JP4602734B2 - Two-stage temperature rising type absorption heat pump - Google Patents

Two-stage temperature rising type absorption heat pump Download PDF

Info

Publication number
JP4602734B2
JP4602734B2 JP2004299169A JP2004299169A JP4602734B2 JP 4602734 B2 JP4602734 B2 JP 4602734B2 JP 2004299169 A JP2004299169 A JP 2004299169A JP 2004299169 A JP2004299169 A JP 2004299169A JP 4602734 B2 JP4602734 B2 JP 4602734B2
Authority
JP
Japan
Prior art keywords
solution
temperature
absorber
high temperature
evaporator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004299169A
Other languages
Japanese (ja)
Other versions
JP2006112686A (en
Inventor
修行 井上
毅一 入江
幸大 福住
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Original Assignee
Ebara Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Corp filed Critical Ebara Corp
Priority to JP2004299169A priority Critical patent/JP4602734B2/en
Priority to US11/247,599 priority patent/US7464562B2/en
Priority to CN2005101135952A priority patent/CN1766461B/en
Publication of JP2006112686A publication Critical patent/JP2006112686A/en
Priority to US12/191,680 priority patent/US7827817B2/en
Application granted granted Critical
Publication of JP4602734B2 publication Critical patent/JP4602734B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/62Absorption based systems

Description

本発明は、排熱エネルギーを吸収ヒートポンプを用いて高温媒体(高温水、高温蒸気等)に変換する二段昇温型吸収ヒートポンプに関し、特にその起動特性を改良した二段昇温型吸収ヒートポンプに関するものである。   The present invention relates to a two-stage temperature rising absorption heat pump that converts exhaust heat energy into a high-temperature medium (high-temperature water, high-temperature steam, etc.) using an absorption heat pump, and more particularly to a two-stage temperature rising absorption heat pump with improved start-up characteristics. Is.

従来、この種の二段昇温型吸収ヒートポンプとしては、特許文献1に開示されたものがある。図1は特許文献1に開示された二段昇温型吸収ヒートポンプの一構成例を示す図である。図1に示すよう、に二段昇温型吸収ヒートポンプは、高温吸収器A2、低温吸収器A1、高温蒸発器E2、低温蒸発器E1、再生器G、凝縮器C、高温溶液熱交換器X2、低温溶液熱交換器X1を主要構成機器として具備している。   Conventionally, this type of two-stage temperature rising type absorption heat pump is disclosed in Patent Document 1. FIG. 1 is a diagram showing a configuration example of a two-stage temperature rising type absorption heat pump disclosed in Patent Document 1. In FIG. As shown in FIG. 1, the two-stage temperature rising type absorption heat pump includes a high temperature absorber A2, a low temperature absorber A1, a high temperature evaporator E2, a low temperature evaporator E1, a regenerator G, a condenser C, and a high temperature solution heat exchanger X2. The low-temperature solution heat exchanger X1 is provided as a main component device.

溶液側の設備としては再生器Gの濃溶液を高温吸収器A2に送る溶液ポンプ101、濃溶液管102、希溶液管103、中間濃度希溶液管104、第1減圧弁105、第2減圧弁106、再生器Gに配設された第1温水管107、該第1温水管107の入口側に設けられた制御弁108、高温吸収器A2に配設された第2温水管109、該第2温水管109の出口側に設けられた出口温度を検出する温度センサ110、低温吸収器A1の液面を検出する液面センサ111、低温吸収器A1内に開口する第1スプレイ112と高温吸収器A2内に開口する第2スプレイ113が備えられている。   As the equipment on the solution side, a solution pump 101 that sends the concentrated solution of the regenerator G to the high-temperature absorber A2, a concentrated solution tube 102, a diluted solution tube 103, an intermediate concentration diluted solution tube 104, a first pressure reducing valve 105, and a second pressure reducing valve 106, a first hot water pipe 107 provided in the regenerator G, a control valve 108 provided on the inlet side of the first hot water pipe 107, a second hot water pipe 109 provided in the high temperature absorber A2, the first 2. Temperature sensor 110 for detecting the outlet temperature provided on the outlet side of the hot water pipe 109, a liquid level sensor 111 for detecting the liquid level of the low temperature absorber A1, a first spray 112 opened in the low temperature absorber A1 and high temperature absorption. A second spray 113 opening in the vessel A2 is provided.

冷媒側設備としては凝縮器Cより冷媒を低温蒸発器E1及び高温蒸発器E2に送る冷媒ポンプ114、冷媒管115、116、117、低温蒸発器E1に開口するスプレイ118、高温蒸発器E2に開口するスプレイ119、低温蒸発器E1の液面を検出する液面センサ120、高温蒸発器E2の液面を検出する液面センサ130、スプレイ118に供給する冷媒流量を制御する制御弁121、スプレイ119に供給する冷媒流量を制御する制御弁122、凝縮器C内に配設された冷水管123、低温蒸発器E1に配設された第3温水管124、第3温水管124の入口に設けられた制御弁125が備えられている。   As the refrigerant side equipment, a refrigerant pump 114 that sends refrigerant from the condenser C to the low temperature evaporator E1 and the high temperature evaporator E2, a refrigerant pipe 115, 116, 117, a spray 118 that opens to the low temperature evaporator E1, and an opening to the high temperature evaporator E2. A spray 119, a liquid level sensor 120 for detecting the liquid level of the low temperature evaporator E1, a liquid level sensor 130 for detecting the liquid level of the high temperature evaporator E2, a control valve 121 for controlling the flow rate of refrigerant supplied to the spray 118, and the spray 119. A control valve 122 for controlling the flow rate of refrigerant supplied to the condenser C, a cold water pipe 123 provided in the condenser C, a third hot water pipe 124 provided in the low temperature evaporator E1, and an inlet of the third hot water pipe 124. A control valve 125 is provided.

溶液側、冷媒側を連絡する設備としては、再生器Gに発生した冷媒蒸気を凝縮器Cに導く連絡管126、低温蒸発器E1で発生した冷媒蒸気を低温吸収器A1に供給する供給管127、高温蒸発器E2で発生した冷媒蒸気を高温吸収器A2に供給する供給管128、低温吸収器A1内と高温蒸発器E2内とを連絡して無端状に配設され中の循環水により低温吸収器A1内で得た熱を高温蒸発器E2内供給する搬熱管129が備えられている。制御弁108及び制御弁125は、第2温水管109の出口側の温度センサ110の検出信号により制御するようになっている。   The equipment for connecting the solution side and the refrigerant side includes a communication pipe 126 that guides the refrigerant vapor generated in the regenerator G to the condenser C, and a supply pipe 127 that supplies the refrigerant vapor generated in the low-temperature evaporator E1 to the low-temperature absorber A1. The supply pipe 128 that supplies the refrigerant vapor generated in the high-temperature evaporator E2 to the high-temperature absorber A2, the inside of the low-temperature absorber A1 and the inside of the high-temperature evaporator E2 are connected in an endless manner, and the temperature is lowered by circulating water therein. A heat transfer tube 129 for supplying the heat obtained in the absorber A1 into the high temperature evaporator E2 is provided. The control valve 108 and the control valve 125 are controlled by a detection signal of the temperature sensor 110 on the outlet side of the second hot water pipe 109.

温排水の如き温水を熱源温水として第1温水管107と第3温水管124に供給し、凝縮器Cの冷水管123に供給される冷却水との間の温度差により供給される熱エネルギーを用い吸収熱と溶液の沸点上昇を利用して熱媒体の温度を2段階上昇させて高温吸収器A2内の温度を高め極めて高温となし、第2温水管109に別途供給された温水を加熱して、従来のサイクルでは得られなかった高温の利用価値の高い熱水を得る。   Heat energy such as warm drainage is supplied to the first hot water pipe 107 and the third hot water pipe 124 as heat source hot water, and the thermal energy supplied by the temperature difference between the cooling water supplied to the cold water pipe 123 of the condenser C is obtained. The absorption heat and the boiling point of the solution are used to raise the temperature of the heat medium in two steps to increase the temperature in the high-temperature absorber A2 to extremely high temperature, and the hot water separately supplied to the second hot water pipe 109 is heated. Thus, hot water having a high utility value that cannot be obtained by the conventional cycle is obtained.

上記構成の二段昇温型吸収ヒートポンプの溶液側のフローの吸収サイクル線図(以下「シリーズフロー」と称す)を図2に示す。このシリーズフローでは、起動が完了し通常運転となって、各機器がヒートポンプとしての圧力分布になれば、正常な溶液循環系が成立する。即ち、再生器Gで濃縮された濃溶液を溶液ポンプ101で冷媒蒸気圧の高い高温吸収器A2に送り、中間濃度になった中間濃度溶液は高温吸収器A2から低温吸収器A1に冷媒蒸気圧の圧力差で流れ、低温吸収器A1で希釈された希溶液は、低温吸収器A1から再生器Gへ両者の冷媒蒸気圧力差で流れる。
特公昭58−18574号公報
FIG. 2 shows an absorption cycle diagram (hereinafter referred to as “series flow”) of the flow on the solution side of the two-stage temperature rising type absorption heat pump having the above configuration. In this series flow, a normal solution circulation system is established when the start-up is completed and normal operation is performed and each device has a pressure distribution as a heat pump. That is, the concentrated solution concentrated by the regenerator G is sent to the high-temperature absorber A2 having a high refrigerant vapor pressure by the solution pump 101, and the intermediate-concentration solution having an intermediate concentration is transferred from the high-temperature absorber A2 to the low-temperature absorber A1. Dilute solution diluted with the low temperature absorber A1 flows from the low temperature absorber A1 to the regenerator G with the refrigerant vapor pressure difference between the two.
Japanese Patent Publication No.58-18574

上記シリーズフローでは、起動時に低温吸収器には溶液が未供給であり、低温吸収器A1の冷却媒体は、低温蒸発器E1からの冷媒蒸気の凝縮熱で加熱されることになり、この冷却媒体の温度は低温蒸発器E1の蒸発温度より低温になる。高温蒸発器E2ではこの冷却媒体を熱源に冷媒蒸気を発生し、或いは冷却媒体そのものが冷媒蒸気となって高温吸収器A2で吸収される。従って高温吸収器A2の冷媒蒸気圧は、低温吸収器A1の蒸気圧(低温蒸気発器E1の蒸気圧と同一)よりも低いことになり、位置ヘッドに頼らない限り、高温吸収器A2から低温吸収器A1への中間濃度溶液の流れが生じないことになり、高温吸収器A2高さを抑えると起動ができなくなるか、或いは起動時間がかかることになる。   In the above series flow, the solution is not supplied to the low-temperature absorber at the start-up, and the cooling medium of the low-temperature absorber A1 is heated by the condensation heat of the refrigerant vapor from the low-temperature evaporator E1, and this cooling medium Is lower than the evaporation temperature of the low temperature evaporator E1. In the high-temperature evaporator E2, refrigerant vapor is generated using this cooling medium as a heat source, or the cooling medium itself becomes refrigerant vapor and is absorbed by the high-temperature absorber A2. Therefore, the refrigerant vapor pressure of the high temperature absorber A2 is lower than the vapor pressure of the low temperature absorber A1 (same as the vapor pressure of the low temperature steam generator E1). The flow of the intermediate concentration solution to the absorber A1 does not occur. If the height of the high temperature absorber A2 is suppressed, the startup cannot be performed or the startup time is required.

また、特許文献1には図3に示す吸収サイクル線図(以下「リバースフロー」と称す)、図4に示す吸収サイクル線図(以下「パラレルフロー」と称す)のような溶液側設備も示されている。これらは運転起動時に、低温吸収器A1に溶液が導入されるので、低温吸収器A1の冷却媒体が低温蒸発器E1の冷媒温度よりも高温になり、溶液循環が可能になる。しかし図3のリバースフローでは、溶液ポンプが2基必要になるという問題がある。一方、図4のパラレルフローでは溶液ポンプは1基でよいが、低温吸収器A1及び高温吸収器A2の濃度幅が大きくなり、両吸収器の出口濃度がほぼ希溶液濃度になり、従って、吸収器出口の溶液温度が図2のシリーズフロー或いは図3の溶液温度よりも低下する。即ち、ヒートポンプとしての昇温能力が低下するという問題がある。   Patent Document 1 also shows solution-side equipment such as an absorption cycle diagram shown in FIG. 3 (hereinafter referred to as “reverse flow”) and an absorption cycle diagram shown in FIG. 4 (hereinafter referred to as “parallel flow”). Has been. Since the solution is introduced into the low-temperature absorber A1 at the start of operation, the cooling medium of the low-temperature absorber A1 becomes higher than the refrigerant temperature of the low-temperature evaporator E1, and the solution can be circulated. However, the reverse flow of FIG. 3 has a problem that two solution pumps are required. On the other hand, in the parallel flow of FIG. 4, only one solution pump may be used, but the concentration ranges of the low-temperature absorber A1 and the high-temperature absorber A2 become large, and the outlet concentrations of both absorbers become almost dilute solution concentrations. The solution temperature at the vessel outlet is lower than the series flow of FIG. 2 or the solution temperature of FIG. That is, there is a problem that the temperature raising capability as a heat pump is reduced.

本発明は上述の点に鑑みてなされたもので、上記問題点を除去し、ヒートポンプの機械の高さ寸法を抑え、しかも昇温性能及び起動特性に優れた、特に高温媒体が高温蒸気の形態で得ることができる二段昇温型吸収ヒートポンプを提供することを目的とする。   The present invention has been made in view of the above points, eliminates the above-mentioned problems, suppresses the height of the machine of the heat pump, and is excellent in temperature rise performance and start-up characteristics. Particularly, the high temperature medium is in the form of high temperature steam. It aims at providing the two-stage temperature rising type absorption heat pump which can be obtained by this.

上記課題を達成するため請求項1に記載の発明は、高温吸収器、低温吸収器、高温蒸発器、低温蒸発器、再生器、凝縮器、高温溶液熱交換器、低温溶液熱交換器を主要構成機器として具備し、前記再生器の濃溶液を前記低温溶液熱交換器の被加熱側及び前記高温溶液熱交換器の被加熱側を経由して前記高温吸収器に導入し、前記凝縮器の凝縮冷媒液を前記低温蒸発器及び前記高温蒸発器に導入し、前記低温蒸発器で発生した冷媒蒸気を前記低温吸収器に導入し、高温蒸発器で発生した冷媒蒸気を前記高温吸収器に導入し、前記高温吸収器で前記濃溶液に前記冷媒蒸気が吸収され中間濃度となった中間濃度溶液を前記高温溶液熱交換器の加熱側を経由して前記低温側吸収器に導入し、該低温吸収器で前記中間濃度溶液に冷媒蒸気を吸収して希溶液となった溶液を前記低温溶液熱交換器の加熱側を経由して前記再生器に導入し、該再生器で発生した冷媒蒸気を前記凝縮器に導入し、二段昇温をするように構成した二段昇温型吸収ヒートポンプであって、前記低温溶液熱交換器で加熱され前記高温吸収器に導入される前記再生器からの濃溶液の一部を分岐し、中間濃度溶液の全流量と混合して前記低温吸収器に導入し、該混合溶液に冷媒蒸気が吸収されて発生する熱を高温蒸発器内に供給したことを特徴とする。
In order to achieve the above object, the invention described in claim 1 mainly includes a high temperature absorber, a low temperature absorber, a high temperature evaporator, a low temperature evaporator, a regenerator, a condenser, a high temperature solution heat exchanger, and a low temperature solution heat exchanger. Comprising as a component device, introducing the concentrated solution of the regenerator into the high temperature absorber via the heated side of the low temperature solution heat exchanger and the heated side of the high temperature solution heat exchanger, The condensed refrigerant liquid is introduced into the low temperature evaporator and the high temperature evaporator, the refrigerant vapor generated in the low temperature evaporator is introduced into the low temperature absorber, and the refrigerant vapor generated in the high temperature evaporator is introduced into the high temperature absorber. An intermediate concentration solution in which the refrigerant vapor is absorbed into the concentrated solution by the high temperature absorber to an intermediate concentration is introduced into the low temperature side absorber via the heating side of the high temperature solution heat exchanger, and the low temperature Absorbing refrigerant vapor in the intermediate concentration solution with an absorber The solution thus obtained is introduced into the regenerator via the heating side of the low-temperature solution heat exchanger, the refrigerant vapor generated in the regenerator is introduced into the condenser, and the temperature is increased by two stages. A two-stage temperature rising type absorption heat pump, wherein a part of the concentrated solution from the regenerator heated by the low temperature solution heat exchanger and introduced into the high temperature absorber is branched , It mixes , introduce | transduces into the said low temperature absorber, The heat | fever which a refrigerant | coolant vapor | steam is absorbed by this mixed solution and generate | occur | produces is supplied to the high temperature evaporator, It is characterized by the above-mentioned.

請求項に記載の発明は、請求項1に記載の二段昇温型吸収ヒートポンプにおいて、前記高温吸収器の溶液で被加熱媒体を加熱し、蒸気とすることを特徴とする。
According to a second aspect of the invention, the two-stage heating type absorption heat pump of claim 1, heating the heated medium in a solution of the hot absorber, characterized in that the vapor.

請求項に記載の発明は、請求項1又は2に記載の二段昇温型吸収ヒートポンプにおいて、前記低温吸収器ヘ分岐して導入される濃溶液の導入流量は前記再生器からの全濃溶液流量の5〜50%であることを特徴とする。
The invention according to claim 3 is the two-stage temperature rising type absorption heat pump according to claim 1 or 2 , wherein the flow rate of the concentrated solution introduced by branching to the low-temperature absorber is the total concentrated flow from the regenerator. It is characterized by being 5-50% of the solution flow rate.

請求項1に記載の発明によれば、低温溶液熱交換器で加熱され高温吸収器に導入される再生器からの濃溶液の一部を分岐し、中間濃度溶液の全流量と混合して前記低温吸収器に導入し、該混合溶液に冷媒蒸気が吸収されて発生する熱を高温蒸発器内に供給したので、起動時であっても低温吸収器の溶液温度が低温蒸発器の冷媒温度よりも高温となり、従って高温吸収器内蒸気圧と低温吸収器蒸気圧の差が大きくなって、高温吸収器内の中間濃度溶液が低温吸収器に流れ易くなり、吸収式冷凍機の高さ寸法を抑え、しかも昇温性能及び起動特性に優れた二段昇温型吸収ヒートポンプを提供できる。
According to the invention described in claim 1, a part of the concentrated solution from the regenerator heated by the low temperature solution heat exchanger and introduced into the high temperature absorber is branched , mixed with the total flow rate of the intermediate concentration solution, and Since it was introduced into the low-temperature absorber and the heat generated by the refrigerant vapor being absorbed into the mixed solution was supplied into the high-temperature evaporator , the solution temperature of the low-temperature absorber was higher than the refrigerant temperature of the low-temperature evaporator even during startup. also becomes a high temperature, therefore the difference between the high temperature absorber in vapor pressure and low temperature absorber the vapor pressure is increased, the intermediate concentration solution in the hot absorber easily flows to the cold absorber, the height of the absorption refrigerator In addition, it is possible to provide a two-stage temperature rising type absorption heat pump excellent in temperature rising performance and starting characteristics.

請求項に記載の発明によれば、高温吸収器の溶液で被加熱媒体を加熱し蒸気とするので、少ない流量の被加熱媒体で高温媒体が得られることになり、被加熱媒体を供給するための動力を節減できる。
According to the second aspect of the present invention, since the heated medium is heated with the solution of the high-temperature absorber to form steam, the high-temperature medium is obtained with the heated medium with a small flow rate, and the heated medium is supplied. Can save power.

請求項に記載の発明によれば、低温吸収器ヘ分岐して導入される濃溶液の導入流量は再生器からの全濃溶液流量の5〜50%とするので、起動に時間がかかることなく、且つ起動完了後濃溶液の導入を続行しても、昇温能力の低下は無視できる。



According to the invention described in claim 3 , since the flow rate of the concentrated solution introduced after being branched into the low-temperature absorber is 5 to 50% of the total concentrated solution flow rate from the regenerator, it takes time to start. Even if the introduction of the concentrated solution is continued after the completion of the start-up, the decrease in the heating capability can be ignored.



以下、本発明の実施の形態例を図面に基いて説明する。   Embodiments of the present invention will be described below with reference to the drawings.

図5は本発明に係る二段昇温型吸収ヒートポンプの構成例を示す図である。図示するように、二段昇温型吸収ヒートポンプは主要構成機器として、高温吸収器AH、低温吸収器A、高温蒸発器EH、低温蒸発器E、再生器G、凝縮器C、高温溶液熱交換器X2、低温溶液熱交換器X1を具備している。   FIG. 5 is a diagram showing a configuration example of a two-stage temperature rising type absorption heat pump according to the present invention. As shown in the figure, the two-stage temperature rising type absorption heat pump is composed mainly of a high temperature absorber AH, a low temperature absorber A, a high temperature evaporator EH, a low temperature evaporator E, a regenerator G, a condenser C, and a high temperature solution heat exchange. And a low-temperature solution heat exchanger X1.

再生器Gの濃溶液は溶液ポンプ1により濃溶液管2、低温溶液熱交換器X1の被加熱側、高温溶液熱交換器X2の被加熱側を通って高温吸収器AHに導入されるようになっている。凝縮器Cの凝縮冷媒液は冷媒ポンプ3により、冷媒管4、制御弁5を通って低温蒸発器Eに、冷媒管4及び制御弁6を通って高温蒸発器EHSに導入されるようになっている。低温蒸発器Eで発生した冷媒蒸気は流路7を通って低温吸収器Aに導入され、高温蒸発器EHSで発生した冷媒蒸気は流路8を通って高温吸収器AHに導入されるようになっている。   The concentrated solution of the regenerator G is introduced into the high temperature absorber AH by the solution pump 1 through the concentrated solution tube 2, the heated side of the low temperature solution heat exchanger X1, and the heated side of the high temperature solution heat exchanger X2. It has become. The condensed refrigerant liquid in the condenser C is introduced by the refrigerant pump 3 through the refrigerant pipe 4 and the control valve 5 into the low temperature evaporator E, and through the refrigerant pipe 4 and the control valve 6 into the high temperature evaporator EHS. ing. The refrigerant vapor generated in the low temperature evaporator E is introduced into the low temperature absorber A through the flow path 7, and the refrigerant vapor generated in the high temperature evaporator EHS is introduced into the high temperature absorber AH through the flow path 8. It has become.

高温吸収器AH内にスプレイ9が配置され、濃溶液管2により導入される濃溶液は該スプレイ9から高温吸収器AH内に散布され、上記高温蒸発器EHSからの冷媒蒸気はこの散布された濃溶液に吸収され中濃度の中濃度溶液となり、中濃度溶液管10、高温溶液熱交換器X2の加熱側を通って濃溶液管2を通る濃溶液を加熱し、逆止弁11及び制御弁12を通って低温吸収器Aに導入される。該導入された中間濃度溶液は低温吸収器A内に配設されたスプレイ13から散布される。これにより該中間濃度溶液に低温蒸発器Eからの冷媒蒸気が吸収され、希溶液となる。   The spray 9 is arranged in the high temperature absorber AH, the concentrated solution introduced by the concentrated solution tube 2 is sprayed from the spray 9 into the high temperature absorber AH, and the refrigerant vapor from the high temperature evaporator EHS is sprayed. The concentrated solution is absorbed into the concentrated solution to become an intermediate concentration solution, and the concentrated solution passing through the concentrated solution tube 2 through the heating side of the intermediate concentration solution tube 10 and the high temperature solution heat exchanger X2 is heated. 12 is introduced into the low-temperature absorber A. The introduced intermediate concentration solution is sprayed from the spray 13 disposed in the low temperature absorber A. As a result, the refrigerant vapor from the low temperature evaporator E is absorbed by the intermediate concentration solution and becomes a dilute solution.

上記低温吸収器A内の希溶液は希溶液配管14、低温溶液熱交換器X1の加熱側を通って再生器G内に導入され、再生器G内に配設されたスプレイ15から該再生器G内に配置された温水管16上に散布される。該散布された希溶液は温水管16に供給される温水203により加熱され、冷媒蒸気が発生すると共に濃縮され濃溶液となる。該発生した冷媒蒸気は流路17を通って凝縮器Cに導入され、該凝縮器C内に配設された冷水管18を通る冷却水204に冷却されて凝縮し凝縮冷媒液となる。   The dilute solution in the low temperature absorber A is introduced into the regenerator G through the dilute solution pipe 14 and the heating side of the low temperature solution heat exchanger X1, and the regenerator is supplied from the spray 15 provided in the regenerator G. It is spread | dispersed on the hot water pipe | tube 16 arrange | positioned in G. The sprayed dilute solution is heated by the hot water 203 supplied to the hot water pipe 16, and refrigerant vapor is generated and concentrated to become a concentrated solution. The generated refrigerant vapor is introduced into the condenser C through the flow path 17 and is cooled and condensed by the cooling water 204 passing through the cold water pipe 18 disposed in the condenser C to be a condensed refrigerant liquid.

低温吸収器A及び高温蒸発器EHSのそれぞれの内部には熱交換用管20、21が配設され、該熱交換用管20、21は作動媒体搬送管19、19に接続されており、循環ポンプ22により作動媒体が熱交換用管20、21を循環するようになっている。この作動媒体の循環により、低温吸収器Aで発生した熱を高温蒸発器EHSに送るようになっている。高温蒸発器EHS内にはスプレイ23が配設され、該スプレイ23に上記制御弁6を通って導入される冷媒液が供給され循環するようになっている。また、スプレイ23には冷媒ポンプ24により高温蒸発器EHS内の冷媒液も供給されるようになっている。該スプレイ23から熱交換用管21上に冷媒液を散布することにより、該冷媒液は熱交換用管21を循環する作動媒体により加熱され蒸発し、該蒸発した冷媒蒸気は上記のように流路8を通って高温吸収器AHに導入される。   Inside each of the low temperature absorber A and the high temperature evaporator EHS, heat exchange pipes 20 and 21 are disposed, and the heat exchange pipes 20 and 21 are connected to the working medium transport pipes 19 and 19 for circulation. The working medium circulates through the heat exchange pipes 20 and 21 by the pump 22. Due to the circulation of the working medium, the heat generated in the low temperature absorber A is sent to the high temperature evaporator EHS. A spray 23 is disposed in the high-temperature evaporator EHS, and a refrigerant liquid introduced through the control valve 6 is supplied to the spray 23 and circulated. Further, the refrigerant liquid in the high-temperature evaporator EHS is also supplied to the spray 23 by the refrigerant pump 24. By spraying the refrigerant liquid from the spray 23 onto the heat exchanging pipe 21, the refrigerant liquid is heated and evaporated by the working medium circulating in the heat exchanging pipe 21, and the evaporated refrigerant vapor flows as described above. It is introduced into the high-temperature absorber AH through the path 8.

また、低温蒸発器E内には温水管25が配設され、該温水管に供給される温水により、低温蒸発器E内の冷媒液は加熱され、発生した冷媒蒸気は上記のように低温吸収器Aに導入される。また、濃溶液管2を通って送られる濃溶液は低温溶液熱交換器X1の被加熱側を通って加熱された後、分岐管26で一部が分岐され低温吸収器Aに導入されるようになっている。また、この導入される濃溶液の流量はオリフィス27で制限されるようになっている。   Further, a hot water pipe 25 is disposed in the low temperature evaporator E, the refrigerant liquid in the low temperature evaporator E is heated by the hot water supplied to the hot water pipe, and the generated refrigerant vapor is absorbed at a low temperature as described above. Introduced into vessel A. Further, the concentrated solution sent through the concentrated solution pipe 2 is heated through the heated side of the low temperature solution heat exchanger X1, and then partially branched by the branch pipe 26 and introduced into the low temperature absorber A. It has become. The flow rate of the concentrated solution to be introduced is restricted by the orifice 27.

高温吸収器AHにはその液面レベルを検出する液面センサ28が設けられており、該液面センサ28の検出信号がインバータ29に入力され、溶液ポンプ1の回転数を制御できるようになっている。また、低温吸収器Aにはその出口液面レベルを検出する液面センサ30が設けられ、該液面センサ30の検出信号が制御弁12に入力されその開度を制御できるようになっている。また、低温蒸発器Eにはその液面レベルを検出する液面センサ31が設けられ、該液面センサ31の検出信号が制御弁5に入力されその開度を制御できるようになっている。また、高温蒸発器EHSにはその液面レベルを検出する液面センサ32が設けられ、該液面センサ32の検出信号が制御弁6に入力されその開度を制御できるようになっている。   The high temperature absorber AH is provided with a liquid level sensor 28 for detecting the liquid level, and the detection signal of the liquid level sensor 28 is input to the inverter 29 so that the rotation speed of the solution pump 1 can be controlled. ing. Further, the low-temperature absorber A is provided with a liquid level sensor 30 for detecting the outlet liquid level, and a detection signal of the liquid level sensor 30 is input to the control valve 12 so that the opening degree can be controlled. . Further, the low-temperature evaporator E is provided with a liquid level sensor 31 for detecting the liquid level, and a detection signal of the liquid level sensor 31 is input to the control valve 5 so that the opening degree can be controlled. Further, the high temperature evaporator EHS is provided with a liquid level sensor 32 for detecting the liquid level, and a detection signal of the liquid level sensor 32 is inputted to the control valve 6 so that the opening degree thereof can be controlled.

高温吸収器AH内には被加熱媒体として水を供給する配管33が配設され、該配管33にポンプ34により気液分離器35から水が供給され加熱され、発生した蒸気は配管36を通って気液分離器35に導かれ、水蒸気201が蒸気排出管37から排出される。また、気液分離器35には給水ポンプ38により給水管39を通して加熱媒体としての水202が供給されるようになっている。該給水管39を通る水202は熱交換器40で温水管41を通る温水203で加熱され、熱交換器42で希溶液配管14を通る希溶液で加熱されて、気液分離器35に導入されるようになっている。気液分離器35には液面レベルを検出する液面センサ43が設けられ、検出信号が例えばインバータ(図示せず)駆動される給水ポンプ38のインバータに入力されポンプ回転数を制御できるようになっている。   A pipe 33 for supplying water as a medium to be heated is disposed in the high-temperature absorber AH. Water is supplied from the gas-liquid separator 35 to the pipe 33 by the pump 34 and heated, and the generated steam passes through the pipe 36. Then, it is guided to the gas-liquid separator 35 and the steam 201 is discharged from the steam discharge pipe 37. The gas-liquid separator 35 is supplied with water 202 as a heating medium through a water supply pipe 39 by a water supply pump 38. Water 202 passing through the water supply pipe 39 is heated by the heat exchanger 40 with hot water 203 passing through the hot water pipe 41, heated by the dilute solution passing through the dilute solution pipe 14 by the heat exchanger 42, and introduced into the gas-liquid separator 35. It has come to be. The gas-liquid separator 35 is provided with a liquid level sensor 43 for detecting the liquid level, and the detection signal is input to an inverter of a feed water pump 38 driven by an inverter (not shown), for example, so that the pump rotation speed can be controlled. It has become.

上記構成の二段昇温型吸収ヒートポンプにおいて、再生器Gの温水管16と低温蒸発器Eの温水管25に熱源としての温水203を供給し、凝縮器Cの冷水管に冷却水204を供給する。溶液ポンプ1により再生器G内の濃溶液を低温溶液熱交換器X1で加熱した後、一部を分岐管26で分岐して低温吸収器Aに、残部を高温溶液熱交換器X2の被加熱側を経由して高温吸収器AHに導く。該高温吸収器AHでは濃溶液はスプレイ9から散布され高温蒸発器EHSからの蒸気を吸収して吸収熱を発すると共に、該濃溶液は希釈された中間濃度の中間濃度溶液となり、高温溶液熱交換器X2の加熱側を経由して低温吸収器Aに導かれる。低温吸収器Aでは分岐管26で分岐された濃溶液と高温吸収器AHからの中間濃度溶液が混合され、スプレイ13から散布され低温蒸発器Eからの冷媒蒸気を吸収して吸収熱を発すると共に、希釈され希溶液となる。該希溶液は低温溶液熱交換器X1の加熱側を経由して再生器Gに戻る。   In the two-stage temperature rising absorption heat pump configured as described above, hot water 203 as a heat source is supplied to the hot water pipe 16 of the regenerator G and the hot water pipe 25 of the low temperature evaporator E, and cooling water 204 is supplied to the cold water pipe of the condenser C. To do. After the concentrated solution in the regenerator G is heated by the low temperature solution heat exchanger X1 by the solution pump 1, a part is branched by the branch pipe 26 to the low temperature absorber A, and the rest is heated by the high temperature solution heat exchanger X2. To the high temperature absorber AH via the side. In the high-temperature absorber AH, the concentrated solution is sprayed from the spray 9 and absorbs the vapor from the high-temperature evaporator EHS to generate heat of absorption, and the concentrated solution becomes a diluted intermediate-concentration solution, and high-temperature solution heat exchange It is led to the low-temperature absorber A via the heating side of the vessel X2. In the low temperature absorber A, the concentrated solution branched by the branch pipe 26 and the intermediate concentration solution from the high temperature absorber AH are mixed, sprayed from the spray 13 and absorbs the refrigerant vapor from the low temperature evaporator E to generate absorption heat. Diluted into a dilute solution. The dilute solution returns to the regenerator G via the heating side of the low temperature solution heat exchanger X1.

低温吸収器Aの冷却側は高温蒸発器EHSの熱供給部となっている。即ち、上記吸収器スプレイ13で散布された混合溶液に低温蒸発器Eからの冷媒蒸気が吸収されて発生する吸収熱により、熱交換用管20を通る作動媒体は加熱され、該加熱された作動媒体は高温蒸発器EHSの熱交換用管21に送られ、低温吸収器Aで発生した吸収熱を高温蒸発器EHSに供給し、スプレイ23で熱交換用管21上に散布された冷媒液を加熱するようになっている。低温蒸発器Eでは温水管25を通る温水で冷媒液が加熱され、冷媒蒸気が発生する。   The cooling side of the low temperature absorber A is a heat supply part of the high temperature evaporator EHS. That is, the working medium passing through the heat exchanging pipe 20 is heated by the absorption heat generated by absorbing the refrigerant vapor from the low temperature evaporator E in the mixed solution sprayed by the absorber spray 13, and the heated operation is performed. The medium is sent to the heat exchange pipe 21 of the high temperature evaporator EHS, the absorption heat generated by the low temperature absorber A is supplied to the high temperature evaporator EHS, and the refrigerant liquid sprayed on the heat exchange pipe 21 by the spray 23 is supplied. It comes to heat. In the low temperature evaporator E, the refrigerant liquid is heated by the hot water passing through the hot water pipe 25, and refrigerant vapor is generated.

上記のように起動時に、濃溶液が低温吸収器にも供給されるので、低温蒸発器Eからの冷媒蒸気を吸収し、希溶液温度が上昇し、熱交換用管20を通る作動媒体は加熱される。この温度は低温蒸発器Eの蒸気より高温となっており、高温蒸発器EH内でスプレイ23で熱交換用管21上に散布され蒸発した冷媒蒸気は、低温蒸発器Eの蒸気よりも高温となっており、高温蒸発器EHSの蒸気圧は低温蒸発器よりも高圧になる。高温吸収器AHは高温蒸発器EHSと、低温吸収器は低温蒸発器Eと略同一圧力である。従って、高温吸収器AHの蒸気圧は低温吸収器Aよりも高くなり、高温吸収器AHから低温吸収器Aへの溶液の流れが確保される。   As described above, since the concentrated solution is also supplied to the low temperature absorber as described above, the refrigerant vapor from the low temperature evaporator E is absorbed, the temperature of the dilute solution rises, and the working medium passing through the heat exchange pipe 20 is heated. Is done. This temperature is higher than the vapor of the low temperature evaporator E, and the refrigerant vapor dispersed and evaporated on the heat exchange pipe 21 by the spray 23 in the high temperature evaporator EH is higher than the vapor of the low temperature evaporator E. Thus, the vapor pressure of the high temperature evaporator EHS is higher than that of the low temperature evaporator. The high temperature absorber AH is at the same pressure as the high temperature evaporator EHS, and the low temperature absorber is at the same pressure as the low temperature evaporator E. Therefore, the vapor pressure of the high temperature absorber AH is higher than that of the low temperature absorber A, and the flow of the solution from the high temperature absorber AH to the low temperature absorber A is ensured.

分岐管26で分岐して低温吸収器Aに導入する濃溶液の導入流量は再生器Gから濃溶液管2を通って供給される濃溶液流量の5〜50%程度とする。この濃溶液の導入流量が少ない場合、起動に時間がかかるが、起動完了後も濃溶液導入を続行しても、昇温能力の低下は無視できる。図6は起動完了後も濃溶液導入を続行し続けた場合の吸収サイクル線図である(図2に示す吸収サイクル線図である)。一方、濃溶液の導入流量が多い場合は、起動完了後に濃溶液導入を止める必要がある。濃溶液導入を続行すると、昇温能力の低下が大きく、パラレルフローと同程度(図4参照)になる。   The flow rate of the concentrated solution branched by the branch tube 26 and introduced into the low temperature absorber A is set to about 5 to 50% of the flow rate of the concentrated solution supplied from the regenerator G through the concentrated solution tube 2. When the flow rate of the concentrated solution is small, startup takes time, but even if the concentrated solution introduction is continued even after the startup is completed, a decrease in the temperature rise capability can be ignored. FIG. 6 is an absorption cycle diagram when the concentrated solution introduction is continued even after the start-up is completed (the absorption cycle diagram shown in FIG. 2). On the other hand, when the flow rate of the concentrated solution is large, it is necessary to stop the concentrated solution introduction after the start-up is completed. If the introduction of the concentrated solution is continued, the temperature rise capability is greatly reduced, and is about the same as the parallel flow (see FIG. 4).

上記二段昇温型吸収ヒートポンプにおいては、濃溶液管2から分岐して低温吸収器Aに導入される濃溶液は、高温吸収器AHからの中間濃度溶液と混合して低温吸収器Aに導入しているが、別々に位置を変えて、先ず濃溶液を入口部に、中間濃度溶液を中間部から混入するようにしても良い。   In the two-stage temperature rising type absorption heat pump, the concentrated solution branched from the concentrated solution tube 2 and introduced into the low temperature absorber A is mixed with the intermediate concentration solution from the high temperature absorber AH and introduced into the low temperature absorber A. However, the position may be changed separately so that the concentrated solution is first mixed into the inlet portion and the intermediate concentration solution is mixed from the intermediate portion.

濃溶液の流れの制御は、高温吸収器AHの出口液面レベルが略一定になるように、液面センサの出力により溶液ポンプ1の回転速度制御し、再生器Gの出口の濃溶液を高温吸収器AHに送り込んでいる。高温吸収器AHから低温吸収器Aへの中間濃度溶液流量は、高温吸収器AHの出口液面レベルを略一定にするように、液面センサ30の検出出力で低温吸収器Aの入口の制御弁12の開度を制御し、高温吸収器AHからの溶液流量を調節している。   The flow of the concentrated solution is controlled by controlling the rotational speed of the solution pump 1 by the output of the liquid level sensor so that the outlet liquid level of the high temperature absorber AH becomes substantially constant, and the concentrated solution at the outlet of the regenerator G is heated to a high temperature. It is sent to the absorber AH. The intermediate concentration solution flow rate from the high temperature absorber AH to the low temperature absorber A is controlled by the detection output of the liquid level sensor 30 so that the outlet liquid level of the high temperature absorber AH is substantially constant. The opening degree of the valve 12 is controlled, and the solution flow rate from the high temperature absorber AH is adjusted.

図7は本発明に係る二段昇温型吸収ヒートポンプの他の構成例を示す図である。図7において、図5と同一符号を付した部分は同一又は相当部分を示す。図7の二段昇温型吸収ヒートポンプが図5のそれと異なる点は、図5では高温蒸発器EHSと低温吸収器Aとを別構成にし、作動媒体搬送管19、19を通って熱交換用管20と熱交換用管21を循環する作動媒体により低温吸収器Aの熱を高温蒸発器EHSに移送しているが、図7では、高温蒸発器EHSと低温吸収器Aとを一体構造とし、高温蒸発器EHSの冷媒液を冷媒搬送管44で低温吸収器Aの熱交換用管45に送り、加熱蒸発させて冷媒蒸気を冷媒搬送管44で高温蒸発器EHSに送っている。なお、46は高温蒸発器EHSの内部に設けたバッフルである。   FIG. 7 is a view showing another configuration example of the two-stage temperature rising type absorption heat pump according to the present invention. In FIG. 7, the same reference numerals as those in FIG. 5 denote the same or corresponding parts. 7 differs from that of FIG. 5 in that the high-temperature evaporator EHS and the low-temperature absorber A in FIG. 5 are configured separately and are used for heat exchange through the working medium transport pipes 19 and 19. The heat of the low-temperature absorber A is transferred to the high-temperature evaporator EHS by the working medium circulating through the pipe 20 and the heat exchange pipe 21, but in FIG. 7, the high-temperature evaporator EHS and the low-temperature absorber A are integrated. The refrigerant liquid of the high-temperature evaporator EHS is sent to the heat exchange pipe 45 of the low-temperature absorber A through the refrigerant transport pipe 44, and is evaporated by heating to send the refrigerant vapor to the high-temperature evaporator EHS through the refrigerant transport pipe 44. Reference numeral 46 denotes a baffle provided inside the high temperature evaporator EHS.

図7に示す二段昇温型吸収ヒートポンプにおいて、起動時に、濃溶液が低温吸収器Aにも供給されるので、低温蒸発器Eからの冷媒蒸気を吸収し、希溶液温度が上昇し、熱交換用管45を通る冷媒液は加熱される。この加熱温度は低温蒸発器Eの蒸気より高温となっており、蒸発した冷媒蒸気は低温蒸発器Eの蒸気よりも高温となっており、高温蒸発器EHSの蒸気圧は低温蒸発器よりも高圧になる。高温吸収器AHは高温蒸発器EHSと、低温吸収器は低温蒸発器Eと略同一圧力である。従って、高温吸収器AHの蒸気圧は低温吸収器Aよりも高くなり、高温吸収器AHから低温吸収器Aへの溶液の流れが確保される。   In the two-stage temperature rising type absorption heat pump shown in FIG. 7, since the concentrated solution is also supplied to the low temperature absorber A at the start-up, the refrigerant vapor from the low temperature evaporator E is absorbed, the temperature of the diluted solution rises, The refrigerant liquid passing through the replacement pipe 45 is heated. This heating temperature is higher than the vapor of the low temperature evaporator E, the evaporated refrigerant vapor is higher than the vapor of the low temperature evaporator E, and the vapor pressure of the high temperature evaporator EHS is higher than that of the low temperature evaporator. become. The high temperature absorber AH is at the same pressure as the high temperature evaporator EHS, and the low temperature absorber is at the same pressure as the low temperature evaporator E. Therefore, the vapor pressure of the high temperature absorber AH is higher than that of the low temperature absorber A, and the flow of the solution from the high temperature absorber AH to the low temperature absorber A is ensured.

分岐管26で分岐して低温吸収器Aに導入する濃溶液の導入流量は再生器Gから濃溶液管2を通って供給される濃溶液流量の5〜50%程度とする。この濃溶液の導入流量が少ない場合、起動に時間がかかるが、起動完了後も濃溶液導入を続行しても、昇温能力の低下は無視できる。起動完了後も濃溶液導入を続行し続けた場合の吸収サイクル線図は図6と同じである。一方、濃溶液の導入流量が多い場合は、分岐管26中に弁を設け、起動完了後に濃溶液導入を止める必要がある。   The flow rate of the concentrated solution branched by the branch tube 26 and introduced into the low temperature absorber A is set to about 5 to 50% of the flow rate of the concentrated solution supplied from the regenerator G through the concentrated solution tube 2. When the flow rate of the concentrated solution is small, startup takes time, but even if the concentrated solution introduction is continued even after the startup is completed, a decrease in the temperature rise capability can be ignored. The absorption cycle diagram when the introduction of the concentrated solution is continued even after the start-up is completed is the same as FIG. On the other hand, when the flow rate of the concentrated solution is large, it is necessary to provide a valve in the branch pipe 26 and stop the concentrated solution introduction after the start-up is completed.

高温蒸発器EHSの冷媒液面レベルは液面センサ32で検出され、その検出信号は制御弁6に入力され、高温蒸発器EHSの冷媒液面が設定の値になるように、その開度を制御する。二段昇温型吸収ヒートポンプを図7に示すように構成することにより、図5に比べて、低温吸収器Aの熱を高温蒸発器EHSに送るために作動媒体を循環させる循環ポンプ22や高温蒸発器EHSの冷媒液を循環させる冷媒ポンプ24が必要なくなり、構成が簡単となり、製造コストやランニングコストが安価となる。また、EHSで作動媒体と冷媒とを熱交換させる際の温度損失を無くすことができる。   The refrigerant level level of the high-temperature evaporator EHS is detected by the liquid level sensor 32, and the detection signal is input to the control valve 6, and the opening degree is adjusted so that the refrigerant level of the high-temperature evaporator EHS becomes a set value. Control. By constructing the two-stage temperature rising type absorption heat pump as shown in FIG. 7, compared with FIG. 5, a circulating pump 22 for circulating the working medium in order to send the heat of the low temperature absorber A to the high temperature evaporator EHS or a high temperature The refrigerant pump 24 that circulates the refrigerant liquid of the evaporator EHS is not necessary, the configuration is simplified, and the manufacturing cost and running cost are reduced. Further, it is possible to eliminate temperature loss when heat exchange is performed between the working medium and the refrigerant by EHS.

以上本発明の実施形態を説明したが、本発明は上記実施形態に限定されるものではなく、特許請求の範囲、及び明細書と図面に記載された技術的思想の範囲内において種々の変形が可能である。例えば、上記実施例では気液分離器を設け、被加熱媒体である水を高温吸収器AHで加熱し発生した蒸気を導き、気液分離した蒸気201を排出しているが、場合によっては気液分離器を設けなくともよい。また、被加熱媒体を加熱して蒸気の形態にするのではなく、高温液の形態で得るようにしてもよい。   Although the embodiments of the present invention have been described above, the present invention is not limited to the above-described embodiments, and various modifications can be made within the scope of the technical idea described in the claims and the specification and drawings. Is possible. For example, in the above-described embodiment, a gas-liquid separator is provided, and steam generated by heating water as a medium to be heated by the high-temperature absorber AH is led to discharge the vapor 201 separated by gas-liquid. It is not necessary to provide a liquid separator. Moreover, you may make it obtain in the form of a high temperature liquid instead of heating a to-be-heated medium in the form of a vapor | steam.

従来の二段昇温型吸収ヒートポンプの構成例を示す図である。It is a figure which shows the structural example of the conventional two-step temperature rising type absorption heat pump. 二段昇温型吸収ヒートポンプの溶液側吸収サイクル線図例を示す図である。It is a figure which shows the example of the solution side absorption cycle diagram of a two-step temperature rising type absorption heat pump. 二段昇温型吸収ヒートポンプの溶液側吸収サイクル線図例を示す図である。It is a figure which shows the example of the solution side absorption cycle diagram of a two-step temperature rising type absorption heat pump. 二段昇温型吸収ヒートポンプの溶液側吸収サイクル線図例を示す図である。It is a figure which shows the example of the solution side absorption cycle diagram of a two-step temperature rising type absorption heat pump. 本発明に係る二段昇温型吸収ヒートポンプの構成例を示す図である。(実施例1)It is a figure which shows the structural example of the two-step temperature rising type absorption heat pump which concerns on this invention. Example 1 本発明に係る二段昇温型吸収ヒートポンプの溶液側吸収サイクル線図例を示す図である。It is a figure which shows the example of the solution side absorption cycle diagram of the two-step temperature rising type absorption heat pump which concerns on this invention. 本発明に係る二段昇温型吸収ヒートポンプの構成例を示す図である。(実施例2)It is a figure which shows the structural example of the two-step temperature rising type absorption heat pump which concerns on this invention. (Example 2)

符号の説明Explanation of symbols

AH 高温吸収器
A 低温吸収器
EH 高温蒸発器
E 低温蒸発器
G 再生器
C 凝縮器
X1 低温溶液熱交換器
X2 高温溶液熱交換器
1 溶液ポンプ
2 濃溶液管
3 冷媒ポンプ
4 冷媒管
5 制御弁
6 制御弁
7 流路
8 流路
9 スプレイ
10 中濃度溶液管
11 逆止弁
12 制御弁
13 スプレイ
14 希溶液配管
15 スプレイ
16 温水管
17 流路
18 冷水管
19 作動媒体搬送管
20 熱交換用管
21 熱交換用管
22 循環ポンプ
23 スプレイ
24 冷媒ポンプ
25 温水管
26 分岐管
27 オリフィス
28 液面センサ
29 インバータ
30 液面センサ
31 液面センサ
32 液面センサ
33 配管
34 ポンプ
35 気液分離器
36 配管
37 蒸気排出管
38 給水ポンプ
39 給水管
40 熱交換器
41 温水管
42 熱交換器
43 液面センサ
44 冷媒搬送管
45 熱交換用管
46 バッフル
AH high temperature absorber A low temperature absorber EH high temperature evaporator E low temperature evaporator G regenerator C condenser X1 low temperature solution heat exchanger X2 high temperature solution heat exchanger 1 solution pump 2 concentrated solution tube 3 refrigerant pump 4 refrigerant tube 5 control valve 6 control valve 7 flow path 8 flow path 9 spray 10 medium concentration solution pipe 11 check valve 12 control valve 13 spray 14 dilute solution pipe 15 spray 16 hot water pipe 17 flow path 18 cold water pipe 19 working medium transport pipe 20 heat exchange pipe DESCRIPTION OF SYMBOLS 21 Heat exchange pipe 22 Circulation pump 23 Spray 24 Refrigerant pump 25 Hot water pipe 26 Branch pipe 27 Orifice 28 Liquid level sensor 29 Inverter 30 Liquid level sensor 31 Liquid level sensor 32 Liquid level sensor 33 Piping 34 Pump 35 Gas-liquid separator 36 Piping 37 Steam exhaust pipe 38 Water supply pump 39 Water supply pipe 40 Heat exchanger 41 Hot water pipe 42 Heat exchanger 43 Liquid Sensor 44 refrigerant conveying tube 45 heat exchange tubes 46 baffles

Claims (3)

高温吸収器、低温吸収器、高温蒸発器、低温蒸発器、再生器、凝縮器、高温溶液熱交換器、低温溶液熱交換器を主要構成機器として具備し、
前記再生器の濃溶液を前記低温溶液熱交換器の被加熱側及び前記高温溶液熱交換器の被加熱側を経由して前記高温吸収器に導入し、前記凝縮器の凝縮冷媒液を前記低温蒸発器及び前記高温蒸発器に導入し、前記低温蒸発器で発生した冷媒蒸気を前記低温吸収器に導入し、高温蒸発器で発生した冷媒蒸気を前記高温吸収器に導入し、前記高温吸収器で前記濃溶液に前記冷媒蒸気が吸収され中間濃度となった中間濃度溶液を前記高温溶液熱交換器の加熱側を経由して前記低温側吸収器に導入し、該低温吸収器で前記中間濃度溶液に冷媒蒸気を吸収して希溶液となった溶液を前記低温溶液熱交換器の加熱側を経由して前記再生器に導入し、該再生器で発生した冷媒蒸気を前記凝縮器に導入し、二段昇温をするように構成した二段昇温型吸収ヒートポンプであって、
前記低温溶液熱交換器で加熱され前記高温吸収器に導入される前記再生器からの濃溶液の一部を分岐し、中間濃度溶液の全流量と混合して前記低温吸収器に導入し、該混合溶液に冷媒蒸気が吸収されて発生する熱を高温蒸発器内に供給したことを特徴とする二段昇温型吸収ヒートポンプ。
High temperature absorber, low temperature absorber, high temperature evaporator, low temperature evaporator, regenerator, condenser, high temperature solution heat exchanger, low temperature solution heat exchanger are equipped as main components,
The concentrated solution of the regenerator is introduced into the high temperature absorber via the heated side of the low temperature solution heat exchanger and the heated side of the high temperature solution heat exchanger, and the condensed refrigerant liquid of the condenser is introduced into the low temperature Introducing into the evaporator and the high temperature evaporator, introducing the refrigerant vapor generated in the low temperature evaporator into the low temperature absorber, introducing the refrigerant vapor generated in the high temperature evaporator into the high temperature absorber, and the high temperature absorber In the concentrated solution, the refrigerant solution is absorbed and the intermediate concentration solution having an intermediate concentration is introduced into the low temperature side absorber via the heating side of the high temperature solution heat exchanger, and the intermediate concentration is A solution that has absorbed a refrigerant vapor into the solution to become a dilute solution is introduced into the regenerator via the heating side of the low-temperature solution heat exchanger, and the refrigerant vapor generated in the regenerator is introduced into the condenser. Two-stage temperature rising type absorption heat po A-flops,
A portion of the concentrated solution from the regenerator heated by the low temperature solution heat exchanger and introduced into the high temperature absorber is branched , mixed with the total flow rate of the intermediate concentration solution and introduced into the low temperature absorber , A two-stage temperature rising type absorption heat pump characterized in that heat generated by absorption of refrigerant vapor in a mixed solution is supplied into a high-temperature evaporator .
請求項1に記載の二段昇温型吸収ヒートポンプにおいて、
前記高温吸収器の溶液で被加熱媒体を加熱し、蒸気とすることを特徴とする二段昇温型吸収ヒートポンプ。
In the two-stage temperature rising type absorption heat pump according to claim 1 ,
A two-stage temperature rising type absorption heat pump, wherein a medium to be heated is heated with a solution of the high-temperature absorber to form a vapor.
請求項1又は2に記載の二段昇温型吸収ヒートポンプにおいて、
前記低温吸収器ヘ分岐して導入される濃溶液の導入流量は前記再生器からの全濃溶液流量の5〜50%であることを特徴とする二段昇温型吸収ヒートポンプ。
In the two-stage temperature rising type absorption heat pump according to claim 1 or 2 ,
A two-stage temperature rising type absorption heat pump characterized in that the flow rate of the concentrated solution introduced by branching into the low-temperature absorber is 5 to 50% of the total concentrated solution flow rate from the regenerator.
JP2004299169A 2004-10-13 2004-10-13 Two-stage temperature rising type absorption heat pump Expired - Fee Related JP4602734B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2004299169A JP4602734B2 (en) 2004-10-13 2004-10-13 Two-stage temperature rising type absorption heat pump
US11/247,599 US7464562B2 (en) 2004-10-13 2005-10-12 Absorption heat pump
CN2005101135952A CN1766461B (en) 2004-10-13 2005-10-13 Absorption type heat pump
US12/191,680 US7827817B2 (en) 2004-10-13 2008-08-14 Absorption heat pump

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004299169A JP4602734B2 (en) 2004-10-13 2004-10-13 Two-stage temperature rising type absorption heat pump

Publications (2)

Publication Number Publication Date
JP2006112686A JP2006112686A (en) 2006-04-27
JP4602734B2 true JP4602734B2 (en) 2010-12-22

Family

ID=36381344

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004299169A Expired - Fee Related JP4602734B2 (en) 2004-10-13 2004-10-13 Two-stage temperature rising type absorption heat pump

Country Status (1)

Country Link
JP (1) JP4602734B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101851231B1 (en) 2017-04-19 2018-04-23 (주)월드이엔씨 Absorption type heat pump system for gaining high temperature

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5165473B2 (en) * 2008-06-25 2013-03-21 荏原冷熱システム株式会社 Heat pump and its internal inspection method
JP5250340B2 (en) * 2008-08-25 2013-07-31 荏原冷熱システム株式会社 Absorption heat pump
CN101650095B (en) * 2009-09-03 2011-11-09 清华大学 Multistage absorption refrigerating/heat pump unit
CN101957093B (en) * 2010-08-13 2013-05-29 李华玉 Absorption-reabsorption-generation system and first-class absorption heat pump
CN104922925B (en) * 2015-06-24 2017-01-18 北斗航天卫星应用科技集团有限公司 Distillation equipment constant-temperature control system and method

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5377369A (en) * 1976-12-21 1978-07-08 Ebara Corp Hybrid absorption type heat pump
JPS5824766A (en) * 1981-07-14 1983-02-14 三菱電機株式会社 Absorption type heat pump
JPS5818574B2 (en) * 1975-12-23 1983-04-13 カブシキガイシヤ エバラセイサクシヨ heat pump
JPS6144262A (en) * 1984-08-06 1986-03-03 三洋電機株式会社 Absorption heat pump device
JPS62171768U (en) * 1986-03-19 1987-10-31
JP2004245443A (en) * 2003-02-12 2004-09-02 Kawasaki Thermal Engineering Co Ltd Absorption chiller and heater

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS643466A (en) * 1987-06-25 1989-01-09 Mitsubishi Electric Corp Absorption heat pump

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5818574B2 (en) * 1975-12-23 1983-04-13 カブシキガイシヤ エバラセイサクシヨ heat pump
JPS5377369A (en) * 1976-12-21 1978-07-08 Ebara Corp Hybrid absorption type heat pump
JPS5824766A (en) * 1981-07-14 1983-02-14 三菱電機株式会社 Absorption type heat pump
JPS6144262A (en) * 1984-08-06 1986-03-03 三洋電機株式会社 Absorption heat pump device
JPS62171768U (en) * 1986-03-19 1987-10-31
JP2004245443A (en) * 2003-02-12 2004-09-02 Kawasaki Thermal Engineering Co Ltd Absorption chiller and heater

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101851231B1 (en) 2017-04-19 2018-04-23 (주)월드이엔씨 Absorption type heat pump system for gaining high temperature

Also Published As

Publication number Publication date
JP2006112686A (en) 2006-04-27

Similar Documents

Publication Publication Date Title
US7827817B2 (en) Absorption heat pump
JP2008106983A (en) Absorption type heat pump
US6993933B2 (en) Absorption refrigerating machine
JP4602734B2 (en) Two-stage temperature rising type absorption heat pump
WO2002018849A1 (en) Absorption refrigerating machine
JP6486159B2 (en) Absorption refrigerator and control method thereof
CN104180555B (en) A kind of cold dual effect type lithium bromide jet suction type cooling cycle system
JP6896968B2 (en) Absorption heat exchange system
CN108139126B (en) Absorption refrigerator
JP3851764B2 (en) Absorption refrigerator
JP2000121196A (en) Cooling/heating system utilizing waste heat
JP3920619B2 (en) Absorption chiller / heater and control method thereof
JP2009287805A (en) Absorption refrigerator
KR101255955B1 (en) Exhaust gas heat recovery device and absorption refrigerator
JP4283633B2 (en) Double-effect absorption chiller / heater with exhaust heat recovery unit
JP6903852B2 (en) Absorption heat exchange system
CN110234941B (en) Absorption refrigerator
JP4315855B2 (en) Absorption refrigerator
JP6907438B2 (en) Absorption heat exchange system
JP4199977B2 (en) Triple effect absorption refrigerator
KR20100019422A (en) A method and system for extending a turndown ratio of an absorption chiller
JP3434279B2 (en) Absorption refrigerator and how to start it
JP4064199B2 (en) Triple effect absorption refrigerator
JP2003269815A (en) Exhaust heat recovery type absorption refrigerator
KR100781880B1 (en) Absorption chiller

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20070903

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070903

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091211

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100105

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100305

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100914

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100930

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131008

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees