JP4669964B2 - Steam power cycle system - Google Patents

Steam power cycle system Download PDF

Info

Publication number
JP4669964B2
JP4669964B2 JP2007523259A JP2007523259A JP4669964B2 JP 4669964 B2 JP4669964 B2 JP 4669964B2 JP 2007523259 A JP2007523259 A JP 2007523259A JP 2007523259 A JP2007523259 A JP 2007523259A JP 4669964 B2 JP4669964 B2 JP 4669964B2
Authority
JP
Japan
Prior art keywords
working fluid
shell
phase
liquid
heat exchange
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007523259A
Other languages
Japanese (ja)
Other versions
JPWO2007000811A1 (en
Inventor
康之 池上
清彦 会場
真士 岡部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Saga University
Xenesys Inc
Original Assignee
Saga University
Xenesys Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Saga University, Xenesys Inc filed Critical Saga University
Publication of JPWO2007000811A1 publication Critical patent/JPWO2007000811A1/en
Application granted granted Critical
Publication of JP4669964B2 publication Critical patent/JP4669964B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B1/00Methods of steam generation characterised by form of heating method
    • F22B1/02Methods of steam generation characterised by form of heating method by exploitation of the heat content of hot heat carriers
    • F22B1/021Methods of steam generation characterised by form of heating method by exploitation of the heat content of hot heat carriers with heating tubes in which flows a non-specified heating fluid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K25/00Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for
    • F01K25/04Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for the fluid being in different phases, e.g. foamed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/16Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged in parallel spaced relation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D9/00Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D9/0006Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the plate-like or laminated conduits being enclosed within a pressure vessel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D2021/0019Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for
    • F28D2021/0061Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for for phase-change applications
    • F28D2021/0064Vaporizers, e.g. evaporators

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)

Description

本発明は複数物質の混合作動流体を加熱、冷却させつつ循環させ、相変化を繰返す作動流体に仕事を行わせて動力エネルギを得る蒸気動力サイクルシステムに関し、特に、作動流体に相変化を生じさせる各機器の構成を改良してシステム全体の熱効率を高めると共に、システム各部のコンパクト化、低コスト化が図れる蒸気動力サイクルシステムに関する。   The present invention relates to a steam power cycle system that obtains motive energy by circulating a mixed working fluid of a plurality of substances while heating and cooling, and performing work on the working fluid that repeats a phase change, and in particular, causes a phase change in the working fluid. The present invention relates to a steam power cycle system in which the configuration of each device is improved to increase the thermal efficiency of the entire system, and each part of the system can be reduced in size and cost.

蒸気動力サイクルを用いるにあたり、高温熱源と低温熱源の温度差が小さい場合には、熱効率を高めて有効に熱を動力に変換できるようにするため、水と水より沸点の低い流体との混合流体、又は水以外の互いに沸点の異なる複数種類の流体が混合されたものを作動流体として用いる蒸気動力サイクルが従来から提案されており、このような従来の蒸気動力サイクルシステムの一例として、特開平7−91361号公報に記載されるものがある。   When using a steam power cycle, when the temperature difference between the high-temperature heat source and the low-temperature heat source is small, a mixed fluid of water and a fluid having a boiling point lower than that of water in order to increase heat efficiency and effectively convert heat into power Alternatively, a steam power cycle using a mixture of a plurality of types of fluids having different boiling points other than water as a working fluid has been proposed in the past. As an example of such a conventional steam power cycle system, Japanese Patent Laid-Open No. Hei 7 There are some which are described in -91361 gazette.

前記従来の蒸気動力サイクルシステムは、蒸気動力サイクルとして一般的なランキンサイクル同様に蒸発器、タービン、凝縮器及びポンプを有する他に、凝縮器の前段側に膨張後の気相作動流体を液相作動流体に一部吸収させる吸収器と、蒸発器で加熱された作動流体のうち、液相の作動流体を蒸発器で熱交換する前の低温液相の作動流体と熱交換させる再生器と、複数段配設されたタービンの中間から抽気された高温気相の作動流体を低温液相の作動流体と熱交換させる加熱器とを備える構成である。   The conventional steam power cycle system includes an evaporator, a turbine, a condenser, and a pump, as in the general Rankine cycle as a steam power cycle. An absorber that is partially absorbed by the working fluid; and a regenerator that exchanges heat between the liquid working fluid heated by the evaporator and the liquid working fluid before the heat exchange of the liquid working fluid by the evaporator; It is a structure provided with the heater which heat-exchanges the high-temperature gaseous-phase working fluid extracted from the intermediate | middle of the turbine arrange | positioned in multiple stages with the working fluid of a low-temperature liquid phase.

この従来の蒸気動力サイクルシステムは、単一の作動流体を用いる一般的なランキンサイクルに比べて熱効率を高めることができ、特に、タービンから抽気を行うと共に吸収器で気相の作動流体を液相の作動流体に一部吸収させ、凝縮器で低温熱源と熱交換する作動流体の量を抑えることで、凝縮器の負荷を低減して全体の効率上昇と共に凝縮器の過度の大型化とこれに伴うコスト上昇を抑制できるという利点を有していた。
特開平7−91361号公報
This conventional steam power cycle system can increase the thermal efficiency compared with a general Rankine cycle using a single working fluid, and in particular, the gas phase working fluid is extracted from the turbine and the gaseous working fluid is absorbed by the absorber. The amount of working fluid that is partly absorbed by the working fluid and reducing the amount of working fluid that exchanges heat with the low-temperature heat source in the condenser reduces the load on the condenser, increasing the overall efficiency and increasing the size of the condenser. It had the advantage that the accompanying cost increase could be suppressed.
Japanese Patent Laid-Open No. 7-91361

従来の混合流体を用いた蒸気動力サイクルは、前記特許文献に示される構成となっており、単一の作動流体を用いるサイクルに比べて熱効率を高めることができるものの、特に、蒸発器の半分から同程度の大きさとなる気液分離器や、凝縮器と同程度かそれ以上の大きさとなる吸収器を用いることから、これらがシステム中で大きなスペースを占有し、システムのコンパクト化を困難なものにする他、各機器間に配管が存在することに伴う熱損失やポンプ損失が無視できないものとなり、熱エネルギから有効な仕事として得られる分が小さくなるという課題を有していた。   A conventional steam power cycle using a mixed fluid has a configuration shown in the above-mentioned patent document, and although it can increase the thermal efficiency as compared with a cycle using a single working fluid, in particular, from half of the evaporator Since gas-liquid separators of the same size and absorbers of the same size or larger than condensers are used, these occupy a large space in the system and it is difficult to make the system compact In addition, the heat loss and the pump loss due to the presence of piping between the devices cannot be ignored, and there is a problem that the amount obtained as effective work from the heat energy is reduced.

また、前記従来の蒸気動力サイクルシステムでは、タービンから抽気して加熱器で熱交換を行わせた後の作動流体を、凝縮器から出て蒸発器へ向う作動流体に合流させる点に、合流する各流路における流量変化の影響を緩和するタンクを設けると共に、このタンクの後段側に各流路からの作動流体がスムーズに逆流なく後段側の再生器や蒸発器に向うようにするポンプが配設される。   Further, in the conventional steam power cycle system, the working fluid extracted from the turbine and subjected to heat exchange with the heater is joined at a point where the working fluid exits the condenser and joins the working fluid toward the evaporator. A tank is provided to alleviate the effects of flow rate changes in each flow path, and a pump is provided on the rear side of this tank so that the working fluid from each flow path smoothly flows to the regenerator and evaporator on the rear side without backflow. Established.

ただし、これにより、液相の作動流体をサイクル後段側に圧送するポンプが、加熱器の前段側と再生器の前段側の二箇所に設けられる形となり、作動流体流路において直列となるその配置関係のために、ポンプ同士が互いの運転状態の影響を受けやすく、負荷変化に追随して両ポンプの吐出流量の均衡を保つようにしないと、各流量が多寡いずれかに極端に変化してしまい、ポンプ動作の不具合を招いてサイクルの稼働が不安定となりやすく、このためポンプ運転状態の細かな調整を必要として制御のためのコストが上昇するという課題を有していた。   However, as a result, the pump for pumping the liquid-phase working fluid to the rear stage side of the cycle is provided in two places on the front stage side of the heater and the front stage side of the regenerator, and the arrangement in series in the working fluid flow path Because of the relationship, the pumps are easily affected by each other's operating conditions, and unless the pumps keep pace with the load changes and the discharge flow rates of both pumps are not balanced, each flow rate will change drastically. As a result, the operation of the cycle is likely to be unstable due to a malfunction of the pump operation, which requires a fine adjustment of the pump operation state, resulting in an increase in cost for control.

本発明は前記課題を解消するためになされたもので、サイクル中の熱交換器等各機器の構成と配置を適正化して、高温熱源と低温熱源との温度差に基づく熱エネルギの有効利用が図れ、十分な効率を確保できると共に、システムのコンパクト化、低コスト化を実現させられる蒸気動力サイクルシステムを提供することを目的とする。   The present invention has been made in order to solve the above-mentioned problems, and by optimizing the configuration and arrangement of each device such as a heat exchanger in a cycle, it is possible to effectively use thermal energy based on a temperature difference between a high-temperature heat source and a low-temperature heat source. An object of the present invention is to provide a steam power cycle system that can secure sufficient efficiency and can realize a compact system and a low cost.

本発明に係る蒸気動力サイクルシステムは、沸点の異なる複数の流体が混合された作動流体を全て液相の状態で所定の高温熱源と熱交換させ、前記作動流体の少なくとも一部を蒸発させる蒸発器と、前記作動流体のうち蒸発した気相分を導入されて流体の保有する熱エネルギを動力に変換するタービンと、当該タービンを出た気相の作動流体を所定の低温熱源と熱交換させて作動流体を凝縮させる凝縮器と、当該凝縮器を出た液相の低温作動流体を前記蒸発器へ送込むポンプとを少なくとも備える蒸気動力サイクルシステムにおいて、前記蒸発器が、中空の圧力容器であるシェルと、当該シェル内に配設されて長手方向両端部に熱交換対象流体の流入出口が存在する熱交換部とを備え、当該熱交換部における作動流体の流出口以外の各流入出口がシェル外部に延長配設されてシェル内部空間からは隔離された状態とされる一方、熱交換部における作動流体の流出口がシェル内部空間に開口連通する状態とされ、前記蒸発器における熱交換部の流出口からシェル内部空間に流出した高温の作動流体が、前記内部空間で気相分と液相分とに分離し、シェルから気相の作動流体と液相の作動流体がそれぞれ別個に取出されるものである。   The steam power cycle system according to the present invention is an evaporator that causes a working fluid mixed with a plurality of fluids having different boiling points to exchange heat with a predetermined high-temperature heat source in a liquid state, and evaporates at least a part of the working fluid. And a turbine that converts vapor energy of the working fluid introduced into the working fluid to convert thermal energy held by the fluid into motive power, and heat exchange of the gaseous working fluid that exits the turbine with a predetermined low-temperature heat source. In the steam power cycle system, comprising at least a condenser for condensing the working fluid and a pump for sending a liquid-phase low temperature working fluid exiting the condenser to the evaporator, the evaporator is a hollow pressure vessel. Each of the inflow and outflows except for the working fluid outflow port in the heat exchanging part. Is extended to the outside of the shell and isolated from the inner space of the shell, while the outlet of the working fluid in the heat exchange section is in open communication with the inner space of the shell. The high-temperature working fluid that has flowed out of the outlet into the inner space of the shell is separated into a gas phase component and a liquid phase component in the inner space, and the gas phase working fluid and the liquid phase working fluid are separately separated from the shell. It will be taken out.

このように本発明によれば、動力サイクルの一部をなす蒸発器として、高温熱源と作動流体とを熱交換させる熱交換部、並びに、この熱交換部を取囲むシェルを設けると共に、このシェルの内部空間を、熱交換部における各熱交換対象流体の流入出口のうち、作動流体出口にのみ連通するようにし、熱交換部で液相の作動流体を高温熱源と熱交換させた後、蒸発した気相の作動流体とこれ以外の液相の作動流体とが混合した状態の高温混相作動流体を、熱交換部から内部空間に流出させると、この内部空間で混相状態の作動流体が気相分と液相分に分離することにより、蒸発器から気相の作動流体と液相の作動流体とをそれぞれ分離状態で取出せ、蒸発器が気液分離器の機能も有することとなり、非共沸混合流体を作動流体として用いる場合に、通常は蒸発器と別途に必要であった気液分離器を省略でき、蒸発器と気液分離器を別体で配設していた場合より機器配置に必要なスペースも小さくでき、配置の自由度が増大することに加え、システム全体をコンパクト化、低コスト化できる。また、気液分離器に付随する配管も省略でき、配管の存在に伴う圧力損失や熱損失を低減させて有効に取出せる仕事量を増大させられ、高温熱源と低温熱源の温度差が小さくても十分な動力を発生させられる。   As described above, according to the present invention, as an evaporator forming a part of a power cycle, a heat exchanging part for exchanging heat between a high-temperature heat source and a working fluid and a shell surrounding the heat exchanging part are provided, and the shell The internal space of the heat exchange section communicates only with the working fluid outlet among the inflow and outlet of each heat exchange target fluid in the heat exchanging section. After the heat exchanging section exchanges heat between the liquid phase working fluid and the high-temperature heat source, it evaporates. When a high-temperature mixed-phase working fluid in a state where a mixed gas-phase working fluid and other liquid-phase working fluid are mixed is discharged from the heat exchange section to the internal space, the mixed-phase working fluid is vaporized in the internal space. By separating the liquid phase and the liquid phase, the vapor-phase working fluid and the liquid-phase working fluid can be taken out from the evaporator in a separated state, and the evaporator also functions as a gas-liquid separator. When using mixed fluid as working fluid The gas-liquid separator, which was normally required separately from the evaporator, can be omitted, and the space required for equipment arrangement can be reduced compared to the case where the evaporator and the gas-liquid separator are provided separately. In addition to increasing the degree of freedom, the entire system can be made compact and cost-effective. Also, the piping associated with the gas-liquid separator can be omitted, reducing the pressure loss and heat loss associated with the piping, increasing the amount of work that can be taken out effectively, and the temperature difference between the high temperature heat source and the low temperature heat source is small. Can generate enough power.

また、本発明に係る蒸気動力サイクルシステムは、沸点の異なる複数の流体が混合された作動流体を全て液相の状態で所定の高温熱源と熱交換させ、前記作動流体の少なくとも一部を蒸発させる蒸発器と、前記作動流体のうち蒸発した気相分を導入されて流体の保有する熱エネルギを動力に変換するタービンと、当該タービンを出た気相の作動流体を所定の低温熱源と熱交換させて作動流体を凝縮させる凝縮器と、当該凝縮器を出た液相の低温作動流体を前記蒸発器へ送込むポンプとを少なくとも備える蒸気動力サイクルシステムにおいて、前記凝縮器が、中空の圧力容器であるシェルと、当該シェル内に配設されて長手方向両端部に熱交換対象流体の流入出口が存在する熱交換部と、液相の作動流体をシェル内部空間への気相作動流体の流入部分に散布する散水部とを備え、当該熱交換部における低温熱源となる流体の流入出口がシェル外部に延長配設されてシェル内部空間からは隔離された状態とされる一方、熱交換部における作動流体の流入出口がシェル内部空間に開口連通する状態とされ、前記シェルの内部空間へ各相の作動流体が流入すると、前記散水部から噴射された液相の作動流体が一部の気相作動流体を吸収しつつ、液相の作動流体と気相の作動流体とが一つに混合し、当該混合状態の作動流体が熱交換部へ流入して熱交換による気相分の凝縮を進行させ、前記熱交換部の流出口から前記シェル内部空間に流出した作動流体が、前記内部空間で気相分と液相分とに分離し、シェルから気相の作動流体と液相の作動流体がそれぞれ別個に取出されるものである。   Further, the steam power cycle system according to the present invention causes a working fluid, in which a plurality of fluids having different boiling points are mixed, to exchange heat with a predetermined high-temperature heat source in a liquid state, thereby evaporating at least a part of the working fluid. An evaporator, a turbine that introduces the vapor phase component of the working fluid, which converts the thermal energy held by the fluid into power, and heat exchange of the vapor phase working fluid that exits the turbine with a predetermined low-temperature heat source A steam power cycle system comprising: a condenser for condensing the working fluid and a pump for feeding the liquid low-temperature working fluid exiting the condenser to the evaporator; wherein the condenser is a hollow pressure vessel A shell, a heat exchanging portion disposed in the shell and having an inlet / outlet of a fluid to be heat exchanged at both longitudinal ends, a liquid phase working fluid flowing into the shell internal space A sprinkling part that is sprayed on the part, and a fluid inflow / outlet serving as a low-temperature heat source in the heat exchange part is extended outside the shell and is isolated from the shell internal space, while in the heat exchange part When the working fluid inflow / outflow port is in open communication with the shell inner space, and the working fluid of each phase flows into the inner space of the shell, the liquid phase working fluid ejected from the water sprinkling part is partially in the gas phase. While absorbing the working fluid, the liquid-phase working fluid and the gas-phase working fluid are mixed together, and the mixed working fluid flows into the heat exchanging part, and the condensation of the gas phase by heat exchange proceeds. And the working fluid flowing out from the outlet of the heat exchange section into the shell internal space is separated into a gas phase component and a liquid phase component in the internal space, and the gas phase working fluid and the liquid phase working fluid are separated from the shell. Are taken out separately.

このように本発明によれば、動力サイクルの一部をなす凝縮器として、低温熱源と作動流体とを熱交換させる熱交換部、及び、この熱交換部を取囲むシェル、並びにシェル内で液相の作動流体を散布する散水部を設けると共に、シェル内部空間を作動流体流入出口にのみ連通させるようにし、シェル内に導入された気相の作動流体と液相の作動流体が内部空間で混合し、この混相状態の作動流体が熱交換部に流入して低温熱源との熱交換を行うことにより、シェル内部空間で気相の作動流体を液相の作動流体に一部吸収させられ、凝縮器が吸収器の機能も有することとなり、非共沸混合流体を作動流体とする場合に、従来用いられていた吸収器を省略でき、吸収器と凝縮器を別体で配設していた場合より機器配置に必要なスペースも小さくでき、配置の自由度が増大することに加え、システム全体をコンパクト化、低コスト化できる。また、吸収器に付随する配管も省略でき、配管の存在に伴う圧力損失や熱損失を低減させて有効に取出せる仕事量を増大させられ、高温熱源と低温熱源の温度差が小さくても十分な動力を発生させられる。さらに、シェル内で気相と液相の作動流体を一様に混合状態として熱交換部に流入させることで、熱交換部伝熱面の温度を過度に下げることなく気相分の凝縮を進行させることができ、凝縮器における熱交換効率を著しく高められる。   As described above, according to the present invention, as a condenser that forms a part of a power cycle, a heat exchange unit that exchanges heat between a low-temperature heat source and a working fluid, a shell that surrounds the heat exchange unit, and a liquid in the shell A sprinkler for spraying the working fluid of the phase is provided, and the internal space of the shell is communicated only with the inflow / outlet of the working fluid, so that the gaseous working fluid introduced into the shell and the liquid working fluid are mixed in the internal space. The mixed-phase working fluid flows into the heat exchange section and exchanges heat with the low-temperature heat source, so that the gas-phase working fluid is partially absorbed by the liquid-phase working fluid in the inner space of the shell and condensed. When the non-azeotropic mixed fluid is used as the working fluid, the absorber that has been used in the past can be omitted, and the absorber and the condenser are provided separately. Less space required for equipment placement In addition to the flexibility of the arrangement is increased, compact entire system can cost. Also, piping associated with the absorber can be omitted, reducing the pressure loss and heat loss associated with the piping, increasing the amount of work that can be taken out effectively, and even if the temperature difference between the high-temperature heat source and the low-temperature heat source is small Power can be generated. Furthermore, the vapor and liquid phase working fluids are uniformly mixed in the shell and flowed into the heat exchanging section, so that condensation of the gas phase proceeds without excessively reducing the temperature of the heat exchanging surface. The heat exchange efficiency in the condenser can be significantly increased.

また、本発明に係る蒸気動力サイクルシステムは、沸点の異なる複数の流体が混合された作動流体を全て液相の状態で所定の高温熱源と熱交換させ、前記作動流体の少なくとも一部を蒸発させる蒸発器と、前記作動流体のうち蒸発した気相分を導入されて流体の保有する熱エネルギを動力に変換する二つのタービンと、当該タービンを出た気相の作動流体を所定の低温熱源と熱交換させて作動流体を凝縮させる凝縮器と、当該凝縮器を出た液相の低温作動流体を前記蒸発器へ送込むポンプと、前記高温熱源との熱交換を経て高温となった作動流体のうち、液相の作動流体を、前記蒸発器に導入される前の全て液相の作動流体と熱交換させる再生器と、前記二つのタービンのうち第一段目のタービンを出た気相の作動流体から抽気された一部の気相作動流体と前記液相の低温作動流体とを熱交換させる加熱器とを少なくとも備える蒸気動力サイクルシステムにおいて、前記ポンプが、前記凝縮器から蒸発器に至る全て液相の作動流体の主流路における前記加熱器配置位置より前段側に配設され、当該ポンプと前記凝縮器との間に所定のタンクが配設され、凝縮器を出た直後の全て液相の作動流体が導入され、前記第一のタービンから加熱器に通じる作動流体の支流路が、加熱器から前記タンクより小さい他のタンク及び前記ポンプより吐出能力の小さい他のポンプをそれぞれ経て、前記全て液相の作動流体の主流路における加熱器と再生器との間の位置で主流路と合流し、前記第一のタービンを出て加熱器での熱交換を経た作動流体が、前記他のタンク及び他のポンプをそれぞれ経由して、前記主流路を流れる全て液相の作動流体に加わるものである。   Further, the steam power cycle system according to the present invention causes a working fluid, in which a plurality of fluids having different boiling points are mixed, to exchange heat with a predetermined high-temperature heat source in a liquid state, thereby evaporating at least a part of the working fluid. An evaporator, two turbines that convert vapor energy of the working fluid that has been vaporized into the fluid, and convert the thermal energy held by the fluid into motive power; a vapor-phase working fluid that exits the turbine; and a predetermined low-temperature heat source A condenser that heat-exchanges and condenses the working fluid, a pump that sends the liquid-phase low-temperature working fluid that exits the condenser to the evaporator, and the working fluid that has reached a high temperature through heat exchange with the high-temperature heat source A regenerator that exchanges heat between the liquid-phase working fluid and all the liquid-phase working fluid before being introduced into the evaporator, and a gas phase that exits the first-stage turbine of the two turbines. Some extracted from the working fluid In a steam power cycle system comprising at least a heater for exchanging heat between a phase working fluid and the liquid phase low temperature working fluid, the pump is provided in a main flow path of an all liquid phase working fluid from the condenser to the evaporator. It is disposed on the upstream side of the heater arrangement position, a predetermined tank is disposed between the pump and the condenser, and all the liquid phase working fluid immediately after leaving the condenser is introduced, and the first The main flow path of the all-liquid-phase working fluid passes from the heater through another tank smaller than the tank and another pump smaller in discharge capacity than the pump. The working fluid that merges with the main flow path at a position between the heater and the regenerator, exits the first turbine and undergoes heat exchange in the heater passes through the other tank and the other pump, respectively. Te, those applied to the working fluid of all liquid phase flowing in the main channel.

このように本発明によれば、サイクルにおける凝縮器と蒸発器間の液相作動流体主流路において、凝縮器後段側で且つ加熱器の前段側にポンプを配設して、この主流路におけるポンプを一つのみとすることにより、ポンプ動作が他のポンプ動作の影響を受けることもなく、ポンプが原因でサイクルの運転状態が不安定状態に陥る危険性を小さくすることができる。また、加熱器に対し作動流体をスムーズに流入出させるための圧力を発生させる他のポンプ及びこのポンプ動作に伴う作動流体の流量変化の影響を小さくする他のタンクの配設位置が、タービンから加熱器へ至る抽気分の作動流体支流路の延長上で、凝縮器と蒸発器との間の液相作動流体主流路と合流する前の区間に設定されることで、これら他のタンク及びポンプが、作動流体を主流路に適切に合流させて逆流させない程度の能力を有していれば、システムを適切に機能させられることとなり、タンク及びポンプの小型化が実現し、システム全体のコンパクト化と低コスト化をさらに促せる。   As described above, according to the present invention, in the liquid-phase working fluid main flow path between the condenser and the evaporator in the cycle, the pump is disposed on the rear stage side of the condenser and on the front stage side of the heater. By using only one, the pump operation is not affected by other pump operations, and the risk of the cycle operating state becoming unstable due to the pump can be reduced. In addition, other pumps that generate pressure for smoothly flowing the working fluid into and out of the heater and other tanks that reduce the influence of changes in the flow rate of the working fluid accompanying this pump operation are located from the turbine. On the extension of the working fluid branch for the extracted air to the heater, it is set in the section before joining with the liquid-phase working fluid main channel between the condenser and the evaporator, so that these other tanks and pumps However, if the working fluid is properly combined with the main flow path so that it does not flow backward, the system can function properly, miniaturizing the tank and pump, and making the entire system compact. It can further promote cost reduction.

本発明の一実施形態に係る蒸気動力サイクルシステムの概略系統図である。1 is a schematic system diagram of a steam power cycle system according to an embodiment of the present invention. 本発明の一実施形態に係る蒸気動力サイクルシステムにおける蒸発器の概略縦断面図である。It is a schematic longitudinal cross-sectional view of the evaporator in the steam power cycle system which concerns on one Embodiment of this invention. 本発明の一実施形態に係る蒸気動力サイクルシステムにおける蒸発器の他の概略縦断面図である。It is another schematic longitudinal cross-sectional view of the evaporator in the steam power cycle system which concerns on one Embodiment of this invention. 本発明の一実施形態に係る蒸気動力サイクルシステムにおける蒸発器の熱交換部構造説明図である。It is a heat exchange part structure explanatory view of an evaporator in a steam power cycle system concerning one embodiment of the present invention. 本発明の一実施形態に係る蒸気動力サイクルシステムにおける凝縮器の概略縦断面図である。It is a schematic longitudinal cross-sectional view of the condenser in the steam power cycle system which concerns on one Embodiment of this invention. 本発明の一実施形態に係る蒸気動力サイクルシステムにおける凝縮器の他方向の概略縦断面図である。It is a schematic longitudinal cross-sectional view of the other direction of the condenser in the steam power cycle system which concerns on one Embodiment of this invention. 本発明の一実施形態に係る蒸気動力サイクルシステムにおける凝縮器の熱交換部構造説明図である。It is a heat exchange part structure explanatory view of a condenser in a steam power cycle system concerning one embodiment of the present invention.

符号の説明Explanation of symbols

1 蒸気動力サイクルシステム
1a 主流路
1b、1c 支流路
10 蒸発器
11 シェル
11a 温海水流入口
11b 温海水流出口
11c、11d 作動流体流出口
11e 作動流体流入口
11f 内部空間
11g 有孔隔壁板
12 熱交換部
12a、12c 流入口
12b 流出口
21、22 タービン
30 凝縮器
31 シェル
31a 冷海水流入口
31b 冷海水流出口
31c、31d 作動流体流入口
31e、31f 作動流体流出口
31g 内部空間
32 散水部
32a スプレーノズル
33 熱交換部
33a 流入口
33b、33c 流出口
34 補助凝縮器
35、62 タンク
40、61 ポンプ
50 再生器
51 減圧弁
60 加熱器
70 伝熱プレート
DESCRIPTION OF SYMBOLS 1 Steam power cycle system 1a Main flow path 1b, 1c Branch flow path 10 Evaporator 11 Shell 11a Warm seawater inlet 11b Warm seawater outlet 11c, 11d Working fluid outlet 11e Working fluid inlet 11f Inner space 11g Perforated partition plate 12 Heat exchange part 12a, 12c Inlet 12b Outlet 21, 22 Turbine 30 Condenser 31 Shell 31a Cold seawater inlet 31b Cold seawater outlet 31c, 31d Working fluid inlet 31e, 31f Working fluid outlet 31g Internal space 32 Sprinkling part 32a Spray nozzle 33 Heat exchanger 33a Inlet 33b, 33c Outlet 34 Auxiliary condenser 35, 62 Tank 40, 61 Pump 50 Regenerator 51 Pressure reducing valve 60 Heater 70 Heat transfer plate

以下、本発明の一実施形態を図1ないし図7に基づいて説明する。図1は本実施の形態に係る蒸気動力サイクルシステムの概略系統図、図2は本実施形態に係る蒸気動力サイクルシステムにおける蒸発器の概略縦断面図、図3は本実施形態に係る蒸気動力サイクルシステムにおける蒸発器の他の概略縦断面図、図4は本実施形態に係る蒸気動力サイクルシステムにおける蒸発器の熱交換部構造説明図、図5は本実施形態に係る蒸気動力サイクルシステムにおける凝縮器の概略縦断面図、図6は本実施形態に係る蒸気動力サイクルシステムにおける凝縮器の他の概略縦断面図、図7は本実施形態に係る蒸気動力サイクルシステムにおける凝縮器の熱交換部構造説明図である。   Hereinafter, an embodiment of the present invention will be described with reference to FIGS. 1 is a schematic system diagram of a steam power cycle system according to the present embodiment, FIG. 2 is a schematic longitudinal sectional view of an evaporator in the steam power cycle system according to the present embodiment, and FIG. 3 is a steam power cycle according to the present embodiment. FIG. 4 is an explanatory diagram of the structure of the heat exchanger of the evaporator in the steam power cycle system according to this embodiment. FIG. 5 is a condenser in the steam power cycle system according to this embodiment. FIG. 6 is another schematic longitudinal sectional view of the condenser in the steam power cycle system according to the present embodiment, and FIG. 7 is a description of the structure of the heat exchange part of the condenser in the steam power cycle system according to the present embodiment. FIG.

前記各図において本実施の形態に係る蒸気動力サイクルシステム1は、アンモニアと水の混合体からなる作動流体と前記高温熱源としての温海水とを熱交換させ、作動流体の蒸気を得る蒸発器10と、この蒸発器10で得られた蒸気により動作する原動機としてのタービン21、22と、これらタービン21、22を出た蒸気を凝縮させて液相とする凝縮器30と、凝縮器30から作動流体を取出して蒸発器10に導入するポンプ40と、温海水との熱交換を経て高温となった作動流体のうち、液相の作動流体を、凝縮器30から出た全て液相の作動流体と熱交換させる再生器50と、第1段目のタービン21を出た段階で抽気された一部の気相作動流体と前記全て液相の作動流体とを熱交換させる加熱器60とを備える構成である。このうち、タービン21、22及びポンプ40については、一般的な蒸気動力サイクルで用いられるのと同様の公知の装置であり、説明を省略する。   In each of the drawings, a steam power cycle system 1 according to the present embodiment performs an exchange of heat between a working fluid composed of a mixture of ammonia and water and warm seawater as the high-temperature heat source to obtain a vapor of the working fluid. And the turbines 21 and 22 as prime movers that operate with the steam obtained in the evaporator 10, the condenser 30 that condenses the steam that exits the turbines 21 and 22 into a liquid phase, and the condenser 30. Of the working fluid that has become high temperature through heat exchange with the warm water and the pump 40 that takes out the fluid and introduces it into the evaporator 10, the liquid-phase working fluid is all liquid-phase working fluid that has come out of the condenser 30. And a regenerator 50 for exchanging heat with each other, and a heater 60 for exchanging heat between a part of the gas phase working fluid extracted at the stage of exiting the first stage turbine 21 and the all liquid phase working fluid. It is a configuration. Among these, the turbines 21 and 22 and the pump 40 are known devices similar to those used in a general steam power cycle, and the description thereof is omitted.

前記蒸発器10は、最外殻をなして他の機器と配管で接続される中空のシェル11と、このシェル11内部に配置され、高温熱源としての温海水と作動流体を熱交換させるプレート式の熱交換部12とを備える構成である。
前記シェル11は、一般的な略円筒カプセル状の中空圧力容器であり、長手方向一端部に温海水流入口11aと作動流体流出口11c、他端部に温海水流出口11bと作動流体流入口11e、作動流体流出口11dがそれぞれ外部の配管と接続可能に配置される構造となっており、これら流入出口を除いて内部と外部を水密状態で隔離する構成である。シェル11の作動流体流入口11eは再生器50低温側と連通する配管に接続される。また、作動流体流出口11cはタービン21入口側と連通する配管に接続され、作動流体流出口11dは再生器50高温側と連通する配管に接続される。このシェル11の内部空間11fは外部に対し保温状態となっている他、シェル11内には熱交換器12を支持すると共に気液の分離をより確実なものとする有孔隔壁板11gが設けられる。
The evaporator 10 is a hollow shell 11 that forms an outermost shell and is connected to other equipment by piping, and is disposed inside the shell 11 to exchange heat between warm seawater as a high-temperature heat source and a working fluid. The heat exchanging unit 12 is provided.
The shell 11 is a general substantially cylindrical capsule-shaped hollow pressure vessel, with a warm seawater inlet 11a and a working fluid outlet 11c at one end in the longitudinal direction, and a warm seawater outlet 11b and a working fluid inlet 11e at the other end. Each of the working fluid outlets 11d is configured to be connectable to an external pipe, and the inside and the outside are separated in a watertight state except for these inlets and outlets. The working fluid inlet 11e of the shell 11 is connected to a pipe communicating with the regenerator 50 low temperature side. The working fluid outlet 11c is connected to a pipe communicating with the inlet side of the turbine 21, and the working fluid outlet 11d is connected to a pipe communicating with the regenerator 50 high temperature side. The internal space 11f of the shell 11 is in a state of keeping heat with respect to the outside, and the shell 11 is provided with a perforated partition plate 11g that supports the heat exchanger 12 and further ensures separation of gas and liquid. It is done.

前記熱交換部12は、矩形状の複数のプレート同士を溶接して得られるもので、長手方向一端部に温海水の流入口12aと作動流体の流出口12b、他端部に温海水の流出口(図示を省略)と作動流体の流入口12cがそれぞれ配置される向流型となっており、熱交換部12におけるこれら各流入出口は、作動流体の流出口12bを除いてシェル11の各流入出口と連通状態で一体化されており、シェル11の内部空間11fに対して水密状態で隔離される構成である。一方、作動流体の流出口12bはシェル11の内部空間11fで開口した状態にあり、この内部空間11f及び作動流体流出口11c、11dに連通している。   The heat exchanging section 12 is obtained by welding a plurality of rectangular plates. One end of the longitudinal direction is a warm seawater inlet 12a and a working fluid outlet 12b, and the other end is a flow of warm seawater. An outlet (not shown) and a working fluid inlet 12c are respectively arranged in a counterflow type, and each of these inlets and outlets in the heat exchanging section 12 is provided in each shell 11 except for the working fluid outlet 12b. It is integrated with the inflow / outlet in a communication state, and is isolated from the internal space 11f of the shell 11 in a watertight state. On the other hand, the working fluid outlet 12b is open in the internal space 11f of the shell 11 and communicates with the internal space 11f and the working fluid outlets 11c and 11d.

この熱交換部12内で、ポンプ40からの送給圧力を受けつつ、温海水との熱交換で温められる作動流体は、熱交換部12を上昇し、揮発しやすいアンモニアを主成分とする一部が蒸発して気液混相流となる。ちょうど既定の温度まで昇温した段階で熱交換部12上部の流出口12bより気液混相状態で流出するように流量を設定されている。   The working fluid that is heated by heat exchange with warm seawater while receiving the supply pressure from the pump 40 in the heat exchanging section 12 rises up the heat exchanging section 12 and is mainly composed of ammonia that is easily volatilized. The part evaporates and becomes a gas-liquid mixed phase flow. The flow rate is set so as to flow out in a gas-liquid mixed phase state from the outlet 12b at the top of the heat exchanging section 12 at the stage where the temperature has been raised to a predetermined temperature.

作動流体は、熱交換部12の流出口12bからシェル11の内部空間11fに流出した後、この内部空間11fを流下しながら気相分と液相分に分れ、気相の作動流体はシェル11上部の作動流体流出口11cから後段側のタービン21へ向う一方、液相の作動流体はシェル11下部に達し、作動流体流出口11dから後段側の再生器50へ向うこととなり、結果として、温海水との熱交換を経た高温の作動流体を気相分と液相分とに分けてシェル11外に取出せる仕組みとなっている。   After the working fluid flows out from the outlet 12b of the heat exchange section 12 into the internal space 11f of the shell 11, the working fluid is divided into a vapor phase and a liquid phase while flowing down the internal space 11f. 11 is directed from the upper working fluid outlet 11c to the turbine 21 on the rear stage, while the liquid-phase working fluid reaches the lower portion of the shell 11 and from the working fluid outlet 11d to the rear stage regenerator 50. As a result, A high-temperature working fluid that has undergone heat exchange with warm seawater is divided into a gas phase component and a liquid phase component, and can be taken out of the shell 11.

こうして蒸発器10は、機能的には従来の蒸発器と気液分離器と組合わせたものとなるものの、大きさは従来のシェルを用いるタイプの蒸発器と同程度となり、気液分離器の容積分を削減できるため、小型・省スペース化が実現すると共に、蒸発部分と気液分離部分間の配管が省略されることで損失を抑えられ、システムの熱効率が向上する。   Thus, although the evaporator 10 is functionally a combination of a conventional evaporator and a gas-liquid separator, the size of the evaporator 10 is the same as that of a conventional evaporator using a shell, Since the volume can be reduced, it is possible to reduce the size and space, and the piping between the evaporation portion and the gas-liquid separation portion can be omitted, so that the loss can be suppressed and the thermal efficiency of the system can be improved.

前記凝縮器30は、最外殻をなして他の機器と配管で接続される中空のシェル31と、このシェル31内で前記再生器50から出た液相の作動流体をシェル31の内部空間31gに散水する散水部32と、シェル31内へ導入された作動流体を低温熱源である冷海水と熱交換させて気相分を凝縮させる熱交換部33とを備える構成である。また、凝縮器30には、凝縮器30における未凝縮分の気相の作動流体を導入して凝縮器30同様に冷海水と熱交換させ、完全に凝縮させる補助凝縮器34と、この補助凝縮器34並びに凝縮器30を出た液相の作動流体を一時的に貯溜した上で後段側へ送出すタンク35がそれぞれ併設される。   The condenser 30 includes a hollow shell 31 that forms an outermost shell and is connected to other devices by piping, and a liquid-phase working fluid that has flowed out of the regenerator 50 in the shell 31 is supplied to the internal space of the shell 31. It is the structure provided with the watering part 32 which sprinkles water to 31g, and the heat exchange part 33 which heat-exchanges the working fluid introduce | transduced in the shell 31 with the cold seawater which is a low-temperature heat source, and condenses a gaseous-phase part. Further, the condenser 30 is introduced with a gas-phase working fluid that has not been condensed in the condenser 30 to exchange heat with cold seawater in the same manner as the condenser 30 and to completely condense, and this auxiliary condensation. A tank 35 for temporarily storing the liquid-phase working fluid exiting the condenser 34 and the condenser 30 and sending it to the subsequent stage is provided.

前記シェル31は、一般的な略円筒状の中空圧力容器であり、長手方向一端部に冷海水の流入口31aと作動流体流出口31e、31f、他端部に冷海水の流出口31bと作動流体流入口31c、31dがそれぞれ外部の配管と接続可能に配置される構造となっており、これら流入出口を除いて内部と外部を水密状態で隔離する構成である。シェル31の作動流体流入口31cはタービン22出口側と連通する配管に接続され、作動流体流入口31dは減圧弁51と連通する配管に接続される。また、作動流体流出口31eは補助凝縮器34と連通する配管に接続され、作動流体流出口31fはタンク35と連通する配管に接続される。シェル31の内部空間31gは外部に対し保温状態となっていることに加え、散水部32から散水された液相の作動流体やこれに吸収されたものが逆に液相から気相に変化しないように、圧力を適正な値に維持する仕組みとされている。   The shell 31 is a general substantially cylindrical hollow pressure vessel, and operates with a cold seawater inlet 31a and working fluid outlets 31e and 31f at one end in the longitudinal direction and a cold seawater outlet 31b at the other end. The fluid inflow ports 31c and 31d are each configured to be connectable to an external pipe, and the inside and the outside are separated in a watertight state except for these inflow and exit ports. The working fluid inlet 31 c of the shell 31 is connected to a pipe communicating with the turbine 22 outlet side, and the working fluid inlet 31 d is connected to a pipe communicating with the pressure reducing valve 51. The working fluid outlet 31 e is connected to a pipe communicating with the auxiliary condenser 34, and the working fluid outlet 31 f is connected to a pipe communicating with the tank 35. The internal space 31g of the shell 31 is in a state of being kept warm with respect to the outside, and the liquid-phase working fluid sprayed from the sprinkling section 32 and the material absorbed therein are not changed from the liquid phase to the gas phase. Thus, the pressure is maintained at an appropriate value.

前記散水部32は、複数のスプレーノズル32aを有してなり、シェル31の作動流体流入口31d内側部分に連通接続してシェル31内の上部に配設され、導入された液相の作動流体を各スプレーノズル32aより下方へ噴射して飛散させる構成である。この散水部32については、下方への噴射に限らず、液相の作動流体を上方へ噴射するようにしてもかまわない。また、スプレーノズル32aだけでなく、圧力損失を小さくしたより大型のノズル等を用いることもできる。   The water sprinkling part 32 has a plurality of spray nozzles 32a, is connected to the inner part of the working fluid inlet 31d of the shell 31 and is disposed in the upper part of the shell 31, and is introduced into the liquid phase working fluid. Is sprayed downward from each spray nozzle 32a and scattered. The water sprinkling section 32 is not limited to being jetted downward, and liquid working fluid may be jetted upward. Further, not only the spray nozzle 32a but also a larger nozzle with reduced pressure loss can be used.

前記熱交換部33は、矩形状の複数の金属製プレート同士を溶接して得られるもので、長手方向一端部に冷海水の流入口と作動流体の流出口33b、他端部に冷海水の流出口33cと作動流体の流入口33aが配置される向流型となっており、各流入出口のうち、冷海水の流入出口はシェル31における冷海水の流入出口と連通状態で一体化され、シェル31の内部空間31gに対しては水密状態で隔離される構成である。一方、作動流体の流入口33a及び流出口33bはシェル31の内部空間31gに対し開口しており、この内部空間31gと、シェル31の作動流体流入口31c、及び作動流体流出口31e、31fにそれぞれ連通している。   The heat exchanging portion 33 is obtained by welding a plurality of rectangular metal plates, and includes cold seawater inlet and working fluid outlet 33b at one end in the longitudinal direction and cold seawater at the other end. Outflow port 33c and working fluid inflow port 33a are arranged in a counterflow type, and among each inflow and exit port, the inflow / outlet port of cold seawater is integrated with the inflow / outlet port of cold seawater in the shell 31, The internal space 31g of the shell 31 is isolated in a watertight state. On the other hand, the working fluid inflow port 33a and the outflow port 33b open to the internal space 31g of the shell 31, and the internal space 31g, the working fluid inflow port 31c of the shell 31, and the working fluid outflow ports 31e and 31f Each communicates.

この熱交換部33における作動流体の流入口33aは、シェル31の内部空間31gに対し上向きに開口しており、散水部32から散水された液相の作動流体と、シェル31内に作動流体流入口31cを通じて導入されて前記液相の作動流体に吸収されなかったか又は吸収途上にある気相の作動流体とが、混合状態でこの流入口33aに流入し、まとめて冷海水と熱交換する仕組みとなっている。   The working fluid inlet 33 a in the heat exchanging portion 33 opens upward with respect to the internal space 31 g of the shell 31, and the liquid-phase working fluid sprayed from the sprinkling portion 32 and the working fluid flow in the shell 31. A mechanism in which the gas phase working fluid introduced through the inlet 31c and not absorbed by the liquid phase working fluid or in the course of absorption flows into the inlet 33a in a mixed state, and collectively exchanges heat with cold seawater. It has become.

こうして凝縮器30は、機能的には従来の吸収器と凝縮器とを組合わせたものとなるものの、大きさは従来のシェルを用いるタイプの凝縮器を散水部32のスペース分だけ拡張した程度となり、吸収器の容積分を削減できることから、小型・省スペース化が実現すると共に、吸収部分と凝縮部分間の配管が省略されることで損失を抑えられ、システムの熱効率が向上する。   In this way, the condenser 30 is functionally a combination of a conventional absorber and a condenser, but the size of the condenser 30 is the extent that a conventional condenser using a shell is expanded by the space of the sprinkler 32. Since the volume of the absorber can be reduced, the size and space saving can be realized, and the loss between the absorption part and the condensation part can be suppressed, and the thermal efficiency of the system can be improved.

前記蒸発器10及び凝縮器30の各熱交換部12、33としては、矩形状の金属製伝熱プレート70を複数並列状態で溶接一体化して形成され、各伝熱プレート70間に作動流体の通過する第一隙間部とその熱交換対象の温海水又は冷海水の通過する第二隙間部とがそれぞれ一つおきに生じると共に、前記各第一隙間部に作動流体を流入出させる一の開口部と前記各第二隙間部に海水を流入出させる他の開口部とが互いに離隔させて設けられる全溶接プレート式熱交換器をそれぞれ用いており、優れた熱交換効率により、高温熱源と低温熱源の温度差が小さくても作動流体を確実に蒸発、凝縮させて動力サイクルを稼働させられる仕組みである。   The heat exchangers 12 and 33 of the evaporator 10 and the condenser 30 are formed by welding and integrating a plurality of rectangular metal heat transfer plates 70 in a parallel state. One opening for causing the working fluid to flow into and out of each first gap portion, and the second gap portion passing through the first gap portion and the second gap portion through which the warm seawater or cold seawater to be heat-exchanged pass each other. And the other opening for allowing seawater to flow into and out of the second gaps are all separated from each other by using all-welded plate heat exchangers. This is a mechanism that allows the working fluid to operate by reliably evaporating and condensing the working fluid even if the temperature difference between the heat sources is small.

前記再生器50は、凝縮器30からポンプ40を経て蒸発器10に向う全て液相の作動流体の主流路1a中に介設され、蒸発器10に達する前の全て液相の作動流体と、蒸発器10内で気相の作動流体と分離されて蒸発器10を出た高温液相の作動流体とを熱交換させる熱交換器であり、前記蒸発器10や凝縮器30の各熱交換部12、33と同様の構造とされてなり、詳細な説明は省略する。この再生器50では、蒸発器10の作動流体流出口11dに通じる高温液相作動流体側の支流路1bが減圧弁51を介して凝縮器30と配管接続されており、再生器50を出た液相の作動流体が、減圧弁51を経由して圧力を調整された後、凝縮器30内の散水部32へ導入される仕組みである。   The regenerator 50 is interposed in the main flow path 1a of all liquid phase working fluid from the condenser 30 via the pump 40 to the evaporator 10, and all liquid phase working fluid before reaching the evaporator 10; A heat exchanger for exchanging heat between a vapor-phase working fluid and a high-temperature liquid-phase working fluid exiting the evaporator 10 in the evaporator 10, and each heat exchange section of the evaporator 10 and the condenser 30. 12 and 33, the detailed description is omitted. In this regenerator 50, the branch flow path 1 b on the high-temperature liquid-phase working fluid side leading to the working fluid outlet 11 d of the evaporator 10 is connected to the condenser 30 via the pressure reducing valve 51 and exits the regenerator 50. This is a mechanism in which the liquid-phase working fluid is introduced into the watering section 32 in the condenser 30 after the pressure is adjusted via the pressure reducing valve 51.

この再生器50から減圧弁51を経由して凝縮器30内の散水部32へ液相作動流体が導入される過程で、圧力損失が大きい場合や、蒸気動力サイクルシステムの初期起動時等の、タービン21、22での膨張が小さく、蒸発器10と凝縮器30の間の圧力差が十分でない場合などには、スプレーノズル32aからの散水に必要な圧力を十分に得られないだけでなく、作動流体を再生器50側へ適切に送出せないことも起り得る。このため、前記各場合に対応させるべく、再生器50の前段側に、蒸発器10を出た高温液相の作動流体を再生器50等後段側へ適切に送給可能とするポンプ(図示を省略)を配設することもできる。このポンプは初期起動時などの必要な時期に動作させればよく、蒸気動力サイクルの定常動作状態など、蒸発器10と凝縮器30との間に十分な圧力差が生じている場合には動作させる必要はない。また、こうしたポンプを設ける以外に、蒸発器10の設置位置を凝縮器30に比べて高くし、液高さにより圧力差を確保するようにしたり、起動時には作動流体ポンプの流量を少なくして全量が蒸発するようにし、圧力差が生じてきたら作動流体量を増やしていく手法等を用いることもできる。   In the process in which the liquid phase working fluid is introduced from the regenerator 50 through the pressure reducing valve 51 to the water sprinkling section 32 in the condenser 30, when the pressure loss is large or when the steam power cycle system is initially started, When the expansion in the turbines 21 and 22 is small and the pressure difference between the evaporator 10 and the condenser 30 is not sufficient, the pressure necessary for watering from the spray nozzle 32a cannot be obtained sufficiently, It may happen that the working fluid cannot be properly delivered to the regenerator 50 side. Therefore, in order to cope with each of the above cases, a pump (not shown) that can appropriately supply the high-temperature liquid-phase working fluid that has exited the evaporator 10 to the subsequent stage side such as the regenerator 50, on the upstream side of the regenerator 50 (Omitted) can also be provided. This pump may be operated at a necessary time such as at the time of initial start-up, and operates when there is a sufficient pressure difference between the evaporator 10 and the condenser 30 such as a steady operation state of the steam power cycle. There is no need to let them. In addition to providing such a pump, the installation position of the evaporator 10 is made higher than that of the condenser 30, and a pressure difference is ensured by the liquid height, or the flow rate of the working fluid pump is reduced at the time of start-up. A method of increasing the amount of working fluid when a pressure difference occurs can be used.

前記加熱器60は、前記再生器50同様に凝縮器30から蒸発器10に向う全て液相の作動流体の主流路1a中に介設され、再生器50より前段側の位置でこの再生器50に達する前の全て液相の作動流体と、第一段目のタービン21を出た後抽気された一部の高温気相の作動流体とを熱交換させる熱交換器であり、前記蒸発器10や凝縮器30の各熱交換部12、33と同様の構造とされてなり、詳細な説明は省略する。この加熱器60のタービン21側に接続される高温作動流体側の支流路1cにおける、加熱器60より後段側部分には、加熱器60に対し高温作動流体をスムーズに流入出させるための圧力を発生させるポンプ61及びこのポンプ動作に伴う作動流体の流量変化の影響を小さくするタンク62がそれぞれ配設される。   Like the regenerator 50, the heater 60 is interposed in the main flow path 1 a of the all-phase working fluid from the condenser 30 to the evaporator 10, and the regenerator 50 is located at a position upstream of the regenerator 50. Is a heat exchanger for exchanging heat between all the liquid-phase working fluid before reaching the first stage and a part of the high-temperature gas-phase working fluid extracted after leaving the first stage turbine 21. And the heat exchange units 12 and 33 of the condenser 30 have the same structure, and detailed description thereof is omitted. In the branch flow path 1c on the high-temperature working fluid side connected to the turbine 21 side of the heater 60, a pressure for smoothly flowing the high-temperature working fluid into and out of the heater 60 is applied to a portion on the rear stage side from the heater 60. A pump 61 to be generated and a tank 62 for reducing the influence of changes in the flow rate of the working fluid accompanying the pump operation are provided.

この加熱器60の高温作動流体側の支流路1cは、タンク62及びポンプ61を介して、前記主流路1aにおける加熱器60より後段側で且つ再生器50より前段側の位置に合流する形で配管接続されており、タービン21を出て加熱器60における熱交換で冷却され凝縮した作動流体が、タンク62及びポンプ61を経由した後、再生器50に達する直前の液相作動流体に加わる仕組みである。前記タンク62及びポンプ61は、加熱器60で凝縮された液相の作動流体を主流路1a側からの逆流等なく適切に後段側へ流せる程度の容量及び吐出能力があれば問題なく、容量や能力を抑えた小型のものを用いることができる。   The branch flow path 1c on the high temperature working fluid side of the heater 60 is joined via the tank 62 and the pump 61 to a position on the downstream side of the heater 60 and on the upstream side of the regenerator 50 in the main flow path 1a. A mechanism in which the working fluid which is connected by piping and exits the turbine 21 and is cooled and condensed by heat exchange in the heater 60 passes through the tank 62 and the pump 61 and is added to the liquid-phase working fluid immediately before reaching the regenerator 50. It is. The tank 62 and the pump 61 have no problem as long as they have a capacity and a discharge capacity sufficient to allow the liquid-phase working fluid condensed in the heater 60 to flow to the subsequent stage without backflow from the main flow path 1a. A small one with reduced capacity can be used.

次に、本実施の形態に係る蒸気動力サイクルシステムのサイクル実行状態について説明する。前提として、海の所定深さ位置から低温熱源となる冷海水を、また、海の表層から高温熱源としての温海水を、それぞれ所定の流量を確保しつつ取水し、凝縮器30又は蒸発器10にそれぞれ導入しているものとする。   Next, the cycle execution state of the steam power cycle system according to the present embodiment will be described. As a premise, cold seawater as a low-temperature heat source is taken from a predetermined depth position of the sea, and warm seawater as a high-temperature heat source is taken from the surface of the sea while securing a predetermined flow rate, respectively, and the condenser 30 or the evaporator 10 Are introduced respectively.

蒸発器10では、高温熱源として上側の温海水流入口11aから導入される温海水と、下側の作動流体流入口11eから導入される全て液相で且つ当初の組成のままの作動流体とを、内部の熱交換部12で熱交換させる。ここで加熱された作動流体は、昇温に伴いその一部が蒸発して気液混相流となる。この混相状態の高温作動流体は、熱交換部12の流出口12bからシェル11の内部空間11fに流出して、有孔隔壁板11gを通過し、熱交換器12側面やシェル11内壁に沿って流下する過程で気相分と液相分に分れ、気相の作動流体は内部空間11fを上昇してシェル11上部の作動流体流出口11cから蒸発器10外へ出る。また、液相の作動流体はそのまま流下してシェル11下部に達し、作動流体流出口11dから蒸発器10外へ出ることとなる。   In the evaporator 10, warm seawater introduced from the upper warm seawater inlet 11a as a high-temperature heat source, and all the liquid phase and working fluid with the original composition introduced from the lower working fluid inlet 11e, Heat is exchanged in the internal heat exchange unit 12. A part of the heated working fluid is evaporated as the temperature rises to become a gas-liquid mixed phase flow. This mixed-phase high-temperature working fluid flows out from the outlet 12b of the heat exchange section 12 to the internal space 11f of the shell 11, passes through the perforated partition plate 11g, and runs along the side surface of the heat exchanger 12 and the inner wall of the shell 11. In the process of flowing down, it is divided into a gas phase component and a liquid phase component, and the gas phase working fluid ascends the internal space 11f and exits from the evaporator 10 through the working fluid outlet 11c above the shell 11. Further, the liquid-phase working fluid flows down as it is, reaches the lower part of the shell 11, and exits from the evaporator 10 through the working fluid outlet 11 d.

蒸発器10を出た高温気相の作動流体は、蒸発器10導入前の当初組成の液相作動流体と比較してアンモニアの割合が非常に高くなっており、この作動流体がタービン21、22に達してこれらを作動させ、これらタービン21、22により発電機等他の機器が駆動され、熱エネルギが使用可能なエネルギに変換される。こうしてタービン21、22で膨張して仕事を行った気相作動流体は、圧力及び温度を低減させた状態となり、第二段目のタービン22を出た後、凝縮器30に導入される。   The high-temperature gas-phase working fluid exiting the evaporator 10 has a very high proportion of ammonia as compared with the liquid-phase working fluid having an initial composition before the introduction of the evaporator 10. These are operated, and these turbines 21 and 22 drive other devices such as a generator to convert thermal energy into usable energy. The gas-phase working fluid that has expanded and worked in the turbines 21 and 22 is in a state in which the pressure and temperature are reduced, and after exiting the second-stage turbine 22, is introduced into the condenser 30.

一方、作動流体流出口11dから蒸発器10外へ出た高温液相の作動流体は、蒸発器10導入前の当初組成の液相作動流体と比較してアンモニアの割合が低めとなっており、この作動流体が再生器50へ通じる支流路1bに入り、再生器50に導入される。この再生器50では、他方の主流路1aを通る全て液相の作動流体と前記高温液相の作動流体とを熱交換させ、主流路1a側の全て液相の作動流体を昇温させて蒸発器10側へ向わせる。そして、この再生器50での熱交換で冷却される支流路1b側の液相作動流体は、再生器50を出た後、減圧弁51を経て凝縮器30の作動流体流入口31dから内部の散水部32に導入され、この散水部32から内部空間31gに散水されることとなる。   On the other hand, the high-temperature liquid-phase working fluid that has flowed out of the evaporator 10 from the working fluid outlet 11d has a lower ratio of ammonia compared to the liquid-phase working fluid of the initial composition before the introduction of the evaporator 10, This working fluid enters the branch flow path 1 b leading to the regenerator 50 and is introduced into the regenerator 50. In this regenerator 50, all the liquid-phase working fluid passing through the other main flow path 1a and the high-temperature liquid-phase working fluid are subjected to heat exchange, and the temperature of all the liquid-phase working fluid on the main flow path 1a is increased to evaporate. Turn to the vessel 10 side. Then, the liquid-phase working fluid on the side of the branch flow path 1b cooled by heat exchange in the regenerator 50 exits the regenerator 50, and then passes through the pressure reducing valve 51 to the inside of the working fluid inlet 31d of the condenser 30. It is introduced into the water sprinkling part 32 and water is sprinkled from the water sprinkling part 32 to the internal space 31g.

凝縮器30では、作動流体流入口31cから内部に導入された気相の作動流体が、シェル31の内部空間31gで散水部32から散水される液相の作動流体と接触し、これに一部吸収されて液相に変化する。そして、残りの未吸収分の気相作動流体は、吸収によりその量を増加させた液相の作動流体とこの内部空間31gにおいて一様に混合した状態で、熱交換部33の流入口33aに流入し、熱交換部33内を混相流として進むこととなる。   In the condenser 30, the gas-phase working fluid introduced into the inside from the working fluid inlet 31 c comes into contact with the liquid-phase working fluid sprinkled from the water sprinkling portion 32 in the internal space 31 g of the shell 31, and a part thereof It is absorbed and changes to the liquid phase. The remaining unabsorbed gas-phase working fluid is uniformly mixed with the liquid-phase working fluid whose amount has been increased by absorption in the internal space 31g, and is introduced into the inlet 33a of the heat exchange section 33. It flows in and proceeds in the heat exchange section 33 as a multiphase flow.

混合状態の作動流体は、別途熱交換部33に導入された温度の低い冷海水と伝熱プレート70を介して熱交換し、作動流体全体が冷却される中、気相の作動流体は冷却に伴い凝縮して液相になるが、液相分と混合状態であることから、気相のみの場合に比べ比較的高めの温度で凝縮することとなる。このように作動流体を混相状態として冷海水と熱交換させることで、気相単相の場合より高い温度でも安定的に凝縮させられ、気相から液相となる割合を増加させられる。   The mixed working fluid exchanges heat with cold seawater, which is separately introduced into the heat exchanging unit 33, via the heat transfer plate 70, and the working fluid in the gas phase is cooled while the whole working fluid is cooled. Although it condenses and becomes a liquid phase, since it is in a mixed state with the liquid phase, it is condensed at a relatively higher temperature than in the case of only the gas phase. In this way, the working fluid is mixed with the cold seawater in a mixed phase state, so that the working fluid can be stably condensed even at a higher temperature than in the case of the gas phase single phase, and the ratio from the gas phase to the liquid phase can be increased.

熱交換部33で十分温度を低下させて液相分の割合を増加させた作動流体は、一部気相分の残った気液混相状態で熱交換部33の流出口33bを出てシェル31底部に達し、未凝縮で残った気相分と液相分が分離し、液相の作動流体はシェル31の作動流体流出口31fから外部に排出されて後段側のタンク35に流入する。未凝縮分の気相の作動流体は、シェル31の作動流体流出口31eからさらに補助凝縮器34に達し、ここで最終的に全て凝縮して液相の作動流体に変化した後、凝縮器30を出た他の液相作動流体同様にタンク35に流入する。このタンク35内に存在する全て液相の作動流体は、ほぼ当初の状態の作動流体の組成に戻っており、液相の作動流体としてはシステム内で最も低い温度及び圧力となっている。このタンク35に達した全て液相の作動流体は、ポンプ40を経由して、主流路1aを蒸発器10へ向け進むこととなる。   The working fluid whose temperature has been sufficiently lowered in the heat exchanging portion 33 to increase the ratio of the liquid phase portion exits the outlet 33b of the heat exchanging portion 33 in the gas-liquid mixed phase state in which a part of the gas phase remains, and the shell 31. The gas phase component and the liquid phase component that have reached the bottom and remain uncondensed are separated, and the liquid phase working fluid is discharged from the working fluid outlet 31f of the shell 31 to the outside and flows into the tank 35 on the rear stage side. The uncondensed vapor phase working fluid reaches the auxiliary condenser 34 from the working fluid outlet 31e of the shell 31 and finally condenses and changes into a liquid phase working fluid. It flows into the tank 35 in the same manner as other liquid phase working fluids that have left The liquid-phase working fluid existing in the tank 35 has almost returned to its original working fluid composition, and the liquid-phase working fluid has the lowest temperature and pressure in the system. The liquid-phase working fluid that has reached the tank 35 travels through the main flow path 1 a toward the evaporator 10 via the pump 40.

なお、第一段目のタービン21から第二段目のタービン22に向う高温気相の作動流体の一部(約1%程度)が、抽気されて支流路1cに入り、加熱器60に導入される。加熱器60では、他方の主流路1aを通る全て液相の作動流体と前記抽気された高温気相の作動流体とを熱交換させ、全て液相の作動流体を昇温させて、気相の作動流体の保有する熱を回収する。気相の作動流体はこの加熱器60での熱交換を経て冷却され、凝縮して液相となり、この凝縮した液相の作動流体は加熱器60を出た後、前記タンク62及びポンプ61を経て、支流路1cと主流路1aの合流点で主流路1aを流れる全て液相の作動流体に加わる。この合流点において、各過程で複数の流路にそれぞれ分れた作動流体が全て一つに合わさることとなり、作動流体におけるアンモニアと水の割合が当初の割合に戻る。
こうして液相の作動流体は、加熱器60や再生器50での熱交換を経て、あらかじめ所定温度まで昇温した状態で蒸発器10内に戻り、前記同様に蒸発器10での熱交換以降の各過程を繰返すこととなる。
Part of the high-temperature gas-phase working fluid (about 1%) from the first-stage turbine 21 to the second-stage turbine 22 is extracted and enters the branch flow path 1 c and is introduced into the heater 60. Is done. In the heater 60, all the liquid-phase working fluid passing through the other main flow path 1a and the extracted high-temperature gas-phase working fluid are subjected to heat exchange, and all the liquid-phase working fluid is heated to increase the gas-phase working fluid. The heat that the working fluid has is recovered. The gas-phase working fluid is cooled through heat exchange in the heater 60 and condensed into a liquid phase. The condensed liquid-phase working fluid exits the heater 60 and is then connected to the tank 62 and the pump 61. Then, all the liquid phase working fluid flowing through the main channel 1a at the junction of the branch channel 1c and the main channel 1a is added. At this merging point, all the working fluids divided into the plurality of flow paths in each process are combined together, and the ratio of ammonia and water in the working fluid returns to the initial ratio.
In this way, the liquid-phase working fluid passes through heat exchange in the heater 60 and the regenerator 50, returns to the evaporator 10 in a state where the temperature is raised to a predetermined temperature in advance, and after the heat exchange in the evaporator 10 as described above. Each process will be repeated.

この作動流体に対し、凝縮器30や補助凝縮器34での熱交換に使用された冷海水は、作動流体からの熱を受けて所定温度まで昇温している。この海水は、凝縮器30や補助凝縮器34の外へ排出された後、最終的にシステム外部の海中へ放出される。また、蒸発器10での作動流体との熱交換に伴い温度が下がった温海水も、熱交換後にシステム外部の海中へ排出される。   With respect to this working fluid, the cold seawater used for heat exchange in the condenser 30 and the auxiliary condenser 34 is heated to a predetermined temperature by receiving heat from the working fluid. The seawater is discharged out of the condenser 30 and the auxiliary condenser 34, and finally discharged into the sea outside the system. Further, the warm seawater whose temperature has decreased due to heat exchange with the working fluid in the evaporator 10 is also discharged into the sea outside the system after heat exchange.

このように、本実施の形態に係る蒸気動力サイクルシステムにおいては、凝縮器30と蒸発器10間の液相作動流体主流路1aで、凝縮器30後段側で且つ加熱器60の前段側位置にポンプ40を配設し、この主流路1aにおけるポンプを一つのみとして、他のポンプ動作の影響を排除し、蒸気動力サイクルの運転状態の安定を得ていることに加え、蒸発器10と凝縮器30がプレート式熱交換器とシェルを組合わせた構造とされ、蒸発器10が気液分離器の機能を備える一方、凝縮器30は吸収器の機能を備え、非共沸混合流体を作動流体として用いる場合に、通常は蒸発器や凝縮器と別途に必要であった気液分離器及び吸収器をそれぞれ省略でき、機器配置に必要なスペースも小さくでき、配置の自由度が増大することに加え、システム全体をコンパクト化、低コスト化できる。また、気液分離器や吸収器に付随する配管も省略でき、配管の存在に伴う圧力損失や熱損失を低減させて有効に取出せる仕事量を増大させられ、高温熱源と低温熱源の温度差が小さくても十分な動力を発生させられる。   Thus, in the steam power cycle system according to the present embodiment, the liquid-phase working fluid main flow path 1a between the condenser 30 and the evaporator 10 is located at the rear stage side of the condenser 30 and the front stage side position of the heater 60. In addition to providing a pump 40 and having only one pump in the main flow path 1a to eliminate the influence of other pump operations and obtaining a stable operating state of the steam power cycle, the evaporator 10 and the condenser 10 are condensed. The evaporator 30 has a structure combining a plate heat exchanger and a shell, and the evaporator 10 has a gas-liquid separator function, while the condenser 30 has an absorber function and operates a non-azeotropic mixed fluid. When used as a fluid, the gas-liquid separator and the absorber, which are normally required separately from the evaporator and condenser, can be omitted, and the space required for equipment arrangement can be reduced, increasing the degree of freedom of arrangement. In addition to the system Compact body, can cost. Also, piping associated with gas-liquid separators and absorbers can be omitted, reducing the pressure loss and heat loss associated with the presence of piping, increasing the amount of work that can be effectively taken out, and the temperature difference between the high-temperature heat source and the low-temperature heat source. Even if is small, sufficient power can be generated.

なお、前記実施の形態に係る蒸気動力サイクルシステムにおいては、改良した蒸発器10と凝縮器30、さらにタンク62やポンプ61配置の改良を、まとめてシステムに採用した構成としているが、これに限らず、従来の蒸気動力サイクルシステムに、改良された蒸発器、改良された凝縮器、又はタンクやポンプの配置改良をそれぞれ個別に採用するようにしてもかまわない。そして、改良された蒸発器、及び/又は改良された凝縮器については、タービン抽気を行わず加熱器を用いない蒸気動力サイクルシステムにも採用することができ、前記同様システムのコンパクト化が図れる。   In the steam power cycle system according to the above embodiment, the improved evaporator 10 and condenser 30, and further improvements in the arrangement of the tank 62 and the pump 61 are collectively adopted in the system. Instead, the conventional vapor power cycle system may each employ an improved evaporator, an improved condenser, or an improved tank or pump arrangement. Further, the improved evaporator and / or the improved condenser can be employed in a steam power cycle system that does not perform turbine extraction and does not use a heater, so that the system can be made compact as described above.

また、前記実施の形態に係る蒸気動力サイクルシステムにおいて、蒸発器10や凝縮器30の熱交換部12、33としては、金属製の伝熱プレート70を複数並列状態で溶接一体化して形成した全溶接プレート式熱交換器を用いる構成としているが、これに限らず、プレート自体に流入口や流出口となる孔が穿設された伝熱プレートを、ガスケットを介在させつつ重ね合せて一体化する、従来から一般的なタイプのプレート式熱交換器等、様々なプレート式熱交換器を採用することもできる。さらに、こうしたプレート式の熱交換器の他、長手方向端部に熱交換対象流体の流入出口が位置するものであれば、例えばシェルアンドチューブ型などの他の形式の熱交換器を採用する構成とすることもできる。   Further, in the steam power cycle system according to the above embodiment, the heat exchange parts 12 and 33 of the evaporator 10 and the condenser 30 are all formed by welding and integrating a plurality of metal heat transfer plates 70 in a parallel state. Although it is configured to use a welded plate heat exchanger, this is not a limitation, and a heat transfer plate in which holes serving as inlets and outlets are formed in the plate itself is overlapped and integrated with a gasket interposed therebetween. Various plate-type heat exchangers such as a conventional general plate-type heat exchanger can also be employed. Further, in addition to such plate-type heat exchangers, other types of heat exchangers such as a shell-and-tube type may be adopted as long as the inflow / outlet of the heat exchange target fluid is located at the end in the longitudinal direction. It can also be.

また、前記実施の形態に係る蒸気動力サイクルシステムにおいては、蒸発器10から支流路1bに入り再生器50で熱交換された後の液相の作動流体を、減圧弁51を経由させて凝縮器30に導入する構成としているが、この他、凝縮器30における散水部32のノズル部分に減圧(膨張)機能を付与して減圧弁を兼用させ、支流路1bへの減圧弁の配置を省略する構成とすることもでき、システムの構成がより簡略となり、コストダウンが図れる。
In the steam power cycle system according to the embodiment, the liquid-phase working fluid that has entered the branch flow path 1b from the evaporator 10 and has been heat-exchanged by the regenerator 50 is passed through the pressure reducing valve 51 to the condenser. In addition to this, the nozzle portion of the water sprinkling portion 32 in the condenser 30 is provided with a pressure reducing (expanding) function so as to also serve as a pressure reducing valve, and the arrangement of the pressure reducing valve in the branch channel 1b is omitted. The system configuration can be simplified and the cost can be reduced.

Claims (6)

沸点の異なる複数の流体が混合された作動流体を全て液相の状態で所定の高温熱源と熱交換させ、前記作動流体の少なくとも一部を蒸発させる蒸発器と、前記作動流体のうち蒸発した気相分を導入されて流体の保有する熱エネルギを動力に変換するタービンと、当該タービンを出た気相の作動流体を所定の低温熱源と熱交換させて作動流体を凝縮させる凝縮器と、当該凝縮器を出た液相の低温作動流体を前記蒸発器へ送込むポンプとを少なくとも備える蒸気動力サイクルシステムにおいて、
前記蒸発器が、中空の圧力容器であるシェルと、当該シェル内に配設されて長手方向両端部に熱交換対象流体の流入出口が存在する熱交換部とを備え、当該熱交換部における作動流体の流出口以外の各流入出口がシェル外部に延長配設されてシェル内部空間からは隔離された状態とされる一方、熱交換部における作動流体の流出口がシェル内部空間に開口連通する状態とされ、
前記蒸発器における熱交換部の流出口からシェル内部空間に流出した高温の作動流体が、前記内部空間で気相分と液相分とに分離し、シェルから気相の作動流体と液相の作動流体がそれぞれ別個に取出されることを
特徴とする蒸気動力サイクルシステム。
A working fluid in which a plurality of fluids having different boiling points are mixed is heat-exchanged with a predetermined high-temperature heat source in a liquid state, and at least a part of the working fluid is evaporated. A turbine that introduces phase components and converts thermal energy held by the fluid into power, a condenser that condenses the working fluid by exchanging heat with a predetermined low-temperature heat source from the gas-phase working fluid that exits the turbine, and A steam power cycle system comprising at least a pump for feeding a liquid low-temperature working fluid exiting the condenser to the evaporator;
The evaporator includes a shell that is a hollow pressure vessel, and a heat exchanging unit that is disposed in the shell and has an inlet / outlet of a fluid to be heat exchanged at both longitudinal ends, and operates in the heat exchanging unit. Each inlet / outlet other than the fluid outlet extends outside the shell and is isolated from the shell internal space, while the working fluid outlet in the heat exchange section is open to the shell internal space. And
The high-temperature working fluid flowing out from the outlet of the heat exchanger in the evaporator into the shell internal space is separated into a gas phase component and a liquid phase component in the internal space, and the gas phase working fluid and the liquid phase component are separated from the shell. A steam power cycle system, wherein each working fluid is taken out separately.
沸点の異なる複数の流体が混合された作動流体を全て液相の状態で所定の高温熱源と熱交換させ、前記作動流体の少なくとも一部を蒸発させる蒸発器と、前記作動流体のうち蒸発した気相分を導入されて流体の保有する熱エネルギを動力に変換するタービンと、当該タービンを出た気相の作動流体を所定の低温熱源と熱交換させて作動流体を凝縮させる凝縮器と、当該凝縮器を出た液相の低温作動流体を前記蒸発器へ送込むポンプとを少なくとも備える蒸気動力サイクルシステムにおいて、
前記凝縮器が、中空の圧力容器であるシェルと、当該シェル内に配設されて長手方向両端部に熱交換対象流体の流入出口が存在する熱交換部と、液相の作動流体をシェル内部空間への気相作動流体の流入部分に散布する散水部とを備え、当該熱交換部における低温熱源となる流体の流入出口がシェル外部に延長配設されてシェル内部空間からは隔離された状態とされる一方、熱交換部における作動流体の流入出口がシェル内部空間に開口連通する状態とされ、
前記シェルの内部空間へ各相の作動流体が流入すると、前記散水部から噴射された液相の作動流体が一部の気相作動流体を吸収しつつ、液相の作動流体と気相の作動流体とが一つに混合し、当該混合状態の作動流体が熱交換部へ流入して熱交換による気相分の凝縮を進行させ、
前記熱交換部の流出口から前記シェル内部空間に流出した作動流体が、前記内部空間で気相分と液相分とに分離し、シェルから気相の作動流体と液相の作動流体がそれぞれ別個に取出されることを
特徴とする蒸気動力サイクルシステム。
A working fluid in which a plurality of fluids having different boiling points are mixed is heat-exchanged with a predetermined high-temperature heat source in a liquid state, and at least a part of the working fluid is evaporated. A turbine that introduces phase components and converts thermal energy held by the fluid into power, a condenser that condenses the working fluid by exchanging heat with a predetermined low-temperature heat source from the gas-phase working fluid that exits the turbine, and A steam power cycle system comprising at least a pump for feeding a liquid-phase low temperature working fluid exiting the condenser to the evaporator;
The condenser is a shell that is a hollow pressure vessel, a heat exchange part that is disposed in the shell and has an inlet / outlet of a heat exchange target fluid at both longitudinal ends, and a liquid-phase working fluid is placed inside the shell. A sprinkling part that is sprayed on the inflow part of the gas phase working fluid into the space, and the inflow / outlet of the fluid that serves as a low-temperature heat source in the heat exchange part extends outside the shell and is isolated from the shell internal space On the other hand, the inlet and outlet of the working fluid in the heat exchange part is in a state of opening communication with the inner space of the shell,
When the working fluid of each phase flows into the internal space of the shell, the liquid-phase working fluid ejected from the sprinkler absorbs a part of the gas-phase working fluid, while the liquid-phase working fluid and the gas-phase working fluid are absorbed. The fluid is mixed into one, the working fluid in the mixed state flows into the heat exchange part, and the condensation of the gas phase by the heat exchange proceeds.
The working fluid flowing out from the outlet of the heat exchange section into the shell internal space is separated into a gas phase component and a liquid phase component in the internal space, and a gas phase working fluid and a liquid phase working fluid are respectively separated from the shell. A steam power cycle system characterized by being taken out separately.
前記請求項1に記載の蒸気動力サイクルシステムにおいて、
前記凝縮器が、中空の圧力容器であるシェルと、当該シェル内に配設されて長手方向両端部に熱交換対象流体の流入出口が存在する熱交換部と、液相の作動流体をシェル内部空間への気相作動流体の流入部分に散布する散水部とを備え、当該熱交換部における低温熱源となる流体の流入出口がシェル外部に延長配設されてシェル内部空間からは隔離された状態とされる一方、熱交換部における作動流体の流入出口がシェル内部空間に開口連通する状態とされ、
前記シェルの内部空間へ各相の作動流体が流入すると、前記散水部から噴射された液相の作動流体が一部の気相作動流体を吸収しつつ、液相の作動流体と気相の作動流体とが一つに混合し、混合状態の作動流体が熱交換部へ流入して熱交換による気相分の凝縮を進行させ、
前記熱交換部の流出口から前記シェル内部空間に流出した作動流体が、前記内部空間で気相分と液相分とに分離し、シェルから気相の作動流体と液相の作動流体がそれぞれ別個に取出されることを
特徴とする蒸気動力サイクルシステム。
The steam power cycle system according to claim 1,
The condenser is a shell that is a hollow pressure vessel, a heat exchange part that is disposed in the shell and has an inlet / outlet of a heat exchange target fluid at both longitudinal ends, and a liquid-phase working fluid is placed inside the shell. A sprinkling part that is sprayed on the inflow part of the gas phase working fluid into the space, and the inflow / outlet of the fluid that becomes a low-temperature heat source in the heat exchange part extends outside the shell and is isolated from the shell internal space On the other hand, the inlet and outlet of the working fluid in the heat exchange part is in a state of opening communication with the inner space of the shell,
When the working fluid of each phase flows into the internal space of the shell, the liquid-phase working fluid ejected from the sprinkler absorbs a part of the gas-phase working fluid, while the liquid-phase working fluid and the gas-phase working fluid are absorbed. The fluid is mixed into one, the mixed working fluid flows into the heat exchange part, and the condensation of the gas phase by the heat exchange proceeds.
The working fluid flowing out from the outlet of the heat exchange section into the shell internal space is separated into a gas phase component and a liquid phase component in the internal space, and a gas phase working fluid and a liquid phase working fluid are respectively separated from the shell. A steam power cycle system characterized by being taken out separately.
沸点の異なる複数の流体が混合された作動流体を全て液相の状態で所定の高温熱源と熱交換させ、前記作動流体の少なくとも一部を蒸発させる蒸発器と、前記作動流体のうち蒸発した気相分を導入されて流体の保有する熱エネルギを動力に変換する二つのタービンと、当該タービンを出た気相の作動流体を所定の低温熱源と熱交換させて作動流体を凝縮させる凝縮器と、当該凝縮器を出た液相の低温作動流体を前記蒸発器へ送込むポンプと、前記高温熱源との熱交換を経て高温となった作動流体のうち、液相の作動流体を、前記蒸発器に導入される前の全て液相の作動流体と熱交換させる再生器と、前記二つのタービンのうち第一段目のタービンを出た気相の作動流体から抽気された一部の気相作動流体と前記液相の低温作動流体とを熱交換させる加熱器とを少なくとも備える蒸気動力サイクルシステムにおいて、
前記ポンプが、前記凝縮器から蒸発器に至る全て液相の作動流体の主流路における前記加熱器配置位置より前段側に配設され、
当該ポンプと前記凝縮器との間に所定のタンクが配設され、凝縮器を出た直後の全て液相の作動流体が導入され、
前記第一のタービンから加熱器に通じる作動流体の支流路が、加熱器から前記タンクより小さい他のタンク及び前記ポンプより吐出能力の小さい他のポンプをそれぞれ経て、前記全て液相の作動流体の主流路における加熱器と再生器との間の位置で主流路と合流し、
前記第一のタービンを出て加熱器での熱交換を経た作動流体が、前記他のタンク及び他のポンプをそれぞれ経由して、前記主流路を流れる全て液相の作動流体に加わることを
特徴とする蒸気動力サイクルシステム。
A working fluid in which a plurality of fluids having different boiling points are mixed is heat-exchanged with a predetermined high-temperature heat source in a liquid state, and at least a part of the working fluid is evaporated. Two turbines that introduce phase components and convert thermal energy held by the fluid into motive power, and a condenser that condenses the working fluid by exchanging heat with the gas-phase working fluid exiting the turbine with a predetermined low-temperature heat source; The liquid-phase working fluid out of the working fluid that has reached a high temperature through heat exchange with the high-temperature heat source and the pump that sends the liquid-phase low-temperature working fluid that exits the condenser to the evaporator. A regenerator for exchanging heat with all the liquid-phase working fluid before being introduced into the reactor, and a part of the gas phase extracted from the gas-phase working fluid exiting the first stage of the two turbines Heat exchange between the working fluid and the liquid low-temperature working fluid In at least comprising a steam power cycle system and a heater for,
The pump is disposed on the upstream side of the heater arrangement position in the main flow path of the liquid-phase working fluid from the condenser to the evaporator;
A predetermined tank is disposed between the pump and the condenser, and all the liquid phase working fluid immediately after leaving the condenser is introduced,
The working fluid branch path from the first turbine to the heater passes through another tank smaller than the tank from the heater and another pump having a smaller discharge capacity than the pump. Joins the main flow path at a position between the heater and the regenerator in the main flow path,
The working fluid leaving the first turbine and having undergone heat exchange in the heater is added to all the liquid-phase working fluid flowing through the main flow path via the other tank and the other pump, respectively. Steam power cycle system.
前記請求項4に記載の蒸気動力サイクルシステムにおいて、
前記蒸発器が、中空の圧力容器であるシェルと、当該シェル内に配設されて長手方向両端部に熱交換対象流体の流入出口が存在する熱交換部とを備え、当該熱交換部における作動流体の流出口以外の各流入出口がシェル外部に延長配設されてシェル内部空間からは隔離された状態とされる一方、熱交換部における作動流体の流出口がシェル内部空間に開口連通する状態とされ、
前記蒸発器における熱交換部の流出口からシェル内部空間に流出した高温の作動流体が、前記内部空間で気相分と液相分とに分離し、シェルから気相の作動流体と液相の作動流体がそれぞれ別個に取出されることを
特徴とする蒸気動力サイクルシステム。
The steam power cycle system according to claim 4, wherein
The evaporator includes a shell that is a hollow pressure vessel, and a heat exchanging unit that is disposed in the shell and has an inlet / outlet of a fluid to be heat exchanged at both longitudinal ends, and operates in the heat exchanging unit. Each inlet / outlet other than the fluid outlet extends outside the shell and is isolated from the shell internal space, while the working fluid outlet in the heat exchange section is open to the shell internal space. And
The high-temperature working fluid flowing out from the outlet of the heat exchanger in the evaporator into the shell internal space is separated into a gas phase component and a liquid phase component in the internal space, and the gas phase working fluid and the liquid phase component are separated from the shell. A steam power cycle system, wherein each working fluid is taken out separately.
前記請求項4又は5に記載の蒸気動力サイクルシステムにおいて、
前記凝縮器が、中空の圧力容器であるシェルと、当該シェル内に配設されて長手方向両端部に熱交換対象流体の流入出口が存在する熱交換部と、液相の作動流体をシェル内部空間への気相作動流体の流入部分に散布する散水部とを備え、当該熱交換部における低温熱源となる流体の流入出口がシェル外部に延長配設されてシェル内部空間からは隔離された状態とされる一方、熱交換部における作動流体の流入出口がシェル内部空間に開口連通する状態とされ、
前記シェルの内部空間へ各相の作動流体が流入すると、前記散水部から噴射された液相の作動流体が一部の気相作動流体を吸収しつつ、液相の作動流体と気相の作動流体とが一つに混合し、混合状態の作動流体が熱交換部へ流入して熱交換による気相分の凝縮を進行させ、
前記熱交換部の流出口から前記シェル内部空間に流出した作動流体が、前記内部空間で気相分と液相分とに分離し、シェルから気相の作動流体と液相の作動流体がそれぞれ別個に取出されることを
特徴とする蒸気動力サイクルシステム。
In the steam power cycle system according to claim 4 or 5,
The condenser is a shell that is a hollow pressure vessel, a heat exchange part that is disposed in the shell and has an inlet / outlet of a heat exchange target fluid at both longitudinal ends, and a liquid-phase working fluid is placed inside the shell. A sprinkling part that is sprayed on the inflow part of the gas phase working fluid into the space, and the inflow / outlet of the fluid that serves as a low-temperature heat source in the heat exchange part extends outside the shell and is isolated from the internal space of the shell On the other hand, the inlet and outlet of the working fluid in the heat exchange part is in a state of opening communication with the inner space of the shell,
When the working fluid of each phase flows into the internal space of the shell, the liquid-phase working fluid ejected from the sprinkler absorbs a part of the gas-phase working fluid, while the liquid-phase working fluid and the gas-phase working fluid are absorbed. The fluid is mixed into one, the mixed working fluid flows into the heat exchange part, and the condensation of the gas phase by the heat exchange proceeds.
The working fluid flowing out from the outlet of the heat exchange section into the shell internal space is separated into a gas phase component and a liquid phase component in the internal space, and a gas phase working fluid and a liquid phase working fluid are respectively separated from the shell. A steam power cycle system characterized by being taken out separately.
JP2007523259A 2005-06-28 2005-06-28 Steam power cycle system Expired - Fee Related JP4669964B2 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2005/011857 WO2007000811A1 (en) 2005-06-28 2005-06-28 Steam power cycle system

Publications (2)

Publication Number Publication Date
JPWO2007000811A1 JPWO2007000811A1 (en) 2009-01-22
JP4669964B2 true JP4669964B2 (en) 2011-04-13

Family

ID=37595073

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007523259A Expired - Fee Related JP4669964B2 (en) 2005-06-28 2005-06-28 Steam power cycle system

Country Status (2)

Country Link
JP (1) JP4669964B2 (en)
WO (1) WO2007000811A1 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009023929A1 (en) * 2009-06-04 2010-12-09 Stürzebecher, Wolfgang, Dr. Absorption chiller
CN102116274B (en) * 2011-01-11 2013-01-16 中国海洋大学 Ammonia water reheating-injecting power absorption circulation system driven by temperature difference of seawater
JP5800295B2 (en) * 2011-08-19 2015-10-28 国立大学法人佐賀大学 Steam power cycle system
JP6036241B2 (en) * 2012-12-06 2016-11-30 株式会社Ihi Waste heat power generator
CN108045539A (en) * 2017-12-01 2018-05-18 中国船舶重工集团公司第七〇九研究所 A kind of draining system and ship steam/water circulating dynamical system
DE102021101987A1 (en) 2021-01-28 2022-07-28 Airbus Defence and Space GmbH Using a heat source to generate electricity and aircraft with cooling system
JP2023056993A (en) * 2021-10-08 2023-04-20 株式会社Mcラボ Power generation system

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01111179A (en) * 1987-10-23 1989-04-27 Hitachi Ltd Flow-down liquid membrane type evaporator
JPH01151069U (en) * 1988-03-31 1989-10-18
JPH0791213A (en) * 1993-09-28 1995-04-04 Hisaka Works Ltd Binary power generation system
JPH0791361A (en) * 1993-09-22 1995-04-04 Saga Univ Device for electric generation by temperature difference

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5186648A (en) * 1975-01-29 1976-07-29 Mitsubishi Heavy Ind Ltd JOKIGENDO SHOSETSUBI
JPH0642310A (en) * 1992-07-27 1994-02-15 Hisaka Works Ltd Absorbing condenser for mixed medium

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01111179A (en) * 1987-10-23 1989-04-27 Hitachi Ltd Flow-down liquid membrane type evaporator
JPH01151069U (en) * 1988-03-31 1989-10-18
JPH0791361A (en) * 1993-09-22 1995-04-04 Saga Univ Device for electric generation by temperature difference
JPH0791213A (en) * 1993-09-28 1995-04-04 Hisaka Works Ltd Binary power generation system

Also Published As

Publication number Publication date
JPWO2007000811A1 (en) 2009-01-22
WO2007000811A1 (en) 2007-01-04

Similar Documents

Publication Publication Date Title
JP4669964B2 (en) Steam power cycle system
JP5862133B2 (en) Steam power cycle system
US7827817B2 (en) Absorption heat pump
US6694772B2 (en) Absorption chiller-heater and generator for use in such absorption chiller-heater
JP2008088892A (en) Non-azeotropic mixture medium cycle system
WO2020045659A1 (en) Desalination and temperature difference power generation system
JP2007278572A (en) Absorption type refrigerating device
EP2112443A2 (en) Absorption cold or hot water generating machine
JP2009058181A (en) Absorption type refrigerating apparatus
US8833744B2 (en) Condenser
JP4542985B2 (en) Absorption heat pump
WO2004102085A1 (en) Absorption chiller
WO2020045662A1 (en) Heat exchanger
JP2005042944A (en) Multi-stage absorption refrigerating machine
KR900007721B1 (en) Absorption type cooled water and warm water supplier
JP3059123B2 (en) Condenser for mixed media
KR100877025B1 (en) Apparatus for supplying warm water during cooling mode in absorption water cooler and heater
CN100513934C (en) Absorption chiller-heater and generator
JP2004011928A (en) Absorption refrigerator
KR100858776B1 (en) Apparatus for supplying warm water during cooling mode or operation stop in absorption water cooler and heater
KR100208181B1 (en) Refrigerant vapor of absorption type cycle
KR100858777B1 (en) Apparatus for supplying warm water during cooling mode or operation stop in absorption water cooler and heater
JP4727683B2 (en) Two-stage compression refrigeration system
JP2006153298A (en) Two-stage compression refrigerating system
JP2001201202A (en) Absorbent concentrator and absorption refrigerating machine using the same

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101116

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101216

R150 Certificate of patent or registration of utility model

Ref document number: 4669964

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140128

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees