JPS62294864A - Absorption heat pump - Google Patents

Absorption heat pump

Info

Publication number
JPS62294864A
JPS62294864A JP13682786A JP13682786A JPS62294864A JP S62294864 A JPS62294864 A JP S62294864A JP 13682786 A JP13682786 A JP 13682786A JP 13682786 A JP13682786 A JP 13682786A JP S62294864 A JPS62294864 A JP S62294864A
Authority
JP
Japan
Prior art keywords
refrigerant
evaporator
temperature
condenser
pump
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13682786A
Other languages
Japanese (ja)
Inventor
宮城 龍雄
秀夫 鎌田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP13682786A priority Critical patent/JPS62294864A/en
Publication of JPS62294864A publication Critical patent/JPS62294864A/en
Pending legal-status Critical Current

Links

Landscapes

  • Sorption Type Refrigeration Machines (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 3、発明の詳細な説明 イ)産業上の利用分野 本発明は、発生器内の吸収液の温度?よび飽和蒸気圧が
吸収器内のそれの温度?よび飽和蒸気圧よりも低(、か
つ、凝縮器内の冷媒の液化温度だよび飽和蒸気圧が蒸発
器内のそれの気化温度πよび飽和蒸気圧よりも低い状態
で運転される凰式の吸収ヒートポンプの改良に関する。
[Detailed Description of the Invention] 3. Detailed Description of the Invention A) Field of Industrial Application The present invention focuses on the temperature of the absorption liquid in the generator. and the saturated vapor pressure and its temperature in the absorber? and the saturated vapor pressure (and the liquefaction temperature and saturated vapor pressure of the refrigerant in the condenser are lower than its vaporization temperature π and saturated vapor pressure in the evaporator). Regarding improvements to heat pumps.

(ロ)従来の技術 上記型式の吸収ヒートポンプの従来の技術として、例え
ば特開昭58−69372号公報にみられるように、蒸
発器の未気化冷媒を凝縮器の液化冷媒溜に流して液化冷
媒と合流させた後これを冷媒液用ポンプで蒸発器へ戻す
冷媒液回路を蒸発器と凝縮器間圧形成したもの〔以下、
第1従来例という〕や凝縮器の液化冷媒を蒸発器の未気
化冷媒溜へ冷媒液用ポンプで送った後このポンプとは別
の冷媒液用ポンプで液化冷媒の混入した未気化冷媒を蒸
発器に再循環させる冷媒液経路を蒸発器と凝縮器間に形
成したもの〔以下、第2従来例という〕がある。
(B) Conventional Technology As a conventional technology of the above-mentioned type of absorption heat pump, for example, as seen in Japanese Patent Laid-Open No. 58-69372, unvaporized refrigerant in an evaporator is passed into a liquefied refrigerant reservoir in a condenser. A refrigerant liquid circuit in which the refrigerant liquid is returned to the evaporator by a refrigerant pump after being merged with the refrigerant liquid is formed by forming a pressure between the evaporator and the condenser [hereinafter referred to as
After the liquefied refrigerant in the condenser is sent to the unvaporized refrigerant reservoir of the evaporator using a refrigerant pump, the unvaporized refrigerant mixed with the liquefied refrigerant is evaporated using a refrigerant pump separate from this pump. There is one in which a refrigerant liquid path for recirculation to the container is formed between the evaporator and the condenser (hereinafter referred to as the second conventional example).

H発明が解決しようとする問題点 第1従来例に?いては、未気化冷媒が蒸発器での飽和温
度に近い高温度のままで低圧側の凝縮器の液化冷媒溜に
流入してここで激しくフラッシュ蒸発するため、液化冷
媒の波立ちに伴なう発生器側への溢流によるロスや自己
蒸発した冷媒を再び液化させることによるロスなどの熱
損失が大きく、また、得られる被加熱流体の温度が冷却
水温などの外部条件の変化に伴なって大きくハンチング
しやすい問題点もある。
What is the problem that the invention attempts to solve in the first conventional example? In this case, the unvaporized refrigerant flows into the liquefied refrigerant reservoir of the low-pressure side condenser while remaining at a high temperature close to the saturation temperature in the evaporator, where it flash-evaporates violently. Heat losses such as losses due to overflow to the container side and losses due to re-liquefaction of self-evaporated refrigerant are large, and the temperature of the obtained heated fluid increases due to changes in external conditions such as cooling water temperature. There are also problems that make it easy to hunt.

第2従来例に3いては、第1従来例で生じるような熱損
失を軽減できるものの、複数の冷媒゛衣用ポンプを必要
とすると共に大容量の未気化冷媒溜を必要とする問題点
がある。
Although the second conventional example 3 can reduce the heat loss that occurs in the first conventional example, it requires multiple refrigerant coating pumps and a large capacity unvaporized refrigerant reservoir. be.

また、第2従来例に8いても、冷却水温などの外部条件
の変化に伴ない蒸発器の未気化冷媒溜への低温の液化冷
媒の流入量が間歇的に変動するとこの変動が蒸発器およ
び吸収器内の蒸気圧、飽和温度に影響を及ぼすため、第
1従来例程ではないにしても得られる被加熱流体の温度
変化を生じる問題点がある。特に、液化冷媒用のポンプ
の発停時に被加熱流体温度の大きなハンチングを生じる
In addition, even if the second conventional example is 8, if the amount of low-temperature liquefied refrigerant flowing into the unvaporized refrigerant reservoir of the evaporator fluctuates intermittently due to changes in external conditions such as cooling water temperature, this fluctuation will occur in the evaporator and Since this affects the vapor pressure and saturation temperature within the absorber, there is a problem in that the temperature of the heated fluid changes, although not as much as in the first conventional example. In particular, large hunting occurs in the temperature of the heated fluid when the liquefied refrigerant pump starts and stops.

本発明は、第1、第2従来例のそれぞれの問題点を解消
でき、得られる被加熱流体の温度変化を小さくすること
の可能な上記型式の吸収ヒートポンプ′の提供を目的と
したものである。
The object of the present invention is to provide an absorption heat pump of the above type that can solve the problems of the first and second conventional examples and can reduce the temperature change of the resulting heated fluid. .

に)問題点を解決するための手段 本発明は、上記型式の吸収ヒートポンプにおいて、蒸発
器からの未気化冷媒が凝縮器をバイパスして液化冷媒用
ポンプの吸込み口に導かれこのポンプで液化冷媒と共に
蒸発器へ戻されるように冷媒回路を形成したことに特徴
を有するものである。
B) Means for Solving the Problems The present invention provides an absorption heat pump of the above type, in which unvaporized refrigerant from the evaporator bypasses the condenser and is guided to the suction port of the liquefied refrigerant pump. The feature is that a refrigerant circuit is formed so that the refrigerant is returned to the evaporator together with the refrigerant.

(ホ)作用 本発明の吸収ヒートポンプに8いては、1台の液化冷媒
用ポンプが低温の液化冷媒と温度の高い多量の未気化冷
媒とを均一にミックスすることによって蒸発器へ戻され
ろ冷媒液の温度のハンチングを小さくする作用を発揮し
、かつ、未気化街媒がポンプの押込みヘッドとして作用
するため、第2従来例にくらべ、ポンプの発停頻度を著
しく少な(でき、蒸発器8よび吸収器内の蒸気圧、温度
の間歇的な変化も小さくでき、得られる被加熱流体の温
度をより一層安定化させることができる。
(E) Function In the absorption heat pump of the present invention, one liquefied refrigerant pump uniformly mixes low-temperature liquefied refrigerant and a large amount of high-temperature unvaporized refrigerant to return the refrigerant to the evaporator. It has the effect of reducing hunting in the temperature of the liquid, and the unvaporized medium acts as a pump head, so compared to the second conventional example, the frequency of starting and stopping the pump is significantly reduced (and the evaporator 8 Also, intermittent changes in vapor pressure and temperature within the absorber can be reduced, and the temperature of the resulting heated fluid can be further stabilized.

また、高温の未気化冷媒が低温低圧側の凝縮器をバイパ
スして蒸発器へ戻されるため、第1従来例のような熱ロ
スを生じることもない。
Further, since the high temperature unvaporized refrigerant bypasses the condenser on the low temperature and low pressure side and is returned to the evaporator, heat loss as in the first conventional example does not occur.

(へ)実施例 図面は本発明による吸収ヒートポンプの一実施例を示し
た概略構成説明図である。図において、(1)は蒸発器
(2)および吸収器(3)より成る蒸発吸収器、(4丹
ま発生器(5)および凝縮器(6)より成る発生凝縮器
、(7)は溶液熱交換器、(P、)は冷媒液用ポンプ、
(P、)は溶液用ポンプであり、これら機器を配管接続
することによって冷媒〔水〕と溶液〔臭化リチウム水溶
液〕の循環路が形成されている。
(F) Embodiment The drawing is a schematic configuration diagram showing an embodiment of an absorption heat pump according to the present invention. In the figure, (1) is an evaporative absorber consisting of an evaporator (2) and an absorber (3), a generation condenser (consisting of a 4-unit generator (5) and a condenser (6), and (7) is a solution Heat exchanger, (P,) is a pump for refrigerant liquid,
(P,) is a solution pump, and by connecting these devices with piping, a circulation path for the refrigerant [water] and the solution [lithium bromide aqueous solution] is formed.

(8)は蒸発器(2)の給熱器、(9)は吸収器(3)
の被加熱器、+10)は発生器(5)の加熱器、(11
)は凝縮器(6)の冷却器、α2は蒸発器(2)の未気
化冷媒溜、Q31は凝縮器(6)の液化冷媒溜め、α岨
、a9はそれぞれ吸収器(3)、発生器(5)の溶液溜
である。
(8) is the heat supply for the evaporator (2), (9) is the absorber (3)
The heated device, +10) is the heater of the generator (5), (11
) is the cooler of the condenser (6), α2 is the unvaporized refrigerant reservoir of the evaporator (2), Q31 is the liquefied refrigerant reservoir of the condenser (6), α and a9 are the absorber (3) and the generator, respectively. This is the solution reservoir of (5).

(16)、(17)、餞は濃溶液の送られろ管路、(1
9,(イ)は冷浴液の流れる管路、(21)は液化冷媒
流下用管路、■は液化冷媒流下用管路■と接続して下端
を冷媒液用ポンプ(Pl)吸込み口側へ開口した未気化
冷媒流下用管路であり、123)は冷媒液用ポンプ(P
、)により吐出された液化冷媒と未気化冷媒とを蒸発器
(2)の冷媒散布器04)へ導く管路である。
(16), (17), the conduit is for sending the concentrated solution, (1
9. (A) is the pipe through which the cold bath liquid flows, (21) is the pipe for liquefied refrigerant flowing down, ■ is connected to the pipe for liquefied refrigerant flowing ■, and the lower end is connected to the suction port side of the refrigerant liquid pump (Pl). 123) is a conduit for unvaporized refrigerant flowing down which opens to the refrigerant liquid pump (P
This is a pipe line that guides the liquefied refrigerant and unvaporized refrigerant discharged by the evaporator (2) to the refrigerant distribution device 04) of the evaporator (2).

また、(ハ)、(ハ)は、それぞれ、排温水もしくは廃
蒸気あるいは太陽熱利用温水などの熱源流体の流れる管
、額は水やブラインなどの被加熱流体の流れろ管であり
、@は冷却流体の流れる管である。
In addition, (c) and (c) are pipes through which heat source fluids such as waste hot water, waste steam, or hot water using solar heat flow, respectively, and the frames are pipes through which heated fluids such as water and brine flow, and @ is the cooling fluid. It is a pipe through which water flows.

このよう罠構成された吸収ヒートポンプ(以下、本機と
いう)に8いては、給熱器(8)と加熱器α0)とに例
えば工場の排温水を流すと共に冷却器(11)に外気温
よりや〜温度レベルの低い冷却水を流しつつ被加熱器(
9)K水を循環させて運転することにより、蒸発吸収器
fi+の力が発生凝縮器(4)よりも高温レベルに保た
れる吸収ヒートポンプサイクルを生じ、被加熱器(9)
に散布された吸収液が蒸発器(2)からの気化冷媒を吸
収する際に発生する熱で被加熱器(9)内の水が昇温さ
れ、給熱器(8)に供給される排温水よりも温度レベル
の高い温水が得られる。
In an absorption heat pump (hereinafter referred to as this machine) with such a trap configuration, for example, waste water from a factory flows through the heat supply (8) and the heater α0), and at the same time, the outside air temperature flows into the cooler (11). The heated device (
9) By operating with K water circulating, an absorption heat pump cycle is created in which the force of the evaporative absorber fi+ is kept at a higher temperature level than the generating condenser (4), and the heated device (9)
The water in the heated device (9) is heated by the heat generated when the absorption liquid sprayed on the evaporator absorbs the vaporized refrigerant from the evaporator (2), and the water in the heated device (9) is heated. Hot water with a higher temperature level than hot water can be obtained.

そして、本機にだいては、凝縮器(6)で少しずつ液化
される低温の液冷媒と蒸発器(2)かもの温度レベルの
高い多量の未気化冷媒とが冷媒液用ポンプ(P8)でミ
ックスされた後冷媒散布器(財)へ送られる。その結果
、冷媒散布器24+に流入する液冷媒の温度は未気化冷
媒溜αりの液温に近い値すなわち蒸発器f21 K :
M Vfる冷媒の気化温度忙近い値になる。
In this machine, the low-temperature liquid refrigerant that is liquefied little by little in the condenser (6) and the large amount of unvaporized refrigerant at a high temperature level in the evaporator (2) are transferred to the refrigerant liquid pump (P8). After being mixed, it is sent to a refrigerant spreader (goods). As a result, the temperature of the liquid refrigerant flowing into the refrigerant diffuser 24+ is close to the liquid temperature of the unvaporized refrigerant reservoir α, that is, the temperature of the liquid refrigerant flowing into the refrigerant diffuser 24+, that is, the temperature of the liquid refrigerant in the evaporator f21 K:
The vaporization temperature of the refrigerant becomes a value close to that of the refrigerant.

また、冷媒液用ポンプ(Pl)内で液化冷媒と未気化冷
媒とが十分にミックスされろため、管路(23の液流の
温度分布は均一となり、冷媒散布器04)に流入する液
冷媒の温度が間歇的に高(なったり、低くなったりする
こともない。かつまた、未気化冷媒が冷媒液用ポンプ(
P、)の押込みヘッドとしての働きとこのポンプの空運
転防止の働きをし、冷却水温や排温水温度あるいはその
供給量などの変動に伴なって冷媒の液化量か変動しても
蒸発器(2)の給熱器(8)への液冷媒散布量の変動が
上記の働きにより緩衝される。
In addition, since the liquefied refrigerant and the unvaporized refrigerant are sufficiently mixed in the refrigerant liquid pump (Pl), the temperature distribution of the liquid flow in the pipe line (23) becomes uniform, and the liquid refrigerant flowing into the refrigerant distribution device 04 The temperature of the refrigerant pump (
The evaporator ( Fluctuations in the amount of liquid refrigerant sprayed to the heat supply device (8) in 2) are buffered by the above-mentioned function.

このため、本機に?いては、蒸発吸収器(1)内の蒸気
圧、温度が従来のものよりも安定に保たれることになり
、得られる被加熱流体の温度のハンチングか小さくなる
For this reason, on this machine? In this case, the vapor pressure and temperature inside the evaporator-absorber (1) are kept more stable than in the conventional case, and hunting in the temperature of the resulting heated fluid is reduced.

また、本機においては、高温の未気化冷媒が低圧側の凝
縮器(6)内に流入してフラッシュ蒸発しないようにこ
の凝縮器をバイパスさせつつ未気化冷媒を液化冷媒に合
流させているので、未気化冷媒のフラッシュ蒸発に伴な
う熱ロヌの発生も防止される。
In addition, in this machine, the high-temperature unvaporized refrigerant flows into the low-pressure side condenser (6) and flash evaporation is prevented by bypassing this condenser while allowing the unvaporized refrigerant to join the liquefied refrigerant. , generation of thermal radiance due to flash evaporation of unvaporized refrigerant is also prevented.

なお、図示していないが、本機において、蒸発器および
吸収器を別個の容器で形成してこれらを気化冷媒用のダ
クトで結ぶと共に発生器?よび凝縮器を別個の容器で形
成してこれらを冷媒蒸気用のダクトで結ぶようにしても
良いことは勿論である。
Although not shown in the drawings, in this machine, the evaporator and absorber are formed in separate containers, and they are connected by a duct for vaporized refrigerant, and a generator is also installed. Of course, it is also possible to form the container and the condenser in separate containers and connect them with a duct for refrigerant vapor.

(ト)  発明の効果 本発明は、以上の通り、熱源流体温度以上の被加熱流体
を得る型式の吸収ヒートポンプにおける冷媒のフラッシ
ュ蒸発を防いで熱ロスを軽減する効果と、得られろ被加
熱流体の温度のノ・ンチングを小さくする効果とを上記
型式の吸収ヒートポンプにもたらすものであり、1台の
ポンプを用いて安定した運転〔ポンプの空運転防止のた
めの発停の頻度が少ない運転〕を可能にするなど、実用
的価値の高いものである。
(g) Effects of the Invention As described above, the present invention provides an effect of reducing heat loss by preventing flash evaporation of the refrigerant in an absorption heat pump that obtains a heated fluid at a temperature higher than the heat source fluid temperature, and an effect of reducing heat loss by preventing flash evaporation of the refrigerant, and The above-mentioned type of absorption heat pump has the effect of reducing the temperature nozzle of It is of high practical value, as it makes it possible to

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本発明による吸収ヒートポンプの一実施例を示し
た概略構成説明図である。 (2)・・・蒸発器、 (3)・・・吸収器、 (5)
・・・発生器、(6)・・・凝縮器、  (P、)・・
・冷媒液用ポンプ、 (8)・・・給熱器、 (9)・
・・被加熱器、 C12+・・・未気化冷媒溜、α〜・
・・液化冷媒溜、 011・・・液化冷媒流下用管路、
C2・・・未気化冷媒流下用管路、 2J・・・管路。
The drawing is a schematic structural explanatory diagram showing an embodiment of an absorption heat pump according to the present invention. (2)...Evaporator, (3)...Absorber, (5)
...generator, (6)...condenser, (P,)...
・Refrigerant liquid pump, (8)...heater, (9)・
・Heated device, C12+ ・Unvaporized refrigerant reservoir, α~・
...Liquefied refrigerant reservoir, 011...Liquefied refrigerant flow pipe line,
C2... unvaporized refrigerant flow pipe line, 2J... pipe line.

Claims (1)

【特許請求の範囲】[Claims] (1)凝縮器に冷却水を流通させつつ蒸発器と発生器に
熱源流体を供給して吸収器から熱源流体温度以上の被加
熱流体を得るように発生器、凝縮器、蒸発器、吸収器な
どの機器を配管構成した吸収ヒートポンプにおいて、凝
縮器で液化した冷媒を蒸発器へ送る冷媒液用ポンプの吸
込口もしくはその近傍に蒸発器の未気化冷媒の流通用管
路の下流端が開口するようこの未気化冷媒流通用管路と
凝縮器から冷媒液用ポンプへ至る液化冷媒用管路とが接
続されていることを特徴とした吸収ヒートポンプ。
(1) Heat source fluid is supplied to the evaporator and generator while cooling water flows through the condenser, and the generator, condenser, evaporator, and absorber In an absorption heat pump configured with equipment such as piping, the downstream end of the pipe for distributing the unvaporized refrigerant of the evaporator opens at or near the suction port of the refrigerant liquid pump that sends the refrigerant liquefied in the condenser to the evaporator. An absorption heat pump characterized in that a conduit for distributing unvaporized refrigerant is connected to a conduit for liquefied refrigerant leading from a condenser to a pump for refrigerant liquid.
JP13682786A 1986-06-12 1986-06-12 Absorption heat pump Pending JPS62294864A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13682786A JPS62294864A (en) 1986-06-12 1986-06-12 Absorption heat pump

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13682786A JPS62294864A (en) 1986-06-12 1986-06-12 Absorption heat pump

Publications (1)

Publication Number Publication Date
JPS62294864A true JPS62294864A (en) 1987-12-22

Family

ID=15184429

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13682786A Pending JPS62294864A (en) 1986-06-12 1986-06-12 Absorption heat pump

Country Status (1)

Country Link
JP (1) JPS62294864A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002073099A1 (en) * 2001-03-12 2002-09-19 Mikio Kinoshita Solar thermal system with solar pond and method of maintaining solar pond
JP2011169586A (en) * 2011-05-02 2011-09-01 Ebara Corp Absorption heat pump

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002073099A1 (en) * 2001-03-12 2002-09-19 Mikio Kinoshita Solar thermal system with solar pond and method of maintaining solar pond
JP2011169586A (en) * 2011-05-02 2011-09-01 Ebara Corp Absorption heat pump

Similar Documents

Publication Publication Date Title
JPH04268172A (en) Combined machine type-absorption type cooling and its apparatus
US5271246A (en) Method and apparatus for producing high temperature water in absorption chiller-heater
JPS58195763A (en) Device for operating solar heat utilizing absorption type cold and hot water machine
US3495420A (en) Two stage generator absorption unit with condensate heat exchanger
US4470269A (en) Absorption refrigeration system utilizing low temperature heat source
JPS62294864A (en) Absorption heat pump
JPS5812507B2 (en) Hybrid type absorption heat pump
US3978683A (en) Absorption refrigerator of natural circulation type
JPS6361845A (en) Absorption refrigerator
JPH0262792B2 (en)
JPS62225868A (en) Absorption heat pump device
JPS6018764Y2 (en) Absorption chiller control device
JP3027705B2 (en) Double effect absorption refrigerator
JP2787182B2 (en) Single / double absorption chiller / heater
JPH0198863A (en) Absorption refrigerator
US653666A (en) Ice-making plant.
JPS599036B2 (en) Dual effect absorption refrigeration equipment
US3303875A (en) Heating and cooling system
JPS60103268A (en) Absorption refrigerator
JPH0421828Y2 (en)
JPS5880466A (en) Refrigerant absorber
JPS5817390B2 (en) Heat recovery type absorption chiller/heater
JPS58203361A (en) Absorption type cold and hot water machine utilizing solar heat
JPH0694972B2 (en) Absorption heat pump device
JPH0583831B2 (en)