JP2016176604A - Absorption refrigeration machine and controlling method thereof - Google Patents

Absorption refrigeration machine and controlling method thereof Download PDF

Info

Publication number
JP2016176604A
JP2016176604A JP2015054779A JP2015054779A JP2016176604A JP 2016176604 A JP2016176604 A JP 2016176604A JP 2015054779 A JP2015054779 A JP 2015054779A JP 2015054779 A JP2015054779 A JP 2015054779A JP 2016176604 A JP2016176604 A JP 2016176604A
Authority
JP
Japan
Prior art keywords
solution
temperature
exhaust gas
heat exchanger
gas heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015054779A
Other languages
Japanese (ja)
Other versions
JP6486159B2 (en
Inventor
博敏 石丸
Hirotoshi Ishimaru
博敏 石丸
浩伸 川村
Hironobu Kawamura
浩伸 川村
武田 伸之
Nobuyuki Takeda
伸之 武田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Johnson Controls Hitachi Air Conditioning Technology Hong Kong Ltd
Original Assignee
Johnson Controls Hitachi Air Conditioning Technology Hong Kong Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Johnson Controls Hitachi Air Conditioning Technology Hong Kong Ltd filed Critical Johnson Controls Hitachi Air Conditioning Technology Hong Kong Ltd
Priority to JP2015054779A priority Critical patent/JP6486159B2/en
Publication of JP2016176604A publication Critical patent/JP2016176604A/en
Application granted granted Critical
Publication of JP6486159B2 publication Critical patent/JP6486159B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/62Absorption based systems

Landscapes

  • Sorption Type Refrigeration Machines (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an absorption refrigeration machine that at the time of starting, supplies sufficient solution to an exhaust gas heat exchanger to prevent ebullition of solution, even when a float valve opening is made small.SOLUTION: An absorption refrigeration machine 101 includes an evaporator 105, an absorber 106, a condenser 104, a high temperature regenerator 102, a low temperature regenerator 103, an exhaust gas heat exchanger 107, and a pipeline connecting them. In the middle of a solution pipeline in which solution of the absorber flows to the high temperature regenerator via the exhaust gas heat exchanger, provided is a float valve 102b configured to adjust a flow rate of solution. The solution pipeline has a bypass pipeline 124 connecting the upstream side and downstream side of the float valve.SELECTED DRAWING: Figure 1

Description

本発明は、吸収式冷凍機及びその制御方法に関するものである。   The present invention relates to an absorption refrigerator and a control method thereof.

従来、吸収剤として例えば臭化リチウム水溶液を用い、冷媒として水を用いる吸収式冷凍機が一般に知られている。吸収式冷凍機のサイクルでは、冷媒を吸収した溶液を再生するために、加熱源より溶液に熱を加え、冷媒を蒸発させることで濃縮を行う。この加熱源にバーナによる燃焼ガスを用い、さらに暖房運転も行えるようにしたものを直火焚き吸収式冷凍機と呼び、広く空調用の熱源機として用いられている。また、吸収式冷凍機は種々の熱源の利用が可能であることから、ガスタービンから排出される高温の燃焼排ガスを熱源として駆動することもできる。   Conventionally, an absorption refrigerator using, for example, a lithium bromide aqueous solution as an absorbent and water as a refrigerant is generally known. In the absorption refrigerator cycle, in order to regenerate the solution that has absorbed the refrigerant, heat is applied to the solution from a heating source and the refrigerant is evaporated to concentrate. A combustion gas generated by a burner is used as a heating source, and a heating operation can be performed, which is called a direct-fired absorption refrigerator, and is widely used as a heat source for air conditioning. In addition, since the absorption chiller can use various heat sources, high-temperature combustion exhaust gas discharged from the gas turbine can be driven as a heat source.

このような吸収式冷凍機のエネルギー効率を高めるためには、高温再生器で熱を与えた後の排ガスから熱回収を行う排ガス熱交換器を設けることが望ましい。例えば、特許文献1に提案される三重効用吸収式冷凍機がある。   In order to increase the energy efficiency of such an absorption refrigerator, it is desirable to provide an exhaust gas heat exchanger that recovers heat from the exhaust gas after the heat is applied by the high-temperature regenerator. For example, there is a triple effect absorption refrigerator proposed in Patent Document 1.

以下、上記三重効用吸収式冷凍機について説明する。   The triple effect absorption refrigerator will be described below.

高温再生器、中温再生器及び低温再生器、凝縮器、吸収器、蒸発器、複数の溶液熱交換器、これらの機器を結ぶ溶液配管及び冷媒配管、溶液及び冷媒をサイクル内に循環させる溶液ポンプ及び冷媒ポンプを備え、吸収器から希溶液を少なくとも高温再生器と低温再生器に並列に送る配管を設けた構造を持っている。そして、高温再生器は貫流式となっており、燃料を燃焼するバーナ、バーナの周囲に同心円状に配置されて溶液を加熱濃縮する伝熱管群などから構成されている。   High temperature regenerator, medium temperature regenerator and low temperature regenerator, condenser, absorber, evaporator, multiple solution heat exchangers, solution piping and refrigerant piping connecting these devices, solution pump for circulating the solution and refrigerant in the cycle And a refrigerant pump, and has a structure in which a pipe for sending a dilute solution from the absorber in parallel to at least the high temperature regenerator and the low temperature regenerator is provided. The high-temperature regenerator is a once-through type, and includes a burner that burns fuel, a heat transfer tube group that is concentrically arranged around the burner and heats and concentrates the solution.

高温再生器に流入した希溶液は、伝熱管内に導かれ、燃焼ガスとの熱交換によって加熱濃縮されて濃溶液となった後、発生した冷媒蒸気とともに、高温再生器の出口部に設置された気液分離器に導かれる。そして、気液分離器内において冷媒蒸気と分離される。気液分離器で冷媒蒸気から分離された濃溶液は、フロートボックスに送られ、そこから高温熱交換器に送られる。   The dilute solution that has flowed into the high-temperature regenerator is introduced into the heat transfer tube, heated and concentrated by heat exchange with the combustion gas to become a concentrated solution, and then installed along with the generated refrigerant vapor at the outlet of the high-temperature regenerator. Led to the gas-liquid separator. Then, it is separated from the refrigerant vapor in the gas-liquid separator. The concentrated solution separated from the refrigerant vapor by the gas-liquid separator is sent to the float box and from there to the high temperature heat exchanger.

一方、高温熱交換器に送られた希溶液は、上記濃溶液と熱交換して温度上昇する。また、排ガス熱交換器に送られた希溶液は、高温再生器の加熱に用いられた後の燃焼ガスと熱交換して温度上昇する。そして、これらの希溶液は、合流してフロートボックス内に設置されたフロートバルブを介して高温再生器に流入する。このフロートバルブは、フロートボックス内の濃溶液の液位によって高温再生器に送られる希溶液量を調整する流量調整手段である。つまり、高温再生器から送られる溶液がフロートボックスの液位を変化させ、その液位の変化量に応じてフロートバルブが駆動し、希溶液が高温再生器に送られるようになっている。   On the other hand, the dilute solution sent to the high temperature heat exchanger exchanges heat with the concentrated solution and rises in temperature. Further, the dilute solution sent to the exhaust gas heat exchanger heats up with the combustion gas after being used for heating the high-temperature regenerator and rises in temperature. These dilute solutions join together and flow into the high-temperature regenerator through a float valve installed in the float box. This float valve is a flow rate adjusting means for adjusting the amount of dilute solution sent to the high temperature regenerator according to the level of the concentrated solution in the float box. That is, the solution sent from the high temperature regenerator changes the liquid level of the float box, the float valve is driven according to the amount of change in the liquid level, and the dilute solution is sent to the high temperature regenerator.

特開2004−132553号公報JP 2004-132553 A

吸収式冷凍機の起動時においては、溶液循環量が少ない状態で運転する。起動時は高温再生器と吸収器との圧力差が小さいため、溶液循環量が少ない量に抑制される。その溶液循環量を調整しているのはフロート弁である。すなわち、吸収式冷凍機の起動時は、溶液循環量を少なくするため、フロート弁の開度を小さくしている。   When the absorption refrigerator is started, the system is operated with a small amount of solution circulation. Since the pressure difference between the high-temperature regenerator and the absorber is small at the time of startup, the amount of solution circulation is suppressed to a small amount. It is a float valve that adjusts the amount of solution circulation. That is, when the absorption refrigerator is started, the opening degree of the float valve is reduced in order to reduce the amount of solution circulation.

また、特許文献1に開示されている溶液配管の接続系統では、溶液循環量が少ない場合、排ガス熱交換器に送られる溶液循環量も少ない量に抑制される。そして、排ガス熱交換器は、高温再生器で燃焼した後の排ガスを加熱源としており、少ない量の溶液に対し、その比較的高温な排ガスとの熱交換を行う際、排ガス熱交換器内部で溶液が沸騰する可能性がある。その溶液沸騰は、その際に生じた気泡の滞留による溶液流路の圧力損失の増大、さらには冷凍機効率が低下する問題に発展する。   Moreover, in the connection system of solution piping currently disclosed by patent document 1, when the amount of solution circulation is small, the amount of solution circulation sent to an exhaust gas heat exchanger is also suppressed to a small amount. The exhaust gas heat exchanger uses the exhaust gas after burning in the high-temperature regenerator as a heating source. When heat exchange with a relatively high temperature exhaust gas is performed for a small amount of solution, The solution may boil. The solution boiling leads to a problem that the pressure loss of the solution flow path increases due to the retention of bubbles generated at that time, and further the efficiency of the refrigerator decreases.

本発明の目的は、吸収式冷凍機の起動時において、フロート弁開度が小さい時でも、排ガス熱交換器に十分な溶液を供給し、溶液の沸騰を防止することにある。   An object of the present invention is to supply a sufficient solution to the exhaust gas heat exchanger and prevent boiling of the solution even when the float valve opening is small when the absorption refrigerator is started.

本発明の吸収式冷凍機は、蒸発器、吸収器、凝縮器、高温再生器、低温再生器及び排ガス熱交換器並びにこれらを結合した配管を含み、吸収器の溶液が排ガス熱交換器を経由して高温再生器に向かう溶液配管の途中には、溶液の流量を調整するフロート弁が設けてあり、溶液配管は、フロート弁の上流側と下流側とを接続するバイパス配管を有する。   The absorption refrigerator of the present invention includes an evaporator, an absorber, a condenser, a high-temperature regenerator, a low-temperature regenerator, an exhaust gas heat exchanger, and a pipe connecting them, and the solution of the absorber passes through the exhaust gas heat exchanger. A float valve for adjusting the flow rate of the solution is provided in the middle of the solution pipe toward the high-temperature regenerator, and the solution pipe has a bypass pipe that connects the upstream side and the downstream side of the float valve.

本発明によれば、吸収式冷凍機の起動時において、フロート弁開度が小さい時でも、排ガス熱交換器に十分な溶液を供給し、溶液の沸騰を防止することができる。   According to the present invention, when the absorption refrigerator is started, even when the float valve opening is small, a sufficient solution can be supplied to the exhaust gas heat exchanger to prevent boiling of the solution.

実施例1の吸収式冷凍機を示す概略構成図である。1 is a schematic configuration diagram illustrating an absorption refrigerator of Example 1. FIG. 実施例2の吸収式冷凍機を示す概略構成図である。FIG. 3 is a schematic configuration diagram illustrating an absorption refrigerator according to a second embodiment.

以下、本発明の実施形態に係る吸収式冷凍機において用いる手段について説明する。   Hereinafter, means used in the absorption refrigerator according to the embodiment of the present invention will be described.

第1の手段は、主にバーナの燃焼熱を駆動源とし、フロート弁によって溶液の供給量を制御する高温再生器と、その高温再生器の排ガス流路下流側に排ガス熱交換器を備えた吸収式冷凍機において、排ガス熱交換器の出口側溶液配管の途中から、フロート弁の出口側溶液配管の途中に対し、溶液を迂回させるバイパス配管を接続できる構造とする。その構造によって、フロート弁開度に係わらず、常時、排ガス熱交換器に溶液を一定量供給する。   The first means comprises a high-temperature regenerator that mainly uses the combustion heat of the burner as a drive source and controls the supply amount of the solution by a float valve, and an exhaust gas heat exchanger downstream of the high-temperature regenerator. In the absorption chiller, a bypass pipe that bypasses the solution is connected from the middle of the outlet side solution pipe of the exhaust gas heat exchanger to the middle of the outlet side solution pipe of the float valve. Due to the structure, a fixed amount of solution is always supplied to the exhaust gas heat exchanger regardless of the float valve opening.

第2の手段は、上記バイパス配管の途中に流量調整弁(以下、「流調弁」ともいう。)を設置し、かつ、排ガス熱交換器の出口側溶液配管の途中に溶液温度センサを設置する。排ガス温度と溶液温度の関係から溶液沸騰温度を事前に設定する。次に、排ガス熱交換器内部の溶液温度が、その設定値を超えないように、溶液温度の測定結果に基づき流調弁の開度を制御する。その方法によって、フロート弁の開度にかかわらず、常時、排ガス熱交換器に十分な溶液を供給する。   The second means is to install a flow rate adjusting valve (hereinafter also referred to as “flow control valve”) in the middle of the bypass pipe and a solution temperature sensor in the middle of the outlet side solution pipe of the exhaust gas heat exchanger. To do. The solution boiling temperature is set in advance from the relationship between the exhaust gas temperature and the solution temperature. Next, the opening degree of the flow control valve is controlled based on the measurement result of the solution temperature so that the solution temperature inside the exhaust gas heat exchanger does not exceed the set value. By this method, a sufficient solution is always supplied to the exhaust gas heat exchanger regardless of the opening degree of the float valve.

なお、上記温度測定は、溶液温度に限らず、排ガス熱交換器の入口排ガス温度で流調弁を制御してもよい。   The temperature measurement is not limited to the solution temperature, and the flow control valve may be controlled by the inlet exhaust gas temperature of the exhaust gas heat exchanger.

第1、第2の手段により、排ガス熱交換器の出口溶液の温度測定結果に基いて、溶液バイパス配管の流調弁の開度制御を行い、十分な溶液循環量を確保することで、排ガス熱交換器内部の溶液沸騰を防止し、排ガスが持つ熱を効率よく回収できる。つまり、溶液に回収した熱は、吸収式冷凍機の駆動源として利用されるため、冷凍能力を増大させるとともに、吸収式冷凍機の効率を向上させるという効果が得られる。   By controlling the opening degree of the flow control valve of the solution bypass pipe based on the temperature measurement result of the outlet solution of the exhaust gas heat exchanger by the first and second means, and ensuring a sufficient amount of solution circulation, the exhaust gas The solution boiling inside the heat exchanger can be prevented, and the heat of the exhaust gas can be efficiently recovered. That is, since the heat recovered in the solution is used as a drive source for the absorption chiller, the refrigeration capacity is increased and the efficiency of the absorption chiller is improved.

なお、本明細書においては、「吸収式冷凍機」という用語を用いて説明するが、本発明は、「吸収式冷温水機」及び「吸収式ヒートポンプ」と呼ばれるものも含むものとする。   In this specification, the term “absorption refrigerator” will be used for explanation, but the present invention includes what are called “absorption chiller / heater” and “absorption heat pump”.

以下、実施例を用いて本発明の吸収式冷凍機について説明する。   Hereinafter, the absorption refrigerator according to the present invention will be described with reference to examples.

図1は、実施例1の吸収式冷凍機の概略構成を示したものである。   FIG. 1 shows a schematic configuration of an absorption refrigerator according to the first embodiment.

本図において、吸収式冷凍機101は、高温再生器102と、低温再生器103と、凝縮器104と、蒸発器105と、吸収器106とを含む構成である。高温再生器102には、フロート室102aと、フロート弁102bと、が設けられている。そのほか、吸収式冷凍機101は、周辺機器として、排ガス熱交換器107、高温熱交換器108、低温熱交換器109、溶液ポンプ(行き)110a、溶液ポンプ(戻り)110b、冷媒ポンプ111、冷却水の熱を大気に開放する冷却塔(図示せず)、及びそれらを接続する配管類を具備する。   In this figure, the absorption refrigerator 101 includes a high temperature regenerator 102, a low temperature regenerator 103, a condenser 104, an evaporator 105, and an absorber 106. The high temperature regenerator 102 is provided with a float chamber 102a and a float valve 102b. In addition, the absorption refrigerator 101 includes, as peripheral devices, an exhaust gas heat exchanger 107, a high-temperature heat exchanger 108, a low-temperature heat exchanger 109, a solution pump (bound) 110a, a solution pump (return) 110b, a refrigerant pump 111, cooling A cooling tower (not shown) for releasing the heat of water to the atmosphere and piping for connecting them are provided.

吸収式冷凍機101の運転時においては、通常、高い真空圧力に維持されている。また、蒸気圧は、高温再生器102、低温再生器103及び凝縮器104、蒸発器105及び吸収器106の順番で低くなっている。   During operation of the absorption chiller 101, a high vacuum pressure is usually maintained. Further, the vapor pressure decreases in the order of the high temperature regenerator 102, the low temperature regenerator 103, the condenser 104, the evaporator 105, and the absorber 106.

以下、吸収式冷凍機101に用いる冷媒は水とし、溶液には例えば臭化リチウム水溶液を使用したことを想定して説明する。ただし、その他の冷媒や溶液でも同等の効果が得られる。   Hereinafter, description will be made on the assumption that the refrigerant used in the absorption refrigerator 101 is water and a lithium bromide aqueous solution is used as the solution. However, the same effect can be obtained with other refrigerants and solutions.

高温再生器102及び低温再生器103で生成された冷媒蒸気は、配管113及び通路114を通り、凝縮器104に送られる。凝縮器104において、冷媒蒸気は、凝縮し、液体となり、配管115を通り、蒸発器105に送られる。   The refrigerant vapor generated in the high temperature regenerator 102 and the low temperature regenerator 103 is sent to the condenser 104 through the pipe 113 and the passage 114. In the condenser 104, the refrigerant vapor condenses and becomes a liquid, passes through the pipe 115, and is sent to the evaporator 105.

蒸発器105に送られた冷媒は、冷媒ポンプ111によって配管116を通り、蒸発器105の上部から散布される。散布された冷媒は、高い真空度に維持された蒸発器105の内部で蒸発し、その際の蒸発潜熱を奪い、配管117を通る冷水の温度を下げる。そして、蒸発器105から温度が下がった冷水118を取り出し、空調機などの負荷側(図示せず)へ供給される。   The refrigerant sent to the evaporator 105 passes through the pipe 116 by the refrigerant pump 111 and is sprayed from the upper part of the evaporator 105. The sprayed refrigerant evaporates inside the evaporator 105 maintained at a high degree of vacuum, takes away the latent heat of evaporation at that time, and lowers the temperature of the cold water passing through the pipe 117. And the cold water 118 which temperature fell from the evaporator 105 is taken out, and it supplies to load side (not shown), such as an air conditioner.

蒸発器105で蒸発した冷媒蒸気は、吸収器106に送られ、その後、冷媒蒸気は、高温再生器102及び低温再生器103から送られてくる比較的濃度の高い溶液(濃溶液)に吸収される。冷媒蒸気を吸収した比較的濃度の低い溶液(稀溶液)は、溶液ポンプ110aによってその溶液の一部または全部が高温再生器102へ送られる。高温再生器102へ送られた稀溶液は、バーナ119における都市ガス、灯油等の燃料の燃焼によって得られた熱で加熱され濃縮される。その際発生した冷媒蒸気が配管113を通り、再び凝縮器104へ送られる。   The refrigerant vapor evaporated in the evaporator 105 is sent to the absorber 106, and then the refrigerant vapor is absorbed by a relatively high concentration solution (concentrated solution) sent from the high temperature regenerator 102 and the low temperature regenerator 103. The A relatively low concentration solution (diluted solution) that has absorbed the refrigerant vapor is sent to the high temperature regenerator 102 by the solution pump 110a. The dilute solution sent to the high-temperature regenerator 102 is heated and concentrated by the heat obtained by the combustion of fuel such as city gas and kerosene in the burner 119. The refrigerant vapor generated at that time passes through the pipe 113 and is sent to the condenser 104 again.

高温再生器102へ送られる稀溶液は、溶液温度をできるだけ高く、吸収器106へ送られる濃溶液の溶液温度は、できるだけ低くしたいので、低温熱交換器109及び高温熱交換器108を用いて濃溶液と稀溶液との間で熱交換を行う。さらに、高温再生器102へ向かう稀溶液の一部または全部は、分岐した配管120を介して排ガス熱交換器107へ送り、高温再生器102から送られてきた排ガス121によって更に加熱する。そうすることで、排ガス121が持つ熱をより多く回収して、冷凍能力を向上させることができる。   Since the dilute solution sent to the high temperature regenerator 102 has a solution temperature as high as possible and the solution temperature of the concentrated solution sent to the absorber 106 needs to be as low as possible, the low temperature heat exchanger 109 and the high temperature heat exchanger 108 are used to concentrate the solution. Heat exchange is performed between the solution and the dilute solution. Further, a part or all of the dilute solution going to the high temperature regenerator 102 is sent to the exhaust gas heat exchanger 107 via the branched pipe 120 and further heated by the exhaust gas 121 sent from the high temperature regenerator 102. By doing so, more heat of the exhaust gas 121 can be recovered and the refrigeration capacity can be improved.

以上のように、冷媒が溶液によって輸送され、蒸発・凝縮を繰り返しながら冷熱を生成し続けることを可能にしている。   As described above, the refrigerant is transported by the solution, and it is possible to continue generating cold while repeating evaporation and condensation.

次に、吸収式冷凍機101の起動時における溶液のフローについて説明する。   Next, the flow of the solution when starting up the absorption refrigerator 101 will be described.

吸収器106の底部に溜まった稀溶液は、溶液ポンプ(行き)110aにより高温再生器102に送られる。低温熱交換器109を出た稀溶液は、高温熱交換器108及び排ガス熱交換器107へと分岐して送られる。高温熱交換器108を出た稀溶液の一部は低温再生器103へ送られ、それ以外は高温再生器102へ送られる。その途中で、排ガス熱交換器107で加熱された稀溶液と合流し、高温再生器102へ送られる。その稀溶液は、フロート弁102bを介して高温再生器102へ送られる。高温再生器102で加熱濃縮された濃溶液は、溶液ポンプ110bによって吸収器106へと送られる。   The dilute solution collected at the bottom of the absorber 106 is sent to the high temperature regenerator 102 by a solution pump (bound) 110a. The dilute solution exiting the low temperature heat exchanger 109 is branched and sent to the high temperature heat exchanger 108 and the exhaust gas heat exchanger 107. A part of the rare solution exiting the high-temperature heat exchanger 108 is sent to the low-temperature regenerator 103, and the rest is sent to the high-temperature regenerator 102. On the way, it merges with the diluted solution heated by the exhaust gas heat exchanger 107 and is sent to the high temperature regenerator 102. The diluted solution is sent to the high temperature regenerator 102 through the float valve 102b. The concentrated solution heated and concentrated in the high temperature regenerator 102 is sent to the absorber 106 by the solution pump 110b.

フロート室102aから出た濃溶液の液量は、フロート102cが検知する液位102dに対応して、フロート弁102bの開度を調整することにより、高温再生器102に供給する稀溶液を制御する。   The amount of the concentrated solution discharged from the float chamber 102a controls the dilute solution supplied to the high temperature regenerator 102 by adjusting the opening of the float valve 102b corresponding to the liquid level 102d detected by the float 102c. .

しかし、吸収式冷凍機101の起動時においては、高温再生器102と吸収器106との圧力差が小さいため、溶液ポンプ110bの駆動力だけでは十分な溶液循環量を確保できない。よって、フロート室102aの液位102dが変化しないため、フロート弁102bの開度が変化せず、溶液の循環量が増えない。すなわち、前述の通り、吸収式冷凍機101の起動時は、溶液循環量が少なくなる。このため、排ガス熱交換器107の溶液供給量も少なくなる。そして、高温度の排ガス121が有する熱量に対して排ガス熱交換器107に供給される溶液の量が十分でないため、溶液が沸騰し、更に溶液が流れにくくなる。その結果、吸収式冷凍機101の性能が低下する。   However, since the pressure difference between the high-temperature regenerator 102 and the absorber 106 is small when the absorption refrigerator 101 is started, a sufficient amount of solution circulation cannot be ensured only by the driving force of the solution pump 110b. Therefore, since the liquid level 102d of the float chamber 102a does not change, the opening degree of the float valve 102b does not change, and the circulation amount of the solution does not increase. That is, as described above, when the absorption refrigerator 101 is started, the amount of solution circulation is reduced. For this reason, the solution supply amount of the exhaust gas heat exchanger 107 is also reduced. And since the quantity of the solution supplied to the exhaust gas heat exchanger 107 is not sufficient with respect to the amount of heat of the high temperature exhaust gas 121, the solution boils and the solution is less likely to flow. As a result, the performance of the absorption chiller 101 is degraded.

そこで、本実施例においては、排ガス熱交換器107からフロート弁102bの上流側に向かう溶液配管122と、フロート弁102bの下流側の溶液配管123と、をバイパス配管124で接続し、フロート弁102bの開度に係わらず、常時、稀溶液を高温再生器102に送るように構成している。言い換えると、溶液配管122には、フロート弁102bの上流側と下流側とを接続するバイパス配管124が付設されている。これにより、起動時においても排ガス熱交換器107に一定量の稀溶液を供給することができるようになる。すなわち、排ガス熱交換器107に十分な溶液供給量を確保できる。   Therefore, in the present embodiment, the solution pipe 122 that goes from the exhaust gas heat exchanger 107 toward the upstream side of the float valve 102b and the solution pipe 123 that is downstream of the float valve 102b are connected by the bypass pipe 124, and the float valve 102b is connected. Regardless of the opening, the dilute solution is always sent to the high temperature regenerator 102. In other words, the solution pipe 122 is provided with a bypass pipe 124 that connects the upstream side and the downstream side of the float valve 102b. As a result, a certain amount of a rare solution can be supplied to the exhaust gas heat exchanger 107 even at the time of startup. That is, a sufficient solution supply amount can be secured in the exhaust gas heat exchanger 107.

なお、高温再生器102の容量に応じて、バイパス配管124にオリフィスを設けてもよい。   Note that an orifice may be provided in the bypass pipe 124 according to the capacity of the high-temperature regenerator 102.

本実施例においては、バイパス配管124は、弁を有しないため、常に開放状態にある。このため、バイパス配管124の流路抵抗は、適切な範囲とすることが望ましい。例えば、定格時においてバイパス配管124からの溶液の流量が、フロート弁102bを経由して高温再生器102に流入する溶液の流量よりも多い場合、高温再生器102に流入する溶液の量を適切に調整することができなくなる。よって、この場合、バイパス配管124の流路抵抗は、フロート弁102bの定格時の開度における流路抵抗よりも大きくし、フロート弁102bを経由する流路からの溶液の流入を優先することが望ましい。一方、起動時においては、フロート弁102bはほぼ閉じた状態となっている。このときは、バイパス配管124の流路抵抗は、フロート弁102bがほぼ閉じた状態における流路抵抗よりも小さくし、バイパス配管124を経由する溶液の流入を優先することが望ましい。   In the present embodiment, the bypass pipe 124 does not have a valve, and therefore is always open. For this reason, it is desirable that the flow path resistance of the bypass pipe 124 be in an appropriate range. For example, when the flow rate of the solution from the bypass pipe 124 is higher than the flow rate of the solution flowing into the high temperature regenerator 102 via the float valve 102b at the rated time, the amount of the solution flowing into the high temperature regenerator 102 is appropriately set. It becomes impossible to adjust. Therefore, in this case, the flow path resistance of the bypass pipe 124 is made larger than the flow path resistance at the rated opening of the float valve 102b, and priority is given to the inflow of the solution from the flow path via the float valve 102b. desirable. On the other hand, at the time of activation, the float valve 102b is almost closed. At this time, it is desirable that the flow path resistance of the bypass pipe 124 is made smaller than the flow path resistance in a state where the float valve 102 b is almost closed, and priority is given to the inflow of the solution via the bypass pipe 124.

図2は、実施例1の吸収式冷凍機の概略構成を示したものである。   FIG. 2 shows a schematic configuration of the absorption refrigerator according to the first embodiment.

本実施例は、実施例1のバイパス配管124の途中に流調弁201(流量調整弁)を設置し、かつ、排ガス熱交換器107の出口側溶液配管122に温度センサ202(溶液温度センサ)を設置したものである。これ以外は、実施例1と同様であるため、説明は省略する。   In this embodiment, a flow control valve 201 (flow rate adjusting valve) is installed in the middle of the bypass pipe 124 of the first embodiment, and the temperature sensor 202 (solution temperature sensor) is connected to the outlet side solution pipe 122 of the exhaust gas heat exchanger 107. Is installed. Since other than this is the same as in the first embodiment, the description is omitted.

温度センサ202は、排ガス熱交換器107で加熱された後の溶液温度を測定するものである。測定された溶液温度は、制御部203に送られ、流調弁201の開度を制御する。   The temperature sensor 202 measures the solution temperature after being heated by the exhaust gas heat exchanger 107. The measured solution temperature is sent to the control unit 203 to control the opening degree of the flow control valve 201.

排ガス熱交換器107の内部において、比較的に溶液が沸騰しやすい状態とは、溶液流量が少なく、高温の排ガスと熱交換する場合である。よって、常時、溶液の温度を測定して、その測定結果が沸騰温度に近づいた時には制御部203が「沸騰の可能性あり」と判定し、流調弁201の開度を大きくして溶液流量を増加させる。その制御により、排ガス熱交換器107の内部における溶液の沸騰を回避することができ、溶液流動の圧力損失増大を防止できる。さらには、排ガス121が持つより多くの熱を溶液に回収でき、吸収式冷凍機101の効率が向上する。   The state in which the solution is relatively easy to boil inside the exhaust gas heat exchanger 107 is a case where the solution flow rate is small and heat is exchanged with high-temperature exhaust gas. Therefore, the temperature of the solution is constantly measured, and when the measurement result approaches the boiling temperature, the control unit 203 determines that “there is a possibility of boiling”, and increases the opening of the flow control valve 201 to increase the solution flow rate. Increase. By the control, boiling of the solution in the exhaust gas heat exchanger 107 can be avoided, and an increase in pressure loss of the solution flow can be prevented. Furthermore, more heat of the exhaust gas 121 can be recovered in the solution, and the efficiency of the absorption refrigerator 101 is improved.

また、その制御を実現するために、事前に排ガス温度、溶液温度及び溶液圧力の関係から溶液沸騰温度を求めておく。図示していないが、高温再生器102と排ガス熱交換器107との間に、排ガス熱交換器107の入口における排ガスの温度を測定する排ガス温度センサを付設することが望ましい。   In order to realize the control, the solution boiling temperature is obtained in advance from the relationship between the exhaust gas temperature, the solution temperature, and the solution pressure. Although not shown, it is desirable to provide an exhaust gas temperature sensor for measuring the temperature of the exhaust gas at the inlet of the exhaust gas heat exchanger 107 between the high temperature regenerator 102 and the exhaust gas heat exchanger 107.

なお、本実施例では、溶液温度の測定結果に基づく流調弁201の開度制御について述べているが、上記両者の温度関係が事前に求まっている場合は、排ガス温度の測定結果に基づいて制御してもよい。   In addition, although the opening degree control of the flow control valve 201 based on the measurement result of the solution temperature is described in the present embodiment, when the temperature relationship between the two is obtained in advance, based on the measurement result of the exhaust gas temperature. You may control.

また、流調弁201の開度は、温度センサ202(溶液温度センサ)及び排ガス温度センサにより測定された温度に基いて調整されるように構成してもよい。   Further, the opening degree of the flow control valve 201 may be adjusted based on the temperature measured by the temperature sensor 202 (solution temperature sensor) and the exhaust gas temperature sensor.

まとめると、本実施例における制御方法は、溶液温度センサにより溶液の温度を測定する工程と、溶液温度センサにより測定された温度に基いて流量調整弁の開度を調整する工程と、を含む。   In summary, the control method in this embodiment includes a step of measuring the temperature of the solution by the solution temperature sensor and a step of adjusting the opening of the flow rate adjustment valve based on the temperature measured by the solution temperature sensor.

さらに、本実施例における制御方法は、溶液温度センサにより溶液の温度を測定し、排ガス温度センサにより排ガスの温度を測定する工程と、溶液温度センサ及び排ガス温度センサにより測定された温度に基いて流量調整弁の開度を調整する工程と、を含むものであってもよい。   Further, the control method in the present embodiment includes a step of measuring the temperature of the solution with the solution temperature sensor, the temperature of the exhaust gas with the exhaust gas temperature sensor, and the flow rate based on the temperature measured with the solution temperature sensor and the exhaust gas temperature sensor. And a step of adjusting the opening of the adjusting valve.

次に、表1を用いて、本実施例における流調弁制御方法について述べる。   Next, a flow control valve control method in the present embodiment will be described using Table 1.

表1は、運転状態と流調弁の開度との関係をまとめたものである。運転状態は、起動時と定格負荷時とに分けて示している。さらに、起動時は、TとToとの大小関係で分けて示している。   Table 1 summarizes the relationship between the operating state and the opening of the flow control valve. The operating state is shown separately at startup and at rated load. Furthermore, at the time of start-up, it is shown separately according to the magnitude relationship between T and To.

ここで、Tは溶液が沸騰しない設定温度を示し、Toは排ガス熱交換器107の出口側溶液温度を示す。   Here, T represents a set temperature at which the solution does not boil, and To represents the outlet side solution temperature of the exhaust gas heat exchanger 107.

本表に示すように、吸収式冷凍機101の起動時においてTo<Tの条件では、流調弁201の開度を小さくする。特に起動初期では、バーナ119の燃焼量も少なく、高温再生器102の圧力は低く、高温再生器102と吸収器106との圧力差も小さいため、高温再生器102から流出する濃溶液の流量が少ないままである。もし、その状態で、流調弁201の開度を大きくすると、多くの稀溶液が高温再生器102に送られ、冷凍機の能力が高くならない。   As shown in this table, the opening degree of the flow control valve 201 is reduced under the condition of To <T when the absorption refrigerator 101 is started. Particularly in the early stage of startup, the burner 119 has a small combustion amount, the pressure of the high-temperature regenerator 102 is low, and the pressure difference between the high-temperature regenerator 102 and the absorber 106 is small, so the flow rate of the concentrated solution flowing out from the high-temperature regenerator 102 is high. It remains few. If the opening degree of the flow control valve 201 is increased in this state, many rare solutions are sent to the high temperature regenerator 102 and the capacity of the refrigerator does not increase.

そして、起動後一定時間が過ぎると、バーナ119の燃焼量も多くなり、To≧Tの条件では、流調弁201の開度を大きくする。その状態では、バーナ燃焼量の増加により、高温再生器102の圧力が高く、高温再生器102と吸収器106との圧力差が大きくなるため、高温再生器102から流出する濃溶液の流量が多くなる。よって、フロート室102aの液位102dが下がり、それと連動してフロート弁102bが開き、高温再生器102に送られる稀溶液の流量が増加する。それと同時にバーナ燃焼量増加に伴う排ガス温度上昇に対応するため、排ガス熱交換器107に供給する稀溶液の流量も増やす必要がある。したがって、流調弁201の開度を大きくする。   Then, after a certain period of time has elapsed after startup, the amount of combustion of the burner 119 increases, and the opening degree of the flow control valve 201 is increased under the condition of To ≧ T. In this state, the pressure of the high-temperature regenerator 102 is high due to the increase in the burner combustion amount, and the pressure difference between the high-temperature regenerator 102 and the absorber 106 becomes large. Become. Accordingly, the liquid level 102d of the float chamber 102a is lowered, and the float valve 102b is opened in conjunction with this, and the flow rate of the rare solution sent to the high temperature regenerator 102 is increased. At the same time, it is necessary to increase the flow rate of the rare solution supplied to the exhaust gas heat exchanger 107 in order to cope with the exhaust gas temperature rise accompanying the increase in the burner combustion amount. Therefore, the opening degree of the flow control valve 201 is increased.

その後、定格負荷運転状態に移行した際、その時点ではバーナ119の燃焼量も定格状態となり、高温再生器102と吸収器106との圧力差、および、溶液ポンプ110bの駆動力によって濃溶液と稀溶液の循環量がバランスし、所定の冷凍能力を維持することができる。この状態では、フロート弁102bの制御のみで溶液循環を維持できるので、流調弁201の開度は小さくしてよい。さらに、定格運転状態が安定的に継続する場合は、流調弁201を閉じてもよい。ただし、部分負荷運転への切り替えなどを考慮して、常時、溶液温度の測定を行うことが望ましい。   Thereafter, when the operation is shifted to the rated load operation state, the burner 119 is also burned at the rated state at that time, and the concentrated solution and the rare solution are diluted by the pressure difference between the high temperature regenerator 102 and the absorber 106 and the driving force of the solution pump 110b. The circulation amount of the solution is balanced and a predetermined refrigeration capacity can be maintained. In this state, since the solution circulation can be maintained only by controlling the float valve 102b, the opening degree of the flow control valve 201 may be reduced. Furthermore, when the rated operation state continues stably, the flow control valve 201 may be closed. However, it is desirable to always measure the solution temperature in consideration of switching to partial load operation.

以上のように、図2に示す溶液配管構造を有する吸収式冷凍機において表1に示す溶液循環制御を行うことにより、吸収式冷凍機101の起動時において溶液循環量が少ない場合でも、排ガス熱交換器107に稀溶液を多く供給することができる。これにより、排ガス熱交換器107内部における溶液の沸騰を回避し、内部の溶液流動の圧力損失増大を防止できる。   As described above, by performing the solution circulation control shown in Table 1 in the absorption refrigerator having the solution piping structure shown in FIG. 2, even when the amount of solution circulation is small at the start-up of the absorption refrigerator 101, the exhaust gas heat A large amount of dilute solution can be supplied to the exchanger 107. Thereby, the boiling of the solution inside the exhaust gas heat exchanger 107 can be avoided, and an increase in pressure loss due to the solution flow inside can be prevented.

表1に基づく制御方法をまとめると、起動の際は、溶液の温度が、溶液が沸騰しない温度であってあらかじめ設定した温度より低いときは、流量調整弁の開度を小さくし、溶液の温度が、溶液が沸騰しない温度であってあらかじめ設定した温度以上のときは、流量調整弁の開度を大きくする。そして、定格負荷時においては、流量調整弁の開度を小さくし、又は閉とする。   To summarize the control method based on Table 1, when starting up, when the temperature of the solution is a temperature at which the solution does not boil and is lower than a preset temperature, the opening of the flow control valve is reduced, and the temperature of the solution is reduced. However, when the temperature is such that the solution does not boil and is equal to or higher than a preset temperature, the opening of the flow rate adjustment valve is increased. And at the time of rated load, the opening degree of a flow regulating valve is made small or closed.

Figure 2016176604
Figure 2016176604

101:吸収式冷凍機、102:高温再生器、102a:フロート室、102b:フロート弁、102c:フロート、103:低温再生器、104:凝縮器、105:蒸発器、106:吸収器、107:排ガス熱交換器、108:高温熱交換器、109:低温熱交換器、110a:溶液ポンプ(行き)、110b:溶液ポンプ(戻り)、111:冷媒ポンプ、113:冷媒配管、114:通路、115:冷媒配管、116:冷媒配管、117:冷水配管、118:出口冷水、119:バーナ、120:溶液配管、121:排ガス、122、123:溶液配管、124:バイパス配管、201:流調弁、202:溶液温度センサ、203:制御部。   101: Absorption refrigerator, 102: High temperature regenerator, 102a: Float chamber, 102b: Float valve, 102c: Float, 103: Low temperature regenerator, 104: Condenser, 105: Evaporator, 106: Absorber, 107: Exhaust gas heat exchanger, 108: high temperature heat exchanger, 109: low temperature heat exchanger, 110a: solution pump (going), 110b: solution pump (returning), 111: refrigerant pump, 113: refrigerant piping, 114: passage, 115 : Refrigerant pipe, 116: refrigerant pipe, 117: cold water pipe, 118: outlet cold water, 119: burner, 120: solution pipe, 121: exhaust gas, 122, 123: solution pipe, 124: bypass pipe, 201: flow control valve, 202: Solution temperature sensor, 203: Control unit.

Claims (6)

蒸発器、吸収器、凝縮器、高温再生器、低温再生器及び排ガス熱交換器並びにこれらを結合した配管を含み、
前記吸収器の溶液が前記排ガス熱交換器を経由して前記高温再生器に向かう溶液配管の途中には、前記溶液の流量を調整するフロート弁が設けてあり、
前記溶液配管は、前記フロート弁の上流側と下流側とを接続するバイパス配管を有する、吸収式冷凍機。
Including an evaporator, an absorber, a condenser, a high-temperature regenerator, a low-temperature regenerator, and an exhaust gas heat exchanger, and piping connecting them,
A float valve for adjusting the flow rate of the solution is provided in the middle of the solution pipe where the solution of the absorber goes to the high temperature regenerator via the exhaust gas heat exchanger,
The solution pipe is an absorption chiller having a bypass pipe that connects an upstream side and a downstream side of the float valve.
前記バイパス配管は、流量調整弁を有し、
前記溶液配管には、前記排ガス熱交換器の出口における溶液の温度を測定する溶液温度センサが付設され、
前記流量調整弁の開度は、前記溶液温度センサにより測定された温度に基いて調整されるように構成されている、請求項1記載の吸収式冷凍機。
The bypass pipe has a flow rate adjustment valve,
The solution pipe is provided with a solution temperature sensor for measuring the temperature of the solution at the outlet of the exhaust gas heat exchanger,
The absorption refrigerator according to claim 1, wherein the opening degree of the flow rate adjusting valve is configured to be adjusted based on a temperature measured by the solution temperature sensor.
前記バイパス配管は、流量調整弁を有し、
前記溶液配管には、前記排ガス熱交換器の出口における溶液の温度を測定する溶液温度センサが付設され、
前記高温再生器と前記排ガス熱交換器との間には、前記排ガス熱交換器の入口における排ガスの温度を測定する排ガス温度センサが付設され、
前記流量調整弁の開度は、前記溶液温度センサ及び前記排ガス温度センサにより測定された温度に基いて調整されるように構成されている、請求項1記載の吸収式冷凍機。
The bypass pipe has a flow rate adjustment valve,
The solution pipe is provided with a solution temperature sensor for measuring the temperature of the solution at the outlet of the exhaust gas heat exchanger,
Between the high temperature regenerator and the exhaust gas heat exchanger, an exhaust gas temperature sensor for measuring the temperature of the exhaust gas at the inlet of the exhaust gas heat exchanger is attached,
The absorption chiller according to claim 1, wherein the opening degree of the flow rate adjusting valve is configured to be adjusted based on a temperature measured by the solution temperature sensor and the exhaust gas temperature sensor.
蒸発器、吸収器、凝縮器、高温再生器、低温再生器及び排ガス熱交換器並びにこれらを結合した配管を含み、
前記吸収器の溶液が前記排ガス熱交換器を経由して前記高温再生器に向かう溶液配管の途中には、前記溶液の流量を調整するフロート弁が設けてあり、
前記溶液配管は、前記フロート弁の上流側と下流側とを接続するバイパス配管を有し、
前記バイパス配管は、流量調整弁を有し、
前記溶液配管には、前記排ガス熱交換器の出口における溶液の温度を測定する溶液温度センサが付設された、吸収式冷凍機を制御する方法であって、
前記溶液温度センサにより前記溶液の温度を測定する工程と、
前記溶液温度センサにより測定された温度に基いて前記流量調整弁の開度を調整する工程と、を含む、吸収式冷凍機の制御方法。
Including an evaporator, an absorber, a condenser, a high-temperature regenerator, a low-temperature regenerator, and an exhaust gas heat exchanger, and piping connecting them,
A float valve for adjusting the flow rate of the solution is provided in the middle of the solution pipe where the solution of the absorber goes to the high temperature regenerator via the exhaust gas heat exchanger,
The solution pipe has a bypass pipe connecting the upstream side and the downstream side of the float valve,
The bypass pipe has a flow rate adjustment valve,
The solution pipe is provided with a solution temperature sensor for measuring the temperature of the solution at the outlet of the exhaust gas heat exchanger, and is a method for controlling an absorption refrigerator,
Measuring the temperature of the solution with the solution temperature sensor;
And a step of adjusting the opening of the flow rate adjustment valve based on the temperature measured by the solution temperature sensor.
蒸発器、吸収器、凝縮器、高温再生器、低温再生器及び排ガス熱交換器並びにこれらを結合した配管を含み、
前記吸収器の溶液が前記排ガス熱交換器を経由して前記高温再生器に向かう溶液配管の途中には、前記溶液の流量を調整するフロート弁が設けてあり、
前記溶液配管は、前記フロート弁の上流側と下流側とを接続するバイパス配管を有し、
前記バイパス配管は、流量調整弁を有し、
前記溶液配管には、前記排ガス熱交換器の出口における溶液の温度を測定する溶液温度センサが付設され、
前記高温再生器と前記排ガス熱交換器との間には、前記排ガス熱交換器の入口における排ガスの温度を測定する排ガス温度センサが付設された、吸収式冷凍機を制御する方法であって、
前記溶液温度センサにより前記溶液の温度を測定し、前記排ガス温度センサにより前記排ガスの温度を測定する工程と、
前記溶液温度センサ及び前記排ガス温度センサにより測定された温度に基いて前記流量調整弁の開度を調整する工程と、を含む、吸収式冷凍機の制御方法。
Including an evaporator, an absorber, a condenser, a high-temperature regenerator, a low-temperature regenerator, and an exhaust gas heat exchanger, and piping connecting them,
A float valve for adjusting the flow rate of the solution is provided in the middle of the solution pipe where the solution of the absorber goes to the high temperature regenerator via the exhaust gas heat exchanger,
The solution pipe has a bypass pipe connecting the upstream side and the downstream side of the float valve,
The bypass pipe has a flow rate adjustment valve,
The solution pipe is provided with a solution temperature sensor for measuring the temperature of the solution at the outlet of the exhaust gas heat exchanger,
Between the high-temperature regenerator and the exhaust gas heat exchanger, an exhaust gas temperature sensor for measuring the temperature of the exhaust gas at the inlet of the exhaust gas heat exchanger is attached, the method for controlling an absorption refrigerator,
Measuring the temperature of the solution with the solution temperature sensor, and measuring the temperature of the exhaust gas with the exhaust gas temperature sensor;
Adjusting the opening of the flow rate adjustment valve based on the temperature measured by the solution temperature sensor and the exhaust gas temperature sensor.
起動の際は、
前記溶液の温度が、前記溶液が沸騰しない温度であってあらかじめ設定した温度より低いときは、前記流量調整弁の開度を小さくし、
前記溶液の温度が、前記溶液が沸騰しない温度であってあらかじめ設定した温度以上のときは、前記流量調整弁の開度を大きくする、請求項4又は5に記載の吸収式冷凍機の制御方法。
When starting up,
When the temperature of the solution is a temperature at which the solution does not boil and is lower than a preset temperature, the opening of the flow rate adjustment valve is reduced,
The control method for an absorption chiller according to claim 4 or 5, wherein when the temperature of the solution is a temperature at which the solution does not boil and is equal to or higher than a preset temperature, the opening of the flow rate adjustment valve is increased. .
JP2015054779A 2015-03-18 2015-03-18 Absorption refrigerator and control method thereof Active JP6486159B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015054779A JP6486159B2 (en) 2015-03-18 2015-03-18 Absorption refrigerator and control method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015054779A JP6486159B2 (en) 2015-03-18 2015-03-18 Absorption refrigerator and control method thereof

Publications (2)

Publication Number Publication Date
JP2016176604A true JP2016176604A (en) 2016-10-06
JP6486159B2 JP6486159B2 (en) 2019-03-20

Family

ID=57069707

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015054779A Active JP6486159B2 (en) 2015-03-18 2015-03-18 Absorption refrigerator and control method thereof

Country Status (1)

Country Link
JP (1) JP6486159B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016176603A (en) * 2015-03-18 2016-10-06 ジョンソンコントロールズ ヒタチ エア コンディショニング テクノロジー(ホンコン)リミテッド Absorption chiller heater, heat exchanger, control method for absorption chiller heater
KR102066891B1 (en) * 2019-10-07 2020-01-16 박희문 Energy-Saving Absorption Refrigeration System
KR102547220B1 (en) * 2022-11-01 2023-06-23 삼중테크 주식회사 High-efficiency absorption heating and cooling system using low-temperature exhaust gas

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5878064A (en) * 1981-11-02 1983-05-11 三洋電機株式会社 Controller for double-effect absorption refrigerator
JPH06347123A (en) * 1993-06-07 1994-12-20 Hitachi Ltd Absorption type cold or hot water generating machine
JPH07218024A (en) * 1994-02-01 1995-08-18 Hitachi Ltd Absorption type chilled and warm water generator
JPH0960999A (en) * 1995-08-22 1997-03-04 Tokyo Gas Co Ltd Double effect absorption water cooler water heater
JP2003287314A (en) * 2002-03-28 2003-10-10 Sanyo Electric Co Ltd Absorption refrigerating machine
JP2003302119A (en) * 2002-04-12 2003-10-24 Sanyo Electric Co Ltd Absorption refrigeration unit
JP2004036963A (en) * 2002-07-02 2004-02-05 Ebara Refrigeration Equipment & Systems Co Ltd Safety method for exhaust gas charging-type absorption water cooler/heater
JP2004132553A (en) * 2002-10-08 2004-04-30 Hitachi Ltd Triple effect absorption refrigerator

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5878064A (en) * 1981-11-02 1983-05-11 三洋電機株式会社 Controller for double-effect absorption refrigerator
JPH06347123A (en) * 1993-06-07 1994-12-20 Hitachi Ltd Absorption type cold or hot water generating machine
JPH07218024A (en) * 1994-02-01 1995-08-18 Hitachi Ltd Absorption type chilled and warm water generator
JPH0960999A (en) * 1995-08-22 1997-03-04 Tokyo Gas Co Ltd Double effect absorption water cooler water heater
JP2003287314A (en) * 2002-03-28 2003-10-10 Sanyo Electric Co Ltd Absorption refrigerating machine
JP2003302119A (en) * 2002-04-12 2003-10-24 Sanyo Electric Co Ltd Absorption refrigeration unit
JP2004036963A (en) * 2002-07-02 2004-02-05 Ebara Refrigeration Equipment & Systems Co Ltd Safety method for exhaust gas charging-type absorption water cooler/heater
JP2004132553A (en) * 2002-10-08 2004-04-30 Hitachi Ltd Triple effect absorption refrigerator

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016176603A (en) * 2015-03-18 2016-10-06 ジョンソンコントロールズ ヒタチ エア コンディショニング テクノロジー(ホンコン)リミテッド Absorption chiller heater, heat exchanger, control method for absorption chiller heater
KR102066891B1 (en) * 2019-10-07 2020-01-16 박희문 Energy-Saving Absorption Refrigeration System
KR102547220B1 (en) * 2022-11-01 2023-06-23 삼중테크 주식회사 High-efficiency absorption heating and cooling system using low-temperature exhaust gas

Also Published As

Publication number Publication date
JP6486159B2 (en) 2019-03-20

Similar Documents

Publication Publication Date Title
JP2023030204A (en) Absorption refrigerator and control method for absorption refrigerator
JP6486159B2 (en) Absorption refrigerator and control method thereof
JP4885467B2 (en) Absorption heat pump
JP4321318B2 (en) Triple effect absorption refrigerator
JP4901655B2 (en) Absorption chiller / heater
JP2005003312A (en) Triple effect absorption refrigerating plant
JP2012202589A (en) Absorption heat pump apparatus
JP5575519B2 (en) Absorption refrigerator
JP4602734B2 (en) Two-stage temperature rising type absorption heat pump
JP2018169075A (en) Absorption type refrigerating machine
JP4157723B2 (en) Triple effect absorption refrigerator
JP4315855B2 (en) Absorption refrigerator
US10018383B2 (en) Triple effect absorption chiller
JP5583435B2 (en) Refrigeration and air conditioning method and apparatus
JP6364238B2 (en) Absorption type water heater
JP6320958B2 (en) Absorption chiller / heater, heat exchanger, absorption chiller / heater control method
JP2010276244A (en) Absorption type water chiller/heater
JP4308076B2 (en) Absorption refrigerator
JP2003287314A (en) Absorption refrigerating machine
JP7365612B2 (en) Absorption chiller, absorption chiller control method and controller
JP4199977B2 (en) Triple effect absorption refrigerator
JP2005300047A (en) Heat exchanger system and absorption refrigerating machine using the same
JP4064199B2 (en) Triple effect absorption refrigerator
JP6765056B2 (en) Absorption chiller
JP2003287315A (en) Absorption refrigerating machine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170616

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20171018

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20180104

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180320

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180316

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20181106

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181211

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20181218

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190122

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190219

R150 Certificate of patent or registration of utility model

Ref document number: 6486159

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250