割合が変化すると、効率に大きく影響することとなる。特に、高温熱源や低温熱源に自然エネルギを利用した場合、これらが季節変動等を生じることは明白であり、各熱源の温度変化に伴う作動流体の濃度変化を招くなど、サイクルを一定状態に維持することが難しく、得られるタービン出力等が低下するなど効率が悪くなるという問題があった。   The conventional non-azeotropic mixed medium cycle system has a configuration shown in the above-mentioned patent document. Since the working fluid is a mixed medium of a low boiling point medium and a high boiling point medium, the gas separated by the gas-liquid separator is used. The concentration ratio of each medium component differs between the phase working fluid and the liquid phase working fluid. The ratio of each component in the working fluid is almost constant in the steady state, but if the concentration ratio of the working fluid in the main flow path of the cycle changes due to external factors such as changes in the high and low temperature heat sources and changes in the turbine load, the efficiency Will be greatly affected. In particular, when natural energy is used for a high-temperature heat source or a low-temperature heat source, it is clear that these will cause seasonal fluctuations, etc., and the cycle of the working fluid will change due to changes in the temperature of each heat source. There is a problem that the efficiency is deteriorated, for example, the turbine output obtained is difficult to reduce.

また、システムの設計当初の想定と異なり、液相の作動流体が流路中で滞留を生じているような場合、低沸点媒体の濃度が低い液相作動流体の一部がサイクルに関わらなくなる分、サイクルにおける低沸点媒体の濃度が相対的に高くなり、システムの設計値からずれが生じて性能低下をもたらすという問題もあった。   Also, unlike the initial assumption of the system design, when the liquid-phase working fluid is stagnant in the flow path, a part of the liquid-phase working fluid with a low concentration of low boiling point medium is not involved in the cycle. There is also a problem that the concentration of the low boiling point medium in the cycle becomes relatively high, causing a deviation from the design value of the system, resulting in performance degradation.

しかしながら、こうした問題に対し、従来のシステムではシステム全体で作動流体の流動状態を見直し、改修等を行う以外に有効な手立てが無く、一時的な状況変化に迅速且つ適切な対応を採ることは難しいという課題を有していた。   However, with regard to such problems, the conventional system has no effective means other than reviewing the flow state of the working fluid in the entire system and performing refurbishment, etc., and it is difficult to quickly and appropriately respond to temporary changes in the situation. It had the problem that.

本発明は前記課題を解消するためになされたもので、動力サイクル中の作動流体が気相と液相に分離した状態で、液相の作動流体を一部貯溜して、循環する作動流体における低沸点媒体の濃度を調整可能とし、外部条件の変動に対して濃度調整を行って安定した運転を可能にすると共に、性能を最大限発揮させられる非共沸混合媒体サイクルシステムを提供することを目的とする。   The present invention has been made to solve the above-described problems. In a working fluid that stores and circulates part of a liquid-phase working fluid in a state where the working fluid in a power cycle is separated into a gas phase and a liquid phase. To provide a non-azeotropic mixed medium cycle system that makes it possible to adjust the concentration of a low-boiling medium, adjust the concentration to fluctuations in external conditions, enable stable operation, and maximize performance. Objective.

本発明に係る非共沸混合媒体サイクルシステムは、沸点の異なる複数の流体が混合された作動流体を全て液相の状態で所定の高温熱源と熱交換させ、前記作動流体の少なくとも一部を蒸発させる蒸発器と、前記蒸発器で得られた高温の作動流体を気相分と液相分とに分離する気液分離器と、前記作動流体のうち気相分を導入されて流体の保有する熱エネルギを動力に変換する膨張機と、当該膨張機を出た気相の作動流体を前記気液分離器を出た液相分と合わせて所定の低温熱源と熱交換させ、気相分を凝縮させる凝縮器と、当該凝縮器を出た作動流体を圧縮して前記蒸発器へ向わせる圧縮機とを少なくとも備える非共沸混合媒体サイクルシステムにおいて、前記気液分離器から取出される高温液相の作動流体の流路中に、当該作動流体の一部を所定量調整可能に貯溜する濃度調整用貯溜部を備えるものである。   In the non-azeotropic mixed medium cycle system according to the present invention, a working fluid in which a plurality of fluids having different boiling points are mixed is heat-exchanged with a predetermined high-temperature heat source in a liquid state, and at least a part of the working fluid is evaporated. An evaporator to be used, a gas-liquid separator that separates a high-temperature working fluid obtained by the evaporator into a gas phase component and a liquid phase component, and the gas phase component of the working fluid is introduced and retained by the fluid An expander that converts thermal energy into power, and a gas phase working fluid exiting the expander are combined with the liquid phase exiting the gas-liquid separator to exchange heat with a predetermined low-temperature heat source. In a non-azeotropic mixture cycle system comprising at least a condenser to condense and a compressor for compressing the working fluid exiting the condenser and directing it to the evaporator, a high temperature taken from the gas-liquid separator Part of the working fluid in the flow path of the liquid phase working fluid Those having a density adjustment reservoir by a predetermined amount adjustably reservoir.

このように本発明によれば、システム内の気液分離を経た液相作動流体流路において液相で高沸点媒体濃度の高い作動流体を一部貯溜し、この貯溜量を制御して、サイクルの蒸発器、膨張機、凝縮器、及び圧縮機を繋ぐ主流路で循環する作動流体における高沸点媒体分を増減させ、主流路の作動流体における各媒体の割合を調整可能とすることにより、貯溜量を増やして主流路での作動流体中の高沸点媒体を相対的に減らした場合には、循環する作動流体の低沸点媒体濃度を高めることができ、また、前記貯溜量を減らして主流路での作動流体中の高沸点媒体を相対的に増量した場合には、循環する作動流体の低沸点媒体濃度を低下させることができるなど、外部の調整用機器なしに作動流体の濃度調整が行え、季節変化に伴う各熱源の温度変動やタービン負荷変動等、外部条件の変化に対応して作動流体を適切な濃度に調整でき、システム全体を安定した運転状態としてその性能を最大限発揮させられる。   As described above, according to the present invention, in the liquid-phase working fluid flow path that has undergone gas-liquid separation in the system, a part of the working fluid having a high boiling point medium concentration in the liquid phase is stored, and the amount of storage is controlled to control the cycle. By increasing or decreasing the high boiling point medium content in the working fluid circulating in the main flow path connecting the evaporator, the expander, the condenser, and the compressor, the ratio of each medium in the working fluid in the main flow path can be adjusted. When the amount is increased to relatively reduce the high-boiling point medium in the working fluid in the main flow path, the concentration of the low-boiling point medium in the circulating working fluid can be increased. When the amount of high-boiling medium in the working fluid is increased relatively, the concentration of the low-boiling medium of the circulating working fluid can be reduced. , Temperature of each heat source with seasonal change Dynamic and turbine load fluctuation can be adjusted to an appropriate concentration the working fluid in response to changes in the external conditions, is caused to maximize its performance the entire system as a stable operating condition.

また、本発明に係る非共沸混合媒体サイクルシステムは必要に応じて、前記蒸発器が、中空の圧力容器であるシェルと、当該シェル内に配設されて長手方向両端部に熱交換対象流体の流入出口が存在する熱交換部とを備え、当該熱交換部における作動流体の流出口以外の各流入出口がシェル外部に延長配設されてシェル内部空間からは隔離された状態とされる一方、熱交換部における作動流体の流出口がシェル内部空間に開口連通する状態とされてなり、熱交換部の流出口からシェル内部空間に流出した高温の作動流体を、前記内部空間で気相分と液相分とに分離させ、シェルから気相の作動流体と液相の作動流体をそれぞれ別個に取出し可能な構造とされて前記気液分離器を兼ねると共に、分離後の液相の作動流体がシェル内部空間に所定量調整可能に貯溜されつつ取出される構造とされて前記濃度調整用貯溜部をも兼ねるものである。   Further, in the non-azeotropic mixed medium cycle system according to the present invention, if necessary, the evaporator is provided with a shell that is a hollow pressure vessel, and a fluid subject to heat exchange at both ends in the longitudinal direction. A heat exchanging portion in which the inflow / outflow port of the fluid is present, and each inflow / outflow port other than the outflow port of the working fluid in the heat exchanging portion extends outside the shell and is isolated from the internal space of the shell. The working fluid outlet in the heat exchange section is in open communication with the shell internal space, and the high-temperature working fluid flowing out from the outlet of the heat exchange section into the shell internal space is separated into the gas phase in the internal space. And separated into a liquid phase component, and a gas-phase working fluid and a liquid-phase working fluid can be separately taken out from the shell, and also serves as the gas-liquid separator. Specified in the shell internal space It is a structure to be fetched adjustably being reservoir by those doubling as the concentration adjusting reservoir.

このように本発明によれば、蒸発器として、高温熱源と作動流体とを熱交換させる熱交換部、並びに、この熱交換部を取囲むシェルを設けると共に、このシェルの内部空間を、熱交換部における作動流体出口に連通させ、熱交換部で液相の作動流体を高温熱源と熱交換させた後、蒸発した気相分とこれ以外の液相分とが混合した状態の高温混相作動流体を、熱交換部からシェル内部空間に流出させると、この内部空間で混相状態の作動流体が気相分と液相分に分離し、液相作動流体については濃度調整用貯溜部として貯溜量調整可能に一部貯溜できることにより、蒸発器から気相の作動流体と液相の作動流体とをそれぞれ分離状態で取出せ、蒸発器が気液分離器の機能も有することとなり、蒸発器とは別体の気液分離器を省略でき、蒸発器と気液分離器が別の場合より圧力損失や熱損失を低減させられると共に、機器配置に必要なスペースも小さくでき、外部条件の変化に対応した作動流体の低沸点媒体濃度調整が貯溜用のスペースを別途新設することなく実行できることと合わせて、システム全体をコンパクト化、低コスト化できる。   As described above, according to the present invention, the evaporator is provided with a heat exchanging part that exchanges heat between the high-temperature heat source and the working fluid, and a shell that surrounds the heat exchanging part. High-temperature mixed-phase working fluid in a state where the vapor phase component evaporated and the other liquid-phase component are mixed after the liquid-phase working fluid is exchanged with the high-temperature heat source in the heat exchange unit. From the heat exchange section into the shell internal space, the mixed-phase working fluid is separated into a gas phase and a liquid phase in this internal space, and the storage amount is adjusted as a concentration adjusting reservoir for the liquid phase working fluid. Since it is possible to store a part of it, the vapor-phase working fluid and the liquid-phase working fluid can be taken out from the evaporator in a separated state, and the evaporator also has the function of a gas-liquid separator. The gas-liquid separator can be omitted, and the evaporator Pressure loss and heat loss can be reduced as compared with other liquid separators, and the space required for equipment layout can be reduced, and the low-boiling medium concentration adjustment of the working fluid corresponding to changes in external conditions saves space for storage. Combined with being able to execute without newly installing, the entire system can be made compact and cost-effective.

また、本発明に係る非共沸混合媒体サイクルシステムは必要に応じて、前記蒸発器での熱交換対象となる高温熱源の状態を検出し、得られた検出値に基づいて、前記濃度調整用貯溜部における作動流体の貯溜量を調整するものである。   In addition, the non-azeotropic mixed medium cycle system according to the present invention detects the state of a high-temperature heat source to be heat exchanged in the evaporator as necessary, and based on the obtained detection value, the concentration adjustment cycle is detected. It adjusts the storage amount of the working fluid in the storage part.

このように本発明によれば、高温熱源の状態を検出し、その状態変化に対応して濃度調整用貯溜部の貯溜量を調整し、循環する作動流体の濃度を調整することにより、高温熱源の状態変化に応じて作動流体の濃度を適切に調整制御することができ、特に季節変動等による温度低下で蒸発器での受熱量が低下する場合、貯溜量を増やして作動流体の低沸点媒体濃度を適切な状態まで高め、蒸発器における作動流体の飽和温度を低下させて蒸発しやすい状態とすることができ、蒸発器での発生蒸気量の低下を防いで安定した運転状態を確保できる。   As described above, according to the present invention, the state of the high-temperature heat source is detected, the storage amount of the concentration adjusting reservoir is adjusted in accordance with the change in the state, and the concentration of the circulating working fluid is adjusted. The concentration of the working fluid can be adjusted and controlled appropriately according to changes in the state of the fluid. Especially when the amount of heat received by the evaporator decreases due to a temperature drop due to seasonal fluctuations, etc. The concentration can be increased to an appropriate state, the saturation temperature of the working fluid in the evaporator can be lowered to make it easy to evaporate, and a stable operation state can be secured by preventing a decrease in the amount of vapor generated in the evaporator.

また、本発明に係る非共沸混合媒体サイクルシステムは必要に応じて、前記凝縮器での熱交換対象となる低温熱源の状態を検出し、得られた検出値に基づいて、前記濃度調整用貯溜部における作動流体の貯溜量を調整するものである。   In addition, the non-azeotropic mixed medium cycle system according to the present invention detects the state of a low-temperature heat source to be heat exchanged in the condenser, if necessary, and based on the obtained detection value, the concentration adjustment It adjusts the storage amount of the working fluid in the storage part.

このように本発明によれば、低温熱源の状態を検出し、その状態変化に対応して濃度調整用貯溜部の貯溜量を調整し、循環する作動流体の濃度を調整することにより、低温熱源の状態変化に応じて作動流体の濃度を適切に調整制御することができ、特に季節変動等による温度上昇で凝縮器での放熱量が低下する場合、貯溜量を減らして作動流体の低沸点媒体濃度を適切な状態まで低下させ、凝縮器における作動流体の飽和圧力を低下させて膨張機出口圧力を低くすることができ、膨張機前後での圧力差の減少を防いで出力低下を防止できる。   As described above, according to the present invention, the state of the low-temperature heat source is detected, the storage amount of the concentration adjusting reservoir is adjusted in accordance with the state change, and the concentration of the circulating working fluid is adjusted. The concentration of the working fluid can be adjusted and controlled appropriately according to the state change, especially when the heat dissipation in the condenser decreases due to temperature rise due to seasonal fluctuations, etc. The concentration can be lowered to an appropriate state, the saturation pressure of the working fluid in the condenser can be lowered to lower the expander outlet pressure, and the pressure difference between the front and back of the expander can be prevented from decreasing to prevent the output from decreasing.

(本発明の第1の実施形態)
以下、本発明の第1の実施形態を図1に基づいて説明する。図1は本実施の形態に係る非共沸混合媒体サイクルシステムの概略系統図である。
(First embodiment of the present invention)
Hereinafter, a first embodiment of the present invention will be described with reference to FIG. FIG. 1 is a schematic system diagram of a non-azeotropic mixed medium cycle system according to the present embodiment.

前記図1において本実施の形態に係る非共沸混合媒体サイクルシステム1は、アンモニアと水の混合媒体からなる作動流体と前記高温熱源としての温海水とを熱交換させ、作動流体の蒸気を得る蒸発器10と、作動流体を気相分と液相分とに分離する気液分離器11と、気相の作動流体により動作する前記膨張機としてのタービン12と、このタービン12を出た気相の作動流体を凝縮させて液相とする凝縮器13と、凝縮器13から作動流体を取出して蒸発器10に導入する前記圧縮機としてのポンプ14と、気液分離器11で分離された液相の作動流体を一部貯溜する濃度調整用貯溜部15とを備える構成である。このうち、タービン12及びポンプ14については、一般的な蒸気動力サイクルで用いられるのと同様の公知の装置であり、説明を省略する。   In FIG. 1, the non-azeotropic mixed medium cycle system 1 according to the present embodiment exchanges heat between a working fluid composed of a mixed medium of ammonia and water and the warm seawater as the high-temperature heat source, thereby obtaining steam of the working fluid. An evaporator 10, a gas-liquid separator 11 that separates the working fluid into a gas phase component and a liquid phase component, a turbine 12 as the expander that is operated by the gas phase working fluid, and the gas that has left the turbine 12 The gas-liquid separator 11 is separated by a condenser 13 that condenses the working fluid of the phase into a liquid phase, a pump 14 that serves as the compressor that extracts the working fluid from the condenser 13 and introduces it into the evaporator 10. A concentration adjusting reservoir 15 that partially stores a liquid-phase working fluid is provided. Among these, the turbine 12 and the pump 14 are known devices similar to those used in a general steam power cycle, and the description thereof is omitted.

前記蒸発器10は、矩形状の複数のプレートを重ね合せて一体化した一般的なプレート式熱交換器であり、内部のプレート間の隙間一つおきに作動流体が流通する一方、残りの隙間に高温熱源としての温海水が流通し、各プレートを介して二つの流体が熱交換を行う公知の構成であり、詳細な説明を省略する。この蒸発器10の長手方向一端部にはポンプ14出口と繋がる主流路1aの配管が接続され、他端部には気液分離器11入口側と連通する配管が接続され、この他、温海水の流入出用の配管がそれぞれ接続される構成である。   The evaporator 10 is a general plate heat exchanger in which a plurality of rectangular plates are overlapped and integrated, and working fluid flows through every other gap between the internal plates, while the remaining gaps This is a known configuration in which warm seawater as a high-temperature heat source circulates and two fluids exchange heat via each plate, and detailed description thereof is omitted. One end of the evaporator 10 in the longitudinal direction is connected to a pipe of the main flow path 1a connected to the outlet of the pump 14, and the other end is connected to a pipe communicating with the gas-liquid separator 11 inlet side. The pipes for inflow and outflow are respectively connected.

この蒸発器10内で、ポンプ14からの送給圧力を受けつつ、温海水との熱交換で温められる作動流体は、その一部(揮発しやすいアンモニアが大部分を占める)が蒸発することで気液混相状態となる。なお、作動流体はちょうど所定の温度まで昇温した段階で蒸発器10より気液混相状態で気液分離器11へ向け流出するように流量を設定されている。   In this evaporator 10, the working fluid that is heated by heat exchange with warm seawater while receiving the supply pressure from the pump 14 evaporates a part (a large amount of ammonia that tends to volatilize) evaporates. It becomes a gas-liquid mixed phase state. The flow rate of the working fluid is set so that the working fluid flows out from the evaporator 10 toward the gas-liquid separator 11 in a gas-liquid mixed phase when the temperature is raised to a predetermined temperature.

前記気液分離器11は、蒸発器10で温海水との熱交換を経て高温且つ気液混相状態となった作動流体を、気相分と液相分とに分ける公知の装置であり、詳細な説明を省略する。作動流体は、この気液分離器11内で気相分と液相分に分れ、タービン12入口側と連通する配管を通じて気相の作動流体がタービン12へ向う一方、濃度調整用貯溜部15と連通する配管を通じて液相の作動流体が濃度調整用貯溜部15へ向うこととなる。   The gas-liquid separator 11 is a known device that divides a working fluid that has become a high-temperature gas-liquid mixed phase through heat exchange with warm seawater in the evaporator 10 into a gas phase component and a liquid phase component. The detailed explanation is omitted. The working fluid is divided into a gas phase component and a liquid phase component in the gas-liquid separator 11, and the gas phase working fluid is directed to the turbine 12 through a pipe communicating with the turbine 12 inlet side, while the concentration adjusting reservoir 15. The liquid-phase working fluid is directed to the concentration adjusting reservoir 15 through a pipe communicating with the reservoir.

前記凝縮器13は、前記蒸発器10同様、複数のプレートを重ね合せて一体化した一般的なプレート式熱交換器であり、内部のプレート間の隙間が一つおきに前記タービン12及び濃度調整用貯溜部15の各出口と同時に連通し、この隙間に作動流体が流通する一方、残りの隙間に低温熱源としての冷海水が流通し、各プレートを介して二つの流体が熱交換を行う公知の構成であり、詳細な説明を省略する。この凝縮器13には、タービン12を出た気相の作動流体と、濃度調整用貯溜部15を出た液相の作動流体とが同時に導入され、これらを冷海水と熱交換させて冷却し、気相の作動流体を凝縮させると共に、気相の作動流体の一部を液相の作動流体に吸収させる仕組みとなっている。凝縮器13の後段には、凝縮器13を出た液相の作動流体を一時的に貯溜した上でポンプ14側へ送出すタンク16が配設される。   Like the evaporator 10, the condenser 13 is a general plate type heat exchanger in which a plurality of plates are overlapped and integrated, and the turbine 12 and the concentration adjustment are performed every other gap between the internal plates. It is known that the working fluid is communicated simultaneously with the respective outlets of the reservoir 15 and the working fluid flows through the gap, while the cold seawater as a low-temperature heat source flows through the remaining gap, and the two fluids exchange heat through the plates. The detailed description is omitted. A gas phase working fluid exiting the turbine 12 and a liquid phase working fluid exiting the concentration adjusting reservoir 15 are simultaneously introduced into the condenser 13, and these are cooled by exchanging heat with cold seawater. The gas-phase working fluid is condensed and part of the gas-phase working fluid is absorbed by the liquid-phase working fluid. At the subsequent stage of the condenser 13, a tank 16 for temporarily storing the liquid-phase working fluid exiting the condenser 13 and sending it to the pump 14 side is disposed.

前記濃度調整用貯溜部15は、気液分離器11の後段側の支流路1b中に配設され、液相の作動流体の一部を貯溜し、残りを後段側の凝縮器13へ送出すものである。この濃度調整用貯溜部15は、作動流体を所定量貯溜する貯溜部分での作動流体を溢流させる高さを調整して、液面位置、すなわち貯溜量を変化させられる仕組みとなっている。気液分離器11から凝縮器13に至る支流路1bで、主流路1aの作動流体とは低沸点媒体濃度の異なる液相作動流体の流量を、濃度調整用貯溜部15における貯溜量調整に基づいて変化させることで、主流路1aで作動流体中の各媒体の濃度を調整制御することができ、高温熱源や低温熱源の温度変化など外部からの各種影響に対して、低沸点媒体濃度の調整を行える仕組みとなっている。なお、本実施形態では省略したが、従来公知の非共沸混合媒体動力サイクルと同様、濃度調整用貯溜部15と凝縮器13との間の支流路1bに、液相の作動流体が凝縮器13に至る前に適切な圧力まで減圧させる減圧弁を配設する構成とすることもできる。   The concentration adjusting reservoir 15 is disposed in the branch flow path 1b on the rear stage side of the gas-liquid separator 11, stores a part of the liquid-phase working fluid, and sends the remaining part to the condenser 13 on the rear stage side. Is. The concentration adjusting reservoir 15 is configured to change the liquid surface position, that is, the amount of storage, by adjusting the height at which the working fluid overflows in the storage portion for storing a predetermined amount of working fluid. In the branch flow path 1b from the gas-liquid separator 11 to the condenser 13, the flow rate of the liquid-phase working fluid having a low boiling point medium concentration different from that of the working fluid in the main flow path 1a is based on the storage amount adjustment in the concentration adjusting storage section 15. Therefore, the concentration of each medium in the working fluid can be adjusted and controlled by the main flow path 1a, and the concentration of the low boiling point medium can be adjusted with respect to various external influences such as the temperature change of the high temperature heat source and the low temperature heat source. It is a mechanism that can do. Although omitted in the present embodiment, the liquid-phase working fluid is condensed in the branch channel 1b between the concentration adjusting reservoir 15 and the condenser 13 as in the conventionally known non-azeotropic mixture power cycle. A pressure reducing valve for reducing the pressure to an appropriate pressure before reaching 13 may be provided.

次に、本実施の形態に係る非共沸混合媒体サイクルシステムのサイクル実行状態について説明する。前提として、海の所定深さ位置から低温熱源となる冷海水を、また、海の表層から高温熱源としての温海水を、それぞれ所定の流量を確保しつつ取水し、凝縮器13又は蒸発器10にそれぞれ導入しているものとする。   Next, the cycle execution state of the non-azeotropic mixed medium cycle system according to the present embodiment will be described. As a premise, cold seawater as a low temperature heat source is taken from a predetermined depth position of the sea, and warm seawater as a high temperature heat source is taken from the surface of the sea while securing a predetermined flow rate, respectively, and the condenser 13 or the evaporator 10 Are introduced respectively.

蒸発器10では、高温熱源としての温海水と、全て液相の作動流体とを熱交換させる。この熱交換で加熱された作動流体は、昇温に伴いその一部が蒸発して気液混相状態となる。この混相状態の高温作動流体は蒸発器10外へ出て、気液分離器11に達する。気液分離器11内で作動流体は気相分と液相分に分れるが、気相の作動流体は、低沸点媒体であるアンモニアの濃度が蒸発器10導入前時点の作動流体と比較して非常に高くなる一方、これと分れた液相の作動流体は、気相の作動流体のみならず、前記蒸発器導入前時点の液相作動流体と比べてもアンモニアの濃度が低くなっている。気液分離器11を出た気相の作動流体は主流路1aを進んでタービン12へ向い、また、液相の作動流体は気液分離器11から支流路1bに入り、濃度調整用貯溜部15に導入される。   In the evaporator 10, heat exchange is performed between warm seawater as a high-temperature heat source and all liquid-phase working fluid. A part of the working fluid heated by this heat exchange evaporates as the temperature rises and enters a gas-liquid mixed phase state. This high-temperature working fluid in a mixed phase goes out of the evaporator 10 and reaches the gas-liquid separator 11. In the gas-liquid separator 11, the working fluid is divided into a gas phase component and a liquid phase component, but the gas phase working fluid has a concentration of ammonia as a low boiling point medium as compared with the working fluid before the introduction of the evaporator 10. On the other hand, the liquid working fluid separated from this is not only a gas working fluid but also has a lower ammonia concentration than the liquid working fluid before the introduction of the evaporator. Yes. The gas-phase working fluid exiting the gas-liquid separator 11 travels through the main flow path 1a to the turbine 12, and the liquid-phase working fluid enters the branch flow path 1b from the gas-liquid separator 11 and stores the concentration adjusting reservoir. 15 is introduced.

気相の作動流体がタービン12に達するとこれを作動させることとなり、タービン12により発電機等他の機器が駆動され、熱エネルギが使用可能なエネルギに変換される。こうしてタービン12で膨張して仕事を行った気相作動流体は、圧力及び温度を低下させた状態となり、タービン12を出た後、凝縮器13に導入される。   When the gas-phase working fluid reaches the turbine 12, it is operated, and the turbine 12 drives other equipment such as a generator to convert the heat energy into usable energy. The gas-phase working fluid that has been expanded and worked in the turbine 12 in this manner is in a state in which the pressure and temperature are lowered, and after exiting the turbine 12, is introduced into the condenser 13.

一方、濃度調整用貯溜部15では、導入された液相の作動流体のうち一部を貯溜量調整を行いつつ所定量貯溜し、残りの液相作動流体は後段側へ流出させることとなる。液相作動流体は濃度調整用貯溜部15を出た後、凝縮器13へ向い、タービン12を出た気相作動流体と共に凝縮器13に導入されることとなる。   On the other hand, the concentration adjusting reservoir 15 stores a predetermined amount of the introduced liquid-phase working fluid while adjusting the storage amount, and the remaining liquid-phase working fluid flows out to the subsequent stage. The liquid phase working fluid exits the concentration adjusting reservoir 15, then goes to the condenser 13, and is introduced into the condenser 13 together with the gas phase working fluid exiting the turbine 12.

凝縮器13では、内部に導入された気相の作動流体が、同じく導入された液相の作動流体と共に、プレートを隔てた隙間に導入された温度の低い冷海水と熱交換し、作動流体全体が冷却される中、気相の作動流体が液相の作動流体と接触し、これに一部吸収されて液相に変化する。そして、残りの未吸収分の気相作動流体は、熱交換による冷却に伴い凝縮して液相となる。この液相となった作動流体は、凝縮器13から外部に排出されて後段側のタンク16に流入する。   In the condenser 13, the gas-phase working fluid introduced into the condenser 13 and the liquid-phase working fluid also introduced into the condenser 13 are heat-exchanged with cold seawater having a low temperature introduced in a gap across the plate, and the entire working fluid As the gas is cooled, the gas-phase working fluid comes into contact with the liquid-phase working fluid, and is partially absorbed therein to change into the liquid phase. The remaining unabsorbed gas phase working fluid condenses into a liquid phase as it is cooled by heat exchange. The working fluid in the liquid phase is discharged from the condenser 13 to the outside and flows into the tank 16 on the rear stage side.

タンク16内の作動流体は、蒸発器に入る前の初期状態の作動流体、すなわち作動流体におけるアンモニアと水の割合が当初の割合に戻っている。そして、液相の作動流体としてはシステム内で最も低い温度及び圧力となっている。このタンク16に達した全て液相の作動流体は、ポンプ14を経由して、主流路1aを蒸発器10へ向け進むこととなる。蒸発器10内に戻ると、前記同様に蒸発器10での熱交換以降の各過程を繰返すこととなる。   The working fluid in the tank 16 returns to the initial ratio of the working fluid in the initial state before entering the evaporator, that is, the ratio of ammonia to water in the working fluid. The liquid phase working fluid has the lowest temperature and pressure in the system. All the liquid-phase working fluid that has reached the tank 16 travels through the main flow path 1 a toward the evaporator 10 via the pump 14. When returning to the evaporator 10, each process after the heat exchange in the evaporator 10 is repeated as described above.

この作動流体に対し、凝縮器13での熱交換に使用された冷海水は、作動流体からの熱を受けて所定温度まで昇温している。この海水は、凝縮器13の外へ排出された後、最終的にシステム外部の海中へ放出される。また、蒸発器10での作動流体との熱交換に伴い温度が下がった温海水も、熱交換後にシステム外部の海中へ放出される。   With respect to this working fluid, the cold seawater used for heat exchange in the condenser 13 is heated to a predetermined temperature by receiving heat from the working fluid. The seawater is discharged out of the condenser 13 and finally discharged into the sea outside the system. In addition, warm seawater whose temperature has decreased due to heat exchange with the working fluid in the evaporator 10 is also released into the sea outside the system after heat exchange.

続いて、本実施の形態に係る非共沸混合媒体サイクルシステムの作動流体における低沸点媒体濃度調整状態について説明する。濃度調整用貯溜部15では、液相作動流体の貯溜量を制御し、システム全体の作動流体のうち、高沸点媒体である水の比率の高い作動流体が濃度調整用貯溜部15に滞留する割合を増減させて、主流路1aを循環する作動流体の濃度変化を生じさせることとなる。   Next, the low boiling point medium concentration adjustment state in the working fluid of the non-azeotropic mixed medium cycle system according to the present embodiment will be described. The concentration adjusting reservoir 15 controls the storage amount of the liquid-phase working fluid, and the ratio of the working fluid having a high ratio of water as a high boiling point medium to the concentration adjusting reservoir 15 in the working fluid of the entire system. As a result, the concentration of the working fluid circulating in the main flow path 1a is changed.

濃度調整用貯溜部15における最大の貯溜量は、循環する作動流体総量における「1−(流体全体に対する低沸点媒体の組成割合)」程度の割合が望ましい。例えば、低沸点媒体の組成割合が0.8の場合、貯溜量は0.2すなわち全体の20%程度となる。これは、循環する作動流体における調整前の当初の低沸点媒体濃度が低いほど、濃度調整用貯溜部15における貯溜量を大きく変動させないと調整効果は小さいことによる。すなわち、低沸点媒体のアンモニア濃度が低いと、逆に高沸点媒体である水の割合が多いということであり、水の貯溜量が多少変化しても全体への影響が少ないことに基づく。   The maximum storage amount in the concentration adjusting storage portion 15 is desirably a ratio of about “1− (composition ratio of low boiling point medium to the whole fluid)” in the total amount of circulating working fluid. For example, when the composition ratio of the low boiling point medium is 0.8, the storage amount is 0.2, that is, about 20% of the whole. This is because the lower the initial low-boiling-point medium concentration before the adjustment in the circulating working fluid is, the smaller the adjustment effect is unless the storage amount in the concentration adjustment storage unit 15 is changed greatly. In other words, when the ammonia concentration of the low boiling point medium is low, the proportion of water that is the high boiling point medium is high, and the influence on the whole is small even if the amount of stored water is slightly changed.

濃度調整用貯溜部15において、低沸点媒体のアンモニア濃度は低く高沸点媒体である水の割合が高い液相作動流体の貯溜量を増やした場合、主流路1aを循環する作動流体における水の割合が減少することとなり、循環する作動流体のアンモニア濃度を高めることができる。アンモニアの濃度が高くなると、蒸発器10では、圧力一定とすると作動流体の飽和温度(沸騰開始温度)が低下し、これに伴い気相作動流体の量が増加し、液相作動流体の量が減少する。気液分離器11でもこれを受けて、分離後の気相作動流体の量が増加し、液相作動流体の量が減少することとなる。他方、凝縮器13では、気相作動流体量が増加するため、アンモニア濃度の高い作動流体として流入することとなり、同じ凝縮温度の場合、飽和圧力が上昇する。   In the concentration adjusting reservoir 15, when the storage amount of the liquid phase working fluid having a low ammonia concentration of the low boiling point medium and a high proportion of water being the high boiling point medium is increased, the proportion of water in the working fluid circulating in the main flow path 1a. Decreases, and the ammonia concentration of the circulating working fluid can be increased. When the concentration of ammonia increases, in the evaporator 10, when the pressure is constant, the saturation temperature (boiling start temperature) of the working fluid decreases, and the amount of the gas phase working fluid increases accordingly, and the amount of the liquid phase working fluid decreases. Decrease. In response to this, the gas-liquid separator 11 increases the amount of the gas-phase working fluid after the separation, and decreases the amount of the liquid-phase working fluid. On the other hand, in the condenser 13, since the amount of the gas-phase working fluid increases, it flows as a working fluid having a high ammonia concentration, and the saturation pressure rises at the same condensation temperature.

一方、濃度調整用貯溜部15において、アンモニア濃度は低く水の割合の高い液相作動流体の貯溜量を減らした場合、主流路1aを循環する作動流体における水の割合が増加することとなり、循環する作動流体のアンモニア濃度を低下させることができる。アンモニアの濃度が低くなると、蒸発器10では、作動流体の飽和温度(沸騰開始温度)が上昇し、これに伴い気相作動流体の量が減少し、液相作動流体の量が増加する。気液分離器11でもこれを受けて、分離後の気相作動流体の量が減少し、液相作動流体の量が増加することとなる。他方、凝縮器13では、気相作動流体の量が減少するため、アンモニア濃度の低い作動流体として流入することとなり、同じ凝縮温度の場合、飽和圧力が低下する。   On the other hand, when the storage amount of the liquid phase working fluid having a low ammonia concentration and a high proportion of water is reduced in the concentration adjusting reservoir 15, the proportion of water in the working fluid circulating in the main flow path 1 a is increased. The ammonia concentration in the working fluid can be reduced. When the concentration of ammonia decreases, in the evaporator 10, the saturation temperature (boiling start temperature) of the working fluid rises, and accordingly, the amount of the gas phase working fluid decreases and the amount of the liquid phase working fluid increases. In response to this, the gas-liquid separator 11 decreases the amount of the gas-phase working fluid after the separation, and increases the amount of the liquid-phase working fluid. On the other hand, in the condenser 13, since the amount of the gas-phase working fluid decreases, the condenser 13 flows in as a working fluid having a low ammonia concentration, and the saturation pressure decreases at the same condensation temperature.

具体的には、高温熱源である温海水の温度や流量等の状態を常時検出する中、夏季から冬季への季節変化等により水温が低下し、蒸発器での受熱量が低下する場合、検出値に基づいて濃度調整用貯溜部15での貯溜量を増やして、循環する作動流体のアンモニア濃度を高くし、作動流体の飽和温度(沸騰開始温度)を低下させることで、蒸発器における発生蒸気量の低下を防ぐことができる。また、低温熱源である冷海水の温度や流量等の状態を常時検出する中、季節変動等により水温が上昇し、凝縮器での放熱量が低下する場合、検出値に基づいて濃度調整用貯溜部15での貯溜量を減らして、循環する作動流体のアンモニア濃度を低くし、作動流体の飽和圧力(凝縮圧力)を低下させることで、タービン12出口と入口との圧力差が小さくなることを防止でき、タービン出力の低下を防ぐことができる。   Specifically, while constantly detecting the temperature, flow rate, and other conditions of warm seawater, which is a high-temperature heat source, it is detected when the water temperature decreases due to seasonal changes from summer to winter and the amount of heat received by the evaporator decreases. Based on the value, the storage amount in the concentration adjusting reservoir 15 is increased, the ammonia concentration of the circulating working fluid is increased, and the saturation temperature (boiling start temperature) of the working fluid is lowered, thereby generating steam generated in the evaporator. A decrease in the amount can be prevented. In addition, while constantly detecting the temperature and flow rate of cold seawater, which is a low-temperature heat source, when the water temperature rises due to seasonal fluctuations and the amount of heat released from the condenser decreases, the concentration adjustment reservoir is based on the detected value. The pressure difference between the turbine 12 outlet and the inlet is reduced by reducing the storage amount in the section 15, lowering the ammonia concentration of the circulating working fluid, and lowering the saturation pressure (condensing pressure) of the working fluid. This can prevent the decrease in turbine output.

こうして各熱源の温度変動やタービン負荷変動に対応して作動流体を適切な濃度に調整することで、システム全体を安定した運転状態とすることができ、システムの性能を最大限発揮させられる。この他、メンテナンス時にシステムを構成する閉配管の一部を開放する場合、主に高沸点媒体が外部に放出されることとなるが、この放出による作動流体の濃度変化にも対応して、システムを流れる作動流体の濃度を適切な状態に調整できる。   Thus, by adjusting the working fluid to an appropriate concentration in response to temperature fluctuations of each heat source and turbine load fluctuations, the entire system can be brought into a stable operating state, and the system performance can be maximized. In addition, when a part of the closed pipe constituting the system is opened at the time of maintenance, the high boiling point medium is mainly discharged to the outside. The concentration of the working fluid flowing through can be adjusted to an appropriate state.

このように、本実施の形態に係る非共沸混合媒体サイクルシステムにおいては、気液分離器11での気液分離を経た液相作動流体の流路である支流路1bに、液相で高沸点媒体濃度の高い作動流体を一部貯溜する濃度調整用貯溜部15を配設し、この濃度調整用貯溜部15での貯溜量を制御して、サイクルの主流路1aで循環する作動流体における高沸点媒体分を増減させ、作動流体をなす各媒体の割合を調整可能とすることから、貯溜量を増やして主流路1aでの作動流体中の水を相対的に減らした場合には、主流路1aにおける作動流体のアンモニア濃度を高めることができ、また、貯溜量を減らして主流路1aでの作動流体中の水を相対的に増やした場合には、主流路1aにおける作動流体のアンモニア濃度を低下させることができるなど、外部の調整用機器なしに作動流体の濃度調整が行え、季節変化に伴う各熱源の温度変動やタービン12負荷変動等、外部条件の変化に対応して作動流体を適切な濃度に調整でき、発生蒸気量を維持するなどシステム全体を安定した運転状態としてその性能を最大限発揮させられる。   As described above, in the non-azeotropic mixed medium cycle system according to the present embodiment, the liquid phase is high in the branch flow path 1b that is the flow path of the liquid-phase working fluid that has undergone gas-liquid separation in the gas-liquid separator 11. In the working fluid circulating in the main flow path 1a of the cycle, a concentration adjusting reservoir 15 for storing a part of the working fluid having a high boiling point medium concentration is disposed, and the storage amount in the concentration adjusting reservoir 15 is controlled. Since the ratio of each medium forming the working fluid can be adjusted by increasing / decreasing the high-boiling medium content, when the storage amount is increased to relatively reduce the water in the working fluid in the main channel 1a, When the ammonia concentration of the working fluid in the passage 1a can be increased, and when the amount of storage is reduced to relatively increase the water in the working fluid in the main passage 1a, the ammonia concentration of the working fluid in the main passage 1a Can be reduced However, the concentration of the working fluid can be adjusted without an external adjustment device, and the working fluid can be adjusted to an appropriate concentration in response to changes in external conditions such as temperature fluctuations of each heat source and turbine 12 load fluctuations accompanying seasonal changes. The entire system can be operated in a stable operating state, such as maintaining the amount of steam generated, and its performance can be maximized.

なお、前記実施の形態に係る非共沸混合媒体サイクルシステムにおいて、蒸発器10や凝縮器13として、プレート式熱交換器を用いる構成としているが、これに限らず、長手方向端部に熱交換対象流体の流入出口が位置するものであれば、例えばシェルアンドチューブ型などの他の形式の熱交換器を採用する構成とすることもできる。   In the non-azeotropic mixed medium cycle system according to the above-described embodiment, a plate-type heat exchanger is used as the evaporator 10 and the condenser 13, but the present invention is not limited to this, and heat exchange is performed at the end in the longitudinal direction. As long as the inlet / outlet of the target fluid is located, another type of heat exchanger such as a shell and tube type may be adopted.

また、前記実施の形態に係る非共沸混合媒体サイクルシステムにおいては、凝縮器13で気相作動流体の凝縮を行わせるほか、気相の作動流体の一部を液相の作動流体に吸収させる構成としているが、これに限らず、凝縮器の前段側に別途吸収器を設けて、濃度調整用貯溜部から導入された液相の作動流体に、タービンからの気相作動流体を一部吸収させ、この吸収器から作動流体を気相と液相の混相状態でまとめて凝縮器に導入し、凝縮器内で主に気相分の凝縮を行わせる構成とすることもできる。   In the non-azeotropic mixed medium cycle system according to the embodiment, the vapor phase working fluid is condensed by the condenser 13 and part of the vapor phase working fluid is absorbed by the liquid phase working fluid. However, the present invention is not limited to this, and a separate absorber is provided on the upstream side of the condenser, and a part of the gas-phase working fluid from the turbine is absorbed by the liquid-phase working fluid introduced from the concentration adjusting reservoir. It is also possible to adopt a configuration in which the working fluid is collectively introduced from the absorber in a mixed phase of the gas phase and the liquid phase into the condenser, and the gas phase is mainly condensed in the condenser.

また、前記実施の形態に係る非共沸混合媒体サイクルシステムにおいては、気液分離器11で気相作動流体と分離した液相の作動流体を濃度調整用貯溜部15にそのまま導き、液相の作動流体の一部を貯溜させる構成としているが、これに限らず、図2に示すように、濃度調整用貯溜部15の前段側に再生器17を設けて、濃度調整用貯溜部15に導入される前の液相の作動流体と、蒸発器10に入る直前の作動流体とを熱交換させる構成とすることもでき、気液分離器11を出た液相の作動流体の保有するエネルギを再生器17で回収することで、サイクルの熱効率をより一層向上させられる。なお、前記再生器については、濃度調整用貯溜部15の後段側に設け、濃度調整用貯溜部15から送出される液相の作動流体と、蒸発器10に入る直前の作動流体とを熱交換させる構成としてもかまわない。   In the non-azeotropic mixed medium cycle system according to the above-described embodiment, the liquid-phase working fluid separated from the gas-phase working fluid by the gas-liquid separator 11 is directly introduced to the concentration adjusting reservoir 15, and the liquid-phase working fluid is A part of the working fluid is stored. However, the present invention is not limited to this, and as shown in FIG. 2, a regenerator 17 is provided on the upstream side of the concentration adjusting reservoir 15 and introduced into the concentration adjusting reservoir 15. The liquid-phase working fluid before being heated and the working fluid just before entering the evaporator 10 can be configured to exchange heat, and the energy of the liquid-phase working fluid exiting the gas-liquid separator 11 can be stored. By collecting with the regenerator 17, the thermal efficiency of the cycle can be further improved. The regenerator is provided on the rear side of the concentration adjusting reservoir 15, and heat exchange is performed between the liquid-phase working fluid delivered from the concentration adjusting reservoir 15 and the working fluid immediately before entering the evaporator 10. It does not matter as a configuration to be made.

(本発明の第2の実施形態)
本発明の第2の実施形態を図3ないし図5に基づいて説明する。図3は本実施形態に係る非共沸混合媒体サイクルシステムの概略系統図、図4は本実施形態に係る非共沸混合媒体サイクルシステムにおける蒸発器の概略縦断面図、図5は本実施形態に係る非共沸混合媒体サイクルシステムにおける蒸発器の熱交換部構造説明図である。
(Second embodiment of the present invention)
A second embodiment of the present invention will be described with reference to FIGS. 3 is a schematic system diagram of the non-azeotropic mixed medium cycle system according to the present embodiment, FIG. 4 is a schematic longitudinal sectional view of an evaporator in the non-azeotropic mixed medium cycle system according to the present embodiment, and FIG. 5 is the present embodiment. It is heat exchange part structure explanatory drawing of the evaporator in the non-azeotropic mixed-medium cycle system which concerns on this.

前記各図において本実施の形態に係る非共沸混合媒体サイクルシステム2は、前記第1の実施形態同様、蒸発器20と、タービン23、24と、凝縮器25と、ポンプ26とを備える一方、異なる点として、蒸発器20での熱交換を経て高温となった作動流体のうち、液相の作動流体を、凝縮器25から出た全て液相の作動流体と熱交換させる再生器27と、第1段目のタービン23を出た段階で抽気された一部の気相作動流体と前記全て液相の作動流体とを熱交換させる加熱器28とを備えると共に、前記蒸発器20が気液分離器並びに濃度調整用貯溜部の機能を併せ持つ構成を有するものである。このうち、タービン23、24及びポンプ26については、一般的な蒸気動力サイクルで用いられるのと同様の公知の装置であり、説明を省略する。   In each of the drawings, the non-azeotropic mixed medium cycle system 2 according to the present embodiment includes an evaporator 20, turbines 23 and 24, a condenser 25, and a pump 26, as in the first embodiment. As a different point, the regenerator 27 for exchanging heat of the liquid-phase working fluid with all the liquid-phase working fluid that has come out of the condenser 25 out of the working fluid that has become high temperature through heat exchange in the evaporator 20; And a heater 28 for exchanging heat between a part of the gas-phase working fluid extracted at the stage of exiting the first-stage turbine 23 and the liquid-phase working fluid. It has the structure which has the function of the liquid separator and the concentration adjusting reservoir. Among these, the turbines 23 and 24 and the pump 26 are known devices similar to those used in a general steam power cycle, and the description thereof will be omitted.

前記蒸発器20は、最外殻をなして他の機器と配管で接続される中空のシェル21と、このシェル21内部に配置され、高温熱源としての温海水と作動流体を熱交換させるプレート式の熱交換部22とを備える構成である。   The evaporator 20 has a hollow shell 21 that forms an outermost shell and is connected to other devices by piping, and a plate type that is disposed inside the shell 21 and exchanges heat between warm seawater as a high-temperature heat source and a working fluid. The heat exchange part 22 is provided.

前記シェル21は、一般的な略円筒カプセル状の中空圧力容器であり、長手方向一端部に温海水流入口21aと作動流体流出口21c、他端部に温海水流出口21bと作動流体流入口21e、作動流体流出口21dがそれぞれ外部の配管と接続可能に配置される構造となっており、これら流入出口を除いて内部と外部を水密状態で隔離する構成である。シェル21の作動流体流入口21eは再生器27低温側と連通する配管に接続される。また、作動流体流出口21cはタービン23入口側と連通する配管に接続され、作動流体流出口21dは再生器27高温側と連通する配管に接続される。このシェル21の内部空間21fは外部に対し保温状態となっている他、シェル21内には熱交換部22を支持すると共に気液の分離をより確実なものとする有孔隔壁板21gが設けられる。   The shell 21 is a general substantially cylindrical capsule-shaped hollow pressure vessel having a warm seawater inlet 21a and a working fluid outlet 21c at one end in the longitudinal direction, and a warm seawater outlet 21b and a working fluid inlet 21e at the other end. Each of the working fluid outlets 21d is configured to be connectable to an external pipe, and the inside and the outside are separated in a watertight state except for these inlets and outlets. The working fluid inlet 21e of the shell 21 is connected to a pipe communicating with the regenerator 27 low temperature side. The working fluid outlet 21c is connected to a pipe communicating with the inlet side of the turbine 23, and the working fluid outlet 21d is connected to a pipe communicating with the regenerator 27 high temperature side. The inner space 21f of the shell 21 is in a heat-retaining state with respect to the outside, and a perforated partition plate 21g is provided in the shell 21 to support the heat exchanging portion 22 and further ensure the separation of gas and liquid. It is done.

前記熱交換部22は、複数のプレート50を重ね合せて一体化した一般的なプレート式熱交換器であり、内部のプレート50間の隙間が一つおきに作動流体の流通部分と温海水の流通部分とをそれぞれなし、各プレート50を介して二つの流体が熱交換を行う公知の構成であり、詳細な説明を省略する。この熱交換部22は、長手方向一端部に温海水の流入口22aと作動流体の流出口22b、他端部に温海水の流出口(図示を省略)と作動流体の流入口22cがそれぞれ配置される向流型となっており、熱交換部22におけるこれら各流入出口は、作動流体の流出口22bを除いてシェル21の各流入出口と連通状態で一体化されており、シェル21の内部空間21fに対して水密状態で隔離される構成である。一方、作動流体の流出口22bはシェル21の内部空間21fで開口した状態にあり、この内部空間21f及び作動流体流出口21c、21dに連通している。   The heat exchanging unit 22 is a general plate heat exchanger in which a plurality of plates 50 are overlapped and integrated, and every other gap between the internal plates 50 has a working fluid circulation portion and warm seawater. This is a known configuration in which the two fluids exchange heat through the respective plates 50, and detailed descriptions thereof are omitted. The heat exchanging portion 22 has a warm seawater inlet 22a and a working fluid outlet 22b at one end in the longitudinal direction, and a warm seawater outlet (not shown) and a working fluid inlet 22c at the other end, respectively. These inflow / outflow ports in the heat exchanging part 22 are integrated with the inflow / outflow ports of the shell 21 except for the outflow port 22b of the working fluid. It is the structure isolated in the watertight state with respect to the space 21f. On the other hand, the working fluid outlet 22b is open in the inner space 21f of the shell 21 and communicates with the inner space 21f and the working fluid outlets 21c and 21d.

この熱交換部22内で、ポンプ26からの送給圧力を受けつつ、温海水との熱交換で温められる作動流体は、熱交換部22を上昇し、その一部(揮発しやすいアンモニアが大部分を占める)が蒸発して気液混相状態となる。ちょうど所定の温度まで昇温した段階で熱交換部22上部の流出口22bより気液混相状態で流出するように流量を設定されている。   The working fluid that is heated by heat exchange with warm seawater while receiving the supply pressure from the pump 26 in the heat exchange section 22 rises up the heat exchange section 22 and a part thereof (a volatile ammonia is large). Occupies a part) and evaporates into a gas-liquid mixed phase. The flow rate is set so as to flow out in a gas-liquid mixed phase state from the outlet 22b at the top of the heat exchanging section 22 at the stage where the temperature has been raised to a predetermined temperature.

作動流体は、熱交換部22の流出口22bからシェル21の内部空間21fに流出した後、この内部空間21fを流下しながら気相分と液相分に分れ、気相の作動流体はシェル21上部の作動流体流出口21cから後段側のタービン23へ向う一方、液相の作動流体はシェル21下部に達し、貯溜状態となった後、作動流体流出口21dから後段側の再生器27へ向うこととなり、結果として、温海水との熱交換を経た高温の作動流体を気相分と液相分とに分けてシェル21外に取出せる仕組みとなっている。   The working fluid flows out from the outlet 22b of the heat exchanging section 22 into the internal space 21f of the shell 21, and then flows into the gas phase and the liquid phase while flowing down the internal space 21f. From the upper working fluid outlet 21c to the rear turbine 23, the liquid-phase working fluid reaches the lower portion of the shell 21 and is stored, and then from the working fluid outlet 21d to the rear regenerator 27. As a result, the high-temperature working fluid that has undergone heat exchange with warm seawater is divided into a gas phase component and a liquid phase component, and can be taken out of the shell 21.

シェル21下部では、液相の作動流体の一部を貯溜しているが、この貯溜部分での作動流体を溢流させる高さを調整して、液面位置、すなわち貯溜量を変化させられる仕組みとなっている。システム全体の作動流体のうち、高沸点媒体である水の比率の高い作動流体が滞留する割合を増減させることで、結果として主流路2aで作動流体中の各媒体の濃度を調整制御することができ、高温熱源や低温熱源の温度変化など外部からの各種影響に対してこの作動流体の低沸点媒体濃度の調整で対応する仕組みとなっている。   In the lower part of the shell 21, a part of the liquid-phase working fluid is stored. A mechanism for adjusting the height at which the working fluid overflows in the storage part to change the liquid level position, that is, the storage amount. It has become. The concentration of each medium in the working fluid can be adjusted and controlled in the main flow path 2a as a result by increasing or decreasing the ratio of the working fluid having a high water ratio as the high boiling point medium among the working fluid in the entire system. It is possible to cope with various external influences such as temperature changes of the high temperature heat source and the low temperature heat source by adjusting the concentration of the low boiling point medium of the working fluid.

前記凝縮器25は、前記第1の実施形態同様、複数のプレートを重ね合せて一体化した一般的なプレート式熱交換器であり、内部のプレート間の隙間が一つおきに前記タービン24及び再生器27の各出口と同時に連通し、この隙間に作動流体が流通する一方、残りの隙間に低温熱源としての冷海水が流通し、各プレートを介して二つの流体が熱交換を行う公知の構成であり、詳細な説明を省略する。この凝縮器25には、タービン24を出た気相の作動流体と、再生器27を出た液相の作動流体とが同時に導入され、これらを冷海水と熱交換させて冷却し、気相の作動流体を凝縮させると共に、気相の作動流体の一部を液相の作動流体に吸収させる仕組みとなっている。凝縮器25の後段には、凝縮器25を出た液相の作動流体を一時的に貯溜した上でポンプ26側へ送出すタンク29が配設される。   As in the first embodiment, the condenser 25 is a general plate heat exchanger in which a plurality of plates are overlapped and integrated. It is known that the working fluid communicates simultaneously with the outlets of the regenerator 27 and the working fluid flows through the gap, while cold seawater as a low-temperature heat source circulates through the remaining gap, and the two fluids exchange heat through the plates. This is a configuration, and detailed description thereof is omitted. A gas phase working fluid exiting the turbine 24 and a liquid phase working fluid exiting the regenerator 27 are simultaneously introduced into the condenser 25, and these are cooled by exchanging heat with cold seawater. The working fluid is condensed, and a part of the gaseous working fluid is absorbed by the liquid working fluid. A tank 29 that temporarily stores the liquid-phase working fluid exiting the condenser 25 and sends it to the pump 26 side is disposed at the subsequent stage of the condenser 25.

前記再生器27は、凝縮器25からポンプ26を経て蒸発器20に向う全て液相の作動流体の主流路2a中に介設され、蒸発器20に達する前の全て液相の作動流体と、蒸発器20内で気相の作動流体と分離されて蒸発器20を出た高温液相の作動流体とを熱交換させる熱交換器であり、前記蒸発器20の熱交換部22や凝縮器25同様、複数のプレートを重ね合せて一体化した一般的なプレート式熱交換器であり、詳細な説明は省略する。この再生器27では、蒸発器20の作動流体流出口21dに通じる高温液相作動流体側の支流路2bが減圧弁27aを介して凝縮器25と配管接続されており、再生器27を出た液相の作動流体が、減圧弁27aを経由して圧力を調整された後、凝縮器25内へ導入される仕組みである。   The regenerator 27 is interposed in the main flow path 2a of all liquid phase working fluid from the condenser 25 through the pump 26 to the evaporator 20, and all liquid phase working fluid before reaching the evaporator 20; It is a heat exchanger that exchanges heat with a high-temperature liquid-phase working fluid that has been separated from the gas-phase working fluid in the evaporator 20 and exits the evaporator 20, and the heat-exchange unit 22 and the condenser 25 of the evaporator 20. Similarly, it is a general plate heat exchanger in which a plurality of plates are stacked and integrated, and detailed description thereof is omitted. In this regenerator 27, the branch flow path 2b on the high-temperature liquid-phase working fluid side leading to the working fluid outlet 21d of the evaporator 20 is connected to the condenser 25 via the pressure reducing valve 27a. The liquid phase working fluid is introduced into the condenser 25 after the pressure is adjusted via the pressure reducing valve 27a.

前記加熱器28は、前記再生器27同様に凝縮器25から蒸発器20に向う全て液相の作動流体の主流路2a中に介設され、再生器27より前段側の位置でこの再生器27に達する前の全て液相の作動流体と、第一段目のタービン23を出た後抽気された一部の高温気相の作動流体とを熱交換させる熱交換器であり、前記蒸発器20の熱交換部22や凝縮器25と同様のプレート式熱交換器とされてなり、詳細な説明は省略する。この加熱器28のタービン23出口側に接続される高温作動流体側の支流路2cにおける、加熱器28より後段側部分には、加熱器28に対し高温作動流体をスムーズに流入出させるための圧力を発生させるポンプ61及びこのポンプ動作に伴う作動流体の流量変化の影響を小さくするタンク62がそれぞれ配設される。   Like the regenerator 27, the heater 28 is interposed in the main flow path 2 a of all the liquid phase working fluid from the condenser 25 to the evaporator 20, and the regenerator 27 is located at a position upstream of the regenerator 27. Is a heat exchanger for exchanging heat between all the liquid-phase working fluid before reaching the first stage and a part of the high-temperature gas-phase working fluid extracted after leaving the first stage turbine 23, and the evaporator 20 The heat exchanger 22 and the condenser 25 are the same plate type heat exchanger, and detailed description thereof is omitted. In the branch channel 2c on the high temperature working fluid side connected to the outlet side of the turbine 23 of the heater 28, the pressure for smoothly flowing the high temperature working fluid into and out of the heater 28 in the portion on the rear stage side from the heater 28. And a tank 62 for reducing the influence of changes in the flow rate of the working fluid associated with the pump operation.

この加熱器28の高温作動流体側の支流路2cは、タンク62及びポンプ61を介して、前記主流路2aにおける加熱器28より後段側で且つ再生器27より前段側の位置に合流する形で配管接続されており、タービン23を出て加熱器28における熱交換で冷却され凝縮した作動流体が、タンク62及びポンプ61を経由した後、再生器27に達する直前の液相作動流体に加わる仕組みである。前記タンク62及びポンプ61は、加熱器28で凝縮された液相の作動流体を主流路2a側からの逆流等なく適切に後段側へ流せる程度の容量及び吐出能力があれば問題なく、容量や能力を抑えた小型のものを用いることができる。   The branch flow path 2 c on the high temperature working fluid side of the heater 28 is joined via the tank 62 and the pump 61 to a position on the downstream side of the heater 28 and on the upstream side of the regenerator 27 in the main flow path 2 a. A system in which the working fluid that is connected by piping and exits the turbine 23 and is cooled and condensed by heat exchange in the heater 28 passes through the tank 62 and the pump 61 and is added to the liquid-phase working fluid immediately before reaching the regenerator 27. It is. The tank 62 and the pump 61 have no problem as long as they have a capacity and a discharge capacity sufficient to allow the liquid-phase working fluid condensed in the heater 28 to flow to the subsequent stage without backflow from the main flow path 2a. A small one with reduced capacity can be used.

次に、本実施の形態に係る非共沸混合媒体サイクルシステムのサイクル実行状態について説明する。前提として、海の所定深さ位置から低温熱源となる冷海水を、また、海の表層から高温熱源としての温海水を、それぞれ所定の流量を確保しつつ取水し、凝縮器25又は蒸発器20にそれぞれ導入しているものとする。   Next, the cycle execution state of the non-azeotropic mixed medium cycle system according to the present embodiment will be described. As a premise, cold seawater as a low-temperature heat source is taken from a predetermined depth position of the sea, and warm seawater as a high-temperature heat source is taken from the surface of the sea while securing a predetermined flow rate, respectively, and the condenser 25 or the evaporator 20 Are introduced respectively.

蒸発器20では、高温熱源として上側の温海水流入口21aから導入される温海水と、下側の作動流体流入口21eから導入される全て液相の作動流体とを、内部の熱交換部22で熱交換させる。ここで加熱された作動流体は、昇温に伴いその一部が蒸発して気液混相状態となる。この混相状態の高温作動流体は、熱交換部22の流出口22bからシェル21の内部空間21fに流出して、有孔隔壁板21gを通過し、熱交換部22側面やシェル21内壁に沿って流下する過程で気相分と液相分に分れ、気相の作動流体は内部空間21fを上昇してシェル21上部の作動流体流出口21cから蒸発器20外へ出る。また、液相の作動流体はそのまま流下して濃度調整用貯溜部を兼ねるシェル21下部に達する。   In the evaporator 20, warm seawater introduced from the upper warm seawater inlet 21 a as a high-temperature heat source and all liquid-phase working fluid introduced from the lower working fluid inlet 21 e are exchanged by the internal heat exchange unit 22. Heat exchange. Part of the working fluid heated here evaporates as the temperature rises, and enters a gas-liquid mixed phase state. This mixed-phase high-temperature working fluid flows out from the outlet 22b of the heat exchange part 22 into the internal space 21f of the shell 21, passes through the perforated partition plate 21g, and runs along the side surface of the heat exchange part 22 and the inner wall of the shell 21. In the process of flowing down, it is divided into a gas phase component and a liquid phase component, and the gas phase working fluid ascends the internal space 21f and exits from the evaporator 20 through the working fluid outlet 21c above the shell 21. Further, the liquid-phase working fluid flows down as it is and reaches the lower part of the shell 21 that also serves as a concentration adjusting reservoir.

この濃度調整用貯溜部としてのシェル21下部では、前記第1の実施形態同様、液相作動流体の貯溜量を制御し、水の比率の高い作動流体が滞留する割合を増減させることで、結果として主流路2aを循環する作動流体の濃度変化を生じさせることができ、各熱源の温度変動やタービン負荷変動に対応して作動流体を適切な濃度に調整することで、システム全体を安定した運転状態とすることができ、システムの性能を最大限発揮させられる。こうしてシェル21下部では、液相の作動流体のうち一部が貯溜量を調整されつつ所定量貯溜され、残りの液相作動流体が作動流体流出口21dから蒸発器20外へ流出することとなる。   In the lower part of the shell 21 as the concentration adjusting reservoir, as in the first embodiment, the storage amount of the liquid-phase working fluid is controlled, and the ratio of the working fluid having a high water ratio is increased or decreased. As a result, the concentration of the working fluid circulating in the main flow path 2a can be changed. By adjusting the working fluid to an appropriate concentration in response to temperature fluctuations of each heat source and turbine load fluctuations, the entire system can be operated stably. The system performance can be maximized. Thus, at the lower part of the shell 21, a part of the liquid-phase working fluid is stored while adjusting the storage amount, and the remaining liquid-phase working fluid flows out of the evaporator 20 from the working fluid outlet 21d. .

蒸発器20を出た高温気相の作動流体は、蒸発器20導入前の当初組成の液相作動流体と比較して低沸点媒体であるアンモニアの割合が非常に高くなっており、この作動流体がタービン23、24に達してこれらを作動させ、これらタービン23、24により発電機等他の機器が駆動され、熱エネルギが使用可能なエネルギに変換される。こうしてタービン23、24で膨張して仕事を行った気相作動流体は、圧力及び温度を低減させた状態となり、第二段目のタービン24を出た後、凝縮器25に導入される。   The high-temperature gas-phase working fluid exiting the evaporator 20 has a very high proportion of ammonia, which is a low boiling point medium, as compared to the liquid-phase working fluid having an initial composition before the introduction of the evaporator 20. Reaches the turbines 23 and 24 to operate them, and the turbines 23 and 24 drive other devices such as a generator to convert the heat energy into usable energy. The gas phase working fluid that has been expanded and worked in the turbines 23 and 24 is in a state in which the pressure and temperature are reduced, and after exiting the second stage turbine 24, is introduced into the condenser 25.

一方、蒸発器20の作動流体流出口21dから蒸発器20外へ出た高温液相の作動流体は、蒸発器20導入前の当初組成の液相作動流体と比較してアンモニアの割合が低めとなっている。この高温液相の作動流体がシェル21下部と通じる支流路2bに入り、再生器27に導入される。この再生器27では、他方の主流路2aを通る全て液相の作動流体と前記高温液相の作動流体とを熱交換させ、主流路2a側の全て液相の作動流体を昇温させて蒸発器20側へ向わせる。そして、この再生器27での熱交換で冷却された支流路2b側の液相作動流体は、再生器27を出た後、減圧弁27aを経て凝縮器25内部に導入される。   On the other hand, the high-temperature liquid-phase working fluid that has flowed out of the evaporator 20 from the working fluid outlet 21d of the evaporator 20 has a lower ammonia ratio than the liquid-phase working fluid having the initial composition before the evaporator 20 is introduced. It has become. This high-temperature liquid-phase working fluid enters the branch channel 2 b communicating with the lower part of the shell 21 and is introduced into the regenerator 27. In this regenerator 27, all the liquid phase working fluid passing through the other main flow path 2a and the high-temperature liquid phase working fluid are subjected to heat exchange, and the temperature of all the liquid phase working fluid on the main flow path 2a side is raised to evaporate. Turn to the container 20 side. The liquid-phase working fluid on the side of the branch flow path 2b cooled by heat exchange in the regenerator 27 exits the regenerator 27 and is then introduced into the condenser 25 through the pressure reducing valve 27a.

凝縮器25では、内部に導入された気相の作動流体が、同じく導入された液相の作動流体と共に、プレートを隔てた隙間に導入された温度の低い冷海水と熱交換し、作動流体全体が冷却される中、気相の作動流体が液相の作動流体と接触し、これに一部吸収されて液相に変化する。そして、残りの未吸収分の気相作動流体は、熱交換による冷却に伴い凝縮して液相となる。この液相となった作動流体は、凝縮器25から外部に排出されて後段側のタンク29に流入する。   In the condenser 25, the gas-phase working fluid introduced into the condenser 25 and the liquid-phase working fluid also introduced into the condenser 25 are heat-exchanged with cold seawater having a low temperature introduced in a gap across the plate, and the whole working fluid As the gas is cooled, the gas-phase working fluid comes into contact with the liquid-phase working fluid, and is partially absorbed therein to change into the liquid phase. The remaining unabsorbed gas phase working fluid condenses into a liquid phase as it is cooled by heat exchange. The working fluid in the liquid phase is discharged from the condenser 25 to the outside and flows into the tank 29 on the rear stage side.

タンク29内の作動流体は、液相の作動流体としてはシステム内で最も低い温度及び圧力となっている。このタンク29に達した全て液相の作動流体は、ポンプ26を経由して、主流路2aを蒸発器20へ向け進むこととなる。   The working fluid in the tank 29 has the lowest temperature and pressure in the system as a liquid-phase working fluid. The liquid-phase working fluid that has reached the tank 29 travels through the main flow path 2 a toward the evaporator 20 via the pump 26.

なお、第一段目のタービン23から第二段目のタービン24に向う高温気相の作動流体の一部(約1%程度)が、抽気されて支流路2cに入り、加熱器28に導入される。加熱器28では、他方の主流路2aを通る全て液相の作動流体と前記抽気された高温気相の作動流体とを熱交換させ、全て液相の作動流体を昇温させて、気相の作動流体の保有する熱を回収する。気相の作動流体はこの加熱器28での熱交換を経て冷却され、凝縮して液相となり、この凝縮した液相の作動流体は加熱器28を出た後、前記タンク62及びポンプ61を経て、支流路2cと主流路2aの合流点で主流路2aを流れる全て液相の作動流体に加わる。この合流点において、各過程で複数の流路にそれぞれ分れた作動流体が全て一つに合わさることとなり、作動流体におけるアンモニアと水の割合が当初の割合に戻る。   Part of the high-temperature gas-phase working fluid (about 1%) from the first-stage turbine 23 to the second-stage turbine 24 is extracted and enters the branch flow path 2c and introduced into the heater 28. Is done. The heater 28 exchanges heat between all the liquid-phase working fluid passing through the other main flow path 2a and the extracted high-temperature gas-phase working fluid, and raises the temperature of all the liquid-phase working fluid. The heat that the working fluid has is recovered. The gas-phase working fluid is cooled through heat exchange in the heater 28 and condensed into a liquid phase. The condensed liquid-phase working fluid exits the heater 28 and is then connected to the tank 62 and the pump 61. After that, all the liquid phase working fluid flowing through the main flow path 2a at the junction of the branch flow path 2c and the main flow path 2a is added. At this merging point, all the working fluids divided into the plurality of flow paths in each process are combined together, and the ratio of ammonia and water in the working fluid returns to the initial ratio.

こうして液相の作動流体は、加熱器28や再生器27での熱交換を経て、あらかじめ所定温度まで昇温した状態で蒸発器20内に戻り、前記同様に蒸発器20での熱交換以降の各過程を繰返すこととなる。   In this way, the liquid-phase working fluid passes through heat exchange in the heater 28 and the regenerator 27, returns to the evaporator 20 in a state where the temperature is raised to a predetermined temperature in advance, and after the heat exchange in the evaporator 20 as described above. Each process will be repeated.

この作動流体に対し、凝縮器25での熱交換に使用された冷海水は、作動流体からの熱を受けて所定温度まで昇温している。この海水は、凝縮器25の外へ排出された後、最終的にシステム外部の海中へ放出される。また、蒸発器20での作動流体との熱交換に伴い温度が下がった温海水も、熱交換後にシステム外部の海中へ放出される。   With respect to this working fluid, the cold seawater used for heat exchange in the condenser 25 is heated to a predetermined temperature by receiving heat from the working fluid. This seawater is discharged out of the condenser 25 and finally discharged into the sea outside the system. In addition, warm seawater whose temperature has decreased due to heat exchange with the working fluid in the evaporator 20 is also released into the sea outside the system after heat exchange.

このように、本実施の形態に係る非共沸混合媒体サイクルシステムにおいては、蒸発器20として、高温熱源と作動流体とを熱交換させる熱交換部22、並びに、この熱交換部22を取囲むシェル21を設けると共に、このシェル21の内部空間21fを、熱交換部22における作動流体流出口22bに連通させ、熱交換部22で液相の作動流体を高温熱源と熱交換させた後、蒸発した気相分とこれ以外の液相分とが混合した状態の高温混相作動流体を、熱交換部22からシェルの内部空間21fに流出させると、この内部空間21fで混相状態の作動流体が気相分と液相分に分離し、且つ液相作動流体については濃度調整用貯溜部として貯溜量調整可能に一部貯溜できることから、蒸発器20から気相の作動流体と液相の作動流体とをそれぞれ分離状態で取出せ、蒸発器20が気液分離器の機能も有することとなり、蒸発器とは別体の気液分離器を省略でき、蒸発器と気液分離器が別の場合より圧力損失や熱損失を低減させられると共に、機器配置に必要なスペースも小さくでき、外部条件の変化に対応した作動流体の低沸点媒体濃度調整が貯溜用のスペースを別途新設することなく実行できることと合わせて、システム全体をコンパクト化、低コスト化できる。   Thus, in the non-azeotropic mixed medium cycle system according to the present embodiment, the evaporator 20 surrounds the heat exchange unit 22 that exchanges heat between the high-temperature heat source and the working fluid, and the heat exchange unit 22. The shell 21 is provided, and the internal space 21f of the shell 21 is communicated with the working fluid outlet 22b in the heat exchanging portion 22, and the heat exchanging portion 22 exchanges heat between the liquid working fluid and the high-temperature heat source, and then evaporates. When the high-temperature mixed-phase working fluid in a state in which the vapor phase component and the other liquid phase components are mixed flows out from the heat exchanging portion 22 to the internal space 21f of the shell, the mixed-phase working fluid is gasified in the internal space 21f. The liquid phase working fluid is separated into a phase component and a liquid phase component, and a part of the liquid phase working fluid can be stored as a concentration adjusting reservoir so that the storage amount can be adjusted. It Thus, the evaporator 20 has the function of a gas-liquid separator, so that a gas-liquid separator separate from the evaporator can be omitted, and the pressure loss is lower than when the evaporator and the gas-liquid separator are separate. In addition to reducing heat and heat loss, the space required for equipment layout can be reduced, and the low-boiling-point concentration adjustment of working fluid in response to changes in external conditions can be performed without newly creating a storage space. The whole system can be made compact and low cost.

なお、前記第1及び第2の各実施の形態に係る非共沸混合媒体サイクルシステムにおいては、アンモニアと水の混合媒体からなる作動流体と温海水とを熱交換させ、生じた気相の作動流体でタービンを動作させ、タービンを出た気相の作動流体を冷海水と熱交換させて液相とする過程を繰返す蒸気動力サイクルの例を示しているが、これに限られるものではなく、冷凍サイクルなど他のサイクルに適用することもできる。また、作動流体として他の混合媒体を用いたり、高温熱源として温海水に代えてプロセスガス、蒸気等の工業プロセス流体といった他の熱源を用いたり、低温熱源として冷海水に代えて他の冷却水や冷却用気体を用いるものとしてもかまわない。   In the non-azeotropic mixed medium cycle system according to each of the first and second embodiments, the working fluid formed of a mixed medium of ammonia and water exchanges heat with warm seawater, and the generated gas phase operation is performed. Although an example of a steam power cycle is shown in which the process of operating the turbine with a fluid and repeating the process of making the gas phase working fluid exiting the turbine heat-exchanged with cold seawater to form a liquid phase is not limited to this, It can also be applied to other cycles such as a refrigeration cycle. Also, another mixed medium is used as the working fluid, another heat source such as an industrial process fluid such as process gas or steam is used as the high-temperature heat source, or other cooling water is used as the low-temperature heat source. Or a gas for cooling may be used.

本発明の第1の実施形態に係る非共沸混合媒体サイクルシステムの概略系統図である。1 is a schematic system diagram of a non-azeotropic mixed medium cycle system according to a first embodiment of the present invention. 本発明の第1の実施形態に係る非共沸混合媒体サイクルシステムにおける他例の概略系統図である。It is a schematic system diagram of the other example in the non-azeotropic mixed-medium cycle system which concerns on the 1st Embodiment of this invention. 本発明の第2の実施形態に係る非共沸混合媒体サイクルシステムの概略系統図である。It is a schematic system diagram of the non-azeotropic mixed medium cycle system according to the second embodiment of the present invention. 本発明の第2の実施形態に係る非共沸混合媒体サイクルシステムにおける蒸発器の概略縦断面図である。It is a schematic longitudinal cross-sectional view of the evaporator in the non-azeotropic mixed-medium cycle system which concerns on the 2nd Embodiment of this invention. 本発明の第2の実施形態に係る非共沸混合媒体サイクルシステムにおける蒸発器の熱交換部構造説明図である。It is heat exchange part structure explanatory drawing of the evaporator in the non-azeotropic mixed-medium cycle system which concerns on the 2nd Embodiment of this invention.

符号の説明Explanation of symbols

1、2 非共沸混合媒体サイクルシステム
1a、2a 主流路
1b、2b、2c 支流路
10、20 蒸発器
11 気液分離器
12、23、24 タービン
13、25 凝縮器
14、26、61 ポンプ
15 濃度調整用貯溜部
16、29、62 タンク
17 再生器
21 シェル
21a 温海水流入口
21b 温海水流出口
21c、21d 作動流体流出口
21e 作動流体流入口
21f 内部空間
21g 有孔隔壁板
22 熱交換部
22a、22c 流入口
22b 流出口
27 再生器
27a 減圧弁
28 加熱器
50 プレート
1, 2 Non-azeotropic mixed medium cycle system 1a, 2a Main flow path 1b, 2b, 2c Branch flow path 10, 20 Evaporator 11 Gas-liquid separator 12, 23, 24 Turbine 13, 25 Condenser 14, 26, 61 Pump 15 Concentration adjusting reservoir 16, 29, 62 Tank 17 Regenerator 21 Shell 21a Warm seawater inlet 21b Warm seawater outlet 21c, 21d Working fluid outlet 21e Working fluid inlet 21f Internal space 21g Perforated partition plate 22 Heat exchanger 22a, 22c Inlet 22b Outlet 27 Regenerator 27a Pressure reducing valve 28 Heater 50 Plate

Claims (4)

沸点の異なる複数の流体が混合された作動流体を全て液相の状態で所定の高温熱源と熱交換させ、前記作動流体の少なくとも一部を蒸発させる蒸発器と、前記蒸発器で得られた高温の作動流体を気相分と液相分とに分離する気液分離器と、前記作動流体のうち気相分を導入されて流体の保有する熱エネルギを動力に変換する膨張機と、当該膨張機を出た気相の作動流体を前記気液分離器を出た液相分と合わせて所定の低温熱源と熱交換させ、気相分を凝縮させる凝縮器と、当該凝縮器を出た作動流体を圧縮して前記蒸発器へ向わせる圧縮機とを少なくとも備える非共沸混合媒体サイクルシステムにおいて、
前記気液分離器から取出される高温液相の作動流体の流路中に、当該作動流体の一部を所定量調整可能に貯溜する濃度調整用貯溜部を備えることを
特徴とする非共沸混合媒体サイクルシステム。
A working fluid in which a plurality of fluids having different boiling points are mixed is subjected to heat exchange with a predetermined high-temperature heat source in a liquid state, and at least a part of the working fluid is evaporated, and the high temperature obtained by the evaporator A gas-liquid separator that separates the working fluid into a gas phase component and a liquid phase component, an expander that introduces the gas phase component of the working fluid and converts thermal energy held by the fluid into power, and the expansion The vapor phase working fluid exiting the machine is combined with the liquid phase component exiting the gas-liquid separator to exchange heat with a predetermined low-temperature heat source, and the vapor phase component is condensed, and the operation exiting the condenser A non-azeotropic mixture cycle system comprising at least a compressor for compressing fluid toward the evaporator;
A non-azeotropy is provided in the flow path of the high-temperature liquid-phase working fluid taken out from the gas-liquid separator, and a concentration-adjusting reservoir for storing a part of the working fluid so that a predetermined amount can be adjusted. Mixed media cycle system.
前記請求項1に記載の非共沸混合媒体サイクルシステムにおいて、
前記蒸発器が、中空の圧力容器であるシェルと、当該シェル内に配設されて長手方向両端部に熱交換対象流体の流入出口が存在する熱交換部とを備え、当該熱交換部における作動流体の流出口以外の各流入出口がシェル外部に延長配設されてシェル内部空間からは隔離された状態とされる一方、熱交換部における作動流体の流出口がシェル内部空間に開口連通する状態とされてなり、熱交換部の流出口からシェル内部空間に流出した高温の作動流体を、前記内部空間で気相分と液相分とに分離させ、シェルから気相の作動流体と液相の作動流体をそれぞれ別個に取出し可能な構造とされて前記気液分離器を兼ねると共に、分離後の液相の作動流体がシェル内部空間に所定量調整可能に貯溜されつつ取出される構造とされて前記濃度調整用貯溜部をも兼ねることを
特徴とする非共沸混合媒体サイクルシステム。
The non-azeotropic mixed medium cycle system according to claim 1,
The evaporator includes a shell that is a hollow pressure vessel, and a heat exchanging unit that is disposed in the shell and has an inlet / outlet of a fluid to be heat exchanged at both longitudinal ends, and operates in the heat exchanging unit. Each inflow / outlet other than the fluid outflow port extends outside the shell and is isolated from the shell internal space, while the working fluid outflow port in the heat exchanging portion is in open communication with the shell internal space The high-temperature working fluid flowing out from the outlet of the heat exchange section into the shell internal space is separated into a gas phase component and a liquid phase component in the internal space, and the gas phase working fluid and the liquid phase are separated from the shell. The working fluid can be separately taken out and serves as the gas-liquid separator, and the separated liquid-phase working fluid is taken out while being stored in the shell internal space so that a predetermined amount can be adjusted. The concentration adjustment reservoir Non-azeotropic mixed medium cycle system, characterized in that also serves as a.
前記請求項1又は2に記載の非共沸混合媒体サイクルシステムにおいて、
前記蒸発器での熱交換対象となる高温熱源の状態を検出し、得られた検出値に基づいて、前記濃度調整用貯溜部における作動流体の貯溜量を調整することを
特徴とする非共沸混合媒体サイクルシステム。
In the non-azeotropic mixed medium cycle system according to claim 1 or 2,
A state of a high-temperature heat source that is a heat exchange target in the evaporator is detected, and a storage amount of the working fluid in the concentration adjusting storage portion is adjusted based on the obtained detection value. Mixed media cycle system.
前記請求項1又は2に記載の非共沸混合媒体サイクルシステムにおいて、
前記凝縮器での熱交換対象となる低温熱源の状態を検出し、得られた検出値に基づいて、前記濃度調整用貯溜部における作動流体の貯溜量を調整することを
特徴とする非共沸混合媒体サイクルシステム。
In the non-azeotropic mixed medium cycle system according to claim 1 or 2,
A state of a low-temperature heat source that is a heat exchange target in the condenser is detected, and a storage amount of the working fluid in the concentration adjusting reservoir is adjusted based on the obtained detection value. Mixed media cycle system.
JP2006270623A 2006-10-02 2006-10-02 Non-azeotropic mixture medium cycle system Pending JP2008088892A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006270623A JP2008088892A (en) 2006-10-02 2006-10-02 Non-azeotropic mixture medium cycle system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006270623A JP2008088892A (en) 2006-10-02 2006-10-02 Non-azeotropic mixture medium cycle system

Publications (1)

Publication Number Publication Date
JP2008088892A true JP2008088892A (en) 2008-04-17

Family

ID=39373295

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006270623A Pending JP2008088892A (en) 2006-10-02 2006-10-02 Non-azeotropic mixture medium cycle system

Country Status (1)

Country Link
JP (1) JP2008088892A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101294885B1 (en) * 2011-12-26 2013-08-08 재단법인 포항산업과학연구원 Apparatus for Converting Thermal Energy
KR101294894B1 (en) * 2011-12-26 2013-08-08 재단법인 포항산업과학연구원 Apparatus for Converting Thermal Energy
KR101360599B1 (en) * 2011-12-26 2014-02-12 재단법인 포항산업과학연구원 Power System For Control Type of The Working Fluid And The Control Method Of The Working Fluid In The Same
KR101417634B1 (en) * 2013-04-23 2014-07-09 재단법인 포항산업과학연구원 Apparatus for Converting Thermal Energy
JP2014134309A (en) * 2013-01-08 2014-07-24 Hino Motors Ltd Rankine cycle engine
CN111852684A (en) * 2019-04-30 2020-10-30 中国船舶重工集团公司第七一一研究所 Waste heat recovery power generation system
CN112282962A (en) * 2020-11-17 2021-01-29 天津大学合肥创新发展研究院 Waste heat recovery organic Rankine cycle system with mixed working medium replacing cylinder sleeve water of internal combustion engine
CN117542807A (en) * 2024-01-09 2024-02-09 广东海洋大学 Composite phase-change load cooling and recycling device

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101294885B1 (en) * 2011-12-26 2013-08-08 재단법인 포항산업과학연구원 Apparatus for Converting Thermal Energy
KR101294894B1 (en) * 2011-12-26 2013-08-08 재단법인 포항산업과학연구원 Apparatus for Converting Thermal Energy
KR101360599B1 (en) * 2011-12-26 2014-02-12 재단법인 포항산업과학연구원 Power System For Control Type of The Working Fluid And The Control Method Of The Working Fluid In The Same
JP2014134309A (en) * 2013-01-08 2014-07-24 Hino Motors Ltd Rankine cycle engine
KR101417634B1 (en) * 2013-04-23 2014-07-09 재단법인 포항산업과학연구원 Apparatus for Converting Thermal Energy
CN111852684A (en) * 2019-04-30 2020-10-30 中国船舶重工集团公司第七一一研究所 Waste heat recovery power generation system
CN112282962A (en) * 2020-11-17 2021-01-29 天津大学合肥创新发展研究院 Waste heat recovery organic Rankine cycle system with mixed working medium replacing cylinder sleeve water of internal combustion engine
CN112282962B (en) * 2020-11-17 2023-11-21 天津大学合肥创新发展研究院 Waste heat recovery organic Rankine cycle system for replacing cylinder liner water of internal combustion engine by mixed working medium
CN117542807A (en) * 2024-01-09 2024-02-09 广东海洋大学 Composite phase-change load cooling and recycling device
CN117542807B (en) * 2024-01-09 2024-03-29 广东海洋大学 Composite phase-change load cooling and recycling device

Similar Documents

Publication Publication Date Title
JP5862133B2 (en) Steam power cycle system
JP2008088892A (en) Non-azeotropic mixture medium cycle system
JP4676284B2 (en) Waste heat recovery equipment for steam turbine plant
JP4540719B2 (en) Waste heat boiler
US7464562B2 (en) Absorption heat pump
JP5184211B2 (en) Condenser and power generation equipment
KR20120052302A (en) A jet pump system for heat and cold management, apparatus, arrangement and methods of use
JP5958819B2 (en) Heat pump system and cooling system using the same
WO2020045659A1 (en) Desalination and temperature difference power generation system
JP2007278572A (en) Absorption type refrigerating device
JP4669964B2 (en) Steam power cycle system
JP4885467B2 (en) Absorption heat pump
JP2015206484A (en) Vacuum type water heater
JP2006177570A (en) Absorption heat pump
JP2001066017A (en) Air conditioner
CN205382966U (en) Recovery waste heat power generation system is united to low -quality waste gas waste liquid
JP4738140B2 (en) Steam turbine plant and steam turbine ship equipped with the same
JP6896968B2 (en) Absorption heat exchange system
JP2016176604A (en) Absorption refrigeration machine and controlling method thereof
JP5653861B2 (en) Water heater
JP2006112686A (en) Two stage temperature rising type absorption heat pump
KR20110056847A (en) Heat-pump system
JPWO2006095397A1 (en) Multi-stage flash seawater desalination system
JP5954581B2 (en) Steam generation system
JP5950064B1 (en) Heat pump steam generator